JP2020503923A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2020503923A5 JP2020503923A5 JP2019533365A JP2019533365A JP2020503923A5 JP 2020503923 A5 JP2020503923 A5 JP 2020503923A5 JP 2019533365 A JP2019533365 A JP 2019533365A JP 2019533365 A JP2019533365 A JP 2019533365A JP 2020503923 A5 JP2020503923 A5 JP 2020503923A5
- Authority
- JP
- Japan
- Prior art keywords
- image
- structural
- atlas
- target image
- mapped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 49
- 238000013507 mapping Methods 0.000 claims description 8
- 238000010801 machine learning Methods 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 238000003709 image segmentation Methods 0.000 claims 9
- 230000004044 response Effects 0.000 claims 3
- 230000009466 transformation Effects 0.000 claims 2
- 238000012935 Averaging Methods 0.000 claims 1
- 238000007637 random forest analysis Methods 0.000 claims 1
- 235000013929 Psidium pyriferum Nutrition 0.000 description 4
- 244000236580 Psidium pyriferum Species 0.000 description 4
- 230000004927 fusion Effects 0.000 description 3
- 241001596114 Nelia <angiosperm> Species 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/386,673 US10410348B2 (en) | 2016-12-21 | 2016-12-21 | Online learning enhanced atlas-based auto-segmentation |
| US15/386,673 | 2016-12-21 | ||
| PCT/US2017/063964 WO2018118373A1 (en) | 2016-12-21 | 2017-11-30 | Online learning enhanced atlas-based auto-segmentation |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2020503923A JP2020503923A (ja) | 2020-02-06 |
| JP2020503923A5 true JP2020503923A5 (cg-RX-API-DMAC7.html) | 2020-09-10 |
| JP6782051B2 JP6782051B2 (ja) | 2020-11-11 |
Family
ID=60782359
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019533365A Active JP6782051B2 (ja) | 2016-12-21 | 2017-11-30 | オンライン学習により強化されたアトラスベース自動セグメンテーション |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US10410348B2 (cg-RX-API-DMAC7.html) |
| EP (1) | EP3559905B1 (cg-RX-API-DMAC7.html) |
| JP (1) | JP6782051B2 (cg-RX-API-DMAC7.html) |
| CN (2) | CN113129308B (cg-RX-API-DMAC7.html) |
| AU (1) | AU2017378629C1 (cg-RX-API-DMAC7.html) |
| WO (1) | WO2018118373A1 (cg-RX-API-DMAC7.html) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10410348B2 (en) | 2016-12-21 | 2019-09-10 | Elekta, Inc. | Online learning enhanced atlas-based auto-segmentation |
| US11164308B2 (en) * | 2017-02-27 | 2021-11-02 | The Regents Of The University Of California | System and method for improved medical images |
| US10402969B2 (en) * | 2017-03-10 | 2019-09-03 | General Electric Company | Methods and systems for model driven multi-modal medical imaging |
| JP6915349B2 (ja) * | 2017-04-04 | 2021-08-04 | コニカミノルタ株式会社 | 画像処理装置、画像処理方法、及び画像処理プログラム |
| US10963757B2 (en) | 2018-12-14 | 2021-03-30 | Industrial Technology Research Institute | Neural network model fusion method and electronic device using the same |
| CN110853043B (zh) * | 2019-11-21 | 2020-09-29 | 北京推想科技有限公司 | 影像分割方法、装置、可读存储介质及电子设备 |
| WO2021116150A1 (en) * | 2019-12-11 | 2021-06-17 | Koninklijke Philips N.V. | Anatomical encryption of patient images for artificial intelligence |
| JP7316611B2 (ja) * | 2020-01-30 | 2023-07-28 | 富士通株式会社 | 推定処理プログラム、推定処理方法、及び情報処理装置 |
| EP3866107A1 (en) * | 2020-02-14 | 2021-08-18 | Koninklijke Philips N.V. | Model-based image segmentation |
| CN111369598B (zh) * | 2020-03-02 | 2021-03-30 | 推想医疗科技股份有限公司 | 深度学习模型的训练方法及装置、应用方法及装置 |
| US12249134B2 (en) * | 2020-04-17 | 2025-03-11 | Roxy Corp. | Visualization method, program for the same, visualization device, and discrimination device having the same |
| DE102020211945A1 (de) * | 2020-09-23 | 2022-03-24 | Siemens Healthcare Gmbh | Verfahren und Anordnung zur automatischen Lokalisierung von Organsegmenten in einem dreidimensionalen Bild |
| TWI792751B (zh) * | 2021-12-08 | 2023-02-11 | 國立成功大學 | 醫學影像專案管理平台 |
| JP2024102873A (ja) * | 2023-01-20 | 2024-08-01 | 富士通株式会社 | 情報処理プログラム,情報処理方法及び情報処理装置 |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3996555B2 (ja) * | 2002-10-01 | 2007-10-24 | 独立行政法人科学技術振興機構 | 画像処理装置、画像処理方法、及び当該画像処理をコンピュータに実行させるプログラムを格納する記録媒体 |
| US8073216B2 (en) * | 2007-08-29 | 2011-12-06 | Vanderbilt University | System and methods for automatic segmentation of one or more critical structures of the ear |
| JP2012164026A (ja) * | 2011-02-03 | 2012-08-30 | Nippon Soken Inc | 画像認識装置及び車両用表示装置 |
| US9122950B2 (en) * | 2013-03-01 | 2015-09-01 | Impac Medical Systems, Inc. | Method and apparatus for learning-enhanced atlas-based auto-segmentation |
| US9122959B2 (en) * | 2013-05-03 | 2015-09-01 | Impac Medical Systems, Inc. | Method and apparatus for automated delineation of structure shape for image guided treatment planning |
| US9483831B2 (en) * | 2014-02-28 | 2016-11-01 | International Business Machines Corporation | Segmentation using hybrid discriminative generative label fusion of multiple atlases |
| US9760807B2 (en) * | 2016-01-08 | 2017-09-12 | Siemens Healthcare Gmbh | Deep image-to-image network learning for medical image analysis |
| US10169871B2 (en) * | 2016-01-21 | 2019-01-01 | Elekta, Inc. | Systems and methods for segmentation of intra-patient medical images |
| JP6976270B2 (ja) * | 2016-04-08 | 2021-12-08 | オービタル インサイト インコーポレイテッド | 地理的領域におけるコンテナ内に格納された量の遠隔決定 |
| US10495554B2 (en) * | 2016-05-25 | 2019-12-03 | The Board Of Trustees Of The Leland Stanford Junior University | Method and system for imaging and analysis of a biological specimen |
| US10671895B2 (en) * | 2016-06-30 | 2020-06-02 | Microsoft Technology Licensing, Llc | Automated selection of subjectively best image frames from burst captured image sequences |
| WO2018081607A2 (en) * | 2016-10-27 | 2018-05-03 | General Electric Company | Methods of systems of generating virtual multi-dimensional models using image analysis |
| US10410348B2 (en) | 2016-12-21 | 2019-09-10 | Elekta, Inc. | Online learning enhanced atlas-based auto-segmentation |
-
2016
- 2016-12-21 US US15/386,673 patent/US10410348B2/en active Active
-
2017
- 2017-11-30 AU AU2017378629A patent/AU2017378629C1/en active Active
- 2017-11-30 JP JP2019533365A patent/JP6782051B2/ja active Active
- 2017-11-30 CN CN202011124679.7A patent/CN113129308B/zh active Active
- 2017-11-30 EP EP17818370.3A patent/EP3559905B1/en active Active
- 2017-11-30 CN CN201780084724.0A patent/CN110235175B/zh active Active
- 2017-11-30 WO PCT/US2017/063964 patent/WO2018118373A1/en not_active Ceased
-
2019
- 2019-07-25 US US16/522,051 patent/US10672128B2/en active Active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2020503923A5 (cg-RX-API-DMAC7.html) | ||
| JP6672371B2 (ja) | 分類器を学習する方法及び装置 | |
| CN110197190B (zh) | 模型训练和物体的定位方法及装置 | |
| CN105574063B (zh) | 基于视觉显著性的图像检索方法 | |
| CN111860823B (zh) | 神经网络训练、图像处理方法及装置、设备及存储介质 | |
| CN110543823B (zh) | 基于残差网络的行人再识别方法、装置和计算机设备 | |
| Capellen et al. | ConvPoseCNN: Dense convolutional 6D object pose estimation | |
| CN113220915A (zh) | 一种基于残差注意力的遥感图像检索方法及装置 | |
| Sun et al. | Localizing optic disc and cup for glaucoma screening via deep object detection networks | |
| CN114764870A (zh) | 对象定位模型处理、对象定位方法、装置及计算机设备 | |
| CN115829969B (zh) | 一种最小抑菌浓度的识别方法、装置、设备及存储介质 | |
| KR101758064B1 (ko) | 깊이 영상을 이용하는 추정기 학습 방법 및 자세 추정 방법 | |
| CN116051917B (zh) | 一种训练图像量化模型的方法、检索图像的方法及装置 | |
| Desai et al. | Evaluating the Performance of the YOLO Object Detection Framework on COCO Dataset and Real-World Scenarios | |
| CN113158710B (zh) | 一种视频分类的方法、装置、终端及存储介质 | |
| CN103971362B (zh) | 基于直方图和精英遗传聚类算法的sar图像变化检测 | |
| CN109558801A (zh) | 道路网络提取方法、介质、计算机设备及系统 | |
| CN106056146B (zh) | 基于逻辑回归的视觉跟踪方法 | |
| CN111008630A (zh) | 一种基于弱监督学习的目标定位方法 | |
| CN110197100B (zh) | 物体定位方法和装置 | |
| CN110634151A (zh) | 一种单目标跟踪方法 | |
| CN109872322A (zh) | 一种基于级联检测模型的核性白内障病变区域定位方法 | |
| CN116416423A (zh) | 一种基于深度学习的鸟巢检测方法 | |
| CN114937181A (zh) | 一种基于多模态数据的输电巡检图像生成方法及装置 | |
| CN108205805A (zh) | 锥束ct图像间体素稠密对应的自动建立方法 |