JP2020512178A - Preparation of filtration membrane - Google Patents

Preparation of filtration membrane Download PDF

Info

Publication number
JP2020512178A
JP2020512178A JP2019523680A JP2019523680A JP2020512178A JP 2020512178 A JP2020512178 A JP 2020512178A JP 2019523680 A JP2019523680 A JP 2019523680A JP 2019523680 A JP2019523680 A JP 2019523680A JP 2020512178 A JP2020512178 A JP 2020512178A
Authority
JP
Japan
Prior art keywords
membrane
copolymer
cosolvent
statistical copolymer
support layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019523680A
Other languages
Japanese (ja)
Other versions
JP2020512178A5 (en
Inventor
ベンガニ−ルッツ,プリティ
アサテキン,アレクシウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tufts University
Original Assignee
Tufts University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tufts University filed Critical Tufts University
Publication of JP2020512178A publication Critical patent/JP2020512178A/en
Publication of JP2020512178A5 publication Critical patent/JP2020512178A5/ja
Priority to JP2022113802A priority Critical patent/JP2022132487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/226Use of ionic liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/18Membrane materials having mixed charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

ろ過膜を調製する方法。その方法は、助溶媒と第1の有機溶媒との混合物中に統計コポリマーを溶解させることによりコポリマー溶液を提供する工程、前記コポリマー溶液を多孔質支持層上にコーティングして支持層上にポリマー層を形成する工程、前記支持層上のポリマー層を凝固させて薄膜複合膜を形成する工程、及び前記薄膜複合膜を水浴中に浸漬してろ過膜を得る工程を含む。また、その方法により調製されたろ過膜、並びにこのように調製されたろ過膜を用いて液体をろ過するプロセスも開示する。A method for preparing a filtration membrane. The method comprises providing a copolymer solution by dissolving a statistical copolymer in a mixture of a co-solvent and a first organic solvent, coating the copolymer solution on a porous support layer to form a polymer layer on the support layer. Forming a thin film composite membrane by coagulating the polymer layer on the support layer, and immersing the thin film composite membrane in a water bath to obtain a filtration membrane. Also disclosed are filtration membranes prepared by the method, as well as processes for filtering liquids using the filtration membranes thus prepared.

Description

ろ過膜は、食品、乳製品、飲料及び医薬産業における精製及び分離でのその幅広い利用のため大いに注目されている。   Filtration membranes are of great interest due to their wide application in purification and separation in the food, dairy, beverage and pharmaceutical industries.

高流束(すなわち高透過性)及び高選択性を有する膜は、エネルギー効率のよい膜分離のために望ましい。膜透過流束を改善するための既存の方法としてグラフト及びブレンドが挙げられる。これらの方法は、非常に長い製造工程或いは後処理工程を必要とし、選択性の損失をもたらすか、或いは特定の膜タイプ(例えば、多孔質限外ろ過膜及び精密ろ過膜)のみを提供するかのいずれかであり、従って緻密選択層を有するろ過膜を作製する際にそれらの使用は制限される。   Membranes with high flux (ie, high permeability) and high selectivity are desirable for energy efficient membrane separations. Existing methods for improving membrane flux include grafting and blending. Do these methods require very long manufacturing or post-treatment steps, resulting in a loss of selectivity, or provide only certain membrane types (eg, porous ultrafiltration and microfiltration membranes)? , And thus their use is limited in making filtration membranes with dense selective layers.

高透過性でかつ高選択的なろ過膜を調製する新規な方法に対する要求がある。   There is a need for new methods of preparing highly permeable and highly selective filtration membranes.

この要求を満たすためにろ過膜を調製する方法をここに開示する。   Disclosed herein is a method of preparing a filtration membrane to meet this need.

その方法は以下の工程:(i)助溶媒(co-solvent)と第1の有機溶媒との混合物中に統計コポリマーを溶解させることによりコポリマー溶液を提供する工程;(ii)前記コポリマー溶液を多孔質支持層上にコーティングして支持層上にポリマー層を形成する工程;(iii)前記支持層上のポリマー層を凝固させて薄膜複合膜を形成する工程;及び(iv)前記薄膜複合膜を水浴中に浸漬してろ過膜を得る工程;を含む。   The method comprises the steps of: (i) providing a copolymer solution by dissolving the statistical copolymer in a mixture of a co-solvent and a first organic solvent; (ii) pouring the copolymer solution A high quality support layer to form a polymer layer on the support layer; (iii) solidifying the polymer layer on the support layer to form a thin film composite membrane; and (iv) forming the thin film composite membrane. Soaking in a water bath to obtain a filtration membrane.

コポリマー溶液は、1〜99w/v%(例えば、1〜50w/v%、及び3〜30w/v%)で統計コポリマー、1〜99v/v%(例えば、1〜80v/v%、及び5〜49v/v%)で助溶媒、及び1〜99v/v%(例えば、20〜99v/v%、及び51〜95v/v%)で第1の有機溶媒を含有する。   The copolymer solution can be 1-99 w / v% (eg, 1-50 w / v%, and 3-30 w / v%) statistical copolymer, 1-99 v / v% (eg, 1-80 v / v%, and 5). ˜49 v / v%) and a first organic solvent at 1-99 v / v% (eg 20-99 v / v%, and 51-95 v / v%).

統計コポリマーは、双性イオン繰り返し単位及び疎水性繰り返し単位を含み、双性イオン繰り返し単位は統計コポリマーの15〜75質量%(例えば、20〜70質量%、及び30〜50質量%)を構成し、疎水性繰り返し単位は統計コポリマーの25〜85質量%(例えば、30〜80質量%、及び50〜70質量%)を構成し、疎水性繰り返し単位は、0℃以上(例えば、室温以上)のガラス転移温度を有するホモポリマーを形成することができる。   The statistical copolymer comprises zwitterionic repeating units and hydrophobic repeating units, wherein the zwitterionic repeating units make up 15-75 wt% (eg, 20-70 wt%, and 30-50 wt%) of the statistical copolymer. , The hydrophobic repeating unit constitutes 25 to 85% by mass (eg, 30 to 80% by mass, and 50 to 70% by mass) of the statistical copolymer, and the hydrophobic repeating unit has a temperature of 0 ° C. or higher (eg, room temperature or higher). Homopolymers having a glass transition temperature can be formed.

助溶媒は、イオン液体、界面活性剤分子、又は第2の有機溶媒であってよい。重要なこととして、助溶媒は、水及び第1の有機溶媒の両方と混和性を有する。   The cosolvent may be an ionic liquid, a surfactant molecule, or a second organic solvent. Importantly, the cosolvent is miscible with both water and the first organic solvent.

第1の有機溶媒の例として、それらに限定はされないが、トリフロオロエタノール、ジメチルスルホキシド、ホルムアミド、ジメチルホルムアミド、ヘキサフルオロイソプロパノール、N−メチル−2−ピロリドン、ピリジン、ジオキサン、トルエン、クロロホルム、ベンゼン、四塩化炭素、クロロベンゼン、1,1,2−トリクロロエタン、ジクロロメタン、ジクロロエタン、キシレン、テトラヒドロフラン、メタノール、及びエタノールが挙げられる。第2の有機溶媒の例として、それらに限定はされないが、トリフロオロエタノール、ヘキサフルオロイソプロパノール、ジオキサン、クロロホルム、ジクロロメタン、塩化メチレン、ジクロロエタン、テトラヒドロフラン、アセトニトリル、2−ブタノール、2−ブタノン、メタノール、及びエタノールが挙げられる。   Examples of first organic solvents include, but are not limited to, trifluoroethanol, dimethylsulfoxide, formamide, dimethylformamide, hexafluoroisopropanol, N-methyl-2-pyrrolidone, pyridine, dioxane, toluene, chloroform, benzene. , Carbon tetrachloride, chlorobenzene, 1,1,2-trichloroethane, dichloromethane, dichloroethane, xylene, tetrahydrofuran, methanol, and ethanol. Examples of second organic solvents include, but are not limited to, trifluoroethanol, hexafluoroisopropanol, dioxane, chloroform, dichloromethane, methylene chloride, dichloroethane, tetrahydrofuran, acetonitrile, 2-butanol, 2-butanone, methanol, And ethanol.

凝固工程、すなわち工程(iii)は、典型的には、(コポリマー溶液を多孔質支持層上に塗布した後に形成される)ポリマー層を60分又はそれより少ない時間(例えば、10分、及び20秒)空気乾燥することにより行われる。それは、コーティング工程、すなわち工程(ii)で形成された多孔質支持層と一緒になったポリマー選択層を非溶媒浴中に60分又はそれより少ない時間(例えば、20分、及び10分)浸漬することによっても行うことができる。典型的には、非溶媒は、メタノール、エタノール、イソプロパノール、ブタノール、アセトン、水、又はそれらの組合せである。   The coagulation step, step (iii), typically involves a polymer layer (formed after coating the copolymer solution onto the porous support layer) for 60 minutes or less (eg, 10 minutes, and 20 minutes). Sec) air-dried. It involves a coating step, ie, immersing the polymer selective layer together with the porous support layer formed in step (ii) in a non-solvent bath for 60 minutes or less (eg, 20 minutes and 10 minutes). It can also be done by doing. Typically the non-solvent is methanol, ethanol, isopropanol, butanol, acetone, water, or a combination thereof.

上記の方法は、浸漬工程、すなわち工程(iv)の後に、アニーリング工程をさらに含んでいてよく、アニーリング工程では、そうして得られたろ過膜を50℃又はそれより高い温度(例えば、70℃、及び90℃)で水浴中においてアニール処理する。   The method may further comprise an annealing step after the dipping step, ie step (iv), wherein the filtration membrane so obtained is subjected to a temperature of 50 ° C. or higher (eg 70 ° C.). , And 90 ° C.) in a water bath.

上記方法により調製されたろ過膜も本発明の範囲内である。その膜は、0.5〜5nm(例えば、0.6〜3nm、及び0.8〜2nm)の有効孔径、10Lm−2−1bar−1又はそれより高い(例えば、20Lm−2−1bar−1又はそれより高い、及び30Lm−2−1bar−1又はそれより高い)水透過係数を有する。 The filtration membrane prepared by the above method is also within the scope of the present invention. The membrane has an effective pore size of 0.5-5 nm (eg, 0.6-3 nm, and 0.8-2 nm), 10 Lm −2 h −1 bar −1 or higher (eg, 20 Lm −2 h −). Water permeability coefficient of 1 bar −1 or higher and 30 Lm −2 h −1 bar −1 or higher).

本発明は、このように調製されたろ過膜を用いて液体をろ過するプロセスをさらに包含する。   The present invention further includes a process of filtering a liquid using the filtration membrane thus prepared.

そのプロセスは以下の工程:支持層及びポリマー選択層を有する、上記の方法により調製されたろ過膜を提供する工程;液体を、最初にポリマー選択層を通し、その後支持層を通して、ろ過膜を通過させる工程;及び最後に、ろ過膜を透過する液体を回収する工程;を含む。   The process comprises the following steps: providing a filtration membrane prepared by the above method having a support layer and a polymer selective layer; a liquid is passed first through the polymer selective layer and then through the support layer and through the filtration membrane. And, finally, collecting the liquid that permeates the filtration membrane.

本発明の詳細を以下の説明に記載する。本発明の他の特徴、目的及び利点は、以下の図面及びいくつかの実施形態の詳細な説明、並びに添付の特許請求の範囲から明らかになるであろう。   The details of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the following drawings and detailed description of some embodiments, and the appended claims.

膜の断面SEM像の概略図である。左から右へ:コーティングしていないPVDF 400R基材膜(試料2−5)、並びに異なる量のイオン液体助溶媒を用いて調製された3つの修飾P40膜:IL2(試料2−1)、IL5(試料2−2)及びIL20(試料2−3):の断面SEM像。全ての試料が緻密コーティングを示す。2%イオン液体助溶媒を用いた試料2−1は、約1μmの緻密コーティングを示す。5%イオン液体助溶媒を用いた試料2−2は約0.7μmの緻密コーティングを示す。20%イオン液体助溶媒を用いた試料2−3は約2.5μmの緻密コーティングを示す。It is the schematic of the cross-sectional SEM image of a film. From left to right: uncoated PVDF 400R substrate membrane (Samples 2-5), as well as three modified P40 membranes prepared with different amounts of ionic liquid cosolvent: IL2 (Sample 2-1), IL5. (Sample 2-2) and IL20 (Sample 2-3): cross-sectional SEM images. All samples show a dense coating. Sample 2-1 with the 2% ionic liquid cosolvent shows a dense coating of about 1 μm. Sample 2-2 with the 5% ionic liquid co-solvent shows a dense coating of about 0.7 μm. Sample 2-3 with 20% ionic liquid cosolvent shows a dense coating of about 2.5 μm. 緻密コポリマーコーティングを示す、IL20膜(試料2−3)の断面FESEM像の概略図。Schematic of cross-sectional FESEM image of IL20 film (Sample 2-3) showing the dense copolymer coating. 異なる計算分子直径の荷電分子及び中性分子のニートP40膜及び修飾P40膜IL20による阻止の概略図。両方の膜が約0.8〜1nmのサイズカットオフを有する選択性を示した。Schematic of the inhibition of charged and neutral molecules of different calculated molecular diameters by neat P40 membrane and modified P40 membrane IL20. Both membranes showed selectivity with a size cutoff of about 0.8-1 nm. 膜形成中に異なる溶媒蒸発時間を用いて調製されたIL20膜のSEM像の概略図。左から右へ:IL20_b、20秒間乾燥した膜(試料3−1);IL20_c、2分間乾燥した膜(試料3−2);IL20_d、10分間乾燥した膜(試料3−3);及びIL20_e、20分間乾燥した膜(試料3−4)。全ての試料が1〜6μmの厚さの緻密コーティングを示す。Schematic of SEM images of IL20 membranes prepared with different solvent evaporation times during membrane formation. From left to right: IL20_b, 20 seconds dried membrane (Sample 3-1); IL20_c, 2 minutes dried membrane (Sample 3-2); IL20_d, 10 minutes dried membrane (Sample 3-3); and IL20_e, Membrane dried for 20 minutes (Sample 3-4). All samples show a dense coating with a thickness of 1-6 μm. ニートP40(試料2−4、上側)及びIL20膜(試料2−3、下側)の空気乾燥した試料のFTIRスペクトルの概略図。膜構造又は形態に有意な変化は見られない。スペクトルはIL20膜のコポリマー層が無損傷であることを示す。Schematic of FTIR spectra of neat P40 (Sample 2-4, top) and IL20 membrane (Sample 2-3, bottom) air-dried samples. No significant changes in membrane structure or morphology are seen. The spectrum shows that the copolymer layer of the IL20 film is intact.

最初に、高い流束及び選択性を有するろ過膜を調製する方法をここに詳細に開示する。   First, a method for preparing a filtration membrane with high flux and selectivity is disclosed in detail here.

ブロックコポリマー(BCP)での研究は、コポリマー組成(例えば、モノマー構造及びモノマー比)を変化させ、添加剤(例えば、ホモポリマー及び金属塩)を用い、及び溶媒(例えば、メタノール及びイソプロパノール)を混合することを含む、ある方法によってコポリマーキャスト溶液を調節することにより、コポリマーの挙動を変化させ及び膜性能を改善することができることを示す。   Studies with block copolymers (BCP) have included varying copolymer composition (eg, monomer structure and monomer ratios), using additives (eg, homopolymers and metal salts), and mixing solvents (eg, methanol and isopropanol). It is shown that the behavior of the copolymer can be changed and the membrane performance can be improved by adjusting the copolymer casting solution by a certain method, including:

BCP自己組織化は、典型的には、10〜100nmのドメインサイズに制限される。Park et al., Polymer, 2003, 44, 6725-6760を参照のこと。これまでに報告されている最小のドメインサイズは約3nmであり、そのサイズは5000g/mol未満の分子量カットオフ(MWCO)を有する膜に必要とされるよりもまだかなり大きい。Park et al., Science, 2009, 323, 1030-1033を参照のこと。   BCP self-assembly is typically limited to domain sizes of 10-100 nm. See Park et al., Polymer, 2003, 44, 6725-6760. The smallest domain size reported to date is about 3 nm, which is still much larger than that required for membranes with a molecular weight cutoff (MWCO) of less than 5000 g / mol. See Park et al., Science, 2009, 323, 1030-1033.

ランダムコポリマー、すなわち統計コポリマーは、約1nmの孔径を有する膜の選択層として機能することが報告されている。Bengani et al., Journal of Membrane Science, 2015, 493, 755-765を参照のこと。約1nmの孔径を有する膜は、バイオテクノロジー、生物化学、食品、飲料及び水処理産業における小分子の分離及び精製に非常に役立つ。   Random or statistical copolymers have been reported to function as selective layers for membranes with pore sizes of about 1 nm. See Bengani et al., Journal of Membrane Science, 2015, 493, 755-765. Membranes with a pore size of about 1 nm are very useful for the separation and purification of small molecules in biotechnology, biochemistry, food, beverage and water treatment industries.

ランダムコポリマーの膜形成中における、キャスト溶液での例えばイオン液体などの助溶媒の使用や、それらが膜性能にどのように影響するかについての研究は報告されていない。   No studies have been reported on the use of co-solvents such as ionic liquids in cast solutions during film formation of random copolymers and how they affect the membrane performance.

上述したように、本発明に包含されるろ過膜を調製する方法は、以下の工程:(i)助溶媒と第1の有機溶媒との混合物中に統計コポリマーを溶解させることによりコポリマー溶液を提供する工程;(ii)前記コポリマー溶液を多孔質支持層上にコーティングして支持層上にポリマー層を形成する工程;(iii)前記支持層上のポリマー層を凝固させて薄膜複合膜を形成する工程;及び(iv)前記薄膜複合膜を水浴中に浸漬してろ過膜を得る工程;を含む。   As mentioned above, the method of preparing a filtration membrane encompassed by the present invention provides a copolymer solution by dissolving the statistical copolymer in a mixture of the following steps: (i) a co-solvent and a first organic solvent. (Ii) coating the copolymer solution on a porous support layer to form a polymer layer on the support layer; (iii) solidifying the polymer layer on the support layer to form a thin film composite membrane. And (iv) immersing the thin film composite membrane in a water bath to obtain a filtration membrane.

コポリマー溶液を調製するのに用いられる助溶媒は、水及び第1の有機溶媒の両方と混和性を有する(混和することができる)。典型的には、助溶媒は100℃以下(例えば、50℃以下、及び室温以下)の温度で液状である。助溶媒は、コポリマー溶液中の統計コポリマーの自己組織化を変更することができる。   The cosolvent used to prepare the copolymer solution is miscible with (miscible with) both water and the first organic solvent. Typically, cosolvents are liquid at temperatures of 100 ° C or lower (eg, 50 ° C or lower, and room temperature or lower). The cosolvent can modify the self-assembly of statistical copolymers in the copolymer solution.

方法の一実施形態において、助溶媒はイオン液体である。イオン液体は、典型的には、アンモニウム、イミダゾリウム、ピペリジニウム、ピリジニウム、ピロリジニウム、ホスホニウム、スルホニウム、グアニジニウム、ジエタノールアンモニウム、アルキルアンモニウム、アルキルイミダゾリウム、アルキルピペリジニウム、アルキルピリジニウム、アルキルピロリジニウム、アルキルホスホニウム、アルキルスルホニウム、アルキルグアニジニウム、及びアルキルジエタノールアンモニウムの1つ又は複数のカチオン;及び
ニトラート、スルホナート、メタンスルホナート、アルキルスルホナート、フルオロアルキルスルホナート、スルファート、メチルスルファート、アルキルスルファート、フルオロアルキルスルファート、ホスファート、メチルホスファート、アルキルホスファート、フルオロアルキルホスファート、ホスフィナート、メチルホスフィナート、アルキルホスフィナート、フルオロアルキルホスフィナート、ハロゲン、トリフルオロメタンスルホナート、ジヒドロゲンホスファート、ビス(トリフルオロメチルスルホニル)イミド、アルキルイミド、アルキルアミド、テトラフルオロボラート、ヘキサフルオロホスファート、ホルマート、アセタート、トリフルオロアセタート、ジシアナミド、デカノアート、アルキルメチド、及びアルキルボラートの1つ又は複数のアニオンを含む。イオン液体の例として、それらに限定はされないが、エチルアンモニウムニトラート(又は硝酸エチルアンモニウム)、1−エチル−3−メチルイミダゾリウムエチルスルファート、1−エチル−3−メチルイミダゾリウムテトラフルオロボラート、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート、1−エチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート、1−ブチルピリジニウムブロミド、及び2−ヒドロキシエチル−ジメチルアンモニウムトリフルオロメタンスルホナートが挙げられる。
In one embodiment of the method, the cosolvent is an ionic liquid. Ionic liquids are typically ammonium, imidazolium, piperidinium, pyridinium, pyrrolidinium, phosphonium, sulfonium, guanidinium, diethanolammonium, alkylammonium, alkylimidazolium, alkylpiperidinium, alkylpyridinium, alkylpyrrolidinium, alkyl. One or more cations of phosphonium, alkylsulfonium, alkylguanidinium, and alkyldiethanolammonium; and nitrates, sulfonates, methanesulfonates, alkylsulfonates, fluoroalkylsulfonates, sulfates, methylsulfates, alkylsulfates, Fluoroalkyl sulfate, phosphate, methyl phosphate, alkyl phosphate, full Roalkyl phosphate, phosphinate, methyl phosphinate, alkyl phosphinate, fluoroalkyl phosphinate, halogen, trifluoromethanesulfonate, dihydrogen phosphate, bis (trifluoromethylsulfonyl) imide, alkylimide, alkylamide, Includes one or more anions of tetrafluoroborate, hexafluorophosphate, formate, acetate, trifluoroacetate, dicyanamide, decanoate, alkylmethide, and alkylborate. Examples of ionic liquids include, but are not limited to, ethylammonium nitrate (or ethylammonium nitrate), 1-ethyl-3-methylimidazolium ethylsulfate, 1-ethyl-3-methylimidazolium tetrafluoroborate. , 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-butylpyridinium bromide, and 2-hydroxyethyl-dimethylammonium trifluoromethanesulfonate. .

方法の別の実施形態では、助溶媒は界面活性剤分子である。界面活性剤分子は、一般的に、スルファート、スルホナート、ホスファート、カルボキシラート、ニトラート、又はスルホスクシナートのアニオン基;及び、第一級アミン、第二級アミン、第三級アミン、四級アンモニウム、イミダゾリウム、ピペリジニウム、ピリジニウム、ピロリジニウム、又はホスホニウムから形成されるカチオン基を含む。界面活性剤分子の例として、それらに限定はされないが、直鎖アルキルベンゼンスルホナート、リグニンスルホナート、脂肪族アルコールエトキシレート、アルキルフェニルエトキシレート、リン脂質、ホスファチジルセリン、ホスファチジルエタノールアミン、ホスファチジルコリン、及びスフィンゴミエリンが挙げられる。   In another embodiment of the method, the cosolvent is a surfactant molecule. Surfactant molecules are generally sulfate, sulfonate, phosphate, carboxylate, nitrate, or sulfosuccinate anionic groups; and primary amines, secondary amines, tertiary amines, quaternary ammoniums. , Imidazolium, piperidinium, pyridinium, pyrrolidinium, or phosphonium. Examples of surfactant molecules include, but are not limited to, linear alkylbenzene sulfonates, lignin sulfonates, fatty alcohol ethoxylates, alkylphenyl ethoxylates, phospholipids, phosphatidyl serines, phosphatidyl ethanolamines, phosphatidyl cholines, and sphingos. Examples include myelin.

コポリマー溶液は、双性イオン繰り返し単位及び疎水性繰り返し単位を含む統計コポリマーから形成される。   The copolymer solution is formed from a statistical copolymer containing zwitterionic repeating units and hydrophobic repeating units.

双性イオン繰り返し単位は各々、独立して、スルホベタイン、カルボキシベタインホスホリルコリン、又はピリジニウムアルキルスルホナートを含んでいてよく;疎水性繰り返し単位は各々、独立して、スチレン、フッ素化スチレン、メチルメタクリラート、アクリルニトリル、又はトリフルオロエチルメタクリラートから形成されていてよい。一実施形態では、双性イオン繰り返し単位は各々、独立して、スルホベタインアクリラート、スルホベタインアクリルアミド、ホスホリルコリンアクリラート、ホスホリルコリンアクリルアミド、ホスホリルコリンメタクリラート、カルボキシベタインアクリラート、カルボキシベタインメタクリラート、カルボキシベタインアクリルアミド、3−(2−ビニルピリジニウム−1−イル)プロパン−1−スルホナート、3−(2−ビニルピリジニウム−1−イル)ブタン−1−スルホナート、3−(4−ビニルピリジニウム−1−イル)プロパン−1−スルホナート、又はスルホベタインメタクリラートから形成され;疎水性繰り返し単位は各々、独立して、メチルメタクリラート、アクリルニトリル、又はトリフルオロエチルメタクリラートから形成される   Each zwitterionic repeat unit may independently include sulfobetaine, carboxybetaine phosphorylcholine, or pyridinium alkyl sulfonate; each hydrophobic repeat unit is independently styrene, fluorinated styrene, methyl methacrylate. , Acrylonitrile, or trifluoroethyl methacrylate. In one embodiment, each zwitterionic repeat unit is independently sulfobetaine acrylate, sulfobetaine acrylamide, phosphoryl choline acrylate, phosphoryl choline acrylamide, phosphoryl choline methacrylate, carboxybetaine acrylate, carboxybetaine methacrylate, carboxybetaine acrylamide. , 3- (2-vinylpyridinium-1-yl) propane-1-sulfonate, 3- (2-vinylpyridinium-1-yl) butane-1-sulfonate, 3- (4-vinylpyridinium-1-yl) propane Formed from -1-sulfonate, or sulfobetaine methacrylate; each hydrophobic repeating unit is independently methyl methacrylate, acrylonitrile, or trifluoroethyl methacrylate It is formed from

上記の双性イオン繰り返し単位及び疎水性繰り返し単位から形成される統計コポリマーの例として、それらに限定はされないが、ポリ((トリフルオロエチルメタクリラート)−r−(スルホベタインメタクリラート))、ポリ((メチルメタクリラート)−r−(スルホベタインメタクリラート))、ポリ((トリフルオロエチルメタクリラート)−r−(3−(2−ビニルピリジニウム−1−イル)プロパン−1−スルホナート))、ポリ((トリフルオロエチルメタクリラート)−r−(ホスホリルコリンメタクリラート)、及びポリ((トリフルオロエチルメタクリラート)−r−(3−(2−ビニルピリジニウム−1−イル)ブタン−1−スルホナート))が挙げられる。   Examples of statistical copolymers formed from the zwitterionic repeating units and the hydrophobic repeating units described above include, but are not limited to, poly ((trifluoroethylmethacrylate) -r- (sulfobetainemethacrylate)), poly ( ((Methylmethacrylate) -r- (sulfobetainemethacrylate)), poly ((trifluoroethylmethacrylate) -r- (3- (2-vinylpyridinium-1-yl) propane-1-sulfonate)), Poly ((trifluoroethylmethacrylate) -r- (phosphorylcholine methacrylate), and poly ((trifluoroethylmethacrylate) -r- (3- (2-vinylpyridinium-1-yl) butane-1-sulfonate) ) Is mentioned.

方法の一実施形態では、双性イオン繰り返し単位は、統計コポリマーの30〜50質量%を構成し、疎水性繰り返し単位は統計コポリマーの50〜70質量%を構成し、統計コポリマーはポリ((トリフルオロエチルメタクリラート)−r−(スルホベタインメタクリラート))であり、助溶媒は硝酸エチルアンモニウムであり、かつ第1の有機溶媒はトリフロオロエタノールである。   In one embodiment of the method, the zwitterionic repeat units make up 30-50% by weight of the statistical copolymer, the hydrophobic repeat units make up 50-70% by weight of the statistical copolymer, and the statistical copolymer is poly ((tri Fluoroethyl methacrylate) -r- (sulfobetaine methacrylate)), the co-solvent is ethyl ammonium nitrate, and the first organic solvent is trifluoroethanol.

このように形成されたコポリマー溶液を、当該分野で公知の方法(例えば、ドクターブレードコーティング、スプレーコーティング、及びディップコーティング)の何れかを用いて多孔質支持層上にコーティングすることができる。   The copolymer solution thus formed can be coated on the porous support layer using any of the methods known in the art (eg, doctor blade coating, spray coating, and dip coating).

典型的には、凝固工程は、60分又はそれより少ない時間(例えば、20分、10分、2分、及び20秒)、ポリマー層を空気乾燥することにより行われる。それは、ポリマー層を非溶媒浴中に60分又はそれより短い時間(例えば、40分、30分、20分、及び10分)浸漬することによっても行うことができる。   Typically, the solidification step is performed by air-drying the polymer layer for 60 minutes or less (eg, 20 minutes, 10 minutes, 2 minutes, and 20 seconds). It can also be done by soaking the polymer layer in a non-solvent bath for 60 minutes or less (eg 40 minutes, 30 minutes, 20 minutes, and 10 minutes).

上記の方法は、同じポリマー材料を用いて、選択性を犠牲にせず、またいずれの新たな工程も加えることなく、膜製造工程を変更することによって膜の流束及び透過性を効果的に改善する。   The above method effectively improves membrane flux and permeability by modifying the membrane manufacturing process using the same polymeric material, without sacrificing selectivity and without adding any new steps. To do.

上記の方法により調製されたろ過膜もここに詳細に開示する。   The filtration membrane prepared by the above method is also disclosed herein in detail.

上記の方法により調製された膜は、予想外に、30Lm−2−1bar−1又はそれより高い透過係数を示し、それは、助溶媒を用いずに調製された膜の透過係数よりも1桁高い値である。さらに、このように調製された膜は、負に荷電した色素及び中性色素をろ過することにより実証されるように、1〜2nmの有効孔径又は1000〜5000DaのMWCOを有する選択性を維持しながら、狭い孔径分布も示す。さらには、これら膜は、0〜20%の範囲内の、例えば硫酸マグネシウム(MgSO)の保持など、低い塩類の保持を示す。これら膜の性能は、コポリマー組成、助溶媒(例えばイオン液体)のタイプ及び量、並びに膜作製条件(例えば、非溶媒及び乾燥時間)によって異なる。 Membranes prepared by the above method unexpectedly show a permeability coefficient of 30 Lm −2 h −1 bar −1 or higher, which is greater than that of membranes prepared without cosolvents. It is an order of magnitude higher. Furthermore, the membranes thus prepared maintain selectivity with an effective pore size of 1-2 nm or a MWCO of 1000-5000 Da, as demonstrated by filtering negatively charged dyes and neutral dyes. However, it also shows a narrow pore size distribution. Furthermore, these membranes exhibit low salt retention, for example retention of magnesium sulfate (MgSO 4 ), in the range of 0-20%. The performance of these membranes depends on the copolymer composition, the type and amount of cosolvent (eg ionic liquid), and the membrane preparation conditions (eg non-solvent and drying time).

このように調製されたろ過膜を用いて液体をろ過するプロセスも本発明の範囲内である。   A process for filtering a liquid using the thus-prepared filtration membrane is also within the scope of the present invention.

上述したように、プロセスは3つの工程:(i)支持層及びポリマー選択層を有する、上記の方法により調製されたろ過膜を提供する工程;(ii)液体を、最初にポリマー選択層を通し、その後支持層を通して、ろ過膜を通過させる工程;及び(iii)ろ過膜を透過する液体を回収する工程;を含む   As described above, the process comprises three steps: (i) providing a filtration membrane prepared by the above method having a support layer and a polymer selective layer; (ii) passing the liquid through the polymer selective layer first. And (iii) collecting the liquid that permeates the filtration membrane, and then passing the filtration membrane through the support layer.

本発明のプロセスの適用の例として、それらに限定はされないが、同様の電荷を有するが異なるサイズの2種類の色素又は溶質の混合物の分離、異なるサイズを有する2種類の水溶性有機分子の分離、水中に溶解したモノマー及びオリゴマーの混合物の分離、水中に溶解したペプチド、栄養補助食品、酸化防止剤及び他の小分子の混合物の分離、排水処理、天然水源の処理(例えば、地上水及び地下水)、並びに水からのイオンの除去が挙げられる。   Examples of applications of the process of the invention include, but are not limited to, separation of a mixture of two dyes or solutes having similar charges but different sizes, separation of two water-soluble organic molecules having different sizes. , Separation of mixtures of monomers and oligomers dissolved in water, separation of mixtures of peptides, dietary supplements, antioxidants and other small molecules dissolved in water, wastewater treatment, treatment of natural water sources (eg surface and ground water) ), As well as the removal of ions from water.

更なる詳述なしに、当業者は、上記の説明に基づき、本発明を最大限に利用することができると考えられる。従って、以下の具体例は単なる例示であり、決して本開示の残りの限定ではないと解釈されるべきである。本明細書で挙げられている刊行物は参照によりその全体が組み込まれる。   Without further elaboration, those skilled in the art will be able to make the best use of the present invention based on the above description. Therefore, the following specific examples should be construed as merely illustrative and not in any way limiting of the rest of this disclosure. The publications mentioned herein are incorporated by reference in their entirety.

実施例1:統計コポリマー ポリ(トリフルオロエチルメタクリラート−ランダム−スルホベタインメタクリラート)(PTFEMA−r−SBMA又はP40)の調製
この実施例では、Bengani et al., Journal of Membrane Science, 2015, 493, 755-765に報告されているプロトコルに従い統計コポリマーを合成した。
Example 1 : Preparation of statistical copolymer poly (trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA or P40) In this example, Bengani et al., Journal of Membrane Science, 2015, 493. Statistical copolymers were synthesized according to the protocol reported in 755-765.

より具体的には、2,2,2−トリフルオロエチルメタクリラート(TFEMA、Sigma Aldrich)を塩基性活性アルミナ(VWR)のカラムに通して阻害剤を除去した。スルホベタインメタクリラート(SBMA;5g、17.9mmol)を、350rpmで撹拌しながら、丸底フラスコ中のジメチルスルホキシド(DMSO、100ml)に溶解させた。TFEMA(5g、29.7mmol)及び熱開始剤アゾビスイソブチロニトリル(AIBN、0.01g、Sigma Aldrich)をフラスコに添加した。フラスコをゴムセプタムで密閉し、窒素をフラスコ内容物に通して20分間バブリングして溶解酸素をパージした。次いで、フラスコを350rpmで撹拌しながら70℃の油浴中に置いた。少なくとも16時間後、0.5gの4−メトキシフェノール(MEHQ)を添加して反応を終わらせた。エタノールとヘキサンとの50:50混合物中において反応混合物を沈殿させた。生成物を真空ろ過し、2つの新鮮なメタノール中においてポリマーを数時間撹拌することにより残留溶媒及びモノマーを抽出し、次いで50℃で一晩真空オーブンにおいて乾燥してコポリマーPTFEMA−r−SBMAを得た。SBMAのプロトン(2〜3.5ppm)に対する総骨格プロトン(0.5〜2ppm)の比を用いて、この白いコポリマーの組成をH−NMRスペクトルから計算した。このように得たコポリマーは36質量%のSBMAを含有することが特定された。 More specifically, 2,2,2-trifluoroethyl methacrylate (TFEMA, Sigma Aldrich) was passed through a column of basic activated alumina (VWR) to remove the inhibitor. Sulfobetaine methacrylate (SBMA; 5 g, 17.9 mmol) was dissolved in dimethyl sulfoxide (DMSO, 100 ml) in a round bottom flask with stirring at 350 rpm. TFEMA (5 g, 29.7 mmol) and the thermal initiator azobisisobutyronitrile (AIBN, 0.01 g, Sigma Aldrich) were added to the flask. The flask was sealed with a rubber septum and nitrogen was bubbled through the contents of the flask for 20 minutes to purge dissolved oxygen. The flask was then placed in a 70 ° C. oil bath with stirring at 350 rpm. After at least 16 hours, 0.5 g of 4-methoxyphenol (MEHQ) was added to terminate the reaction. The reaction mixture was precipitated in a 50:50 mixture of ethanol and hexane. The product is vacuum filtered, residual solvent and monomers are extracted by stirring the polymer in two fresh methanol for several hours, then dried in a vacuum oven at 50 ° C. overnight to give the copolymer PTFEMA-r-SBMA. It was The composition of this white copolymer was calculated from the 1 H-NMR spectrum using the ratio of total backbone protons (0.5-2 ppm) to SBMA protons (2-3.5 ppm). The copolymer thus obtained was identified to contain 36% by weight of SBMA.

実施例2:異なる量のイオン液体を用いて調製された修飾P40コポリマー膜の調製
この実施例では、下記の通り、イオン液体の存在下又は不在下で実施例1に記載のコポリマーを用いていくつかの膜を調製した。
Example 2 : Preparation of modified P40 copolymer membranes prepared with different amounts of ionic liquid In this example, how many of the copolymers described in Example 1 were used in the presence or absence of ionic liquid as follows: The membrane was prepared.

より具体的には、イオン液体である硝酸エチルアンモニウム(EAN、Iolitec)をトリフロオロエタノール中に溶解させた。コポリマー(1g)を9mLの全溶媒含量(イオン液体及びトリフロオロエタノール)中に溶解させ、従ってコポリマー濃度を10%(w/v)で一定に維持してコポリマー溶液を形成した。0mL、0.2mL、0.5mL、及び2mLのイオン液体を、それぞれ9mL、8.8mL、8.5mL、及び7mLのトリフロオロエタノール中に混合し、さらに各々に1gのコポリマーを溶解させることにより、P40、IL2、IL5及びIL20溶液を調製した。コポリマー溶液をおよそ50℃で少なくとも2時間撹拌して10%(w/v)コポリマーキャスト溶液を調製した。各コポリマーキャスト溶液を0.45μmのシリンジフィルター(Whatman)に通し、さらに少なくとも2時間真空オーブン中で脱気した。25μmのドクターブレードギャップを用いて、市販の限外ろ過(UF)膜上にコポリマーキャスト溶液の薄層をコーティングすることにより膜を調製した。Nanostone Water(Eden Prairie、MN)から購入したフッ化ポリビニリデン(PVDF)400R限外ろ過膜を基材膜(base membrane)として用いた。コーティングの後、膜をイソプロパノール、すなわち極性非溶媒浴中に20分間浸漬させ、次いで水浴中に少なくとも一晩浸漬させた。水溶性であるため、イオン液体は水浴中に効率的に除去され、保存のため膜を別の水浴に移した。   More specifically, an ionic liquid, ethylammonium nitrate (EAN, Iolitec) was dissolved in trifluoroethanol. The copolymer (1 g) was dissolved in 9 mL total solvent content (ionic liquid and trifluoroethanol), thus keeping the copolymer concentration constant at 10% (w / v) to form a copolymer solution. Mixing 0 mL, 0.2 mL, 0.5 mL, and 2 mL of the ionic liquid into 9 mL, 8.8 mL, 8.5 mL, and 7 mL of trifluoroethanol, respectively, and further dissolving 1 g of the copolymer in each. To prepare P40, IL2, IL5 and IL20 solutions. The copolymer solution was stirred at approximately 50 ° C. for at least 2 hours to prepare a 10% (w / v) copolymer cast solution. Each copolymer casting solution was passed through a 0.45 μm syringe filter (Whatman) and degassed in a vacuum oven for an additional 2 hours. Membranes were prepared by coating a thin layer of copolymer casting solution onto a commercial ultrafiltration (UF) membrane using a 25 μm doctor blade gap. Polyvinylidene fluoride (PVDF) 400R ultrafiltration membrane purchased from Nanostone Water (Eden Prairie, MN) was used as the base membrane. After coating, the membranes were dipped in isopropanol, a polar non-solvent bath for 20 minutes and then in a water bath for at least overnight. Being water-soluble, the ionic liquid was efficiently removed in a water bath and the membrane was transferred to another water bath for storage.

走査型電子顕微鏡(SEM)を用いて凍結割断した断面を検査することにより被膜の厚さ及び形態を決定した。図1を参照のこと。   The thickness and morphology of the coating was determined by inspecting the freeze fractured cross section using a scanning electron microscope (SEM). See FIG.

この図は、左から右へ、非コーティングPVDF400R基材膜、並びにイオン液体を用いて調製された3つの修飾P40膜:IL2、IL5、及びIL20:のSEM像を示し、それらは全て同じ倍率である。PVDF400R基材膜のSEM像と比較して、IL2、IL5及びIL20のSEM像は、25μmのドクターブレードギャップを用いて形成された約0.5〜3μmの厚さを有する緻密コーティング層(すなわち、粗大孔もマクロボイドもない)を示す。コーティングの厚さは、所定のドクターブレードギャップサイズに関して、コポリマーキャスト溶液中のイオン液体の量に依って0.5〜3μmの間で変動する。   This figure shows, from left to right, SEM images of an uncoated PVDF400R substrate membrane and three modified P40 membranes prepared with ionic liquids: IL2, IL5, and IL20: all at the same magnification. is there. Compared to the SEM image of the PVDF400R substrate film, the SEM images of IL2, IL5 and IL20 show a dense coating layer (ie, with a thickness of about 0.5-3 μm formed using a doctor blade gap of 25 μm). No coarse pores or macrovoids). The coating thickness varies between 0.5 and 3 μm for a given doctor blade gap size depending on the amount of ionic liquid in the copolymer casting solution.

電界放射走査型電子顕微鏡(FESEM)を用いて膜の凍結割断した断面を検査することによりIL20膜(試料2−3)の被膜の形態をさらに特徴づけした。図2を参照のこと。IL20のFESEMは、緻密コーティング層が形成されたことを示す。   The morphology of the coating of the IL20 membrane (Sample 2-3) was further characterized by examining the freeze-fractured cross section of the membrane using field emission scanning electron microscopy (FESEM). See FIG. FESEM of IL20 shows that a dense coating layer was formed.

実施例3:異なる量のイオン液体を用いて調製された修飾P40コポリマー膜の水透過性
この実施例では、下記の通り、実施例2に記載されている膜を通る純水流束を測定した。
Example 3 : Water permeability of modified P40 copolymer membranes prepared with different amounts of ionic liquid In this example, the pure water flux through the membrane described in Example 2 was measured as follows.

この試験は、10mLのセル容量及び4.1cmの有効膜ろ過面積を有するAmicon 8010撹拌式全量ろ過セル(Millipore)を用いて実施した。セルを連続的に撹拌し、10psi(0.7バール)で試験を実施した。少なくとも1時間の安定化期間の後、透過水試料を一定間隔にわたり回収した。TWedge 2.4ソフトウェア(TEC−IT、オーストリア)を用いて30秒ごとに自動的に測定を実施するDellラップトップに接続したScout Pro SP401天秤はかりにより透過水質量を測定した。透過水体積をろ過面積及び実験時間で割ることにより流束を計算する。圧力により流束値を正規化することにより純水の透過係数を得る(下記表1を参照のこと)。 This test was performed using an Amicon 8010 stirred total volume filtration cell (Millipore) with a cell volume of 10 mL and an effective membrane filtration area of 4.1 cm 2 . The cell was continuously agitated and tested at 10 psi (0.7 bar). Permeate samples were collected at regular intervals after a stabilization period of at least 1 hour. Permeate mass was measured with a Scout Pro SP401 balance connected to a Dell laptop that automatically measures every 30 seconds using TWedge 2.4 software (TEC-IT, Austria). Flux is calculated by dividing the permeate volume by the filtration area and the experimental time. The pure water permeability coefficient is obtained by normalizing the flux value with pressure (see Table 1 below).

ニートP40膜、並びに膜形成中に異なる量のイオン液体を用いて調製された修飾P40コポリマー膜の水の透過係数(permeance)及び透過性(permeability)を下記表1に示す。ニートP40膜(試料2−4)、並びに3つの修飾P40膜、すなわちIL2(試料2−1)、IL5(試料2−2)、及びIL20(試料2−3)の両方の膜で試験を実施した。   The permeance and permeability of water for neat P40 membranes and modified P40 copolymer membranes prepared with different amounts of ionic liquid during membrane formation are shown in Table 1 below. Tests were performed on neat P40 membrane (Sample 2-4) and on three modified P40 membranes, both IL2 (Sample 2-1), IL5 (Sample 2-2) and IL20 (Sample 2-3). did.

ニートP40膜の透過係数は6.1±1L/mh.barであることが分かったが、修飾P40膜IL20の透過係数は、予想外に、50±2L/mh.barより高く、すなわちニートP40膜と比較して1桁高いことが分かった。ニートP40膜の透過性は6.4±1L.μm./mh.barであることが分かったが、IL20膜の透過性は、そのより厚いコーティングにもかかわらず、125±5L.μm./mh.barより高く、すなわちニートP40膜と比較して2桁高いことが分かった。IL20膜の透過性は、その厚いコーティングにもかかわらず、市販のナノろ過膜(NF)膜よりもはるかに高かった。試験したIL20膜は、常に>2.5μmの厚さであるコーティングを有していた。比較して、市販のNF膜は、<0.1μm程度の薄さの選択層を有する。PVDF400R基材膜の透過係数は200+20L/mh.barである。 The permeation coefficient of neat P40 membrane is 6.1 ± 1 L / m 2 h. It was found that the modified P40 membrane IL20 had a permeability coefficient of 50 ± 2 L / m 2 h. It was found to be higher than bar, i.e. an order of magnitude higher than neat P40 membrane. The neat P40 membrane has a permeability of 6.4 ± 1L. μm. / M 2 h. The permeability of the IL20 membrane, despite its thicker coating, was found to be 125 ± 5 L. μm. / M 2 h. It was found to be higher than bar, i.e. two orders of magnitude higher than neat P40 membrane. The permeability of the IL20 membrane was much higher than the commercial nanofiltration membrane (NF) membrane, despite its thick coating. The IL20 membranes tested had a coating that was always> 2.5 μm thick. In comparison, commercially available NF membranes have selective layers as thin as <0.1 μm. The permeation coefficient of the PVDF 400R base material membrane is 200 + 20 L / m 2 h. It is bar.

IL2及びIL5膜の透過係数はそれぞれ、0.7±0.2L/mh.bar及び1.7±0.7L/mh.barであり、すなわち、コーティングの厚さは同様であるか又はIL5膜に関してはわずかに薄いにもかかわらず、いずれの助溶媒も用いないで調製されたニートP40膜の透過係数よりも若干低いことが分かった。このことは、実施例2に記載されている特定の膜に関して、少なすぎるイオン液体含量(≦5%)が、コポリマー層を通る水透過性を全く増加させないか或いは減少させたことを示す。キャスト溶液中の50%イオン液体含量を用いて調製されたコーティングは、水中のコーティングの乏しい完全性をもたらした。このことは、膜透過性の増加が、所定のコポリマー組成(すなわち、コポリマー中の双性イオン及び疎水性繰り返し単位の比)について、特定範囲のイオン液体濃度(すなわち、キャスト溶液中のイオン液体の体積)に関して生じたことを示す。 The permeability coefficients of the IL2 and IL5 membranes are 0.7 ± 0.2 L / m 2 h. bar and 1.7 ± 0.7 L / m 2 h. bar, ie, the coating thickness is similar or slightly thinner for the IL5 membrane, but slightly lower than the permeability coefficient of neat P40 membranes prepared without any cosolvents. I understood. This indicates that for the particular membrane described in Example 2, too low an ionic liquid content (≦ 5%) did not increase or decrease the water permeability through the copolymer layer at all. The coating prepared with 50% ionic liquid content in the casting solution resulted in poor integrity of the coating in water. This means that for a given copolymer composition (ie, the ratio of zwitterionic and hydrophobic repeat units in the copolymer), the increase in membrane permeability results in a specific range of ionic liquid concentration (ie, ionic liquid in the casting solution). Volume).

Figure 2020512178
Figure 2020512178

実施例4:P40膜及び修飾P40コポリマー膜IL20の色素阻止
この実施例では、負に荷電した溶質及び中性溶質(色素及びビタミン)を用いて、実施例2に記載のように調製された膜の有効孔径又はサイズカットオフ値を特定した。
Example 4 : Dye Inhibition of P40 Membrane and Modified P40 Copolymer Membrane IL20 In this example, membranes prepared as described in Example 2 were used with negatively charged solutes and neutral solutes (pigments and vitamins). The effective pore size or size cutoff value of

これら溶質は、固くかつその濃度を紫外可視分光法により容易かつ正確に測定できるため用いられた。10mLのセル容量及び4.1cmの有効膜ろ過面積を有するAmicon 8010撹拌式全量ろ過セル(Millipore)上で溶質阻止実験を実施した。P40膜及び修飾P40膜IL20の膜透過係数の違いを説明するために、フィード圧を調節することにより6.1L.m−2.hr−1(P40膜の初期流束に等しい)の一定の初期水透過流束で試験を実施した。たとえ溶質を導入した際に膜透過流束が低下しても、実験を通してこの圧力を一定に維持した。セルを連続的に撹拌して、濃度分極の影響を最小にした。少なくとも1時間膜に純水を通した後、セルを空にして、プローブ溶質の100mg/L水溶液で満たした。最初の1mlを捨てた後、次の1mlの試料を紫外可視分光法による分析のために回収した。セルを脱イオン水で数回洗浄した。新たなプローブ溶質に交換する前に、透過物が透明になるまで脱イオン水を膜に通してろ過した。図3は、実施例2及び3で述べたニートP40膜(試料2−4)及びIL20膜(試料2−3)による、様々な負に荷電した溶質及び中性溶質の保持を示す。 These solutes were used because they are hard and their concentration can be easily and accurately measured by UV-visible spectroscopy. Solute inhibition experiments were performed on an Amicon 8010 stirred total volume filtration cell (Millipore) with a cell volume of 10 mL and an effective membrane filtration area of 4.1 cm 2 . In order to explain the difference in the membrane permeability coefficient between the P40 membrane and the modified P40 membrane IL20, 6.1 L. m -2 . The test was carried out at a constant initial water flux of hr −1 (equal to the initial flux of P40 membrane). This pressure was kept constant throughout the experiment even though the membrane flux was reduced when solute was introduced. The cell was continuously stirred to minimize the effect of concentration polarization. After passing pure water through the membrane for at least 1 hour, the cell was emptied and filled with a 100 mg / L aqueous solution of probe solute. After discarding the first 1 ml, the next 1 ml sample was collected for analysis by UV-Vis spectroscopy. The cell was washed several times with deionized water. Prior to exchange with fresh probe solute, deionized water was filtered through the membrane until the permeate was clear. FIG. 3 shows the retention of various negatively charged and neutral solutes by the neat P40 membranes (Samples 2-4) and IL20 membranes (Samples 2-3) described in Examples 2 and 3.

有効膜サイズカットオフを試験するのに用いられた溶質の分子サイズ及び電荷、並びにニートP40膜及びIL20膜によるそれらの阻止を下記表2に示す。

Figure 2020512178
The molecular size and charge of the solutes used to test the effective membrane size cutoff and their inhibition by neat P40 and IL20 membranes are shown in Table 2 below.
Figure 2020512178

上記の表2に示される溶質の直径は、ChemSWによるMolecular Modeling Proソフトウェアにより得られた分子体積値に基づき、計算された分子体積を用い、さらに対応体積の範囲をこの値にフィッティングさせて計算した。これら陰イオン性及び中性溶質のろ過に基づき、イオン液体助溶媒を用いて調製された膜のサイズカットオフは0.8nmと1nmとの間であることが分かり、表2に示すように、これら溶質の阻止はその電荷よりも溶質の分子サイズに直接関連した。   The solute diameters shown in Table 2 above were calculated based on the molecular volume values obtained by Molecular Modeling Pro software by ChemSW, using the calculated molecular volumes and fitting the corresponding volume range to this value. . Based on the filtration of these anionic and neutral solutes, the size cutoff of membranes prepared with ionic liquid cosolvents was found to be between 0.8 nm and 1 nm, as shown in Table 2, The blocking of these solutes was more directly related to the solute's molecular size than its charge.

本質的に、ニートP40膜と修飾P40膜IL20との間で孔径に測定可能な変化は見られなかった。IL20膜は、予想外に、狭い孔径分布を示すことが見られ、そのような狭い孔径分布はこの孔径範囲の膜で達成するのはとりわけ難しい。より重要なこととして、コポリマーキャスト溶液において助触媒としてイオン液体を用いることにより、その選択性を維持しながら流束が予想外に10倍改善された。孔径を犠牲にすることなく膜透過流束を改善することが知られている方法はほとんどないため、膜製造のこの方法は、非常に有益である。   Essentially, there was no measurable change in pore size between neat P40 membrane and modified P40 membrane IL20. The IL20 membrane was unexpectedly found to exhibit a narrow pore size distribution, and such a narrow pore size distribution is particularly difficult to achieve with membranes in this pore size range. More importantly, the use of an ionic liquid as a co-catalyst in the copolymer casting solution resulted in an unexpected 10-fold improvement in flux while maintaining its selectivity. This method of membrane production is very beneficial, as few methods are known to improve membrane permeation flux without sacrificing pore size.

異なる量のイオン液体助溶媒を用いて調製された膜の中で、IL20膜が最も高い選択層透過性を有し、その選択性を維持しながら、ニートP40膜と比較して透過係数の10倍の上昇をもたらした。スクリーニングのこの段階で、IL20膜を更なる試験のための第一候補として選択した。   Among the membranes prepared with different amounts of ionic liquid co-solvents, the IL20 membrane has the highest permselectivity, while maintaining its selectivity, it has a permeability coefficient of 10 compared to the neat P40 membrane. It brought a double rise. At this stage of screening, the IL20 membrane was selected as the primary candidate for further testing.

実施例5:異なる量のイオン液体助溶媒を用いて調製された修飾P40コポリマー膜による塩阻止
この実施例では、下記の通り、実施例2に記載のように調製された膜を保持試験で用いてそれらの塩保持特性を決定した。
Example 5 : Salt Inhibition by Modified P40 Copolymer Membrane Prepared with Different Amounts of Ionic Liquid Cosolvents In this example, a membrane prepared as described in Example 2 was used in a retention test as follows. To determine their salt retention properties.

10mLのセル容量及び4.1cmの有効膜ろ過面積を有するAmicon 8010撹拌式全量ろ過セル(Millipore;特定のキャパシティを有するろ過装置)上で保持試験を実施した。P40膜及び修飾P40膜IL20の膜透過係数の違いのため、一定の初期流束条件下で試験を実施した。セルを連続的に撹拌して、濃度分極の影響を最小にした。少なくとも1時間膜に純水を通した後、セルを空にして、200mg/Lの硫酸マグネシウム(MgSO、Aldrich)溶液で満たした。最初の平衡期間の後、標準導電率プローブにより分析するためにろ液を回収した。セルを水で数回洗浄し、別の供給溶液に交換する前に純水を膜に通した。 Retention tests were carried out on an Amicon 8010 stirred total volume filtration cell (Millipore; filtration device with specific capacity) with a cell volume of 10 mL and an effective membrane filtration area of 4.1 cm 2 . Due to the difference in the membrane permeation coefficient of P40 membrane and modified P40 membrane IL20, tests were conducted under constant initial flux conditions. The cell was continuously stirred to minimize the effect of concentration polarization. After passing pure water through the membrane for at least 1 hour, the cell was emptied and filled with 200 mg / L magnesium sulfate (MgSO 4 , Aldrich) solution. After the first equilibration period, the filtrate was collected for analysis by standard conductivity probe. The cell was washed several times with water and pure water was passed through the membrane before it was replaced with another feed solution.

MgSO塩の保持率は、ニートP40膜を用いることにより17.4%であり、予想外に、修飾P40膜(IL2、IL5、及びIL20)を用いることにより10%未満であった。 The retention of the MgSO 4 salt was 17.4% with the neat P40 membrane and unexpectedly less than 10% with the modified P40 membranes (IL2, IL5, and IL20).

実施例6:膜形成中に異なる溶媒蒸発時間を用いた修飾P40コポリマー(IL20)膜の形成
この実施例では、下記の通り、IL20キャスト溶液を用いていくつかの膜を調製した。
Example 6 : Formation of Modified P40 Copolymer (IL20) Membrane Using Different Solvent Evaporation Times During Membrane Formation In this example, several membranes were prepared with IL20 casting solution as follows.

7mLのトリフロオロエタノール中に2mlのイオン液体(硝酸エチルアンモニウム)を混合し、さらにその中に1gのP40コポリマーを溶解させることによりIL20溶液を調製した。コポリマー溶液をおよそ50℃で少なくとも2時間撹拌して10%(w/v)コポリマーキャスト溶液を調製した。コポリマーキャスト溶液を0.45μmのシリンジフィルター(Whatman)に通し、さらに少なくとも2時間真空オーブンにおいて脱気した。25μmのドクターブレードギャップを用いて、市販の限外ろ過(UF)膜上にコポリマーキャスト溶液の薄層をコーティングすることにより膜を調製した。Nanostone Water(Eden Prairie、MN)から購入したPVDF400R限外ろ過膜を基材膜として用いた。コーティングの後、異なる時間のあいだ空気乾燥し、その後に少なくとも一晩水浴中に浸漬させた。選択した乾燥時間は、数秒〜20分の範囲であった。それぞれ20秒、2分、10分及び20分の溶媒蒸発時間により、IL20_b、IL20_c、IL20_d、IL20_e薄膜複合膜を調製した。水溶性であるため、イオン液体添加剤は水浴中に効率的に除去され、保存のため膜を別の水浴に移した。   An IL20 solution was prepared by mixing 2 ml of the ionic liquid (ethylammonium nitrate) in 7 ml of trifluoroethanol and dissolving 1 g of P40 copolymer therein. The copolymer solution was stirred at approximately 50 ° C. for at least 2 hours to prepare a 10% (w / v) copolymer cast solution. The copolymer casting solution was passed through a 0.45 μm syringe filter (Whatman) and degassed in a vacuum oven for an additional 2 hours. Membranes were prepared by coating a thin layer of copolymer casting solution onto a commercial ultrafiltration (UF) membrane using a 25 μm doctor blade gap. A PVDF400R ultrafiltration membrane purchased from Nanostone Water (Eden Prairie, MN) was used as the substrate membrane. After coating, it was air dried for different times and then soaked in a water bath for at least overnight. The selected drying time ranged from a few seconds to 20 minutes. IL20_b, IL20_c, IL20_d, IL20_e thin film composite membranes were prepared with solvent evaporation times of 20 seconds, 2 minutes, 10 minutes and 20 minutes, respectively. Being water-soluble, the ionic liquid additive was efficiently removed in the water bath and the membrane was transferred to another water bath for storage.

走査型電子顕微鏡(SEM)を用いて膜の凍結割断した断面を検査することにより被膜の厚さ及び形態を決定した。図4を参照のこと。   The thickness and morphology of the coating was determined by inspecting the freeze-fractured section of the film using a scanning electron microscope (SEM). See FIG.

膜形成中に異なる乾燥時間を用いてIL20コポリマー溶液から形成された4つの膜IL20_b、IL20_c、IL20_d、IL20_eについて、全て同じ倍率で、SEM像を得た。図4の左から右へ、IL20_b、20秒間乾燥した膜(試料3−1);IL20_c、2分間乾燥した膜(試料3−2);IL20_d、10分間乾燥した膜(試料3−3);及びIL20_e、20分間乾燥した膜(試料3−4)を示す。4つ全ての膜のSEM像が緻密コーティング層(すなわち、粗大孔もマクロボイドもない)を示す。コーティングの厚さは、所定のドクターブレードギャップサイズに関して、膜形成中の乾燥時間に依って1μm〜6μmの間で変動する。   SEM images were obtained at all the same magnification for four films IL20_b, IL20_c, IL20_d, IL20_e formed from the IL20 copolymer solution using different drying times during film formation. From left to right in FIG. 4, IL20_b, membrane dried for 20 seconds (Sample 3-1); IL20_c, membrane dried for 2 minutes (Sample 3-2); IL20_d, membrane dried for 10 minutes (Sample 3-3); And IL20_e, 20 minutes dried membrane (Sample 3-4). SEM images of all four films show a dense coating layer (ie, no coarse pores or macrovoids). The coating thickness varies between 1 μm and 6 μm for a given doctor blade gap size, depending on the drying time during film formation.

実施例7:膜形成中に異なる溶媒蒸発時間を用いて調製された修飾P40コポリマー膜IL20の水透過性
この実施例では、下記の通り、実施例2及び6に記載の膜を通る純水流束を、10mLのセル容量及び4.1cmの有効膜ろ過面積を有するAmicon 8010撹拌式全量ろ過セル(Millipore)を用いて測定した。
Example 7 : Water Permeability of Modified P40 Copolymer Membrane IL20 Prepared Using Different Solvent Evaporation Times During Membrane Formation In this example, pure water flux through the membranes described in Examples 2 and 6 as follows: Was measured using an Amicon 8010 stirred total volume filtration cell (Millipore) with a cell volume of 10 mL and an effective membrane filtration area of 4.1 cm 2 .

セルを連続的に撹拌し、10psi(0.7バール)で試験を実施した。少なくとも1時間の安定化期間の後、透過水試料を一定間隔にわたり回収した。TWedge 2.4ソフトウェア(TEC−IT、オーストリア)を用いて30秒ごとに自動的に測定を実施するDellラップトップに接続したScout Pro SP401天秤はかりにより透過水質量を測定した。透過水体積をろ過面積及び実験時間で割ることにより流束を計算する。圧力により流束値を正規化することにより純水透過係数を得る(下記表3を参照のこと)。   The cell was continuously agitated and tested at 10 psi (0.7 bar). Permeate samples were collected at regular intervals after a stabilization period of at least 1 hour. Permeate mass was measured with a Scout Pro SP401 balance connected to a Dell laptop that automatically measures every 30 seconds using TWedge 2.4 software (TEC-IT, Austria). Flux is calculated by dividing the permeate volume by the filtration area and the experimental time. The pure water permeability coefficient is obtained by normalizing the flux value with pressure (see Table 3 below).

異なる膜製造方法によりIL20コポリマーキャスト溶液を用いて調製された膜の水の透過係数及び透過性を下記表3に示す。膜形成中に異なる乾燥時間を用いて調製されたIL20膜(試料3−1、3−2、3−3及び3−4)、並びに乾燥しないで非溶媒浴中に直接浸漬させることにより調製されたIL20膜(試料2−3)において試験を実施した。   The water permeability coefficient and permeability of membranes prepared with the IL20 copolymer cast solution by different membrane manufacturing methods are shown in Table 3 below. IL20 membranes (Samples 3-1, 3-2, 3-3 and 3-4) prepared with different drying times during membrane formation, and prepared by direct immersion in a non-solvent bath without drying. The test was performed on an IL20 film (Sample 2-3).

膜形成中に少なくとも2分間の様々な乾燥時間を用いて調製されたIL20_c、IL20_d、IL20_e膜(試料3−2、3−3、及び3−4;表3)は、IL20の透過係数よりもかなり低いことが分かった。膜形成中に20秒の短い乾燥時間を用いて調製されたIL20_b膜(試料3−1、表3)の透過係数は、予想外に、ニートP40膜よりも一桁高く、非溶媒浸漬により調製されたIL20膜(試料2−3、表3)に類似する透過係数を示した。このことは、膜形成中の速い乾燥時間(20秒)又はイソプロパノール浸漬が、予想外に、より厚いコーティングにもかかわらず、市販のナノろ過(NF)膜よりもかなり高い、高透過係数を有する膜をもたらしたことを示す。試験したIL20膜は常に>1μmの厚さのコーティングを有していた。比較して、市販のNF膜は<0.1μm程度の薄さの選択層を有する。実際に、上記のコーティング方法を用いることにより、これら膜を用いてより高い流束を得ることができる。   IL20_c, IL20_d, IL20_e membranes (Samples 3-2, 3-3, and 3-4; Table 3) prepared using various drying times of at least 2 minutes during membrane formation were more than the permeability coefficient of IL20. It turned out to be quite low. The permeability coefficient of IL20_b membranes (Sample 3-1, Table 3) prepared with a short drying time of 20 seconds during membrane formation was unexpectedly an order of magnitude higher than neat P40 membranes and prepared by non-solvent immersion. The permeation coefficient was similar to that of the prepared IL20 membrane (Sample 2-3, Table 3). This indicates that a fast drying time (20 seconds) during membrane formation or isopropanol immersion has a high permeability coefficient, which is unexpectedly much higher than commercial nanofiltration (NF) membranes despite thicker coatings. Shows that it gave a membrane. The IL20 membranes tested always had a coating> 1 μm thick. In comparison, commercially available NF membranes have selective layers as thin as <0.1 μm. In fact, higher flux can be obtained with these membranes by using the coating method described above.

Figure 2020512178
Figure 2020512178

実施例8:ニートP40及び修飾P40膜(IL20)のフーリエ変換赤外分光分析
この実施例では、下記の通り、実施例2に記載のように調製された膜試料2−3上のコポリマーコーティングの存在を、減衰全反射フーリエ変換赤外(ATR−FTIR)分光法を用いて分析した。
Example 8 : Fourier Transform Infrared Spectroscopy of Neat P40 and Modified P40 Membrane (IL20) In this example, of the copolymer coating on membrane sample 2-3 prepared as described in Example 2 as follows. Presence was analyzed using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy.

ニートP40膜及び修飾P40膜IL20の空気乾燥した試料のFTIRスペクトルを比較した。図5を参照のこと。IL20膜のスペクトルは付加的ピークを示さず、任意の膜試験の前に脱イオン水中に膜を浸漬させたときにイオン液体が完全に除去されたことを示す。   FTIR spectra of air dried samples of neat P40 membrane and modified P40 membrane IL20 were compared. See FIG. The spectrum of the IL20 membrane shows no additional peaks, indicating that the ionic liquid was completely removed when the membrane was immersed in deionized water prior to any membrane testing.

実施例9:ニートP40及び修飾P40コポリマー膜(IL20)のバブルポイント測定
この実施例では、下記の通り、実施例2に記載のように調製された膜試料2−3上のコポリマーコーティングの無損傷及び完全性を、バブルポイント試験を用いて分析した。
Example 9 : Bubble Point Measurements of Neat P40 and Modified P40 Copolymer Membrane (IL20) In this example, the integrity of the copolymer coating on membrane sample 2-3 prepared as described in Example 2 was as follows. And integrity was analyzed using the bubble point test.

膜表面上に存在する最大孔径の指標として、簡単なラボスケールのバブルポイント測定を、PVDF400R基材膜(試料2−5)、ニートP40(試料2−4)、及び修飾P40膜(IL20、試料2−3)試料で実施した。膜試料を水で湿潤させてシステムに含め、出口で最初の連続した気泡が観察されるまで圧力をゆっくり上昇させる。孔から水を出させるのに必要な最小圧力が、膜における最大孔径の指標である。PVDF400Rのバブルポイントは6psi(約0.41バール)であったが、ニートP40及び修飾P40膜(IL20)のバブルポイントは少なくとも60psi(約4.1バール)(すなわち装置の検出上限)まで全く連続した気泡形成を示さなかったことが観察された。このことは、コポリマーコーティングが無損傷であり、かつPVDF400R基材膜の粗大孔又は露出領域はなく、修飾P40膜(IL20)において見られる10倍高い流束の上昇に寄与しないことを示す。   As an index of the maximum pore size present on the membrane surface, a simple lab-scale bubble point measurement was performed using PVDF400R substrate membrane (Sample 2-5), neat P40 (Sample 2-4), and modified P40 membrane (IL20, sample). 2-3) Performed on the sample. The membrane sample is wetted with water and included in the system and the pressure is slowly increased until the first continuous bubble is observed at the outlet. The minimum pressure required to drive water out of the pores is a measure of the maximum pore size in the membrane. The bubble point of PVDF400R was 6 psi (about 0.41 bar), but the bubble point of neat P40 and modified P40 membrane (IL20) was quite continuous up to at least 60 psi (about 4.1 bar) (ie the upper detection limit of the device). It was observed that there was no indication of bubble formation. This indicates that the copolymer coating is undamaged and lacks the coarse pores or exposed areas of the PVDF400R substrate membrane and does not contribute to the 10-fold higher flux increase seen in the modified P40 membrane (IL20).

実施例10:ニートP40及び修飾P40コポリマー膜(IL20)の接触角
この実施例では、ゴニオメータを用いて、実施例2に記載のように調製された膜試料2−3の表面特性を決定した。
Example 10 : Contact Angle of Neat P40 and Modified P40 Copolymer Membrane (IL20) In this example, a goniometer was used to determine the surface properties of Membrane Samples 2-3 prepared as described in Example 2.

材料の親水性の指標として、捕捉気泡接触角測定を、水中に完全に浸漬させながら、ニートP40膜(試料2−4)、並びに3つの修飾P40膜IL2(試料2−1)、IL5(試料2−2)、及びIL20(試料2−3)で実施した。ニートP40膜の接触角は約29.3±3°であることが観察されたが、修飾P40膜IL2、IL5、及びIL20の接触角はそれぞれ、予想外に、26.7±3°、26.3±2°、及び25.9±4°であることが分かった。IL20を含めて、修飾P40試料の接触角に明らかな変化はなく、コポリマーコーティングの親水性が膜形成中のイオン液体の使用により有意には影響されなかったことを示す。   As a measure of the hydrophilicity of the material, the trapped bubble contact angle measurement was performed by completely immersing the sample in neat P40 membrane (Sample 2-4) and three modified P40 membranes IL2 (Sample 2-1) and IL5 (Sample). 2-2) and IL20 (Sample 2-3). The contact angle of neat P40 membrane was observed to be about 29.3 ± 3 °, whereas the contact angles of modified P40 membranes IL2, IL5, and IL20 were unexpectedly 26.7 ± 3 °, 26, respectively. It was found to be 0.3 ± 2 ° and 25.9 ± 4 °. There was no apparent change in the contact angle of the modified P40 samples, including IL20, indicating that the hydrophilicity of the copolymer coating was not significantly affected by the use of ionic liquids during film formation.

他の実施形態
本明細書中に開示される特徴の全てを任意の組合せで組み合せてよい。本明細書に開示される各特徴を、同じ、同等の、又は同様の目的を果たす代わりの特徴と置き換えてもよい。従って、そうではないことが明示的に記載されていない限り、記載されている各特徴は、包括的な一連の同等又は同様の特徴の単なる例示に過ぎない。
Other Embodiments All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Therefore, unless expressly stated otherwise, each feature described is merely an example of a comprehensive set of equivalent or similar features.

さらに、上記の説明から、当業者は、本発明の本質的な特徴を容易に解明することができ、また本発明の精神及び範囲を逸脱することなく、本発明の様々な変更及び修飾を行ってそれを様々な用途及び条件に適合させることができる。従って、他の実施形態も特許請求の範囲内である。   Further, from the above description, those skilled in the art can easily understand the essential features of the present invention, and can make various changes and modifications of the present invention without departing from the spirit and scope of the present invention. It can be adapted to various applications and conditions. Therefore, other embodiments are also within the claims.

Claims (30)

ろ過膜を調製する方法であって、
助溶媒と第1の有機溶媒との混合物中に統計コポリマーを溶解させることによりコポリマー溶液を提供する工程、
前記コポリマー溶液を多孔質支持層上にコーティングして支持層上にポリマー層を形成する工程、
前記支持層上のポリマー層を凝固させて薄膜複合膜を形成する工程、及び
前記薄膜複合膜を水浴中に浸漬してろ過膜を得る工程、
を含み、
前記コポリマー溶液は、1〜99w/v%で助溶媒、及び1〜99v/v%で第1の有機溶媒を含み、
前記統計コポリマーは、双性イオン繰り返し単位及び疎水性繰り返し単位を含み、前記双性イオン繰り返し単位は統計コポリマーの15〜75質量%を構成し、前記疎水性繰り返し単位は統計コポリマーの25〜85質量%を構成し、かつ疎水性繰り返し単位は0℃以上のガラス転移温度を有するホモポリマーを形成することができ、さらに
前記助溶媒は水及び前記第1の有機溶媒の両方と混和性を有する、方法。
A method for preparing a filtration membrane, comprising:
Providing a copolymer solution by dissolving the statistical copolymer in a mixture of a co-solvent and a first organic solvent,
Coating the copolymer solution onto a porous support layer to form a polymer layer on the support layer,
Solidifying the polymer layer on the support layer to form a thin film composite membrane, and immersing the thin film composite membrane in a water bath to obtain a filtration membrane,
Including,
The copolymer solution comprises 1-99 w / v% cosolvent, and 1-99 v / v% first organic solvent,
The statistical copolymer includes a zwitterionic repeating unit and a hydrophobic repeating unit, the zwitterionic repeating unit constitutes 15 to 75% by weight of the statistical copolymer, and the hydrophobic repeating unit is 25 to 85% by weight of the statistical copolymer. %, And the hydrophobic repeating unit can form a homopolymer having a glass transition temperature of 0 ° C. or higher, and the cosolvent is miscible with both water and the first organic solvent. Method.
前記助溶媒は、イオン液体、界面活性剤分子、又は第2の有機溶媒である、請求項1に記載の方法。   The method of claim 1, wherein the cosolvent is an ionic liquid, a surfactant molecule, or a second organic solvent. 前記助溶媒は100℃又はそれより低い温度で液状である、請求項2に記載の方法。   The method of claim 2, wherein the cosolvent is liquid at a temperature of 100 ° C. or lower. 前記助溶媒は室温又はそれより低い温度で液状である、請求項3に記載の方法。   4. The method of claim 3, wherein the cosolvent is liquid at room temperature or below. 前記助溶媒はイオン液体である、請求項2に記載の方法。   The method of claim 2, wherein the cosolvent is an ionic liquid. 前記イオン液体は、アンモニウム、イミダゾリウム、ピペリジニウム、ピリジニウム、ピロリジニウム、ホスホニウム、スルホニウム、グアニジニウム、ジエタノールアンモニウム、アルキルアンモニウム、アルキルイミダゾリウム、アルキルピペリジニウム、アルキルピリジニウム、アルキルピロリジニウム、アルキルホスホニウム、アルキルスルホニウム、アルキルグアニジニウム、及びアルキルジエタノールアンモニウムからなる群より選択される1つ又は複数のカチオンを含み;かつニトラート、スルホナート、トリフルオロメタンスルホナート、アルキルスルホナート、フルオロアルキルスルホナート、スルファート、メチルスルファート、アルキルスルファート、フルオロアルキルスルファート、ホスファート、メチルホスファート、アルキルホスファート、フルオロアルキルホスファート、ホスフィナート、メチルホスフィナート、アルキルホスフィナート、フルオロアルキルホスフィナート、ハロゲン、トリフルオロメタンスルホナート、ジヒドロゲンホスファート、ビス(トリフルオロメチルスルホニル)イミド、アルキルイミド、アルキルアミド、テトラフルオロボラート、ヘキサフルオロホスファート、ホルマート、アセタート、トリフルオロアセタート、ジシアナミド、デカノアート、アルキルメチド、及びアルキルボラートからなる群より選択される1つ又は複数のアニオンを含む、請求項5に記載の方法。   The ionic liquid is ammonium, imidazolium, piperidinium, pyridinium, pyrrolidinium, phosphonium, sulfonium, guanidinium, diethanolammonium, alkylammonium, alkylimidazolium, alkylpiperidinium, alkylpyridinium, alkylpyrrolidinium, alkylphosphonium, alkylsulfonium. , Alkylguanidinium, and alkyldiethanolammonium; and nitrates, sulfonates, trifluoromethanesulfonates, alkylsulfonates, fluoroalkylsulfonates, sulfates, methylsulfates. , Alkylsulfate, fluoroalkylsulfate, phosphate, methylphosphate , Alkyl phosphate, fluoroalkyl phosphate, phosphinate, methyl phosphinate, alkyl phosphinate, fluoroalkyl phosphinate, halogen, trifluoromethanesulfonate, dihydrogen phosphate, bis (trifluoromethylsulfonyl) imide, Contain one or more anions selected from the group consisting of alkylimides, alkylamides, tetrafluoroborate, hexafluorophosphate, formate, acetate, trifluoroacetate, dicyanamide, decanoate, alkylmethide, and alkylborate. The method according to claim 5. 前記イオン液体は、硝酸エチルアンモニウム、1−エチル−3−メチルイミダゾリウムエチルスルファート、1−エチル−3−メチルイミダゾリウムテトラフルオロボラート、1−ブチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート、1−エチル−3−メチルイミダゾリウムトリフルオロメタンスルホナート、1−ブチルピリジニウムブロミド、及び2−ヒドロキシエチル−ジメチルアンモニウムトリフルオロメタンスルホナートからなる群より選択される、請求項6に記載の方法。   The ionic liquid is ethyl ammonium nitrate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 7. The method of claim 6 selected from the group consisting of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, 1-butylpyridinium bromide, and 2-hydroxyethyl-dimethylammonium trifluoromethanesulfonate. 前記助溶媒は、前記コポリマー溶液中の統計コポリマーの自己組織化を変更する、請求項2に記載の方法。   The method of claim 2, wherein the co-solvent modifies the self-assembly of statistical copolymers in the copolymer solution. 前記助溶媒は界面活性剤分子である、請求項2に記載の方法。   The method of claim 2, wherein the cosolvent is a surfactant molecule. 前記界面活性剤分子は、第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム、イミダゾリウム、ピペリジニウム、ピリジニウム、ピロリジニウム、又はホスホニウムから形成されるカチオン基;並びに、スルファート、スルホナート、ホスファート、カルボキシラート、ニトラート、及びスルホスクシナートからなる群より選択されるアニオン基を含む、請求項9に記載の方法。   The surfactant molecule is a cationic group formed from a primary amine, a secondary amine, a tertiary amine, a quaternary ammonium, an imidazolium, a piperidinium, a pyridinium, a pyrrolidinium, or a phosphonium; and a sulfate or a sulfonate. 10. The method of claim 9, comprising an anionic group selected from the group consisting of, phosphates, carboxylates, nitrates, and sulfosuccinates. 前記界面活性剤分子は、直鎖アルキルベンゼンスルホナート、リグニンスルホナート、脂肪族アルコールエトキシレート、アルキルフェニルエトキシレート、リン脂質、ホスファチジルセリン、ホスファチジルエタノールアミン、ホスファチジルコリン、及びスフィンゴミエリンからなる群より選択される、請求項10に記載の方法。   The surfactant molecule is selected from the group consisting of linear alkylbenzene sulfonates, lignin sulfonates, fatty alcohol ethoxylates, alkylphenyl ethoxylates, phospholipids, phosphatidylserines, phosphatidylethanolamines, phosphatidylcholines, and sphingomyelins. The method according to claim 10. 前記コポリマー溶液は、1〜50w/v%で統計コポリマー、1〜80v/v%で助溶媒、及び20〜99v/v%で第1の有機溶媒を含む、請求項1に記載の方法。   2. The method of claim 1, wherein the copolymer solution comprises 1-50 w / v% statistical copolymer, 1-80 v / v% cosolvent, and 20-99 v / v% first organic solvent. 前記コポリマー溶液は、3〜30w/v%で統計コポリマー、5〜49v/v%で助溶媒、及び51〜95v/v%で第1の有機溶媒を含む、請求項12に記載の方法。   13. The method of claim 12, wherein the copolymer solution comprises 3-30 w / v% statistical copolymer, 5-49 v / v% cosolvent, and 51-95 v / v% first organic solvent. 前記双性イオン繰り返し単位は統計コポリマーの20〜70質量%を構成し、前記疎水性繰り返し単位は統計コポリマーの30〜80質量%を構成し、かつ疎水性繰り返し単位は室温以上のガラス転移温度を有するホモポリマーを形成することができる、請求項1に記載の方法。   The zwitterionic repeating units make up 20-70% by weight of the statistical copolymer, the hydrophobic repeating units make up 30-80% by weight of the statistical copolymer, and the hydrophobic repeating units have a glass transition temperature above room temperature. The method of claim 1, wherein a homopolymer having can be formed. 前記双性イオン繰り返し単位は統計コポリマーの30〜50質量%を構成し、前記疎水性繰り返し単位は統計コポリマーの50〜70質量%を構成する、請求項14に記載の方法。   15. The method of claim 14, wherein the zwitterionic repeating units make up 30-50% by weight of the statistical copolymer and the hydrophobic repeating units make up 50-70% by weight of the statistical copolymer. 前記双性イオン繰り返し単位は各々、独立して、スルホベタイン、カルボキシベタインホスホリルコリン、又はピリジニウムアルキルスルホナートを含み;かつ前記疎水性繰り返し単位は各々、独立して、スチレン、フッ素化スチレン、メチルメタクリラート、アクリルニトリル、又はトリフルオロエチルメタクリラートから形成される、請求項1に記載の方法。   Each said zwitterionic repeating unit independently comprises sulfobetaine, carboxybetaine phosphorylcholine, or pyridinium alkyl sulfonate; and each said hydrophobic repeating unit is independently styrene, fluorinated styrene, methyl methacrylate. 2. The method of claim 1, formed from acrylonitrile, acrylonitrile, or trifluoroethyl methacrylate. 前記双性イオン繰り返し単位は各々、独立して、スルホベタインアクリラート、スルホベタインアクリルアミド、ホスホリルコリンアクリラート、ホスホリルコリンアクリルアミド、ホスホリルコリンメタクリラート、カルボキシベタインアクリラート、カルボキシベタインメタクリラート、カルボキシベタインアクリルアミド、3−(2−ビニルピリジニウム−1−イル)プロパン−1−スルホナート、3−(2−ビニルピリジニウム−1−イル)ブタン−1−スルホナート、3−(4−ビニルピリジニウム−1−イル)プロパン−1−スルホナート、又はスルホベタインメタクリラートから形成され;かつ前記疎水性繰り返し単位は各々、独立して、メチルメタクリラート、アクリルニトリル、又はトリフルオロエチルメタクリラートから形成される、請求項16に記載の方法。   The zwitterionic repeating units are each independently sulfobetaine acrylate, sulfobetaine acrylamide, phosphoryl choline acrylate, phosphoryl choline acrylamide, phosphoryl choline methacrylate, carboxybetaine acrylate, carboxybetaine methacrylate, carboxybetaine acrylamide, 3- ( 2-Vinylpyridinium-1-yl) propane-1-sulfonate, 3- (2-vinylpyridinium-1-yl) butane-1-sulfonate, 3- (4-vinylpyridinium-1-yl) propane-1-sulfonate , Or sulfobetaine methacrylate; and each of the hydrophobic repeat units is independently methylmethacrylate, acrylonitrile, or trifluoroethylmethacrylate. It is formed, the method according to claim 16. 前記統計コポリマーは、ポリ((トリフルオロエチルメタクリラート)−r−(スルホベタインメタクリラート))、ポリ((メチルメタクリラート)−r−(スルホベタインメタクリラート))、ポリ((トリフルオロエチルメタクリラート)−r−(3−(2−ビニルピリジニウム−1−イル)プロパン−1−スルホナート))、ポリ((トリフルオロエチルメタクリラート)−r−(ホスホリルコリンメタクリラート)、又はポリ((トリフルオロエチルメタクリラート)−r−(3−(2−ビニルピリジニウム−1−イル)ブタン−1−スルホナート))である、請求項17に記載の方法。   The statistical copolymer is poly ((trifluoroethylmethacrylate) -r- (sulfobetainemethacrylate)), poly ((methylmethacrylate) -r- (sulfobetainemethacrylate)), poly ((trifluoroethylmethacrylate). (Rat) -r- (3- (2-vinylpyridinium-1-yl) propane-1-sulfonate)), poly ((trifluoroethylmethacrylate) -r- (phosphorylcholine methacrylate), or poly ((trifluoro). 18. The method according to claim 17, which is ethylmethacrylate) -r- (3- (2-vinylpyridinium-1-yl) butane-1-sulfonate). 前記第1の有機溶媒は、トリフロオロエタノール、ジメチルスルホキシド、ホルムアミド、ジメチルホルムアミド、ヘキサフルオロイソプロパノール、N−メチル−2−ピロリドン、ピリジン、ジオキサン、トルエン、クロロホルム、ベンゼン、四塩化炭素、クロロベンゼン、1,1,2−トリクロロエタン、ジクロロメタン、ジクロロエタン、キシレン、テトラヒドロフラン、メタノール、及びエタノールからなる群より選択される、請求項1に記載の方法。   The first organic solvent is trifluoroethanol, dimethyl sulfoxide, formamide, dimethylformamide, hexafluoroisopropanol, N-methyl-2-pyrrolidone, pyridine, dioxane, toluene, chloroform, benzene, carbon tetrachloride, chlorobenzene, 1 The method of claim 1, wherein the method is selected from the group consisting of, 1,2-trichloroethane, dichloromethane, dichloroethane, xylene, tetrahydrofuran, methanol, and ethanol. 前記助溶媒は、トリフロオロエタノール、ヘキサフルオロイソプロパノール、ジオキサン、クロロホルム、ジクロロメタン、塩化メチレン、ジクロロエタン、テトラヒドロフラン、アセトニトリル、2−ブタノール、2−ブタノン、メタノール、及びエタノールからなる群より選択される第2の有機溶媒である、請求項2に記載の方法。   The cosolvent is a second selected from the group consisting of trifluoroethanol, hexafluoroisopropanol, dioxane, chloroform, dichloromethane, methylene chloride, dichloroethane, tetrahydrofuran, acetonitrile, 2-butanol, 2-butanone, methanol, and ethanol. The method according to claim 2, which is the organic solvent of. 前記双性イオン繰り返し単位は統計コポリマーの30〜50質量%を構成し、前記疎水性繰り返し単位は統計コポリマーの50〜70質量%を構成し、前記統計コポリマーはポリ((トリフルオロエチルメタクリラート)−r−(スルホベタインメタクリラート))であり、前記助溶媒は硝酸エチルアンモニウムであり、かつ前記第1の有機溶媒はトリフロオロエタノールである、請求項1に記載の方法。   The zwitterionic repeating units make up 30-50% by weight of the statistical copolymer, the hydrophobic repeating units make up 50-70% by weight of the statistical copolymer, and the statistical copolymer is poly ((trifluoroethylmethacrylate)). -R- (sulfobetaine methacrylate)), said co-solvent is ethyl ammonium nitrate, and said first organic solvent is trifluoroethanol. 前記凝固工程は、60分又はそれより少ない時間、ポリマー層を空気乾燥することにより、或いは多孔質支持層と一緒にポリマー層を非溶媒浴中に60分又はそれより少ない時間浸漬することにより行われる、請求項1に記載の方法。   The coagulation step is performed by air-drying the polymer layer for 60 minutes or less, or by soaking the polymer layer in a non-solvent bath with the porous support layer for 60 minutes or less. The method of claim 1, wherein the method is: 前記凝固工程は、60分又はそれより少ない時間、ポリマー層を空気乾燥することにより行われる、請求項22に記載の方法。   23. The method of claim 22, wherein the coagulating step is performed by air drying the polymer layer for 60 minutes or less. 前記凝固工程は、多孔質支持層と一緒にポリマー層を非溶媒浴中に60分又はそれより少ない時間浸漬することにより行われる、請求項22に記載の方法。   23. The method of claim 22, wherein the coagulating step is performed by soaking the polymer layer with the porous support layer in a non-solvent bath for 60 minutes or less. 前記非溶媒は、メタノール、エタノール、イソプロパノール、ブタノール、アセトン、水、又はそれらの組合せである、請求項24に記載の方法。   25. The method of claim 24, wherein the non-solvent is methanol, ethanol, isopropanol, butanol, acetone, water, or a combination thereof. 前記多孔質支持層は、ポリマー層の有効孔径よりも大きい有効孔径を有し、かつポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスフフィドスルホン、ポリアクリルニトリル、セルロースエステル、ポリフェニレンオキシド、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリアリルスルホン、ポリフェニレンスルホン、ポリエーテルエーテルケトン、ポリスルホン、ポリアミド、ポリイミド、又はそれらの組合せにより形成される、請求項1に記載の方法。   The porous support layer has an effective pore size larger than the effective pore size of the polymer layer, and, polyether sulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyacrylonitrile, cellulose ester, polyphenylene oxide, polypropylene, polyvinylidene fluoride, The method of claim 1, formed by polyvinyl chloride, polyallyl sulfone, polyphenylene sulfone, polyether ether ketone, polysulfone, polyamide, polyimide, or combinations thereof. 前記多孔質支持層はフラットシート膜又は中空糸膜である、請求項26に記載の方法。   27. The method of claim 26, wherein the porous support layer is a flat sheet membrane or a hollow fiber membrane. 前記浸漬工程の後、得られたろ過膜を50℃以上の温度で水浴中においてアニール処理するアニーリング工程をさらに含む、請求項1に記載の方法。   The method according to claim 1, further comprising an annealing step of annealing the obtained filtration membrane in a water bath at a temperature of 50 ° C. or higher after the immersion step. 請求項1に記載の方法により調製されたろ過膜であって、0.5〜5nmの有効孔径、及び10Lm−2−1bar−1以上の水透過係数を有する、ろ過膜 A filtration membrane prepared by the method according to claim 1, having an effective pore size of 0.5 to 5 nm and a water permeability coefficient of 10 Lm −2 h −1 bar −1 or more. 液体をろ過するプロセスであって、
支持層及びポリマー選択層を有する請求項29に記載のろ過膜を提供する工程;
液体を、最初にポリマー選択層を通し、その後支持層を通して、前記ろ過膜を通過させる工程;及び
前記ろ過膜を透過する液体を回収する工程;
を含む、プロセス。
The process of filtering a liquid,
30. Providing a filtration membrane according to claim 29 having a support layer and a polymer selective layer;
Passing a liquid first through the polymer selective layer and then through a support layer through the filtration membrane; and collecting the liquid that permeates the filtration membrane;
Including the process.
JP2019523680A 2016-11-02 2017-10-20 Preparation of filtration membrane Pending JP2020512178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022113802A JP2022132487A (en) 2016-11-02 2022-07-15 Method for preparing filtration membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662416340P 2016-11-02 2016-11-02
US62/416,340 2016-11-02
PCT/US2017/057517 WO2018085057A1 (en) 2016-11-02 2017-10-20 Fabrication of filtration membranes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022113802A Division JP2022132487A (en) 2016-11-02 2022-07-15 Method for preparing filtration membrane

Publications (2)

Publication Number Publication Date
JP2020512178A true JP2020512178A (en) 2020-04-23
JP2020512178A5 JP2020512178A5 (en) 2020-11-19

Family

ID=62077057

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019523680A Pending JP2020512178A (en) 2016-11-02 2017-10-20 Preparation of filtration membrane
JP2022113802A Pending JP2022132487A (en) 2016-11-02 2022-07-15 Method for preparing filtration membrane

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022113802A Pending JP2022132487A (en) 2016-11-02 2022-07-15 Method for preparing filtration membrane

Country Status (9)

Country Link
US (1) US11896937B2 (en)
EP (1) EP3535049B1 (en)
JP (2) JP2020512178A (en)
KR (2) KR20220155614A (en)
CN (1) CN109862959A (en)
CA (1) CA3041792A1 (en)
MX (1) MX2019005001A (en)
SG (1) SG11201903228UA (en)
WO (1) WO2018085057A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111480B (en) * 2020-01-09 2021-09-14 南京工业大学 Zoledronic acid modified nanofiltration membrane and preparation method thereof
KR102366598B1 (en) * 2020-03-20 2022-02-24 광주과학기술원 Nanofiber for air filter containing random copolymer having zwitterionic functional group and manufacturing method thereof
CN114471156B (en) * 2022-01-17 2023-10-03 烟台大学 Mutual solution-liquid system separation method based on super-infiltration separation membrane
CN114713044B (en) * 2022-05-09 2023-05-05 浙江理工大学 Method for improving pollution resistance of composite nanofiltration membrane
CN115138213B (en) * 2022-06-15 2024-02-02 万华化学(宁波)有限公司 Preparation method of pervaporation membrane and method for removing water and phosgene in organic solvent
CN115487689B (en) * 2022-08-25 2023-11-21 三达膜科技(厦门)有限公司 High-flux flat nanofiltration base membrane and preparation method thereof
CN117463162B (en) * 2023-12-22 2024-03-08 西北农林科技大学深圳研究院 Preparation method and application of antibacterial and antifouling efficient oil-water separation membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182810A (en) * 1984-06-01 1986-04-26 ゲ−・カ−・エス・エス・フオルシユングスツエントルム・ゲ−シユタハト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of united assymmetric membrane for mutually separating gases
CN1128176A (en) * 1995-11-24 1996-08-07 天津纺织工学院膜天膜技术工程公司 Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
JP2004514690A (en) * 2000-11-29 2004-05-20 リオトロピック セラピュティックス アイエヌシー. Drug solvent system
JP2011224553A (en) * 2010-03-29 2011-11-10 Fujifilm Corp Gas separation membrane, method for producing the same, method for separating gas mixture using them, gas separation membrane module, and gas separation device
WO2015070004A1 (en) * 2013-11-08 2015-05-14 Tufts University Zwitterion-containing membranes
CN104959047A (en) * 2015-06-05 2015-10-07 哈尔滨工业大学宜兴环保研究院 Preparation method for monoamine-grafted-and-modified crosslinked polyimide solvent-resistant nanofiltration membrane
JP2015227442A (en) * 2014-05-30 2015-12-17 ポール・コーポレーションPallCorporation MEMBRANE COMPRISING SELF-ASSEMBLED BLOCK COPOLYMER AND METHOD FOR PRODUCING THE SAME BY HYBRID CASTING (IIb)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377654A (en) * 1981-11-16 1983-03-22 Polaroid Corporation Polymerization processes and polymer compositions
US6013688A (en) * 1992-05-06 2000-01-11 Corning Costar Corporation PVDF microporous membrane and method
JP4246070B2 (en) * 2002-03-01 2009-04-02 ジーイー・オズモニクス・インコーポレイテッド Method for producing semipermeable membrane with improved transmittance
US9010547B2 (en) * 2007-05-26 2015-04-21 The Research Foundation Of State University Of New York High flux fluid separation membranes comprising a cellulose or cellulose derivative layer
US9156006B2 (en) * 2009-12-03 2015-10-13 Yale University High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes
FR2978060B1 (en) 2011-07-21 2016-02-12 Commissariat Energie Atomique METHOD AND APPARATUS FOR NON-MIXED AND HIGH-TEMPERATURE CONTACT WITH TWO NON-MISCIBLE LIQUIDS WITH HEATING AND INDUCTION BREWING
US9440196B2 (en) * 2012-02-21 2016-09-13 Dow Global Technologies Llc Composite membrane
US20160187536A1 (en) * 2013-05-13 2016-06-30 National University Corporation Nagoya University Non-volatile photonic material and production method of the same
EP2842620A1 (en) * 2013-08-26 2015-03-04 Agfa-Gevaert A method for preparing a composite membrane
US10525424B2 (en) 2014-12-30 2020-01-07 Trustees Of Tufts College Zwitterionic copolymers for fouling resistant filtration membranes
US11198103B2 (en) 2015-03-10 2021-12-14 Trustees Of Tufts College Two-layer nanofiltration membranes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182810A (en) * 1984-06-01 1986-04-26 ゲ−・カ−・エス・エス・フオルシユングスツエントルム・ゲ−シユタハト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of united assymmetric membrane for mutually separating gases
CN1128176A (en) * 1995-11-24 1996-08-07 天津纺织工学院膜天膜技术工程公司 Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
JP2004514690A (en) * 2000-11-29 2004-05-20 リオトロピック セラピュティックス アイエヌシー. Drug solvent system
JP2011224553A (en) * 2010-03-29 2011-11-10 Fujifilm Corp Gas separation membrane, method for producing the same, method for separating gas mixture using them, gas separation membrane module, and gas separation device
WO2015070004A1 (en) * 2013-11-08 2015-05-14 Tufts University Zwitterion-containing membranes
JP2015227442A (en) * 2014-05-30 2015-12-17 ポール・コーポレーションPallCorporation MEMBRANE COMPRISING SELF-ASSEMBLED BLOCK COPOLYMER AND METHOD FOR PRODUCING THE SAME BY HYBRID CASTING (IIb)
CN104959047A (en) * 2015-06-05 2015-10-07 哈尔滨工业大学宜兴环保研究院 Preparation method for monoamine-grafted-and-modified crosslinked polyimide solvent-resistant nanofiltration membrane

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PRITY BENGANI(外2名): "Zwitterionic copolymer self-assemblyfor fouling resistant, high flux membranes with size-based small", JOURNAL OF MEMBRANE SCIENCE, vol. 493, JPN6021031326, 2015, pages 755 - 765, XP055687639, ISSN: 0004569296, DOI: 10.1016/j.memsci.2015.07.025 *
REBECCA H. BROWN(外8名): "Effect of ionic liquid on mechanicalproperties and morphology of zwitterionic copolymer membranes", MACROMOLECULES, vol. 43, JPN7021003161, 2010, pages 790 - 796, ISSN: 0004569297 *
YUKI TERAYAMA(外4名): "Well-Defined Poly(sulfobetaine) BrushesPrepared by Surface-Initiated ATRP Using a Fluoroalcohol and", MACROMOLECULES, vol. 44, JPN7021003162, 2011, pages 104 - 111, ISSN: 0004569298 *
ZHUAN YI(外4名): "Ionic liquids as co-solvents forzwitterionic copolymers and the preparation of poly(vinylidene fluor", POLYMER, vol. 55, JPN6021031325, 2014, pages 2688 - 2696, ISSN: 0004727149 *

Also Published As

Publication number Publication date
CN109862959A (en) 2019-06-07
EP3535049A1 (en) 2019-09-11
WO2018085057A1 (en) 2018-05-11
US20190262781A1 (en) 2019-08-29
CA3041792A1 (en) 2018-05-11
US11896937B2 (en) 2024-02-13
KR102469297B1 (en) 2022-11-21
JP2022132487A (en) 2022-09-08
EP3535049B1 (en) 2024-03-13
KR20220155614A (en) 2022-11-23
MX2019005001A (en) 2019-09-23
EP3535049A4 (en) 2020-07-22
SG11201903228UA (en) 2019-05-30
KR20190066635A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP2020512178A (en) Preparation of filtration membrane
Guclu et al. Interfacially polymerized thin-film composite membranes: Impact of support layer pore size on active layer polymerization and seawater desalination performance
US11421061B2 (en) Zwitterion-containing membranes
Sadrzadeh et al. Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives
Soroko et al. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes
Ma et al. Effect of type of poly (ethylene glycol)(PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly (vinylidene fluoride)(PVDF) blend membranes
Wu et al. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride
See-Toh et al. Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes
Rajasekhar et al. Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly (vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group
Liu et al. Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1, 3, 6-trisulfonylchloride (NTSC) and piperazine (PIP)
Hwang et al. Fabrication of polyphenylsulfone/polyetherimide blend membranes for ultrafiltration applications: The effects of blending ratio on membrane properties and humic acid removal performance
Jahanshahi et al. Developing thin film composite poly (piperazine-amide) and poly (vinyl-alcohol) nanofiltration membranes
Zhang et al. Modification of poly (vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability
Alsalhy et al. Poly (ether sulfone)(PES) hollow-fiber membranes prepared from various spinning parameters
Hu et al. Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes
Weng et al. Tailoring the structure of polyamide thin film composite membrane with zwitterions to achieve high water permeability and antifouling property
Padaki et al. Synthesis, characterization and desalination study of composite NF membranes of novel Poly [(4-aminophenyl) sulfonyl] butanediamide (PASB) and methyalated Poly [(4-aminophenyl) sulfonyl] butanediamide (mPASB) with Polysulfone (PSf)
Mehrparvar et al. Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers
Jiang et al. Poly (vinyl chloride) and poly (ether sulfone)‐g‐poly (ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance
Mondal et al. Effect of Polyethylene glycol methyl ether blend Humic acid on poly (vinylidene fluoride-co-hexafluropropylene) PVDF-HFP membranes: pH responsiveness and antifouling behavior with optimization approach
Kumar et al. Boron selective thin film composite nanofiltration membrane fabricated via a self-assembled trimesic acid layer at a liquid–liquid interface on an ultrafiltration support
Saini et al. Functionalized polymeric smart membrane for remediation of emerging environmental contaminants from industrial sources: Synthesis, characterization and potential applications
Waheed et al. Design and fabrication of polyamine nanofiltration membrane by constituting multifunctional aliphatic linear amine and trifunctional cyanuric chloride for selective organic solvent nanofiltration
Hamta et al. Copolymer membrane fabrication for highly efficient oil‐in‐water emulsion separation
Rozali et al. Assessment on Performance-properties of Asymmetric Nanofiltration Membranes from Polyethersulfone/n-Methyl-2-pyrrolidone/water Blends with Poly (vinyl pyrrolidone) as Additive

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220715

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20220801

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220801

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221031

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230322

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220