JP2020500526A5 - - Google Patents

Download PDF

Info

Publication number
JP2020500526A5
JP2020500526A5 JP2019529263A JP2019529263A JP2020500526A5 JP 2020500526 A5 JP2020500526 A5 JP 2020500526A5 JP 2019529263 A JP2019529263 A JP 2019529263A JP 2019529263 A JP2019529263 A JP 2019529263A JP 2020500526 A5 JP2020500526 A5 JP 2020500526A5
Authority
JP
Japan
Prior art keywords
gene
pharmaceutical composition
mapt
composition
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019529263A
Other languages
Japanese (ja)
Other versions
JP7292204B2 (en
JP2020500526A (en
JPWO2018102665A5 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2017/064181 external-priority patent/WO2018102665A1/en
Publication of JP2020500526A publication Critical patent/JP2020500526A/en
Publication of JP2020500526A5 publication Critical patent/JP2020500526A5/ja
Publication of JPWO2018102665A5 publication Critical patent/JPWO2018102665A5/ja
Priority to JP2023053704A priority Critical patent/JP2023078446A/en
Application granted granted Critical
Publication of JP7292204B2 publication Critical patent/JP7292204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

また、本明細書に記載のようなタウモジュレーターの成分を含むおよび/またはタウモジュレーター(またはその成分)をコードするAAVタウモジュレーター(例えば、リプレッサー)および/またはポリヌクレオチドの1つまたは複数を含むキットが提供される。キットは、細胞(例えば、ニューロン)、(例えば、例えばCSFにおいてタウタンパク質を検出および/または定量化するための)試薬、および/または本明細書に記載のような方法を含むその使用のための説明書をさらに含んでいてもよい。
特定の実施形態では、例えば、以下が提供される:
(項目1)
微小管結合タンパク質タウ(MAPT)遺伝子の遺伝子モジュレーターであって、
該MAPT遺伝子の少なくとも12個のヌクレオチドの標的部位に結合するDNA結合ドメイン、および
転写制御ドメインまたはヌクレアーゼドメイン
を含む遺伝子モジュレーター。
(項目2)
前記DNA結合ドメインが、ジンクフィンガータンパク質(ZFP)、TAL−エフェクタードメインタンパク質(TALE)、または単鎖ガイドRNAを含む、項目1に記載の遺伝子モジュレーター。
(項目3)
前記転写制御ドメインが、抑制ドメインまたは活性化ドメインを含む、項目1または項目2に記載の遺伝子モジュレーター。
(項目4)
項目1から3のいずれかに記載の遺伝子モジュレーターをコードするポリヌクレオチド。
(項目5)
項目4に記載のポリヌクレオチドを含む遺伝子送達ビヒクル。
(項目6)
AAVベクターを含む、項目5に記載の遺伝子送達ビヒクル。
(項目7)
項目1から3に記載の1つまたは複数の遺伝子モジュレーター、項目4に記載の1つまたは複数のポリヌクレオチド、および/または項目5または6に記載の1つまたは複数の遺伝子送達ビヒクルを含む医薬組成物。
(項目8)
前記遺伝子モジュレーターが、ヌクレアーゼドメインを含み、該遺伝子モジュレーターが、前記MAPT遺伝子を切断する、項目7に記載の医薬組成物。
(項目9)
切断された前記MAPT遺伝子に組み込まれるドナー分子をさらに含む、項目8に記載の医薬組成物。
(項目10)
項目1から3に記載の1つまたは複数の遺伝子モジュレーター、項目4に記載の1つまたは複数のポリヌクレオチド、項目5または6に記載の1つまたは複数の遺伝子送達ビヒクル、および/または項目7から9のいずれかに記載の医薬組成物を含む単離細胞。
(項目11)
対象のMAPT発現を調節するための、項目1から3に記載の1つまたは複数の遺伝子モジュレーター、項目4に記載の1つまたは複数のポリヌクレオチド、項目5または6に記載の1つまたは複数の遺伝子送達ビヒクル、および/または項目7から9のいずれかに記載の医薬組成物の使用。
(項目12)
MAPT発現が抑制される、項目11に記載の使用。
(項目13)
前記対象への投与が、脳室内、髄腔内、頭蓋内、静脈内、後眼窩的、または槽内である、項目11または12に記載の使用。
(項目14)
前記対象中のMAPT発現の抑制が、タウオパチーを処置および/または予防する、項目11から13のいずれかに記載の使用。
(項目15)
前記対象中のタウの量が低減される、項目11から14のいずれかに記載の使用。
(項目16)
項目1から3に記載の1つまたは複数の遺伝子モジュレーター、項目4に記載の1つまたは複数のポリヌクレオチド、項目5または6に記載の1つまたは複数の遺伝子送達ビヒクル、項目7から9のいずれかに記載の医薬組成物、および/または使用のための指示を含むキット。
It also comprises one or more of the AAV tau modulators (eg, repressors) and / or polynucleotides that contain and / or encode tau modulators (or components thereof) as described herein. A kit is provided. The kit includes cells (eg, neurons), reagents (eg, for detecting and / or quantifying tau protein in CSF, for example), and / or methods as described herein for its use. Additional instructions may be included.
In certain embodiments, for example, the following is provided:
(Item 1)
A gene modulator of the microtubule-associated protein tau (MAPT) gene
A DNA-binding domain that binds to the target site of at least 12 nucleotides of the MAPT gene, and
Transcription control domain or nuclease domain
Gene modulators including.
(Item 2)
The gene modulator according to item 1, wherein the DNA binding domain comprises a zinc finger protein (ZFP), a TAL-effector domain protein (TALE), or a single-stranded guide RNA.
(Item 3)
The gene modulator according to item 1 or item 2, wherein the transcription control domain includes an inhibitory domain or an activation domain.
(Item 4)
A polynucleotide encoding the gene modulator according to any one of items 1 to 3.
(Item 5)
A gene delivery vehicle comprising the polynucleotide according to item 4.
(Item 6)
The gene delivery vehicle of item 5, comprising an AAV vector.
(Item 7)
A pharmaceutical composition comprising one or more gene modulators according to items 1-3, one or more polynucleotides according to item 4, and / or one or more gene delivery vehicles according to item 5 or 6. Stuff.
(Item 8)
The pharmaceutical composition according to item 7, wherein the gene modulator contains a nuclease domain and the gene modulator cleaves the MAPT gene.
(Item 9)
The pharmaceutical composition according to item 8, further comprising a donor molecule that is integrated into the cleaved MAPT gene.
(Item 10)
From item 1-3, one or more gene modulators, item 4, one or more polynucleotides, item 5 or 6, one or more gene delivery vehicles, and / or item 7. An isolated cell containing the pharmaceutical composition according to any one of 9.
(Item 11)
One or more gene modulators of items 1-3, one or more polynucleotides of item 4, one or more of items 5 or 6 for regulating MAPT expression in a subject. Use of a gene delivery vehicle and / or the pharmaceutical composition according to any of items 7-9.
(Item 12)
The use according to item 11, wherein MAPT expression is suppressed.
(Item 13)
The use according to item 11 or 12, wherein the administration to the subject is intraventricular, intrathecal, intracranial, intravenous, retroorbital, or intracisional.
(Item 14)
The use according to any of items 11 to 13, wherein suppression of MAPT expression in the subject treats and / or prevents tauopathy.
(Item 15)
The use according to any of items 11-14, wherein the amount of tau in the subject is reduced.
(Item 16)
One or more gene modulators of items 1 to 3, one or more polynucleotides of item 4, one or more gene delivery vehicles of item 5 or 6, any of items 7-9. A kit containing the pharmaceutical composition according to the gene and / or instructions for use.

図7A〜7Dは、ヒトiPSC由来ニューロンでのmRNA(ヒトタウおよびZFP)レベルを示す。図7Aは、ヒトおよびマウスMAPT標的部位(それぞれ左から右へ、配列番号3132、および48〜51)の部分配列を示す模式図である。図7Bは、AAVベクターにより運搬される表示リプレッサーを表示投薬量で投与した18日後のiPSCでのmRNA発現を示すグラフを示す。図7Cは、表示プロモーターを有するAAVベクターにより運搬される表示リプレッサー(52366)を投与した18日後のiPSCでのmRNA発現を示すグラフを示す。図7Dは、ヒトiPSC由来ニューロンにおいて例示的なZFP TFを使用した一連のマイクロアレイプロットであり、ZFP TFが高度に特異的であることを示す。細胞を、分析前に19日間にわたって、ZFP−TFドナーを含む1E5のAAV6に曝露した。7A-7D show mRNA (human tau and ZFP) levels in human iPSC-derived neurons. FIG. 7A is a schematic diagram showing partial sequences of human and mouse MAPT target sites (SEQ ID NOs: 31 , 32 , and 48-51 , respectively, from left to right ). FIG. 7B shows a graph showing mRNA expression on iPSCs 18 days after administration of the labeled repressor carried by the AAV vector at the labeled dosage. FIG. 7C shows a graph showing mRNA expression on iPSCs 18 days after administration of a display repressor (52366) carried by an AAV vector with a display promoter. FIG. 7D is a series of microarray plots using exemplary ZFP TFs in human iPSC-derived neurons, showing that ZFP TFs are highly specific. Cells were exposed to 1E5 AAV6 containing ZFP-TF donors for 19 days prior to analysis. 同上。Same as above. 同上。Same as above.

(実施例1)
MAPTリプレッサー
本質的に米国特許第6,534,261号、米国特許出願公開第2015/0056705号、第2011/0082093号、第2013/0253040号、および第2015/0335708号に記載のように遺伝子操作されたおよそ185個のジンクフィンガータンパク質のスクリーニングを実施し、ZFPをそれらのMAPT標的部位に結合させた。マウスMAPTを標的とするジンクフィンガータンパク質52288、52322、52364、52366、52389、57880、57890、および65888(下記の表1〜3を参照)を、さらなる研究のために選択した。65888に関して列挙されているホスフェート接触突然変異体は、以前に記載されている(例えば、米国特許出願第15/685,580号を参照)。表1は、これらZFPのDNA結合ドメインの認識ヘリックスおよびこれらZFPの標的配列を示す。また、1セットのZFPを、マウスおよびヒト遺伝子間で共有されるMAPT配列を標的とするように製作した。それらは表2に示されている。表3は、親ZFP TF、および潜在的な非特異的ホスフェート接触を除去するためにZFP骨格を表示位置で突然変異させた誘導体ZFP TFを示す。ZFPは、標準的SELEX分析により評価したところ、それらの標的部位に結合することが示された。
表1:マウスMAPT特異的リプレッサー設計
表2:ヒト/マウスMAPT特異的リプレッサー設計
(Example 1)
MAPT Repressor Essentially a gene as described in US Pat. No. 6,534,261, US Patent Application Publication No. 2015/0056705, 2011/0082093, 2013/0253040, and 2015/0335708. Screening of approximately 185 engineered zinc finger proteins was performed and ZFP was bound to their MAPT target sites. Zinc finger proteins 52288, 52322, 52364, 52366, 52389, 57880, 57890, and 65888 (see Tables 1-3 below) targeting mouse MAPT were selected for further study. Phosphate contact variants listed for 65888 have been previously described (see, eg, US Patent Application No. 15 / 685,580). Table 1 shows the recognition helices of the DNA-binding domains of these ZFPs and the target sequences of these ZFPs. A set of ZFPs was also made to target MAPT sequences shared between mouse and human genes. They are shown in Table 2. Table 3 shows the parent ZFP TF and the derivative ZFP TF with the ZFP backbone mutated at the indicated position to eliminate potential non-specific phosphate contacts. ZFPs were evaluated by standard SELEX analysis and were shown to bind to their target sites.
Table 1: Mouse MAPT-specific repressor design
Table 2: Human / mouse MAPT-specific repressor design

骨格領域に突然変異を含むZFP−TFタウリプレッサーを遺伝子操作した。表3には、例示的ZFP−TFリプレッサー(およびそれらの親化合物)が表されている。こうした最適化されたZFP TFでの結果(例えば、65888〜57880を比較して示した例示的な結果)によると、初代ニューロンでは、活性に影響を及ぼさずに特異性が劇的に(10倍よりも大きく)向上したことが実証された(タウ抑制、図1Bを参照)。さらに、57880親の2つの誘導体65887および65888を、BOD1およびMOSPD1オフターゲットの抑制活性について、Neuro2A細胞で試験したところ(図1Dを参照)、ZFP骨格にホスフェート接触突然変異を含むタンパク質では、オフターゲット抑制が低減された。米国特許出願第15/685,580号も参照されたい。
(実施例2)
マウスニューロンでのタウ抑制
A ZFP-TF tau repressor containing a mutation in the skeletal region was genetically engineered. Table 3 shows exemplary ZFP-TF repressors (and their parent compounds). According to the results of these optimized ZFP TFs (eg, exemplary results shown by comparing 65888-57880), primary neurons have a dramatic (10-fold) specificity without affecting activity. Demonstrated (greater than) improvement (tau suppression, see Figure 1B). In addition, two derivatives of 57880 parents, 658887 and 65888, were tested in Neuro2A cells for inhibitory activity on BOD1 and MOSPD1 off-targets (see Figure 1D) and off-targets for proteins containing a phosphate contact mutation in the ZFP backbone. Suppression was reduced. See also U.S. Patent Application No. 15 / 685,580.
(Example 2)
Tau suppression in mouse neurons

本明細書に記載のすべてのZFPの標準的SELEX特異性分析に基づき、表2および3に列挙されているZFPは、ヒトMAPT配列の1つ(SBS#57890およびSBS#52366の場合)または2つ(SBS#57880の場合)の非保存的位置でのミスマッチを許容することが予測された(図7A、それぞれ左から右へ、配列番号31および32、および48〜51を参照)。 Based on the standard SELEX specificity analysis of all ZFPs described herein, the ZFPs listed in Tables 2 and 3 are one of the human MAPT sequences (for SBS # 57890 and SBS # 52366) or 2 It was predicted to tolerate one (in the case of SBS # 57880) mismatches at non-conservative locations (Fig. 7A, left to right, see SEQ ID NOs: 31 and 32 , and 48-51 , respectively ).

Claims (19)

微小管結合タンパク質タウ(MAPT)遺伝子の遺伝子モジュレーターであって、
該MAPT遺伝子内の配列番号1〜6、33、および44〜45のいずれかの少なくとも12個のヌクレオチドの標的部位に結合するDNA結合ドメイン、および
転写制御ドメインまたはヌクレアーゼドメイン
を含む遺伝子モジュレーター。
A gene modulator of the microtubule-associated protein tau (MAPT) gene
A gene modulator comprising a DNA binding domain that binds to the target site of at least 12 nucleotides of any of SEQ ID NOs: 1-6, 33, and 44-45 within the MAPT gene, and a transcriptional regulatory or nuclease domain.
前記DNA結合ドメインが、ジンクフィンガータンパク質(ZFP)、TAL−エフェクタードメインタンパク質(TALE)、または単鎖ガイドRNAを含む、請求項1に記載の遺伝子モジュレーター。 The gene modulator according to claim 1, wherein the DNA binding domain comprises a zinc finger protein (ZFP), a TAL-effector domain protein (TALE), or a single-stranded guide RNA. 前記転写制御ドメインが、抑制ドメインまたは活性化ドメインを含む、請求項1または請求項2に記載の遺伝子モジュレーター。 The gene modulator according to claim 1 or 2, wherein the transcriptional control domain includes an inhibitory domain or an activation domain. 前記遺伝子モジュレーターが、ヒト細胞内のMAPT遺伝子を調節する、請求項1から3のいずれか一項に記載の遺伝子モジュレーター。 The gene modulator according to any one of claims 1 to 3, wherein the gene modulator regulates a MAPT gene in human cells. 請求項1からのいずれか一項に記載の遺伝子モジュレーターをコードするポリヌクレオチド。 A polynucleotide encoding the gene modulator according to any one of claims 1 to 4 . 請求項に記載のポリヌクレオチドを含む遺伝子送達ビヒクル。 A gene delivery vehicle comprising the polynucleotide according to claim 5 . AAVベクターを含む、請求項に記載の遺伝子送達ビヒクル。 The gene delivery vehicle according to claim 6 , which comprises an AAV vector. 請求項1から4のいずれか一項に記載の1つまたは複数の遺伝子モジュレーター、請求項に記載の1つまたは複数のポリヌクレオチド、および/または請求項またはに記載の1つまたは複数の遺伝子送達ビヒクルを含む医薬組成物。 One or more gene modulators according to any one of claims 1 to 4, one or more polynucleotides according to claim 5 , and / or one or more according to claims 6 or 7. A pharmaceutical composition comprising a gene delivery vehicle of. 前記遺伝子モジュレーターが、ヌクレアーゼドメインを含み、該遺伝子モジュレーターが、前記MAPT遺伝子を切断する、請求項に記載の医薬組成物。 The pharmaceutical composition according to claim 8 , wherein the gene modulator contains a nuclease domain, and the gene modulator cleaves the MAPT gene. 切断された前記MAPT遺伝子に組み込まれるドナー分子をさらに含む、請求項に記載の医薬組成物。 The pharmaceutical composition according to claim 9 , further comprising a donor molecule that integrates into the cleaved MAPT gene. 請求項1から4のいずれか一項に記載の1つまたは複数の遺伝子モジュレーター、請求項に記載の1つまたは複数のポリヌクレオチド、請求項またはに記載の1つまたは複数の遺伝子送達ビヒクル、および/または請求項から10のいずれか一項に記載の医薬組成物を含む単離細胞。 One or more gene modulators according to any one of claims 1 to 4, one or more polynucleotides according to claim 5 , one or more gene delivery according to claims 6 or 7. An isolated cell comprising a vehicle and / or the pharmaceutical composition according to any one of claims 8 to 10 . 対象のMAPT発現を調節するための医薬の製造のための、請求項1から4のいずれか一項に記載の1つまたは複数の遺伝子モジュレーター、請求項に記載の1つまたは複数のポリヌクレオチド、請求項またはに記載の1つまたは複数の遺伝子送達ビヒクル、および/または請求項から10のいずれか一項に記載の医薬組成物の使用。 One or more gene modulators according to any one of claims 1 to 4, one or more polynucleotides according to claim 5 , for the manufacture of a medicament for regulating MAPT expression of interest. use of one or more gene delivery vehicles, and / or pharmaceutical composition according to any one of claims 8 to 10 according to claim 6 or 7. 請求項1から4のいずれか一項に記載の1つまたは複数の遺伝子モジュレーター、請求項に記載の1つまたは複数のポリヌクレオチド、請求項またはに記載の1つまたは複数の遺伝子送達ビヒクル、請求項から10のいずれか一項に記載の医薬組成物、および使用のための指示を含むキット。 One or more gene modulators according to any one of claims 1 to 4, one or more polynucleotides according to claim 5 , one or more gene delivery according to claims 6 or 7. vehicle, the pharmaceutical composition according to any one of claims 8 10, Oyo kits include instructions for for beauty use. 対象のMAPT発現を調節するための、請求項1から4のいずれか一項に記載の1つまたは複数の遺伝子モジュレーターを含む組成物、請求項5に記載の1つまたは複数のポリヌクレオチドを含む組成物、請求項6または7に記載の1つまたは複数の遺伝子送達ビヒクルを含む組成物、および/または請求項8から10のいずれか一項に記載の医薬組成物。 A composition comprising one or more gene modulators according to any one of claims 1 to 4, comprising one or more polynucleotides according to claim 5 for regulating MAPT expression of interest. The composition, the composition comprising one or more gene delivery vehicles according to claim 6 or 7, and / or the pharmaceutical composition according to any one of claims 8 to 10. MAPT発現が前記対象において抑制される、請求項14に記載の組成物または医薬組成物。 The composition or pharmaceutical composition according to claim 14, wherein MAPT expression is suppressed in the subject. 前記組成物または医薬組成物が、脳室内、髄腔内、頭蓋内、静脈内、後眼窩的、または槽内で前記対象に投与されることを特徴とする、請求項14または15に記載の組成物または医薬組成物。 14. The composition according to claim 14 or 15, wherein the composition or pharmaceutical composition is administered to the subject intraventricularly, intrathecally, intracranial, intravenously, retroorbitally, or in a cistern. Composition or pharmaceutical composition. 前記対象中のMAPT発現の抑制が、タウオパチーを処置および/または予防する、請求項14から16のいずれか一項に記載の組成物または医薬組成物。 The composition or pharmaceutical composition according to any one of claims 14 to 16, wherein suppression of MAPT expression in the subject treats and / or prevents tauopathy. 前記対象中のタウの量が低減される、請求項14から17のいずれか一項に記載の組成物または医薬組成物。 The composition or pharmaceutical composition according to any one of claims 14 to 17, wherein the amount of tau in the subject is reduced. 前記対象がヒトである、請求項14から18のいずれか一項に記載の組成物または医薬組成物。 The composition or pharmaceutical composition according to any one of claims 14 to 18, wherein the subject is a human.
JP2019529263A 2016-12-01 2017-12-01 Tau modulators and methods and compositions for their delivery Active JP7292204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023053704A JP2023078446A (en) 2016-12-01 2023-03-29 Tau modulators, and methods and compositions for delivery thereof

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201662428871P 2016-12-01 2016-12-01
US62/428,871 2016-12-01
US201762450895P 2017-01-26 2017-01-26
US62/450,895 2017-01-26
US201762466198P 2017-03-02 2017-03-02
US62/466,198 2017-03-02
US201762500807P 2017-05-03 2017-05-03
US62/500,807 2017-05-03
US201762584342P 2017-11-10 2017-11-10
US62/584,342 2017-11-10
PCT/US2017/064181 WO2018102665A1 (en) 2016-12-01 2017-12-01 Tau modulators and methods and compositions for delivery thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023053704A Division JP2023078446A (en) 2016-12-01 2023-03-29 Tau modulators, and methods and compositions for delivery thereof

Publications (4)

Publication Number Publication Date
JP2020500526A JP2020500526A (en) 2020-01-16
JP2020500526A5 true JP2020500526A5 (en) 2021-01-21
JPWO2018102665A5 JPWO2018102665A5 (en) 2022-08-05
JP7292204B2 JP7292204B2 (en) 2023-06-16

Family

ID=62239970

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019529263A Active JP7292204B2 (en) 2016-12-01 2017-12-01 Tau modulators and methods and compositions for their delivery
JP2023053704A Pending JP2023078446A (en) 2016-12-01 2023-03-29 Tau modulators, and methods and compositions for delivery thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023053704A Pending JP2023078446A (en) 2016-12-01 2023-03-29 Tau modulators, and methods and compositions for delivery thereof

Country Status (11)

Country Link
US (2) US11504389B2 (en)
EP (1) EP3548616A4 (en)
JP (2) JP7292204B2 (en)
KR (1) KR20190085529A (en)
CN (1) CN110214184A (en)
AU (1) AU2017367722B2 (en)
BR (1) BR112019010014A2 (en)
CA (1) CA3043635A1 (en)
IL (1) IL266862B2 (en)
MX (1) MX2019006426A (en)
WO (1) WO2018102665A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072677A1 (en) * 2018-10-02 2020-04-09 Sangamo Therapeutics, Inc. Methods and compositions for modulation of tau proteins
WO2020072684A1 (en) * 2018-10-02 2020-04-09 Sangamo Therapeutics, Inc. Engineered genetic modulators
KR20220007601A (en) * 2019-04-12 2022-01-18 엔코디드 테라퓨틱스, 인크. Compositions and methods for administering therapeutic agents
EP3958871A1 (en) 2019-04-23 2022-03-02 Sangamo Therapeutics, Inc. Modulators of chromosome 9 open reading frame 72 gene expression and uses thereof
AU2020398178A1 (en) 2019-12-04 2022-06-09 Sangamo Therapeutics, Inc. Novel compositions and methods for producing recombinant AAV
CN115210251A (en) * 2020-01-22 2022-10-18 桑格摩生物治疗股份有限公司 Zinc finger protein transcription factor for repressing TAU expression
AU2021304639A1 (en) * 2020-07-09 2023-01-19 Modalis Therapeutics Corporation Method for treating Alzheimer's disease by targeting MAPT gene
CN112640847B (en) * 2020-12-30 2022-12-13 重庆医科大学附属第一医院 Endogenous epileptic seizure animal model and construction method thereof

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4946787A (en) 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US6140466A (en) 1994-01-18 2000-10-31 The Scripps Research Institute Zinc finger protein derivatives and methods therefor
CA2181548C (en) 1994-01-18 2009-11-03 Carlos F. Barbas, Iii Zinc finger protein derivatives and methods therefor
EP0752005B1 (en) 1994-03-23 2008-10-08 Ohio University Compacted nucleic acids and their delivery to cells
GB9824544D0 (en) 1998-11-09 1999-01-06 Medical Res Council Screening system
USRE45795E1 (en) 1994-08-20 2015-11-10 Gendaq, Ltd. Binding proteins for recognition of DNA
US5789538A (en) 1995-02-03 1998-08-04 Massachusetts Institute Of Technology Zinc finger proteins with high affinity new DNA binding specificities
US5925523A (en) 1996-08-23 1999-07-20 President & Fellows Of Harvard College Intraction trap assay, reagents and uses thereof
GB9710807D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
GB9710809D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
AU746454B2 (en) 1998-03-02 2002-05-02 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
ATE316576T1 (en) 1998-05-27 2006-02-15 Avigen Inc CONVECTION-INCREASED ADMINISTRATION AADC ENCODING AAV VECTORS
US6140081A (en) 1998-10-16 2000-10-31 The Scripps Research Institute Zinc finger binding domains for GNN
US6453242B1 (en) 1999-01-12 2002-09-17 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6599692B1 (en) 1999-09-14 2003-07-29 Sangamo Bioscience, Inc. Functional genomics using zinc finger proteins
US7013219B2 (en) 1999-01-12 2006-03-14 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
ATE309536T1 (en) 1999-12-06 2005-11-15 Sangamo Biosciences Inc METHODS OF USING RANDOMIZED ZINC FINGER PROTEIN LIBRARIES TO IDENTIFY GENE FUNCTIONS
WO2001059450A2 (en) 2000-02-08 2001-08-16 Sangamo Biosciences, Inc. Cells expressing zinc finger protein for drug discovery
US20020061512A1 (en) 2000-02-18 2002-05-23 Kim Jin-Soo Zinc finger domains and methods of identifying same
US20030044787A1 (en) 2000-05-16 2003-03-06 Joung J. Keith Methods and compositions for interaction trap assays
JP2002060786A (en) 2000-08-23 2002-02-26 Kao Corp Germicidal stainproofing agent for hard surface
US7026462B2 (en) 2000-12-07 2006-04-11 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
GB0108491D0 (en) 2001-04-04 2001-05-23 Gendaq Ltd Engineering zinc fingers
US7182944B2 (en) 2001-04-25 2007-02-27 The United States Of America As Represented By The Department Of Health And Human Services Methods of increasing distribution of nucleic acids
US20040224385A1 (en) 2001-08-20 2004-11-11 Barbas Carlos F Zinc finger binding domains for cnn
JP4769417B2 (en) 2001-12-17 2011-09-07 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Adeno-associated virus (AAV) serotype 9 sequences, vectors containing the same and uses thereof
US7074596B2 (en) 2002-03-25 2006-07-11 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Synthesis and use of anti-reverse mRNA cap analogues
EP1635763B1 (en) * 2003-06-09 2012-08-08 Alnylam Pharmaceuticals Inc. Method of treating neurodegenerative disease
US8409861B2 (en) 2003-08-08 2013-04-02 Sangamo Biosciences, Inc. Targeted deletion of cellular DNA sequences
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
WO2005030959A1 (en) * 2003-09-25 2005-04-07 Chiba-Prefecture Microarray for assessing neuroblastoma prognosis and method of assessing neuroblastoma prognosis
US20060239966A1 (en) 2003-10-20 2006-10-26 Tornoee Jens In vivo gene therapy of parkinson's disease
CN102626336A (en) 2004-10-05 2012-08-08 建新公司 Stepped cannula
CA2607104A1 (en) 2005-05-05 2006-11-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Sequence enabled reassembly (seer) - a novel method for visualizing specific dna sequences
US9089667B2 (en) 2005-08-23 2015-07-28 The Regents Of The University Of California Reflux resistant cannula and system for chronic delivery of therapeutic agents using convection-enhanced delivery
ES2618787T5 (en) 2006-04-25 2022-10-21 Univ California Administration of growth factors for the treatment of CNS disorders
WO2007139898A2 (en) 2006-05-25 2007-12-06 Sangamo Biosciences, Inc. Variant foki cleavage half-domains
US7837668B2 (en) 2006-10-10 2010-11-23 Ceregene, Inc. Needle assembly for use in delivering precise dosages of proteinaceous pharmaceutical compositions and methods for use of same
CN104072561B (en) 2007-06-19 2017-12-22 路易斯安那州州立大学及农业机械学院管理委员会 The synthesis of the anti-reverse phosphorothioate analogs of mRNA cap and purposes
CA2700231C (en) 2007-09-27 2018-09-18 Sangamo Biosciences, Inc. Rapid in vivo identification of biologically active nucleases
KR101802393B1 (en) 2008-06-10 2017-11-28 상가모 테라퓨틱스, 인코포레이티드 Methods and compositions for generation of bax- and bak-deficient cell lines
CN102159722B (en) 2008-08-22 2014-09-03 桑格摩生物科学股份有限公司 Methods and compositions for targeted single-stranded cleavage and targeted integration
US20110016539A1 (en) 2008-12-04 2011-01-20 Sigma-Aldrich Co. Genome editing of neurotransmission-related genes in animals
KR20100080068A (en) * 2008-12-31 2010-07-08 주식회사 툴젠 A novel zinc finger nuclease and uses thereof
EP2206723A1 (en) 2009-01-12 2010-07-14 Bonas, Ulla Modular DNA-binding domains
UA107571C2 (en) 2009-04-03 2015-01-26 PHARMACEUTICAL COMPOSITION
US9234016B2 (en) 2009-07-28 2016-01-12 Sangamo Biosciences, Inc. Engineered zinc finger proteins for treating trinucleotide repeat disorders
CN102695525B (en) 2009-07-31 2016-01-20 埃泽瑞斯公司 For the RNA with the combination of unmodified and modified nucleotide of protein expression
US8956828B2 (en) 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
US20110135613A1 (en) * 2009-12-03 2011-06-09 The J. David Gladstone Institutes Methods for treating apolipoprotein e4-associated disorders
CA2788560A1 (en) 2010-02-08 2011-08-11 Sangamo Biosciences, Inc. Engineered cleavage half-domains
WO2011139349A1 (en) 2010-05-03 2011-11-10 Sangamo Biosciences, Inc. Compositions for linking zinc finger modules
EP2571512B1 (en) 2010-05-17 2017-08-23 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
US9322023B2 (en) 2011-10-06 2016-04-26 Cornell University Constructs and methods for the assembly of biological pathways
CA2854819C (en) 2011-11-16 2022-07-19 Sangamo Biosciences, Inc. Modified dna-binding proteins and uses thereof
JP6490426B2 (en) 2012-02-29 2019-03-27 サンガモ セラピューティクス, インコーポレイテッド Methods and compositions for treating Huntington's disease
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
BR112015022156A2 (en) * 2013-03-14 2017-11-14 Isis Pharmaceuticals Inc compositions and methods for modulating tau expression
CA2910489A1 (en) 2013-05-15 2014-11-20 Sangamo Biosciences, Inc. Methods and compositions for treatment of a genetic condition
EP3417880A1 (en) 2013-06-05 2018-12-26 Duke University Rna-guided gene editing and gene regulation
TWI657819B (en) 2013-07-19 2019-05-01 美商Ionis製藥公司 Compositions for modulating tau expression
US9359599B2 (en) * 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
WO2015038958A1 (en) 2013-09-13 2015-03-19 California Institute Of Technology Selective recovery
WO2015089375A1 (en) 2013-12-13 2015-06-18 The General Hospital Corporation Soluble high molecular weight (hmw) tau species and applications thereof
US9624498B2 (en) 2014-03-18 2017-04-18 Sangamo Biosciences, Inc. Methods and compositions for regulation of zinc finger protein expression
WO2015153760A2 (en) 2014-04-01 2015-10-08 Sangamo Biosciences, Inc. Methods and compositions for prevention or treatment of a nervous system disorder
MX2016014565A (en) 2014-05-08 2017-05-23 Sangamo Biosciences Inc Methods and compositions for treating huntington's disease.
US9970001B2 (en) * 2014-06-05 2018-05-15 Sangamo Therapeutics, Inc. Methods and compositions for nuclease design
US20170035860A1 (en) * 2015-04-02 2017-02-09 Alexander C. Flynn Compositions and methods for treatment of neurogenerative diseases
WO2017011556A1 (en) 2015-07-13 2017-01-19 The General Hospital Corporation Rare phosphorylated high molecular weight (hmw) tau species that are involved in neuronal uptake and propagation and applications thereof
BR112018008519A2 (en) 2015-10-28 2018-11-06 Sangamo Therapeutics Inc liver-specific constructs, factor viii expression cassettes and methods of use thereof
WO2017197141A2 (en) 2016-05-13 2017-11-16 Sangamo Therapeutics, Inc. Targeted treatment of androgenic alopecia
WO2018039440A1 (en) * 2016-08-24 2018-03-01 Sangamo Therapeutics, Inc. Regulation of gene expression using engineered nucleases
AU2017315414B2 (en) 2016-08-24 2024-02-15 Sangamo Therapeutics, Inc. Engineered target specific nucleases
WO2018039471A2 (en) 2016-08-25 2018-03-01 Trustees Of Boston University Synthetic transcriptional and epigenetic regulators based on engineered, orthogonal zinc finger proteins
WO2018049009A2 (en) 2016-09-07 2018-03-15 Sangamo Therapeutics, Inc. Modulation of liver genes
US11371023B2 (en) 2016-11-22 2022-06-28 Wisconsin Alumni Research Foundation Artificial transcription factors and uses thereof
WO2020072684A1 (en) 2018-10-02 2020-04-09 Sangamo Therapeutics, Inc. Engineered genetic modulators
WO2020072677A1 (en) 2018-10-02 2020-04-09 Sangamo Therapeutics, Inc. Methods and compositions for modulation of tau proteins
CN115210251A (en) 2020-01-22 2022-10-18 桑格摩生物治疗股份有限公司 Zinc finger protein transcription factor for repressing TAU expression

Similar Documents

Publication Publication Date Title
JP2020500526A5 (en)
Reichart et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice
Thakore et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors
Zhao et al. MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation
Yue et al. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus
Sud et al. Antisense-mediated exon skipping decreases tau protein expression: a potential therapy for tauopathies
Hirano et al. Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies
Du et al. Arginine-rich cell-penetrating peptide dramatically enhances AMO-mediated ATM aberrant splicing correction and enables delivery to brain and cerebellum
Mogilevsky et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment
Moitra et al. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development
Zahid et al. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice
US20200016202A1 (en) Modulation of novel immune checkpoint targets
Wee et al. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells
Billingsley et al. Regulatory characterisation of the schizophrenia-associated CACNA1C proximal promoter and the potential role for the transcription factor EZH2 in schizophrenia aetiology
kleine Holthaus et al. Prevention of photoreceptor cell loss in a Cln6nclf mouse model of Batten disease requires CLN6 gene transfer to bipolar cells
Lau et al. Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa
Ohe et al. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases
Liu et al. Six1 regulates MyoD expression in adult muscle progenitor cells
Hu et al. MiR-211/STAT5A signaling modulates migration of mesenchymal stem cells to improve its therapeutic efficacy
Cao et al. A DNA aptamer with high affinity and specificity for molecular recognition and targeting therapy of gastric cancer
Chu et al. Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons
Babbs et al. From diagnosis to therapy in Duchenne muscular dystrophy
Okada et al. A histone deacetylase inhibitor enhances recombinant adeno-associated virus-mediated gene expression in tumor cells
Choi et al. The effect of DNA-dependent protein kinase on adeno-associated virus replication
Reiner et al. Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I