JP2020501071A5 - - Google Patents

Download PDF

Info

Publication number
JP2020501071A5
JP2020501071A5 JP2019529161A JP2019529161A JP2020501071A5 JP 2020501071 A5 JP2020501071 A5 JP 2020501071A5 JP 2019529161 A JP2019529161 A JP 2019529161A JP 2019529161 A JP2019529161 A JP 2019529161A JP 2020501071 A5 JP2020501071 A5 JP 2020501071A5
Authority
JP
Japan
Prior art keywords
heat exchanger
fluid
working fluid
circuit
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019529161A
Other languages
Japanese (ja)
Other versions
JP7018946B2 (en
JP2020501071A (en
Filing date
Publication date
Priority claimed from IT102016000121407A external-priority patent/IT201600121407A1/en
Application filed filed Critical
Publication of JP2020501071A publication Critical patent/JP2020501071A/en
Publication of JP2020501071A5 publication Critical patent/JP2020501071A5/ja
Application granted granted Critical
Publication of JP7018946B2 publication Critical patent/JP7018946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (22)

液化ガスの再ガス化ライン内で熱エネルギー及び電気エネルギーを発生させるための方法であって、
前記再ガス化ラインは、
作用流体と共に作動する閉ガスサイクルのセクションと、
記作用流体の熱が前記液化ガスにその再ガス化のために伝達される第1の熱交換器(HE1)と、
前記作用流体によって電流を発生させるためのタービン(T2)と、
前記作用流体に熱を伝達する第1の中間流体の回路の一部である第2の熱交換器(HE2)と、
前記作用流体に熱を伝達する第2の中間流体の回路の一部である第3の熱交換器(HE3)と、
備え、
前記第の中間流体は、海水又は周囲空気であり
前記方法は、
1)作用流体を用いて閉ガスサイクルを作動させるステップであって、
前記作動させるステップは、
i)海水又は周囲空気から熱エネルギーを取得するステップ(ステップA)を含む、前記作用流体によって熱エネルギーを取得する1つ又は複数のステップと、
ii)前記閉ガスサイクルの作用流体を用いて電気エネルギーを発生させるステップと、
iii)前記第1の熱交換器(HE1)内で前記作用流体から液化ガスに熱エネルギーを伝達するステップとを含む、作動させるステップ、
を含む、方法。
A method for generating thermal energy and electrical energy within a liquefied gas regasification line.
The regasification line
A section of the closed gas cycle that works with the working fluid ,
First heat exchanger heat before Symbol working fluid is Ru is transmitted for that regasification before SL liquefied gas (HE1),
A turbine (T2) for generating an electric current by the working fluid and
A second heat exchanger (HE2) , which is part of the circuit of the first intermediate fluid that transfers heat to the working fluid, and
A third heat exchanger (HE3), which is part of the circuit of the second intermediate fluid that transfers heat to the working fluid, and
With
The second intermediate fluid is seawater or ambient air .
The method is
1) A step of operating a closed gas cycle using a working fluid.
The step to operate is
i) One or more steps of acquiring thermal energy by the working fluid, including the step of acquiring thermal energy from seawater or ambient air (step A).
ii) Steps to generate electrical energy using the working fluid of the closed gas cycle,
iii) A step of operating, including a step of transferring thermal energy from the working fluid to the liquefied gas in the first heat exchanger (HE1).
Including methods.
前記第1の中間流体の回路が、ボイラ回路、又は前記ボイラ回路のボイラによって生成された蒸発気で作動する回路である、請求項1に記載の方法The circuit of the first intermediate fluid is a circuit that operates the boiler circuit, or fumes produced by the boiler of the boiler circuit, the method according to claim 1. ボイラ水の冷却及び前記第1の熱交換器(HE1)から出力される閉ガスサイクルの前記作用流体の加熱が、前記第2の熱交換器(HE2)内で実施される、請求項に記載の方法The boiler water cooling and heating of the working fluid in a closed gas cycle output from the first heat exchanger (HE1) is carried out in the second heat exchanger (HE2) in, to claim 2 The method described. ボイラ水の冷却及び第3の熱交換器(HE3)から出力される前記閉ガスサイクルの前記作用流体の加熱が、前記第2の熱交換器内で実施される、請求項2又は3に記載の方法The second or third claim, wherein the cooling of the boiler water and the heating of the working fluid of the closed gas cycle output from the third heat exchanger (HE3) are carried out in the second heat exchanger. Method . 第3の熱交換器(HE3)内で、海水の冷却及び前記第1の熱交換器(HE1)から出力される前記閉ガスサイクルの前記作用流体の加熱が、前記液化ガスを前記作用流体で再ガス化するために実施される、請求項1〜4のいずれか1つに記載の方法In the third heat exchanger (HE3), cooling of seawater and heating of the working fluid of the closed gas cycle output from the first heat exchanger (HE1) cause the liquefied gas to be the working fluid. The method according to any one of claims 1 to 4 , which is carried out for regasification. 前記第2の熱交換器(HE2)からの前記第1の中間流体の出口が、ボイラによって生成された蒸発気との熱交換のためにボイラ回路のボイラ内に送られる、請求項のいずれか1つに記載の方法It said first intermediate fluid outlet from the second heat exchanger (HE2) is sent to the boiler of the boiler circuit for heat exchange with the fumes generated by the boiler, according to claim 2 The method according to any one of 5 to 5 . 前記閉ガスサイクルのタービン(T2)には、前記第2の熱交換器(HE2)から出力される加熱された前記閉ガスサイクルの前記作用流体が供給される、請求項1〜のいずれか1つに記載の方法A turbine (T2) of the closed gas cycle, the working fluid in the second heat exchanger (HE2) the closed gas cycle then heated pressurized Ru output from is supplied, one of the claims 1-6 The method described in one. 前記閉ガスサイクルの前記タービン(T2)には、前記ボイラ回路の前記ボイラからの出力として加熱された前記閉ガスサイクルの前記作用流体が供給される、請求項に記載の方法Wherein the said turbine (T2) in a closed gas cycle, the working fluid heated the closed gas cycle as an output from the boiler of the boiler circuit is supplied, The method of claim 6. イラ回路が、前記閉ガスサイクルの作用流体と前記液化ガスとの間の熱交換が中で実装される前記第1の熱交換器(HE1)から出力された再ガス化ガスの一部が供給されるボイラを備える、請求項1〜のいずれか1つに記載の方法 Boiler circuit, a portion of the regasified gas heat exchanger is output from said first heat exchanger to be mounted in the middle (HE1) between the liquefied gas and the working fluid of the closed gas cycle The method according to any one of claims 1 to 8 , comprising a boiler to be supplied. ヒートポンプ(HP)をさらに備え、前記ヒートポンプは、
−冷却流体回路と、
−冷却流体と前記ヒートポンプの第1の中間流体(HPF1)との間の熱交換のための前記ヒートポンプの第1の熱交換器(CPC)、及び冷却流体と前記ヒートポンプの第2の中間流体(HPF2)との間の熱交換のための前記ヒートポンプの第2の熱交換器(VPC)と、
−前記第2の中間流体(HPF2)と前記液化ガスとの間の熱交換のための別の熱交換器(HE4)とを備え、
前記方法は、さらに、
2)以下のステップによってヒートポンプ(HP)を作動させるステップであって、
a)冷却流体と前記ヒートポンプの第1の中間流体(HPF1)との間で第1の熱交換を実装するステップであって、前記第1の中間流体(HPF1)は、前記冷却流体に熱を伝達する、ステップと、
b)前記冷却流体と前記ヒートポンプの第2の中間流体(HPF2)との間で第2の熱交換を実施するステップであって、前記冷却流体は、前記第2の中間流体(HPF2)に熱を伝達する、ステップとを含む、作動させるステップと、
3)前記第2の中間流体(HPF2)と前記液化ガスとの間で熱交換を実装するステップと、
を含む、請求項1〜のいずれか1つに記載の方法
A heat pump (HP) is further provided, and the heat pump is
-Cooling fluid circuit and
- a first heat exchanger of the heat pump for heat exchange between the first intermediate fluid of the heat pump and cold却流body (HPF1) (CPC),及beauty cold却流body and a second of said heat pump With the second heat exchanger (VPC) of the heat pump for heat exchange with the intermediate fluid (HPF2),
- another heat exchanger and (HE4) Bei example for heat exchange between the second intermediate fluid (HPF2) and the liquefied gas,
The method further
2) It is a step to operate the heat pump (HP) by the following steps.
a) A step of implementing a first heat exchange between the cooling fluid and the first intermediate fluid (HPF1) of the heat pump, wherein the first intermediate fluid (HPF1) heats the cooling fluid. Communicate, steps,
b) A step of performing a second heat exchange between the cooling fluid and the second intermediate fluid (HPF2) of the heat pump, wherein the cooling fluid heats the second intermediate fluid (HPF2). Including, stepping, and operating step,
3) A step of implementing heat exchange between the second intermediate fluid (HPF2) and the liquefied gas, and
The method according to any one of claims 1 to 9 , further comprising .
前記ヒートポンプが、前記閉ガスサイクルの前記タービン(T2)に連結された発電機(G1)によって供給される、請求項10に記載の方法10. The method of claim 10 , wherein the heat pump is supplied by a generator (G1) coupled to the turbine (T2) of the closed gas cycle. 前記第2の中間流体の回路が、BOG回路に置き換えられるか又はBOG回路に追加され、前記BOG回路は、前記海水と前記BOG回路との間熱交換を生じる熱交換器HE5を備える、請求項11のいずれか1つに記載の方法Circuit of the second intermediate fluid is added to or BOG circuit is replaced by a BOG circuit, the BOG circuit Ru with a heat exchanger HE5 causing heat exchange between the seawater and the BOG circuit, The method according to any one of claims 1 to 11 . 前記ステップi)が、前記ステップAの代替又は追加で、過熱水又はジアテルミーボイラオイルから熱エネルギーを取得するステップ(ステップA’)を含む、請求項1〜12のいずれか1つに記載の方法。 Wherein step i) is an alternative or additional step A, comprising the step (step A ') for acquiring heat energy from the superheated water or diathermy boiler oil, who according to any one of claims 1 to 12 Law. ステップ3)の前記液化ガスが、前記第1の熱交換器(HE1)内の部分的に再ガス化された液化ガスである、請求項1〜13のいずれか1つに記載の方法。 Step 3 The liquefied gas) is partially regasified liquefied gas in the first heat exchanger (HE1) within process towards according to any one of claims 1 to 13. ステップii)において生成された前記電気エネルギーをヒートポンプ(HP)に供給するステップを含む、請求項1014のいずれか1つに記載の方法。 The electrical energy generated in step ii) comprises the step of providing the heat pump (HP), Method person according to any one of claims 10-14. テップiii)による再ガス化ガスの一部がボイラに供給されることを特徴とする、請求項1015のいずれか1つに記載の方法。 Step iii) a portion of the regasified gas according to characterized in that it is supplied to the boiler, methods who according to any one of claims 10-15. 前記作用流体が、アルゴン、窒素、ヘリウム、空気を含む群から選択され、好ましくはアルゴンであることを特徴とする、請求項1016のいずれか1つに記載の方法。 The method according to any one of claims 10 to 16 , wherein the working fluid is selected from the group containing argon, nitrogen, helium, and air, and is preferably argon. 再ガス化ターミナルの異なる再ガス化ラインで独立して実施される、請求項1017のいずれか1つに記載の方法。 It is performed independently with regasification lines having different regasification terminal method towards according to any one of claims 10-17. 前記液化ガスが、空気、窒素、プロパン及びブタンなどのアルカン、もしくは、エチレン、プロピレンなどのアルケンなどの炭化水素化合物、又は液化天然ガス(LNG)を含む群から選択され、好ましくは液化天然ガス(LNG)である、請求項1018のいずれか1つに記載の方法。 The liquefied gas is selected from the group containing air, alkanes such as nitrogen, propane and butane, hydrocarbon compounds such as alkene such as ethylene and propylene, or liquefied natural gas (LNG), preferably liquefied natural gas ( a LNG), method person according to any one of claims 10 to 18. ガス状、液体、又は固体の極低温貯蔵物を形成するための、請求項1019のいずれか1つに記載の方法。 The method according to any one of claims 10 to 19 , for forming a gaseous, liquid, or solid cryogenic storage. 請求項1〜20のいずれか1つに記載の方法により動作する1つ又は複数の液化ガス用の再ガス化ラインを備え、前記再ガス化ラインが平行である、液化ガス用の再ガス化ターミナル。Regasification for liquefied gas comprising one or more regasification lines for liquefied gas operating by the method according to any one of claims 1-20, wherein the regasification lines are parallel. Terminal. 水中燃焼気化器(SCV)又はオープンラック気化器型の気化セクションをさらに備える、請求項21に記載の液化ガス用の再ガス化ターミナル。The regasification terminal for liquefied gas according to claim 21, further comprising an underwater combustion vaporizer (SCV) or an open rack vaporizer type vaporization section.
JP2019529161A 2016-11-30 2017-11-28 Closed gas cycle in cryogenic applications or cooling fluids Active JP7018946B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102016000121407A IT201600121407A1 (en) 2016-11-30 2016-11-30 CLOSED GAS CYCLE IN CRYOGENIC OR REFRIGERANT FLUID APPLICATIONS
IT102016000121407 2016-11-30
PCT/IB2017/057438 WO2018100485A1 (en) 2016-11-30 2017-11-28 Closed gas cycle in cryogenic applications or refrigerating fluids

Publications (3)

Publication Number Publication Date
JP2020501071A JP2020501071A (en) 2020-01-16
JP2020501071A5 true JP2020501071A5 (en) 2020-12-03
JP7018946B2 JP7018946B2 (en) 2022-02-14

Family

ID=58455449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529161A Active JP7018946B2 (en) 2016-11-30 2017-11-28 Closed gas cycle in cryogenic applications or cooling fluids

Country Status (4)

Country Link
EP (1) EP3548713A1 (en)
JP (1) JP7018946B2 (en)
IT (1) IT201600121407A1 (en)
WO (1) WO2018100485A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366555B2 (en) * 2019-02-26 2023-10-23 三菱重工マリンマシナリ株式会社 Liquefied gas vaporization equipment and floating equipment equipped with the same
JP7301553B2 (en) * 2019-02-26 2023-07-03 三菱重工マリンマシナリ株式会社 Liquefied gas vaporizer and floating facility equipped with the same
CN112009697A (en) * 2020-09-02 2020-12-01 成都精智艺科技有限责任公司 Efficient LNG ship power supply system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1538477A (en) * 1975-05-28 1979-01-17 Gutehoffnungshuette Sterkrade Evaporation of liquified natural gas
JPS5779223A (en) * 1980-11-04 1982-05-18 Asahi Glass Co Ltd Method of driving gas turbine
JPS61152915A (en) * 1984-12-26 1986-07-11 Kawasaki Heavy Ind Ltd Energy recovering system
JPS61116297U (en) * 1985-01-08 1986-07-22
JP2001090509A (en) 1999-09-24 2001-04-03 Toyoshi Sakata Cryogenic power generating system using liquid air
ITMI20061149A1 (en) * 2006-06-14 2007-12-15 Eni Spa PROCEDURE AND PLANT FOR THE REGASIFICATION OF NATURAL LIQUEFIED GAS AND THE SUOM STORAGE
US20110289941A1 (en) * 2010-05-28 2011-12-01 General Electric Company Brayton cycle regasification of liquiefied natural gas
US8739522B2 (en) 2010-10-29 2014-06-03 Nuovo Pignone S.P.A. Systems and methods for pre-heating compressed air in advanced adiabatic compressed air energy storage systems
JP5875253B2 (en) 2011-05-19 2016-03-02 千代田化工建設株式会社 Combined power generation system
JP6151039B2 (en) 2013-02-12 2017-06-21 三菱重工業株式会社 Liquefied petroleum gas carrier, reliquefaction device, boil-off gas reliquefaction method

Similar Documents

Publication Publication Date Title
US7493763B2 (en) LNG-based power and regasification system
Gómez et al. Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)
KR880002380B1 (en) Recovery of power from vaporization of liquefied natural gas
US7900451B2 (en) Power and regasification system for LNG
JP5958730B2 (en) Cryogenic power generation system, energy system including refrigeration power generation system, method of using refrigeration power generation system, method of using energy system, and method of setting preover boost pressure of refrigeration power generation system
JP2020501071A5 (en)
JP2011528094A5 (en)
TWI448619B (en) Rankine cycle for lng vaporization/power generation process
JP2016519731A (en) Heat engine system with high net power supercritical carbon dioxide circuit
US9903232B2 (en) Power and regasification system for LNG
JP2009539037A (en) Method of vaporizing and heating a cryogenic fluid
JP2010529347A5 (en)
US6116031A (en) Producing power from liquefied natural gas
JP2009540238A (en) Liquefied natural gas (LNG) vaporization and storage method, and plant
Lee et al. Thermodynamic assessment of integrated heat recovery system combining exhaust-gas heat and cold energy for LNG regasification process in FSRU vessel
CN105980665A (en) Method and apparatus for generating electricity and storing energy using a thermal or nuclear power plant
EP2278210A1 (en) Method for the gasification of a liquid hydrocarbon stream and an apparatus therefore
WO2012054006A1 (en) Method and device for energy production and regasification of liquefied natural gas
Pattanayak et al. Thermodynamic analysis of combined cycle power plant using regasification cold energy from LNG terminal
JP2012082750A (en) Waste heat recovery power generator and vessel equipped with waste heat recovery power generator
CN205330750U (en) Utilize LNG cold energy generation's device
Wojcieszak et al. Investigation of a working fluid for cryogenic energy storage systems
JP2020501086A5 (en)
JP2020513513A5 (en)
JP2013204644A (en) Low-temperature liquefied-gas cold recovery method and low-temperature liquefied-gas vaporizer including constitution for realizing the method