JP2020204684A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2020204684A
JP2020204684A JP2019111781A JP2019111781A JP2020204684A JP 2020204684 A JP2020204684 A JP 2020204684A JP 2019111781 A JP2019111781 A JP 2019111781A JP 2019111781 A JP2019111781 A JP 2019111781A JP 2020204684 A JP2020204684 A JP 2020204684A
Authority
JP
Japan
Prior art keywords
lens group
lens
object side
zoom
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019111781A
Other languages
Japanese (ja)
Other versions
JP7239955B2 (en
Inventor
山中 健史
Takeshi Yamanaka
健史 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2019111781A priority Critical patent/JP7239955B2/en
Publication of JP2020204684A publication Critical patent/JP2020204684A/en
Application granted granted Critical
Publication of JP7239955B2 publication Critical patent/JP7239955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a compact zoom lens which has a high zoom ratio, suppresses variation in magnification chromatic aberration associated with zooming in particular, and offers high optical performance over an entire focus range.SOLUTION: A zoom lens of the present invention consists of a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, a third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power, in order from the object side, and is configured such that, when zooming from the wide-angle end to the telephoto end, an air gap distance between the first lens group G1 and the second lens group G2 increases, an air gap distance between the second lens group G2 and the third lens group G3 decreases, an air gap distance between the third lens group G3 and the fourth lens group G4 is fixed or changes, and an air gap distance between the fourth lens group G4 and the fifth lens group G5 changes. The zoom lens satisfies specific conditional expressions.SELECTED DRAWING: Figure 4

Description

本発明はズームレンズ及びそれを有する撮像装置に関し、特に、デジタルカメラ、ビデオカメラ、フィルム用カメラ等の撮像装置に用いられるズームレンズに関するものである。 The present invention relates to a zoom lens and an image pickup device having the same, and more particularly to a zoom lens used in an image pickup device such as a digital camera, a video camera, and a film camera.

近年、デジタルカメラ等の撮像装置に用いられる固体撮像素子は年々高画素化と高精細化が進んでおり、より高画質の光学系が求められている。さらに、ユーザーの多様な用途に答えるため、より小型軽量なズームレンズが求められている。 In recent years, solid-state image sensors used in image pickup devices such as digital cameras have been increasing in pixel count and definition year by year, and an optical system having higher image quality is required. Furthermore, in order to meet the diverse needs of users, smaller and lighter zoom lenses are required.

ズームレンズのうち、最も物体側に正の屈折力のレンズ群を配置し、全体として4つ以上のレンズ群により構成される所謂ポジティブリード型のズームレンズが知られている。 Among the zoom lenses, a so-called positive lead type zoom lens in which a lens group having a positive refractive power is arranged on the most object side and is composed of four or more lens groups as a whole is known.

特許6377319号公報Japanese Patent No. 6377319 特許6344964号公報Japanese Patent No. 6344964

ポジティブリード型のズームレンズは高ズーム比と小型化を達成することが比較的容易とされている。しかしながら高ズーム比になると各レンズ群の移動量が大きくなり、特に倍率色収差のズーム変動が増大し、高ズーム比と高性能を両立することが困難になる。 Positive lead type zoom lenses are said to be relatively easy to achieve high zoom ratio and miniaturization. However, when the zoom ratio is high, the amount of movement of each lens group becomes large, and in particular, the zoom fluctuation of the chromatic aberration of magnification increases, making it difficult to achieve both a high zoom ratio and high performance.

特許文献1に開示されているズームレンズはバックフォーカスを短くしつつ小型軽量を実現しているものの、像高が小さく、また倍率色収差のズーミングにともなう変動の抑制が不十分であるため、光学性能に課題が残る。 Although the zoom lens disclosed in Patent Document 1 realizes small size and light weight while shortening the back focus, it has a small image height and insufficient suppression of fluctuations due to zooming of magnification chromatic aberration, so that it has optical performance. The problem remains.

特許文献2に開示されているズームレンズは、ズーミングの際に近軸軸上光線高を一定にしつつ主光線高さを変化させることで、倍率色収差の変動抑制を試みている。しかしながら光学全長が長く、小型軽量化との両立は実現できていない。 The zoom lens disclosed in Patent Document 2 attempts to suppress fluctuations in chromatic aberration of magnification by changing the height of the main ray while keeping the height of the ray on the paraxial axis constant during zooming. However, the total optical length is long, and it has not been possible to achieve both compactness and weight reduction.

本発明はこのような状況に鑑みてなされたものであり、小型で高ズーム比を有し、特にズーミングに伴う倍率色収差の変動を抑制し、焦点域全域にわたって高い光学性能を得るズームレンズを提供することを目的とする。 The present invention has been made in view of such a situation, and provides a zoom lens that is compact, has a high zoom ratio, suppresses fluctuations in chromatic aberration of magnification due to zooming, and obtains high optical performance over the entire focal range. The purpose is to do.

上記目的を達成するために、本発明を実施の第1の発明は、物体側より順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、負の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5からなり、広角端から望遠端への変倍の際に、前記第1レンズ群G1と前記第2レンズ群G2の間の空気間隔が増大し、前記第2レンズ群G2と前記第3レンズ群G3の間の空気間隔が縮小し、前記第3レンズ群G3と前記第4レンズ群G4の間の空気間隔が変化し、前記第4レンズ群G4と前記第5レンズ群G5の間の空気間隔が変化し、以下の条件式を満足することを特徴とするズームレンズ。
(1) (1/(1/fW_34+1/DsW)−EW)/√(fW×fT) > 0
(2) (1/(1/fT_34+1/DsT)−ET)/√(fW×fT) < 0
ただし、
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
fW_34:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
fT_34:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
DsW:広角端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
DsT:望遠端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
EW:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ET:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ここで、距離とは物体側から像側へ向かう方向を正とし、光軸上で測るものとする。
In order to achieve the above object, the first invention in which the present invention is carried out is a first lens group G1 having a positive refractive force, a second lens group G2 having a negative refractive force, and an aperture aperture in order from the object side. It consists of S, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power, and the magnification is variable from the wide-angle end to the telescopic end. At that time, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 The air spacing between the lens group G3 and the fourth lens group G4 changes, the air spacing between the fourth lens group G4 and the fifth lens group G5 changes, and the following conditional expression is satisfied. A featured zoom lens.
(1) (1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW × fT)> 0
(2) (1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW × fT) <0
However,
fW: Focus distance of the whole system at infinity focusing at the wide-angle end fT: Focus distance of the whole system at infinity focusing at the telephoto end fW_34: The third lens group G3 and the fourth lens group at the wide-angle end Combined focal point of G4 fT_34: Combined focal point of the third lens group G3 and the fourth lens group G4 at the telephoto end DsW: From the aperture aperture S at the wide-angle end, the third lens group G3 and the fourth lens group Distance to the front principal point of the composite system of the lens group G4 DsT: Distance from the aperture aperture S at the telephoto end to the front principal point of the composite system of the third lens group G3 and the fourth lens group G4 EW: Distance from the rear principal point of the composite system of the third lens group G3 and the fourth lens group G4 at the wide-angle end to the front principal point of the fifth lens group G5 ET: The third lens at the telephoto end Distance from the rear principal point of the composite system of the group G3 and the fourth lens group G4 to the front principal point of the fifth lens group G5 Here, the distance is positive in the direction from the object side to the image side. It shall be measured on the optical axis.

また、本発明を実施の第2の発明は、無限遠から近距離へのフォーカシングに際し、前記第4レンズ群G4が像側に移動することを特徴とする第1の発明に記載のズームレンズ。 The zoom lens according to the first invention, wherein the second invention according to the present invention is characterized in that the fourth lens group G4 moves toward the image side when focusing from infinity to a short distance.

また、本発明を実施する第3の発明は、前記第4レンズ群G4は正レンズと負レンズの2枚のレンズで構成されていることを特徴とする第1の発明または第2の発明のいずれかに記載のズームレンズ。 The third invention for carrying out the present invention is the first invention or the second invention, wherein the fourth lens group G4 is composed of two lenses, a positive lens and a negative lens. The zoom lens described in either.

また、本発明を実施する第4の発明は、前記第5レンズ群G5は下記条件式を満たすことを特徴とする第1の発明乃至第3の発明のいずれかに記載のズームレンズ。
(3) 2<f5/√(fW×fT)<10
(4) 0.5<B_5<1
ただし、
f5:前記第5レンズ群G5の焦点距離
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
B_5:前記第5レンズ群G5の広角端の無限遠合焦時における倍率
The fourth invention for carrying out the present invention is the zoom lens according to any one of the first to third inventions, wherein the fifth lens group G5 satisfies the following conditional expression.
(3) 2 <f5 / √ (fW × fT) <10
(4) 0.5 <B_5 <1
However,
f5: Focal length of the fifth lens group G5 fW: Focal length of the entire system at the infinity focusing at the wide-angle end fT: Focal length of the entire system at the infinity focusing at the telephoto end B_5: The fifth lens group Magnification at infinity focus at the wide-angle end of G5

また、本発明を実施する第5の発明は、前記第5レンズ群G5は最も物体側に正レンズAを有し、負レンズBを有し、下記条件式を満足することを特徴とする第1の発明乃至第4の発明のいずれかに記載のズームレンズ。
(5) V_5A<50
(6) V_5B>50
(7) ΔPgF_5B>0
ただし、
V_5A:前記正レンズAのアッベ数
V_5B:前記負レンズBのアッベ数
ΔPgF_5B:前記負レンズBの異常分散性
A fifth invention for carrying out the present invention is characterized in that the fifth lens group G5 has a positive lens A and a negative lens B on the most object side, and satisfies the following conditional expression. The zoom lens according to any one of the inventions 1 to 4.
(5) V_5A <50
(6) V_5B> 50
(7) ΔPgF_5B> 0
However,
V_5A: Abbe number of the positive lens A V_5B: Abbe number of the negative lens B ΔPgF_5B: Anomalous dispersibility of the negative lens B

また、本発明を実施する第6の発明は、前記第2レンズ群G2は、最も物体側に下記条件式を満足する負レンズを有することを特徴とする第1の発明乃至第5の発明のいずれかに記載のズームレンズ。
(8) V_21>55
(9) ΔPgF_21>0
ただし、
V_21:前記第2レンズ群G2の最も物体側の負レンズのアッベ数
ΔPgF_21:前記第2レンズ群G2の最も物体側の負レンズの異常分散性
Further, the sixth invention for carrying out the present invention is the first to fifth inventions, wherein the second lens group G2 has a negative lens most satisfying the following conditional expression on the object side. The zoom lens described in either.
(8) V_21> 55
(9) ΔPgF_21> 0
However,
V_21: Abbe number of the negative lens on the most object side of the second lens group G2 ΔPgF_21: Anomalous dispersibility of the negative lens on the most object side of the second lens group G2

本発明によれば、小型で高ズーム比を有し、特にズーミングに伴う倍率色収差の変動を抑制し、焦点域全域にわたって高い光学性能を得るズームレンズを提供することが可能となる。 According to the present invention, it is possible to provide a zoom lens which is compact and has a high zoom ratio, particularly suppresses fluctuations in chromatic aberration of magnification due to zooming, and obtains high optical performance over the entire focal range.

本発明のズームレンズの実施例1の第5レンズ群の構成と各主点位置の模式図Schematic diagram of the configuration of the fifth lens group of the first embodiment of the zoom lens of the present invention and the position of each principal point. 本発明のズームレンズの倍率色収差補正原理を模式的に表す参考図A reference diagram schematically showing the principle of correcting chromatic aberration of magnification of the zoom lens of the present invention. 本発明のズームレンズの条件式(1)(2)に用いられる諸量を図示した模式図Schematic diagram illustrating various quantities used in the conditional equations (1) and (2) of the zoom lens of the present invention. 本発明の実施例1に係るズームレンズの無限遠合焦時の広角端におけるレンズ構成図Lens configuration diagram at the wide-angle end of the zoom lens according to the first embodiment of the present invention when in focus at infinity. 本発明の実施例1に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における縦収差図FIG. 6 is a longitudinal aberration diagram at (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end when the zoom lens according to the first embodiment of the present invention is in focus at infinity. 本発明の実施例1に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における横収差図FIG. 6 is a lateral aberration diagram at (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end when the zoom lens according to the first embodiment of the present invention is in focus at infinity. 本発明の実施例2に係るズームレンズの無限遠合焦時の広角端におけるレンズ構成図Lens configuration diagram at the wide-angle end of the zoom lens according to the second embodiment of the present invention when in focus at infinity. 本発明の実施例2に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における縦収差図Schematic diagram of (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end of the zoom lens according to the second embodiment of the present invention when in focus at infinity. 本発明の実施例2に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における横収差図FIG. 6 is a lateral aberration diagram at (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end when the zoom lens according to the second embodiment of the present invention is in focus at infinity. 本発明の実施例3に係るズームレンズの無限遠合焦時の広角端におけるレンズ構成図The lens configuration diagram at the wide-angle end of the zoom lens according to the third embodiment of the present invention when the zoom lens is in focus at infinity. 本発明の実施例3に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における縦収差図Schematic diagram of (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end of the zoom lens according to Example 3 of the present invention when in focus at infinity. 本発明の実施例3に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における横収差図FIG. 6 is a lateral aberration diagram at (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end when the zoom lens according to the third embodiment of the present invention is in focus at infinity. 本発明の実施例4に係るズームレンズの無限遠合焦時の広角端におけるレンズ構成図Lens configuration diagram at the wide-angle end of the zoom lens according to the fourth embodiment of the present invention when in focus at infinity. 本発明の実施例4に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における縦収差図FIG. 6 is a longitudinal aberration diagram at (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end when the zoom lens according to the fourth embodiment of the present invention is in focus at infinity. 本発明の実施例4に係るズームレンズの無限遠合焦時の(a)広角端、(b)中間ズーム位置、(c)望遠端における横収差図FIG. 6 is a lateral aberration diagram at (a) wide-angle end, (b) intermediate zoom position, and (c) telephoto end when the zoom lens according to the fourth embodiment of the present invention is in focus at infinity.

以下、本発明の実施形態について説明する。尚、g線(波長435.8nm)、F線(波長486.1nm)、d線(波長587.6nm)、及びC線(波長656.3nm)に対する屈折率を、それぞれng、nF、nd、nCとした時、アッベ数Vd、及び部分分散比PgF、異常分散性ΔPgFは以下の式で表される。
Vd=(nd−1)/(nF−nC)
PgF=(ng−nF)/(nF−nC)
ΔPgF =PgF+0.0018×Vd−0.6483
Hereinafter, embodiments of the present invention will be described. The refractive indexes for g-line (wavelength 435.8 nm), F-line (wavelength 486.1 nm), d-line (wavelength 587.6 nm), and C-line (wavelength 656.3 nm) are ng, nF, nd, respectively. When nC, the Abbe number Vd, the partial dispersion ratio PgF, and the anomalous dispersion ΔPgF are expressed by the following equations.
Vd = (nd-1) / (nF-nC)
PgF = (ng-nF) / (nF-nC)
ΔPgF = PgF + 0.0018 × Vd-0.6483

本発明のズームレンズは、図4、7、10及び13に示すレンズ構成図からわかるように、物体側より順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、負の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5からなり、広角端から望遠端への変倍の際に、前記第1レンズ群G1と前記第2レンズ群G2の間の空気間隔が増大し、前記第2レンズ群G2と前記第3レンズ群G3の間の空気間隔が縮小し、前記第3レンズ群G3と前記第4レンズ群G4の間の空気間隔が変化し、前記第4レンズ群G4と前記第5レンズ群G5の間の空気間隔が変化し、以下の条件式を満足することを特徴とする。
(1) (1/(1/fW_34+1/DsW)−EW)/√(fW×fT) > 0
(2) (1/(1/fT_34+1/DsT)−ET)/√(fW×fT) < 0
ただし、
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
fW_34:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
fT_34:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
DsW:広角端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
DsT:望遠端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
EW:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ET:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ここで、距離とは物体側から像側へ向かう方向を正とし、光軸上で測るものとする。
As can be seen from the lens configuration diagrams shown in FIGS. 4, 7, 10 and 13, the zoom lens of the present invention has a first lens group G1 having a positive refractive force and a second lens group having a negative refractive force in order from the object side. It consists of a lens group G2, an aperture aperture S, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power, and is telescopic from the wide-angle end. At the time of scaling to the edge, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 increases. The air spacing between the third lens group G3 and the fourth lens group G4 changes, and the air spacing between the fourth lens group G4 and the fifth lens group G5 changes. It is characterized by satisfying the formula.
(1) (1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW × fT)> 0
(2) (1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW × fT) <0
However,
fW: Focus distance of the whole system at infinity focusing at the wide-angle end fT: Focus distance of the whole system at infinity focusing at the telephoto end fW_34: The third lens group G3 and the fourth lens group at the wide-angle end Combined focal point of G4 fT_34: Combined focal point of the third lens group G3 and the fourth lens group G4 at the telephoto end DsW: From the aperture aperture S at the wide-angle end, the third lens group G3 and the fourth lens group Distance to the front principal point of the composite system of the lens group G4 DsT: Distance from the aperture aperture S at the telephoto end to the front principal point of the composite system of the third lens group G3 and the fourth lens group G4 EW: Distance from the rear principal point of the composite system of the third lens group G3 and the fourth lens group G4 at the wide-angle end to the front principal point of the fifth lens group G5 ET: The third lens at the telephoto end Distance from the rear principal point of the composite system of the group G3 and the fourth lens group G4 to the front principal point of the fifth lens group G5 Here, the distance is positive in the direction from the object side to the image side. It shall be measured on the optical axis.

本出願のズームレンズは最も物体側に正レンズ群を有するポジティブリード型の構成をとっている。これにより高ズーム比と小型化を実現できる。 The zoom lens of the present application has a positive lead type configuration having a positive lens group on the most object side. This makes it possible to achieve a high zoom ratio and miniaturization.

次に本出願の構成上の特徴について詳細に説明する。
一般的にズームレンズは各群の間隔が変化することによって全系の合成焦点距離を変化させている。そのためズームレンズの収差を解析する際には、各群をひとつの薄肉レンズ系とみなし、各群の収差補正分担を考えることが重要である。
Next, the structural features of the present application will be described in detail.
In general, a zoom lens changes the composite focal length of the entire system by changing the distance between each group. Therefore, when analyzing the aberration of a zoom lens, it is important to consider each group as one thin-walled lens system and consider the aberration correction sharing of each group.

また、広角端から望遠端へのズーミングに伴い各群が大きく移動することから、ズームポジションごとに収差が大きく変化する。したがってズームレンズの設計においては、各群が固有に持つ収差と、ズームポジションでの役割とに分けて考えることが重要である。薄肉レンズ系における倍率色収差の寄与は各群の和として参考式1で与えられる。
(参考式1) Σ(h・hb・φ/V)
ただし、
h:近軸軸上光線高さ
hb:近軸主光線高さ
φ:屈折力
V:アッベ数
In addition, since each group moves greatly with zooming from the wide-angle end to the telephoto end, the aberration changes greatly for each zoom position. Therefore, in the design of the zoom lens, it is important to consider the aberration inherent in each group and the role in the zoom position separately. The contribution of chromatic aberration of magnification in the thin-walled lens system is given by Reference Equation 1 as the sum of each group.
(Reference formula 1) Σ (h ・ hb ・ φ / V)
However,
h: Paraxial main ray height hb: Paraxial main ray height φ: Refractive power V: Abbe number

ズームレンズにおいては広角端から望遠端までのズーミング時にhとhbが変動するため、各群の収差補正分担が変化する。特に従来のポジティブリード型のズームレンズは第1レンズ群G1と第2レンズ群G2の間隔が変倍時に大きく変化するため、第1レンズ群G1におけるhおよび第2レンズ群G2におけるhbの変動が大きい。これによる収差の変動を第3レンズ群G3以降では補償しづらいために、焦点域全域にわたって倍率色収差を抑制することが難しくなる。 In a zoom lens, h and hb fluctuate during zooming from the wide-angle end to the telephoto end, so that the aberration correction share of each group changes. In particular, in the conventional positive lead type zoom lens, the distance between the first lens group G1 and the second lens group G2 changes significantly when the magnification is changed, so that h in the first lens group G1 and hb in the second lens group G2 fluctuate. large. Since it is difficult to compensate for the fluctuation of the aberration due to this in the third lens group G3 and later, it becomes difficult to suppress the chromatic aberration of magnification over the entire focal range.

本出願のズームレンズは従来のズームレンズとは異なる収差補正方式を用いている。本出願のズームレンズの実施例1の第5レンズ群G5の主点位置(主面)を図1に示す。第5レンズ群G5をテレフォト型にすることで、主点を大きく物体側に位置させている。 The zoom lens of the present application uses an aberration correction method different from that of the conventional zoom lens. FIG. 1 shows the principal point position (main surface) of the fifth lens group G5 of the first embodiment of the zoom lens of the present application. By making the fifth lens group G5 a telephoto type, the principal point is largely located on the object side.

入射瞳の中心を通る光線を主光線にとると、第5レンズ群G5に入射する主光線は、見かけ上は第5レンズ群G5から見た絞りの像から射出されるものと考えることができる。従って、第5レンズ群G5の前側主点における主光線高さは、第3レンズ群G3と第4レンズ群G4の合成系による開口絞りSの像と、第5レンズ群G5の前側主点位置によって、決定される。 When the light ray passing through the center of the entrance pupil is taken as the main light ray, it can be considered that the main light ray incident on the fifth lens group G5 is apparently emitted from the image of the aperture seen from the fifth lens group G5. .. Therefore, the height of the principal ray at the front principal point of the fifth lens group G5 is the image of the aperture stop S by the combined system of the third lens group G3 and the fourth lens group G4 and the position of the front principal point of the fifth lens group G5. Is determined by.

機構的には第5レンズ群G5は第4レンズ群G4の像側に位置するものの、第5レンズ群G5の主点が大きく物体側にあるために、第4レンズ群G4と第5レンズ群G5の主点間距離は負の値をとっている。広角端において、第5レンズ群G5から見た開口絞りSの像よりも物体側に主点を位置させれば、第5レンズ群G5に入射する主光線高さは負の値をとることができる。他方、望遠端では開口絞りSの像位置よりも像側に主点を位置させることで、主光線高さは正の値をとることができる。 Although the fifth lens group G5 is mechanically located on the image side of the fourth lens group G4, the fourth lens group G4 and the fifth lens group are located on the object side because the principal point of the fifth lens group G5 is large. The distance between the principal points of G5 has a negative value. If the principal point is located closer to the object than the image of the aperture diaphragm S seen from the fifth lens group G5 at the wide-angle end, the height of the principal ray incident on the fifth lens group G5 may take a negative value. it can. On the other hand, at the telephoto end, the height of the main ray can take a positive value by locating the principal point on the image side of the image position of the aperture diaphragm S.

このように、広角端から望遠端までのズーミング時に第5レンズ群G5の位置を適切に規定することで、広角端ではhbを負の値に、望遠端ではhbを正の値にすることができる。これは参考式1に示されるように、倍率色収差の寄与が広角端では負、望遠端では正になることを意味する。つまり、ズーミングに伴う倍率色収差への寄与を符号も含めて柔軟に変化させることができ、各ズーム位置で最適な収差補正が可能となる。 In this way, by appropriately defining the position of the fifth lens group G5 during zooming from the wide-angle end to the telephoto end, hb can be set to a negative value at the wide-angle end and hb can be set to a positive value at the telephoto end. it can. This means that, as shown in Reference Equation 1, the contribution of chromatic aberration of magnification is negative at the wide-angle end and positive at the telephoto end. That is, the contribution to the chromatic aberration of magnification due to zooming can be flexibly changed including the sign, and the optimum aberration correction can be performed at each zoom position.

本出願の光学系は次の条件式を満足していることを特徴とする。
(1) (1/(1/fW_34+1/DsW)−EW)/√(fW×fT) > 0
(2) (1/(1/fT_34+1/DsT)−ET)/√(fW×fT) < 0
ただし、
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
fW_34:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
fT_34:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
DsW:広角端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
DsT:望遠端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
EW:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ET:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ここで、距離とは物体側から像側へ向かう方向を正とし、光軸上で測るものとする。
The optical system of the present application is characterized by satisfying the following conditional expression.
(1) (1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW × fT)> 0
(2) (1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW × fT) <0
However,
fW: Focus distance of the whole system at infinity focusing at the wide-angle end fT: Focus distance of the whole system at infinity focusing at the telephoto end fW_34: The third lens group G3 and the fourth lens group at the wide-angle end Combined focal point of G4 fT_34: Combined focal point of the third lens group G3 and the fourth lens group G4 at the telephoto end DsW: From the aperture aperture S at the wide-angle end, the third lens group G3 and the fourth lens group Distance to the front principal point of the composite system of the lens group G4 DsT: Distance from the aperture aperture S at the telephoto end to the front principal point of the composite system of the third lens group G3 and the fourth lens group G4 EW: Distance from the rear principal point of the composite system of the third lens group G3 and the fourth lens group G4 at the wide-angle end to the front principal point of the fifth lens group G5 ET: The third lens at the telephoto end Distance from the rear principal point of the composite system of the group G3 and the fourth lens group G4 to the front principal point of the fifth lens group G5 Here, the distance is positive in the direction from the object side to the image side. It shall be measured on the optical axis.

条件式(1)(2)はそれぞれ広角端と望遠端における第5レンズ群G5の主平面を通過する近軸主光線高さに関連し、各群が満たすべき条件を規定している。条件式(1)(2)を満たすことで、前述の倍率色収差補正の役割を広角端と望遠端で変えることができ、その変動を良好に抑制できる。 The conditional equations (1) and (2) are related to the height of the paraxial main ray passing through the main plane of the fifth lens group G5 at the wide-angle end and the telephoto end, respectively, and define the conditions to be satisfied by each group. By satisfying the conditional equations (1) and (2), the role of the above-mentioned chromatic aberration of magnification correction can be changed between the wide-angle end and the telephoto end, and the fluctuation can be satisfactorily suppressed.

次に、条件式(1)(2)の物理的意味について説明する。 Next, the physical meanings of the conditional expressions (1) and (2) will be described.

前述したように、第5レンズ群G5の前側主点における主光線高さは、第3レンズ群G3と第4レンズ群G4の合成系による開口絞りSの像と、第5レンズ群G5の前側主点位置によって決定される。 As described above, the height of the main ray at the front principal point of the fifth lens group G5 is the image of the aperture stop S by the combined system of the third lens group G3 and the fourth lens group G4 and the front side of the fifth lens group G5. Determined by the principal point position.

開口絞りSから第5レンズ群までを模式的に図3を示す。なお図3は近軸光線追跡に用いられる一般的な諸量を模式的に表したものであり、実施例の数値とは一致するものではない。 FIG. 3 schematically shows the aperture diaphragm S to the fifth lens group. Note that FIG. 3 schematically shows general quantities used for paraxial ray tracing, and does not match the numerical values of the examples.

第3レンズ群G3と第4レンズ群G4の合成系の後ろ側主点と、当該群による絞りの像までの距離Ds‘はいわゆるガウスの式を用いて下記のように導出される。
(参考式2) 1/DsW‘−1/DsW=1/fW_34
1/DsW‘ = 1/fW_34+1/DsW
DsW‘=1/(1/fW_34+1/DsW)
The distance Ds'from the rear principal point of the composite system of the third lens group G3 and the fourth lens group G4 to the image of the aperture by the group is derived as follows using the so-called Gauss's equation.
(Reference formula 2) 1 / DsW'-1 / DsW = 1 / fW_34
1 / DsW'= 1 / fW_34 + 1 / DsW
DsW'= 1 / (1 / fW_34 + 1 / DsW)

第5レンズ群G5の前側主点を通過する主光線高さが負の値となるためには、絞りの像よりも物体側に主点があればよいから、
(参考式3) Dsw‘>Ew
を満たせばよい。
したがって次式が導出される。
1/(1/fW_34+1/DsW)> EW
1/(1/fW_34+1/DsW)−EW > 0
In order for the height of the main ray passing through the front principal point of the fifth lens group G5 to be a negative value, it is sufficient that the principal point is on the object side of the image of the aperture.
(Reference formula 3) Dsw'> Ew
Should be satisfied.
Therefore, the following equation is derived.
1 / (1 / fW_34 + 1 / DsW)> EW
1 / (1 / fW_34 + 1 / DsW) -EW> 0

ここで、本願の概念は光学系を比例拡大・比例縮小させても同様に成立することから、次のごとく正規化することができる。
(1/(1/fW_34+1/DsW)−EW)/√(fW×fT) > 0
望遠端においても同様に導出が可能であり、望遠端では主光線高さが正の値になるような条件として、
(1/(1/fT_34+1/DsT)−ET)/√(fW×fT) < 0
が得られる。
Here, since the concept of the present application is similarly established even if the optical system is proportionally expanded or contracted, it can be normalized as follows.
(1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW × fT)> 0
The same derivation is possible at the telephoto end, and as a condition that the height of the main ray becomes a positive value at the telephoto end.
(1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW × fT) <0
Is obtained.

条件式(1)の上限を超えて広角端でhbが正になると、広角端での倍率色収差が悪化し好ましくない。条件式(2)の下限を超えて望遠端でhbが負になると、望遠端での倍率色収差が悪化し好ましくない。 If the upper limit of the conditional expression (1) is exceeded and hb becomes positive at the wide-angle end, the chromatic aberration of magnification at the wide-angle end deteriorates, which is not preferable. If the lower limit of the conditional expression (2) is exceeded and hb becomes negative at the telephoto end, the chromatic aberration of magnification at the telephoto end deteriorates, which is not preferable.

より望ましくは条件式(1)、(2)の範囲を下記のように定めるのが良い。
(1−2)(1/(1/fW_34+1/DsW)−EW)/√(fW×fT) > 0.025
(2−2)(1/(1/fT_34+1/DsT)−ET)/√(fW×fT) < −0.1
More preferably, the range of the conditional expressions (1) and (2) should be defined as follows.
(1-2) (1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW × fT)> 0.025
(2-2) (1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW × fT) <-0.1

本出願のズームレンズは、無限遠から近距離へのフォーカシングに際し前記第4レンズ群G4が像側に移動することを特徴としている。 The zoom lens of the present application is characterized in that the fourth lens group G4 moves to the image side when focusing from infinity to a short distance.

光線高の低い第4レンズ群G4でフォーカシングすることで、フォーカス群を軽量化し高速に動作させることができる。また、第4レンズ群G4のすぐ物体側に正の第3レンズ群G3があることによって、第4レンズ群G4から見た開口絞りSの像を遠くすることができ、フォーカス群駆動時の像倍率変動を抑制することができる。 By focusing with the fourth lens group G4 having a low light beam height, the focus group can be made lighter and can be operated at high speed. Further, since the positive third lens group G3 is located immediately on the object side of the fourth lens group G4, the image of the aperture stop S seen from the fourth lens group G4 can be made far away, and the image when the focus group is driven can be obtained. It is possible to suppress fluctuations in magnification.

前記第4レンズ群は正負2枚のレンズで構成することを特徴としている。正レンズと負レンズで色消しすることによって、フォーカシングに伴う軸上色収差・倍率色収差の変動を抑制することができる。さらに色消しのための最小枚数で構成することによって、フォーカス群の軽量化と収差補正を両立することができる。 The fourth lens group is characterized in that it is composed of two positive and negative lenses. By erasing with a positive lens and a negative lens, it is possible to suppress fluctuations in axial chromatic aberration and lateral chromatic aberration due to focusing. Further, by configuring with the minimum number of sheets for achromaticity, it is possible to achieve both weight reduction of the focus group and aberration correction.

第5レンズ群G5は下記の条件式を満足している。
(3) 2<f5/√(fW×fT)<10
(4)0.5<B_5<1
ただし、
f5:前記第5レンズ群G5の焦点距離
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
B_5:前記第5レンズ群G5の広角端の無限遠合焦時における倍率
The fifth lens group G5 satisfies the following conditional expression.
(3) 2 <f5 / √ (fW × fT) <10
(4) 0.5 <B_5 <1
However,
f5: Focal length of the fifth lens group G5 fW: Focal length of the entire system at the infinity focusing at the wide-angle end fT: Focal length of the entire system at the infinity focusing at the telephoto end B_5: The fifth lens group Magnification at infinity focus at the wide-angle end of G5

条件式(3)は広角端と望遠端の全系焦点距離の相乗平均に対する第5レンズ群G5の焦点距離を規定したものである。条件式(3)の上限を超えて第5レンズ群G5の焦点距離が長くなると、条件式(4)と相俟って、第1レンズ群G1から第4レンズ群G4までの合成焦点距離を短くすることが困難になり、全系の大型化を招き好ましくない。条件式(3)の下限を超えて第5レンズ群G5の焦点距離が短くなると、第4レンズ群G4と第5レンズ群G5の間隔が短くなりすぎ、フォーカス群駆動のためのアクチュエータやその他の機構を搭載する空間が不足し好ましくない。 Conditional expression (3) defines the focal length of the fifth lens group G5 with respect to the geometric mean of the focal lengths of the entire system at the wide-angle end and the telephoto end. When the focal length of the fifth lens group G5 becomes longer than the upper limit of the conditional expression (3), the combined focal length from the first lens group G1 to the fourth lens group G4 is increased in combination with the conditional expression (4). It becomes difficult to shorten it, which leads to an increase in the size of the entire system, which is not preferable. When the focal length of the fifth lens group G5 becomes shorter than the lower limit of the conditional expression (3), the distance between the fourth lens group G4 and the fifth lens group G5 becomes too short, and the actuator for driving the focus group and other elements are used. It is not preferable because there is not enough space to mount the mechanism.

条件式(4)は第5レンズ群G5の倍率について規定している。条件式(4)の上限を超えて第5レンズ群G5の倍率の絶対値が大きくなると、第1レンズ群G1から第4レンズ群G4までで発生した収差が拡大され、全体としての残存収差が大きくなるので好ましくない。条件式(4)の下限を超えて第5レンズ群の倍率が小さくなると、バックフォーカスの確保が困難になり好ましくない。 The conditional expression (4) defines the magnification of the fifth lens group G5. When the absolute value of the magnification of the fifth lens group G5 becomes larger than the upper limit of the conditional expression (4), the aberration generated in the first lens group G1 to the fourth lens group G4 is enlarged, and the residual aberration as a whole is increased. It is not preferable because it becomes large. If the magnification of the fifth lens group becomes smaller than the lower limit of the conditional expression (4), it becomes difficult to secure the back focus, which is not preferable.

より望ましくは条件式(3)、(4)の範囲を下記のように定めるのが良い。
(3−2)2.8<f5/√(fW×fT)<8.5
(4−2)0.7<B_5<0.9
More preferably, the range of the conditional expressions (3) and (4) should be defined as follows.
(3-2) 2.8 <f5 / √ (fW × fT) <8.5
(4-2) 0.7 <B_5 <0.9

第5レンズ群G5は最も物体側に正レンズAを有し、負レンズBを含む構成としている。最も物体側に正レンズを配置することでテレフォト型とすることができ、第5レンズ群G5の主点を物体側へ位置させることができる。第5レンズ群G5は下記条件式を満足している。
(5)V_5A<50
(6)V_5B>50
(7)ΔPgF_5B>0
ただし、
V_5A:前記正レンズAのアッベ数
V_5B:前記負レンズBのアッベ数
ΔPgF_5B:前記負レンズBの異常分散性
The fifth lens group G5 has a positive lens A on the most object side and includes a negative lens B. By arranging the positive lens on the most object side, the telephoto type can be obtained, and the principal point of the fifth lens group G5 can be positioned on the object side. The fifth lens group G5 satisfies the following conditional expression.
(5) V_5A <50
(6) V_5B> 50
(7) ΔPgF_5B> 0
However,
V_5A: Abbe number of the positive lens A V_5B: Abbe number of the negative lens B ΔPgF_5B: Anomalous dispersibility of the negative lens B

条件式(5)は正レンズAの硝材について、条件式(6)と(7)は第5レンズ群G5の負レンズBの硝材について規定している。条件式(3)を満足し、倍率色収差の寄与を確保するためには、第5レンズ群G5全体としてのアッベ数を小さくする必要がある。そのため正レンズにはアッベ数の小さい硝材を、負レンズにはアッベ数の大きい硝材を用い、第5レンズ群G5全体としてのアッベ数を小さくすることが望ましい。 The conditional expression (5) defines the glass material of the positive lens A, and the conditional expressions (6) and (7) define the glass material of the negative lens B of the fifth lens group G5. In order to satisfy the conditional expression (3) and secure the contribution of the chromatic aberration of magnification, it is necessary to reduce the Abbe number of the fifth lens group G5 as a whole. Therefore, it is desirable to use a glass material having a small Abbe number for the positive lens and a glass material having a large Abbe number for the negative lens to reduce the Abbe number of the fifth lens group G5 as a whole.

条件式(5)の上限を超えて正レンズAのアッベ数が大きくなると、第5レンズ群G5の倍率色収差への寄与が小さくなりすぎ好ましくない。また、条件式(6)の下限を超えて負レンズBのアッベ数が小さくなると、第5レンズ群G5全体としての倍率色収差への寄与が少なくなり、特に望遠端での倍率色収差が悪化し好ましくない。条件式(7)の下限を超えて負レンズBの異常分散性が小さくなると、倍率色収差の二次スペクトルの補正能力が少なくなり好ましくない。 If the Abbe number of the positive lens A exceeds the upper limit of the conditional expression (5), the contribution of the fifth lens group G5 to the chromatic aberration of magnification becomes too small, which is not preferable. Further, when the Abbe number of the negative lens B becomes smaller than the lower limit of the conditional equation (6), the contribution of the fifth lens group G5 as a whole to the chromatic aberration of magnification is reduced, and the chromatic aberration of magnification at the telephoto end is particularly deteriorated, which is preferable. Absent. If the anomalous dispersibility of the negative lens B becomes smaller than the lower limit of the conditional expression (7), the ability to correct the secondary spectrum of the chromatic aberration of magnification is reduced, which is not preferable.

より望ましくは条件式(5)、(6)、(7)の範囲を下記のように定めるのが良い。
(5−2)V_5A<45
(6−2)V_5B>65
(7−2)ΔPgF_5B>0.01
More preferably, the range of the conditional expressions (5), (6) and (7) should be defined as follows.
(5-2) V_5A <45
(6-2) V_5B> 65
(7-2) ΔPgF_5B> 0.01

本出願のズームレンズの第2レンズ群G2は、最も物体側には下記条件式を満足するフレンズを有している。
(8)V_21>55
(9)ΔPgF_21>0
ただし、
V_21:前記第2レンズ群G2の最も物体側の負レンズのアッベ数
ΔPgF_21:前記第2レンズ群G2の最も物体側の負レンズの異常分散性
The second lens group G2 of the zoom lens of the present application has friends on the most object side that satisfy the following conditional expression.
(8) V_21> 55
(9) ΔPgF_21> 0
However,
V_21: Abbe number of the negative lens on the most object side of the second lens group G2 ΔPgF_21: Anomalous dispersibility of the negative lens on the most object side of the second lens group G2

参考式1に示される通り、倍率色収差は近軸主光線高さが高いレンズ群の寄与が大きくなる。第2レンズ群は近軸主光線の変動が大きく、かつパワーが強いため、倍率色収差の変動にも大きな影響を及ぼす。条件式(8)の下限を超えて第2レンズ群の最も物体側のレンズの硝材のアッベ数が大きくなると当該レンズで発生する倍率色収差が大きくなるので好ましくない。条件式(9)の下限を超えて異常分散性が小さくなりすぎると、倍率色収差の二次スペクトルが悪化するので好ましくない。 As shown in Reference Equation 1, the contribution of the lens group having a high paraxial main ray height is large for the chromatic aberration of magnification. Since the second lens group has large fluctuations in the paraxial main ray and strong power, it also has a great influence on fluctuations in chromatic aberration of magnification. If the Abbe number of the glass material of the lens closest to the object side of the second lens group exceeds the lower limit of the conditional expression (8), the chromatic aberration of magnification generated by the lens increases, which is not preferable. If the anomalous dispersibility becomes too small beyond the lower limit of the conditional expression (9), the secondary spectrum of the chromatic aberration of magnification deteriorates, which is not preferable.

より望ましくは条件式(8)、(9)の範囲を下記のように定めるのが良い。
(8−2)V_21>60
(9−2)ΔPgF_21>0.008
More preferably, the range of the conditional expressions (8) and (9) should be defined as follows.
(8-2) V_21> 60
(9-2) ΔPgF_21> 0.008

次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。 Next, the lens configuration of the embodiment according to the imaging optical system of the present invention will be described. In the following description, the lens configuration will be described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りSの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数、PgFはg線とF線間の部分分散比を示す。またBFはバックフォーカスを表す。 In [surface data], the surface number is the number of the lens surface or aperture diaphragm S counted from the object side, r is the radius of curvature of each surface, d is the distance between each surface, and nd is the d line (wavelength λ = 587.56 nm). Refractive index with respect to, νd is the Abbe number with respect to the d line, and PgF is the partial dispersion ratio between the g line and the F line. BF represents back focus.

面番号を付した(開口絞り)には、平面または開口絞りSに対する曲率半径∞(無限大)に記入している。 The plane numbered (opening diaphragm) is written with a radius of curvature ∞ (infinity) with respect to a flat surface or an aperture diaphragm S.

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10、12次の非球面係数をそれぞれA4、A6、A8、A10、A12と置くとき、非球面の座標が以下の式で表わされるものとする。

Figure 2020204684
[Aspherical surface data] shows each coefficient value that gives the aspherical shape of the lens surface marked with * in [Surface data]. The shape of the aspherical surface is y for the displacement in the direction orthogonal to the optical axis, z for the displacement (sag amount) in the optical axis direction from the intersection of the aspherical surface and the optical axis, and K, 4, 6, 8 for the conic coefficient. When the 10th and 12th order aspherical coefficients are set as A4, A6, A8, A10, and A12, respectively, the coordinates of the aspherical surface shall be expressed by the following equation.
Figure 2020204684

[各種データ]には、焦点距離などの値を示している。 [Various data] shows values such as focal length.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBF(バックフォーカス)の値を示している。 [Variable interval data] shows the values of the variable interval and the BF (back focus) in each shooting distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 [Lens group data] shows the surface number on the most object side constituting each lens group and the combined focal distance of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the following specification values, the units of the focal length f, the radius of curvature r, the lens surface spacing d, and other lengths described are mm (mm) unless otherwise specified, but optics. The system is not limited to this because the same optical performance can be obtained in both proportional expansion and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。 Further, in the aberration diagram corresponding to each embodiment, d, g, and C represent the d-line, g-line, and C-line, respectively, and ΔS and ΔM represent the sagittal image plane and the meridional image plane, respectively.

さらに図4、7、10、13に示すレンズ構成図において、Sは開口絞り、Iは像面、Fは光学フィルター、中心を通る一点鎖線は光軸である。 Further, in the lens configuration diagrams shown in FIGS. 4, 7, 10 and 13, S is the aperture diaphragm, I is the image plane, F is the optical filter, and the alternate long and short dash line passing through the center is the optical axis.

図4は、本発明の実施例1のズームレンズの広角端での無限遠合焦時におけるレンズ構成図である。実施例1のズームレンズは、物体側から像側へ順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5から構成される。 FIG. 4 is a lens configuration diagram at infinity focusing at the wide-angle end of the zoom lens according to the first embodiment of the present invention. The zoom lens of the first embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture aperture S, and positive refraction in this order from the object side to the image side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと両凸レンズの接合レンズと、物体側に凸面を向けた凸メニスカスレンズとから構成される。 The first lens group G1 is composed of a concave meniscus lens having a convex surface facing the object side, a junction lens of a biconvex lens, and a convex meniscus lens having a convex surface facing the object side in order from the object side to the image side.

第2レンズ群G2は、物体側から像側へ順に、物体側に凸面を向け両面に非球面を有する凹メニスカスレンズ、両凹レンズ、両凸レンズ、物体側に凹面を向けた凹メニスカスレンズ、両凸レンズから構成される。 The second lens group G2 includes a concave meniscus lens, a biconcave lens, a biconvex lens, a concave meniscus lens having a concave surface facing the object side, and a biconvex lens in order from the object side to the image side. Consists of.

第3レンズ群G3は、物体側から像側へ順に、物体側に凸面を向け両面に非球面を有する凸メニスカスレンズ、両凸レンズ、両凹レンズと凸メニスカスレンズを接合した接合レンズ、両面に非球面を有する両凸レンズ、から構成される。 The third lens group G3 includes a convex meniscus lens having a convex surface facing the object side and aspherical surfaces on both sides, a biconvex lens, a bonded lens in which a biconcave lens and a convex meniscus lens are joined, and an aspherical surface on both sides, in order from the object side to the image side. Consists of a biconvex lens, which has.

第4レンズ群G4は、物体側から像側へ順に、物体側に凹面を向けた凸メニスカスレンズと両凹レンズを接合した接合レンズから構成される。無限遠から至近へのフォーカシング時には第4レンズ群G4が像面側へ移動する。 The fourth lens group G4 is composed of a convex meniscus lens having a concave surface facing the object side and a bonded lens in which both concave lenses are joined in this order from the object side to the image side. When focusing from infinity to close range, the fourth lens group G4 moves toward the image plane.

第5レンズ群G5は、物体側から像側へ順に、両凸レンズ、物体側に凸面を向けた凹メニスカスレンズ、物体側に凹面を向けた凹メニスカスレンズ、から構成される。 The fifth lens group G5 is composed of a biconvex lens, a concave meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a concave surface facing the object side in order from the object side to the image side.

続いて以下に実施例1に係るズームレンズの諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd PgF
物面 ∞ (d0)
1 136.6048 1.5000 1.73800 32.33 0.59
2 82.7730 7.3116 1.43700 95.10 0.53
3 -890.8231 0.1500
4 65.1502 6.5077 1.49700 81.61 0.54
5 298.0140 (d5)
6* 800.0000 1.5000 1.59201 67.02 0.54
7* 20.0000 6.7341
8 -43.9481 1.5000 1.59282 68.63 0.54
9 40.7553 1.0794
10 92.1584 4.0133 1.67270 32.17 0.60
11 -32.2836 1.1407
12 -21.5281 1.5000 1.83481 42.72 0.56
13 -103.2905 0.1500
14 85.6118 2.5374 1.80000 29.84 0.60
15 -156.5329 (d15)
16(絞り) ∞ 0.1500
17* 20.1681 5.0000 1.49710 81.56 0.54
18* 74.9041 0.9689
19 30.5286 6.8337 1.65844 50.88 0.56
20 -42.6511 1.2415
21 -47.0757 1.5000 1.88300 40.80 0.57
22 14.0650 4.4991 1.43700 95.10 0.53
23 176.7012 0.1500
24* 24.1208 5.5093 1.55332 71.68 0.54
25* -27.7300 (d25)
26 -119.0554 2.5365 1.77250 49.62 0.55
27 -37.1153 1.5000 1.59410 60.47 0.55
28 26.2360 (d28)
29 223.8293 4.1850 1.65412 39.68 0.57
30 -57.1332 0.1500
31 63.5639 1.5000 1.49700 81.61 0.54
32 34.5938 5.7722
33 -51.7248 1.5000 1.49700 81.61 0.54
34 -197.3965 (d34)
35 ∞ 2.5000 1.51680 64.20 0.53
36 ∞ (BF)
像面 ∞

[非球面データ]
6面 7面 17面 18面
K 0.00000 0.00000 -0.37567 0.00000
A4 4.63367E-06 -3.90581E-06 6.77578E-07 8.88294E-06
A6 1.68379E-08 2.00349E-08 6.56792E-09 5.11459E-08
A8 1.46028E-10 2.83537E-10 2.37069E-10 1.45832E-10
A10 -7.21741E-13 1.15068E-12 -1.79088E-12 -1.74255E-12
A12 1.06723E-15 0.00000E+00 0.00000E+00 0.00000E+00

24面 25面
K 0.54217 1.57994
A4 -2.95890E-05 1.34949E-05
A6 2.28153E-08 -2.05420E-08
A8 -9.49428E-11 1.87128E-10
A10 -5.21936E-13 -2.17746E-12
A12 0.00000E+00 0.00000E+00

[各種データ]
ズーム比 7.14
広角 中間 望遠
焦点距離 27.99 71.70 199.93
Fナンバー 3.37 4.67 5.60
全画角2ω 78.26 32.06 11.77
像高Y 21.63 21.63 21.63
レンズ全長 144.99 161.09 220.98

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 1.0000 20.2505 63.5398
d15 30.7294 6.2894 1.5000
d25 1.3636 7.4560 0.1000
d28 10.7867 23.0664 36.4234
d34 18.9926 21.9098 37.2953
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 121.73
G2 6 -22.10
G3 17 26.16
G4 26 -40.77
G5 29 630.50
Subsequently, the specification values of the zoom lens according to the first embodiment are shown below.
Numerical Example 1
Unit: mm
[Surface data]
Surface number rd nd vd PgF
Physical surface ∞ (d0)
1 136.6048 1.5000 1.73800 32.33 0.59
2 82.7730 7.3116 1.43700 95.10 0.53
3 -890.8231 0.1500
4 65.1502 6.5077 1.49700 81.61 0.54
5 298.0140 (d5)
6 * 800.0000 1.5000 1.59201 67.02 0.54
7 * 20.0000 6.7341
8-43.9481 1.5000 1.59282 68.63 0.54
9 40.7553 1.0794
10 92.1584 4.0133 1.67270 32.17 0.60
11 -32.2836 1.1407
12 -21.5281 1.5000 1.83481 42.72 0.56
13 -103.2905 0.1500
14 85.6118 2.5374 1.80000 29.84 0.60
15 -156.5329 (d15)
16 (Aperture) ∞ 0.1500
17 * 20.1681 5.0000 1.49710 81.56 0.54
18 * 74.9041 0.9689
19 30.5286 6.8337 1.65844 50.88 0.56
20 -42.6511 1.2415
21 -47.0757 1.5000 1.88300 40.80 0.57
22 14.0650 4.4991 1.43700 95.10 0.53
23 176.7012 0.1500
24 * 24.1208 5.5093 1.55332 71.68 0.54
25 * -27.7300 (d25)
26 -119.0554 2.5365 1.77250 49.62 0.55
27 -37.1153 1.5000 1.59410 60.47 0.55
28 26.2360 (d28)
29 223.8293 4.1850 1.65412 39.68 0.57
30 -57.1332 0.1500
31 63.5639 1.5000 1.49700 81.61 0.54
32 34.5938 5.7722
33 -51.7248 1.5000 1.49700 81.61 0.54
34 -197.3965 (d34)
35 ∞ 2.5000 1.51680 64.20 0.53
36 ∞ (BF)
Image plane ∞

[Aspherical data]
6 sides 7 sides 17 sides 18 sides
K 0.00000 0.00000 -0.37567 0.00000
A4 4.63367E-06 -3.90581E-06 6.77578E-07 8.88294E-06
A6 1.68379E-08 2.00349E-08 6.56792E-09 5.11459E-08
A8 1.46028E-10 2.83537E-10 2.37069E-10 1.45832E-10
A10 -7.21741E-13 1.15068E-12 -1.79088E-12 -1.74255E-12
A12 1.06723E-15 0.00000E + 00 0.00000E + 00 0.00000E + 00

24 sides 25 sides
K 0.54217 1.57994
A4 -2.95890E-05 1.34949E-05
A6 2.28153E-08 -2.05420E-08
A8 -9.49428E-11 1.87128E-10
A10 -5.21936E-13 -2.17746E-12
A12 0.00000E + 00 0.00000E + 00

[Various data]
Zoom ratio 7.14
Wide-angle medium telephoto focal length 27.99 71.70 199.93
F number 3.37 4.67 5.60
Full angle of view 2ω 78.26 32.06 11.77
Image height Y 21.63 21.63 21.63
Total lens length 144.99 161.09 220.98

[Variable interval data]
Wide-angle intermediate telephoto
d0 ∞ ∞ ∞
d5 1.0000 20.2505 63.5398
d15 30.7294 6.2894 1.5000
d25 1.3636 7.4560 0.1000
d28 10.7867 23.0664 36.4234
d34 18.9926 21.9098 37.2953
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length
G1 1 121.73
G2 6 -22.10
G3 17 26.16
G4 26 -40.77
G5 29 630.50

図7は、本発明の実施例2のズームレンズの広角端での無限遠合焦時におけるレンズ構成図である。実施例1のズームレンズは、物体側から像側へ順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5から構成される。 FIG. 7 is a lens configuration diagram at infinity focusing at the wide-angle end of the zoom lens according to the second embodiment of the present invention. In the zoom lens of the first embodiment, in order from the object side to the image side, a first lens group G1 having a positive refractive force, a second lens group G2 having a negative refractive force, an aperture aperture S, and positive refraction It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive force, and a fifth lens group G5 having a positive refractive force.

第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと両凸レンズの接合レンズと、物体側に凸面を向けた凸メニスカスレンズとから構成される。 The first lens group G1 is composed of a concave meniscus lens having a convex surface facing the object side, a junction lens of a biconvex lens, and a convex meniscus lens having a convex surface facing the object side in order from the object side to the image side.

第2レンズ群G2は、物体側から像側へ順に、物体側に凸面を向け両面に非球面を有する凹メニスカスレンズ、両凹レンズ、両凸レンズ、物体側に凹面を向けた凹メニスカスレンズ、両凸レンズから構成される。 The second lens group G2 includes a concave meniscus lens, a biconcave lens, a biconvex lens, a concave meniscus lens having a concave surface facing the object side, and a biconvex lens in order from the object side to the image side. Consists of.

第3レンズ群G3は、物体側から像側へ順に、物体側に凸面を向け両面に非球面を有する凸メニスカスレンズ、両凸レンズと両凹レンズと凸メニスカスレンズを接合した接合レンズと、両面に非球面を有する両凸レンズ、から構成される。 The third lens group G3 includes a convex meniscus lens having a convex surface facing the object side and aspherical surfaces on both sides, a junction lens in which a biconvex lens, a biconcave lens, and a convex meniscus lens are joined, and non-both sides in order from the object side to the image side. It is composed of a biconvex lens having a spherical surface.

第4レンズ群G4は、物体側から像側へ順に、物体側に凹面を向けた凸メニスカスレンズと両凹レンズを接合した接合レンズから構成される。無限遠から至近へのフォーカシング時には第4レンズ群G4が像面側へ移動する。 The fourth lens group G4 is composed of a convex meniscus lens having a concave surface facing the object side and a bonded lens in which both concave lenses are joined in this order from the object side to the image side. When focusing from infinity to close range, the fourth lens group G4 moves toward the image plane.

第5レンズ群G5は、物体側から像側へ順に、両凸レンズ、物体側に凸面を向けた凹メニスカスレンズ、から構成される。 The fifth lens group G5 is composed of a biconvex lens and a concave meniscus lens having a convex surface facing the object side in this order from the object side to the image side.

続いて以下に実施例2に係るズームレンズの諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd PgF
物面 ∞ (d0)
1 125.2573 1.5000 1.74950 35.33 0.58
2 70.8781 6.9294 1.43700 95.10 0.53
3 -1063.3192 0.1500
4 49.8767 6.5701 1.49700 81.61 0.54
5 177.5426 (d5)
6* 367.6915 1.8000 1.59201 67.02 0.54
7* 19.3986 6.0248
8 -74.1540 1.5000 1.59282 68.63 0.54
9 36.0441 1.1037
10 102.0889 2.4560 1.85883 30.00 0.60
11 -91.4849 2.0615
12 -19.5761 1.0000 1.77250 49.60 0.55
13 -49.0447 0.1500
14 77.6596 2.0258 1.92119 23.96 0.62
15 -8388.6479 (d15)
16(絞り) ∞ 1.2000
17* 17.7791 5.1059 1.55332 71.68 0.54
18* 155.9550 1.6189
19 27.9962 3.6876 1.72047 34.71 0.58
20 -59.9631 1.5254 1.90366 31.31 0.59
21 16.3759 3.2384 1.43700 95.10 0.53
22 79.1950 0.2033
23* 38.6427 3.1473 1.55332 71.68 0.54
24* -32.2859 (d24)
25 -487.6476 2.2077 1.84666 23.78 0.62
26 -49.6745 0.9176 1.83481 42.72 0.56
27 36.0285 (d27)
28 53.9659 4.9366 1.61340 44.27 0.56
29 -104.0372 0.1500
30 768.7535 1.5000 1.59282 68.63 0.54
31 35.2733 (d31)
32 ∞ 2.5000 1.51680 64.20 0.53
33 ∞ (BF)
像面 ∞

[非球面データ]
6面 7面 17面 18面
K 0.00000 0.00000 0.00000 0.00000
A4 3.09759E-05 2.97220E-05 -1.23282E-06 1.79331E-05
A6 -1.93921E-07 -1.16817E-07 1.33952E-07 1.85028E-07
A8 1.11693E-09 9.21344E-10 -7.92739E-10 -1.21537E-09
A10 -2.91406E-12 -2.18366E-12 6.03063E-12 6.41296E-12
A12 3.04472E-15 4.07747E-14 0.00000E+00 0.00000E+00

23面 24面
K 0.00000 0.00000
A4 -5.99698E-06 3.42247E-05
A6 2.31109E-07 2.58417E-07
A8 2.81967E-09 3.33545E-09
A10 -2.69163E-11 -1.30629E-11
A12 0.00000E+00 -6.16690E-15

[各種データ]
ズーム比 6.73
広角 中間 望遠
焦点距離 28.84 71.72 194.00
Fナンバー 3.45 5.01 6.31
全画角2ω 76.58 32.05 12.21
像高Y 21.63 21.63 21.63
レンズ全長 126.14 141.54 202.14

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 1.0000 16.3995 51.5407
d15 24.1361 5.0128 1.5000
d24 4.1015 11.1152 1.5000
d27 8.7731 22.0121 37.2428
d31 21.9152 20.7922 44.1426
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 108.47
G2 6 -20.07
G3 17 23.32
G4 25 -40.43
G5 28 525.69
Subsequently, the specification values of the zoom lens according to the second embodiment are shown below.
Numerical Example 2
Unit: mm
[Surface data]
Surface number rd nd vd PgF
Physical surface ∞ (d0)
1 125.2573 1.5000 1.74950 35.33 0.58
2 70.8781 6.9294 1.43700 95.10 0.53
3 -1063.3192 0.1500
4 49.8767 6.5701 1.49700 81.61 0.54
5 177.5426 (d5)
6 * 367.6915 1.8000 1.59201 67.02 0.54
7 * 19.3986 6.0248
8 -74.1540 1.5000 1.59282 68.63 0.54
9 36.0441 1.1037
10 102.0889 2.4560 1.85883 30.00 0.60
11 -91.4849 2.0615
12 -19.5761 1.0000 1.77250 49.60 0.55
13 -49.0447 0.1500
14 77.6596 2.0258 1.92119 23.96 0.62
15 -8388.6479 (d15)
16 (Aperture) ∞ 1.2000
17 * 17.7791 5.1059 1.55332 71.68 0.54
18 * 155.9550 1.6189
19 27.9962 3.6876 1.72047 34.71 0.58
20 -59.9631 1.5254 1.90366 31.31 0.59
21 16.3759 3.2384 1.43700 95.10 0.53
22 79.1950 0.2033
23 * 38.6427 3.1473 1.55332 71.68 0.54
24 * -32.2859 (d24)
25 -487.6476 2.2077 1.84666 23.78 0.62
26 -49.6745 0.9176 1.83481 42.72 0.56
27 36.0285 (d27)
28 53.9659 4.9366 1.61340 44.27 0.56
29 -104.0372 0.1500
30 768.7535 1.5000 1.59282 68.63 0.54
31 35.2733 (d31)
32 ∞ 2.5000 1.51680 64.20 0.53
33 ∞ (BF)
Image plane ∞

[Aspherical data]
6 sides 7 sides 17 sides 18 sides
K 0.00000 0.00000 0.00000 0.00000
A4 3.09759E-05 2.97220E-05 -1.23282E-06 1.79331E-05
A6 -1.93921E-07 -1.16817E-07 1.33952E-07 1.85028E-07
A8 1.11693E-09 9.21344E-10 -7.92739E-10 -1.21537E-09
A10 -2.91406E-12 -2.18366E-12 6.03063E-12 6.41296E-12
A12 3.04472E-15 4.07747E-14 0.00000E + 00 0.00000E + 00

23 sides 24 sides
K 0.00000 0.00000
A4 -5.99698E-06 3.42247E-05
A6 2.31109E-07 2.58417E-07
A8 2.81967E-09 3.33545E-09
A10 -2.69163E-11 -1.30629E-11
A12 0.00000E + 00 -6.16690E-15

[Various data]
Zoom ratio 6.73
Wide-angle medium telephoto focal length 28.84 71.72 194.00
F number 3.45 5.01 6.31
Full angle of view 2ω 76.58 32.05 12.21
Image height Y 21.63 21.63 21.63
Total lens length 126.14 141.54 202.14

[Variable interval data]
Wide-angle intermediate telephoto
d0 ∞ ∞ ∞
d5 1.0000 16.3995 51.5407
d15 24.1361 5.0128 1.5000
d24 4.1015 11.1152 1.5000
d27 8.7731 22.0121 37.2428
d31 21.9152 20.7922 44.1426
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length
G1 1 108.47
G2 6 -20.07
G3 17 23.32
G4 25 -40.43
G5 28 525.69

図10は、本発明の実施例3のズームレンズの広角端での無限遠合焦時におけるレンズ構成図である。実施例1のズームレンズは、物体側から像側へ順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5から構成される。 FIG. 10 is a lens configuration diagram when the zoom lens of the third embodiment of the present invention is in focus at infinity at the wide-angle end. The zoom lens of the first embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture aperture S, and positive refraction in this order from the object side to the image side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた凹メニスカスレンズと凸メニスカスレンズの接合レンズと、物体側に凸面を向けた凸メニスカスレンズとから構成される。 The first lens group G1 is composed of a concave meniscus lens having a convex surface facing the object side, a junction lens of a convex meniscus lens, and a convex meniscus lens having a convex surface facing the object side in order from the object side to the image side.

第2レンズ群G2は、物体側から像側へ順に、物体側に凸面を向け両面に非球面を有する凹メニスカスレンズ、両凹レンズ、両凸レンズ、物体側に凹面を向けた凹メニスカスレンズ、両凸レンズから構成される。 The second lens group G2 includes a concave meniscus lens, a biconcave lens, a biconvex lens, a concave meniscus lens having a concave surface facing the object side, and a biconvex lens in order from the object side to the image side. Consists of.

第3レンズ群G3は、物体側から像側へ順に、両面に非球面を有する両凸レンズ、両凸レンズと両凹レンズを接合した接合レンズ、物体側に凸面を向けた凹メニスカスレンズと物体側に凸面を向けた凸メニスカスレンズを接合した接合レンズ、両面に非球面を有する両凸レンズ、から構成される。 The third lens group G3 includes a biconvex lens having aspherical surfaces on both sides, a junction lens in which a biconvex lens and a biconcave lens are joined, a concave meniscus lens having a convex surface facing the object side, and a convex surface toward the object side, in order from the object side to the image side. It is composed of a bonded lens in which a convex meniscus lens is joined, and a biconvex lens having aspherical surfaces on both sides.

第4レンズ群G4は、物体側から像側へ順に、物体側に凹面を向けた凸メニスカスレンズと両凹レンズを接合した接合レンズから構成される。無限遠から至近へのフォーカシング時には第4レンズ群G4が像面側へ移動する。 The fourth lens group G4 is composed of a convex meniscus lens having a concave surface facing the object side and a bonded lens in which both concave lenses are joined in this order from the object side to the image side. When focusing from infinity to close range, the fourth lens group G4 moves toward the image plane.

第5レンズ群G5は、物体側から像側へ順に、両凸レンズ、物体側に凸面を向けた凹メニスカスレンズ、物体側に凹面を向けた凹メニスカスレンズ、から構成される。 The fifth lens group G5 is composed of a biconvex lens, a concave meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a concave surface facing the object side in order from the object side to the image side.

続いて以下に実施例3に係るズームレンズの諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd PgF
物面 ∞ (d0)
1 124.7962 1.5000 1.88300 40.80 0.57
2 61.0332 9.5554 1.43700 95.10 0.53
3 3125.8033 0.1500
4 58.3037 8.7719 1.59282 68.63 0.54
5 474.2550 (d5)
6* 634.5967 1.5000 1.55332 71.68 0.54
7* 16.4360 6.5403
8 -53.7393 1.5000 1.59282 68.63 0.54
9 95.5021 0.7885
10 1329.0836 3.0266 1.74950 35.33 0.58
11 -38.7901 1.4131
12 -21.6919 1.5000 1.77250 49.60 0.55
13 -84.0642 0.1500
14 79.1816 2.1888 1.84666 23.78 0.62
15 -1245.4880 (d15)
16(絞り) ∞ 0.1500
17* 22.6489 5.0000 1.59201 67.02 0.54
18* -300.7147 4.4559
19 64.7742 2.8318 1.43700 95.10 0.53
20 -77.5083 1.5000 1.90043 37.37 0.58
21 187.3137 0.1500
22 27.6628 1.5000 1.88300 40.80 0.57
23 12.8319 3.7302 1.43700 95.10 0.53
24 32.6366 1.5239
25* 19.5919 5.5754 1.49710 81.56 0.54
26* -28.0237 (d26)
27 -63.3925 2.1800 1.85883 30.00 0.60
28 -34.5730 1.5000 1.61881 63.85 0.54
29* 25.0535 (d29)
30 81.1179 6.2019 1.61340 44.27 0.56
31 -41.5248 0.1831
32 82.7302 1.5000 1.43700 95.10 0.53
33 32.6457 8.1321
34 -24.7842 1.5000 2.00100 29.13 0.60
35 -35.6811 (d35)
36 ∞ 2.5000 1.51680 64.20 0.53
37 ∞ (BF)
像面 ∞

[非球面データ]
6面 7面 17面 18面
K 0.00000 0.00000 0.00000 0.00000
A4 -7.29012E-06 -2.23365E-05 -1.72441E-05 -1.47764E-05
A6 6.74847E-08 1.67744E-08 2.93810E-09 5.35459E-08
A8 -2.41692E-11 4.42883E-10 -4.57932E-10 -5.52245E-10
A10 -3.09660E-13 -3.10103E-12 2.32772E-12 2.84238E-12
A12 5.65804E-16 2.44274E-14 0.00000E+00 0.00000E+00

25面 26面 29面
K 0.00000 0.00000 0.00000
A4 -3.93437E-05 -1.95645E-06 -5.68913E-06
A6 5.93652E-09 -6.93549E-08 -7.94734E-09
A8 -2.94161E-10 -2.75618E-10 5.34648E-11
A10 2.80170E-13 -1.53027E-12 0.00000E+00
A12 0.00000E+00 0.00000E+00 0.00000E+00

[各種データ]
ズーム比 6.73
広角 中間 望遠
焦点距離 28.84 71.88 194.00
Fナンバー 3.51 5.02 5.59
全画角2ω 76.58 31.98 12.12
像高Y 21.63 21.63 21.63
レンズ全長 144.99 155.48 218.59

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d5 1.0000 16.3693 59.9657
d15 28.8163 4.2426 1.5000
d26 1.5000 8.4013 1.5087
d29 4.5155 10.1341 32.2630
d35 19.4623 26.6306 33.6537
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 116.05
G2 6 -21.58
G3 17 25.32
G4 27 -31.51
G5 30 212.32
Subsequently, the specification values of the zoom lens according to the third embodiment are shown below.
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd PgF
Physical surface ∞ (d0)
1 124.7962 1.5000 1.88300 40.80 0.57
2 61.0332 9.5554 1.43700 95.10 0.53
3 3125.8033 0.1500
4 58.3037 8.7719 1.59282 68.63 0.54
5 474.2550 (d5)
6 * 634.5967 1.5000 1.55332 71.68 0.54
7 * 16.4360 6.5403
8 -53.7393 1.5000 1.59282 68.63 0.54
9 95.5021 0.7885
10 1329.0836 3.0266 1.74950 35.33 0.58
11 -38.7901 1.4131
12 -21.6919 1.5000 1.77250 49.60 0.55
13 -84.0642 0.1500
14 79.1816 2.1888 1.84666 23.78 0.62
15 -1245.4880 (d15)
16 (Aperture) ∞ 0.1500
17 * 22.6489 5.0000 1.59201 67.02 0.54
18 * -300.7147 4.4559
19 64.7742 2.8318 1.43700 95.10 0.53
20 -77.5083 1.5000 1.90043 37.37 0.58
21 187.3137 0.1500
22 27.6628 1.5000 1.88300 40.80 0.57
23 12.8319 3.7302 1.43700 95.10 0.53
24 32.6366 1.5239
25 * 19.5919 5.5754 1.49710 81.56 0.54
26 * -28.0237 (d26)
27 -63.3925 2.1800 1.85883 30.00 0.60
28 -34.5730 1.5000 1.61881 63.85 0.54
29 * 25.0535 (d29)
30 81.1179 6.2019 1.61340 44.27 0.56
31 -41.5248 0.1831
32 82.7302 1.5000 1.43700 95.10 0.53
33 32.6457 8.1321
34 -24.7842 1.5000 2.00100 29.13 0.60
35 -35.6811 (d35)
36 ∞ 2.5000 1.51680 64.20 0.53
37 ∞ (BF)
Image plane ∞

[Aspherical data]
6 sides 7 sides 17 sides 18 sides
K 0.00000 0.00000 0.00000 0.00000
A4 -7.29012E-06 -2.23365E-05 -1.72441E-05 -1.47764E-05
A6 6.74847E-08 1.67744E-08 2.93810E-09 5.35459E-08
A8 -2.41692E-11 4.42883E-10 -4.57932E-10 -5.52245E-10
A10 -3.09660E-13 -3.10103E-12 2.32772E-12 2.84238E-12
A12 5.65804E-16 2.44274E-14 0.00000E + 00 0.00000E + 00

25 faces 26 faces 29 faces
K 0.00000 0.00000 0.00000
A4 -3.93437E-05 -1.95645E-06 -5.68913E-06
A6 5.93652E-09 -6.93549E-08 -7.94734E-09
A8 -2.94161E-10 -2.75618E-10 5.34648E-11
A10 2.80170E-13 -1.53027E-12 0.00000E + 00
A12 0.00000E + 00 0.00000E + 00 0.00000E + 00

[Various data]
Zoom ratio 6.73
Wide-angle medium telephoto focal length 28.84 71.88 194.00
F number 3.51 5.02 5.59
Full angle of view 2ω 76.58 31.98 12.12
Image height Y 21.63 21.63 21.63
Total lens length 144.99 155.48 218.59

[Variable interval data]
Wide-angle intermediate telephoto
d0 ∞ ∞ ∞
d5 1.0000 16.3693 59.9657
d15 28.8163 4.2426 1.5000
d26 1.5000 8.4013 1.5087
d29 4.5155 10.1341 32.2630
d35 19.4623 26.6306 33.6537
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length
G1 1 116.05
G2 6 -21.58
G3 17 25.32
G4 27 -31.51
G5 30 212.32

図13は、本発明の実施例4のズームレンズの広角端での無限遠合焦時におけるレンズ構成図である。実施例1のズームレンズは、物体側から像側へ順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5から構成される。 FIG. 13 is a lens configuration diagram when the zoom lens of the fourth embodiment of the present invention is in focus at infinity at the wide-angle end. The zoom lens of the first embodiment has a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture aperture S, and positive refraction in this order from the object side to the image side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から像側へ順に、両凹レンズと両凸レンズの接合レンズと、物体側に凸面を向けた凸メニスカスレンズと、物体側に凸面を向けた凸メニスカスレンズ、から構成される。 The first lens group G1 is composed of a junction lens of a biconcave lens and a biconvex lens, a convex meniscus lens having a convex surface facing the object side, and a convex meniscus lens having a convex surface facing the object side in order from the object side to the image side. Will be done.

第2レンズ群G2は、物体側から像側へ順に、物体側に凸面を向け、両面に非球面を有する凹メニスカスレンズ、物体側に凸面を向けた凹メニスカスレンズ、物体側に凹面を向けた凹メニスカスレンズ、両凸レンズから構成される。 The second lens group G2 has a concave meniscus lens having an aspherical surface on both sides, a concave meniscus lens having a convex surface facing the object side, and a concave surface facing the object side in order from the object side to the image side. It consists of a concave meniscus lens and a biconvex lens.

第3レンズ群G3は、物体側から像側へ順に、物体側に凸面を向けた凸メニスカスレンズ、物体側に凸面を向けた凹メニスカスレンズと両凸レンズを接合した接合レンズ、両凹レンズと物体側に凸面を向けた凸メニスカスレンズを接合した接合レンズ、両面に非球面を有する両凸レンズ、から構成される。 The third lens group G3 is a convex meniscus lens with a convex surface facing the object side, a junction lens in which a concave meniscus lens with a convex surface facing the object side and a biconvex lens are joined in this order from the object side to the image side, and both concave lenses and the object side. It is composed of a junction lens in which a convex meniscus lens with a convex surface facing is joined, and a biconvex lens having aspherical surfaces on both sides.

第4レンズ群G4は、物体側から像側へ順に、物体側に凸面を向けた凸メニスカスレンズと像側の面に非球面を有する両凹レンズを接合した接合レンズから構成される。無限遠から至近へのフォーカシング時には第4レンズ群G4が像面側へ移動する。 The fourth lens group G4 is composed of a convex meniscus lens having a convex surface facing the object side and a junction lens in which both concave lenses having an aspherical surface on the image side surface are joined in this order from the object side to the image side. When focusing from infinity to close range, the fourth lens group G4 moves toward the image plane.

第5レンズ群G5は、物体側から像側へ順に、両凸レンズ、物体側に凸面を向けた凹メニスカスレンズ、物体側に凹面を向けた凹メニスカスレンズ、から構成される。 The fifth lens group G5 is composed of a biconvex lens, a concave meniscus lens having a convex surface facing the object side, and a concave meniscus lens having a concave surface facing the object side in order from the object side to the image side.

続いて以下に実施例4に係るズームレンズの諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd PgF
物面 ∞ (d0)
1 -866.0679 1.5000 1.80610 40.73 0.57
2 271.9885 5.3933 1.49700 81.61 0.54
3 -253.3488 0.1500
4 110.6280 5.6295 1.43700 95.10 0.53
5 1157.4646 0.1500
6 66.0486 5.9884 1.43700 95.10 0.53
7 164.6645 (d7)
8* 406.3632 1.5000 1.59201 67.02 0.54
9* 17.5260 5.5160
10 462.8091 1.5000 1.43700 95.10 0.53
11 49.2457 7.4592
12 -16.9824 1.5000 1.43700 95.10 0.53
13 -62.0018 0.1500
14 204.9091 2.2197 2.00100 29.13 0.60
15 -105.6434 (d15)
16(絞り) ∞ 0.1500
17 21.1771 3.2531 1.73800 32.26 0.59
18 50.6255 0.3338
19 16.9406 1.5000 1.88300 40.80 0.57
20 11.1027 8.4294 1.49700 81.61 0.54
21 -33.4882 0.2952 0.57
23 14.8605 3.7791 1.49700 81.61 0.54
24 217.8918 0.1500
25* 24.2110 4.5792 1.59201 67.02 0.54
26* -24.4188 (d26)
27 -294.3073 2.1302 1.64769 33.84 0.59
28 -55.8455 1.5000 1.80610 40.73 0.57
29* 35.6472 (d29)
30 119.0218 4.6054 1.72047 34.71 0.58
31 -36.0640 0.1500
32 94.4168 1.5000 1.61997 63.88 0.54
33 41.7736 5.0158
34 -22.1641 1.5000 1.49700 81.61 0.54
35 -71.7260 (d35)
36 ∞ 2.5000 1.51680 64.20 0.53
37 ∞ (BF)
像面 ∞

[非球面データ]
8面 9面 25面 26面
K 0.00000 0.00000 0.00000 0.00000
A4 7.67405E-06 -2.50629E-06 -4.12445E-05 5.56873E-06
A6 -1.27470E-08 -1.52577E-08 1.69944E-08 -8.36308E-08
A8 1.22873E-10 1.14418E-10 -5.75485E-10 -3.98087E-10
A10 -3.53622E-13 5.80270E-13 4.44158E-12 0.00000E+00
A12 4.13882E-16 0.00000E+00 0.00000E+00 0.00000E+00

29面
K 0.00000
A4 -1.84083E-06
A6 2.44537E-09
A8 -1.66588E-11
A10 0.00000E+00
A12 0.00000E+00

[各種データ]
ズーム比 6.73
広角 中間 望遠
焦点距離 28.84 72.00 194.00
Fナンバー 3.50 4.56 5.71
全画角2ω 75.57 31.93 12.24
像高Y 21.63 21.63 21.63
レンズ全長 139.12 160.81 224.81

[可変間隔データ]
広角 中間 望遠
d0 ∞ ∞ ∞
d7 1.0000 26.4004 69.3389
d15 24.9357 4.1011 0.1500
d26 1.7991 8.2240 1.2259
d29 4.0000 6.6813 17.5647
d35 24.1346 32.1457 53.2770
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 132.25
G2 8 -21.80
G3 17 25.68
G4 27 -35.95
G5 30 211.51
Subsequently, the specification values of the zoom lens according to the fourth embodiment are shown below.
Numerical Example 4
Unit: mm
[Surface data]
Surface number rd nd vd PgF
Physical surface ∞ (d0)
1 -866.0679 1.5000 1.80610 40.73 0.57
2 271.9885 5.3933 1.49700 81.61 0.54
3 -253.3488 0.1500
4 110.6280 5.6295 1.43700 95.10 0.53
5 1157.4646 0.1500
6 66.0486 5.9884 1.43700 95.10 0.53
7 164.6645 (d7)
8 * 406.3632 1.5000 1.59201 67.02 0.54
9 * 17.5260 5.5160
10 462.8091 1.5000 1.43700 95.10 0.53
11 49.2457 7.4592
12 -16.9824 1.5000 1.43700 95.10 0.53
13 -62.0018 0.1500
14 204.9091 2.2197 2.00100 29.13 0.60
15 -105.6434 (d15)
16 (Aperture) ∞ 0.1500
17 21.1771 3.2531 1.73800 32.26 0.59
18 50.6255 0.3338
19 16.9406 1.5000 1.88300 40.80 0.57
20 11.1027 8.4294 1.49700 81.61 0.54
21 -33.4882 0.2952 0.57
23 14.8605 3.7791 1.49700 81.61 0.54
24 217.8918 0.1500
25 * 24.2110 4.5792 1.59201 67.02 0.54
26 * -24.4188 (d26)
27 -294.3073 2.1302 1.64769 33.84 0.59
28 -55.8455 1.5000 1.80610 40.73 0.57
29 * 35.6472 (d29)
30 119.0218 4.6054 1.72047 34.71 0.58
31 -36.0640 0.1500
32 94.4168 1.5000 1.61997 63.88 0.54
33 41.7736 5.0158
34 -22.1641 1.5000 1.49700 81.61 0.54
35 -71.7260 (d35)
36 ∞ 2.5000 1.51680 64.20 0.53
37 ∞ (BF)
Image plane ∞

[Aspherical data]
8 sides 9 sides 25 sides 26 sides
K 0.00000 0.00000 0.00000 0.00000
A4 7.67405E-06 -2.50629E-06 -4.12445E-05 5.56873E-06
A6 -1.27470E-08 -1.52577E-08 1.69944E-08 -8.36308E-08
A8 1.22873E-10 1.14418E-10 -5.75485E-10 -3.98087E-10
A10 -3.53622E-13 5.80270E-13 4.44158E-12 0.00000E + 00
A12 4.13882E-16 0.00000E + 00 0.00000E + 00 0.00000E + 00

29 pages
K 0.00000
A4 -1.84083E-06
A6 2.44537E-09
A8 -1.66588E-11
A10 0.00000E + 00
A12 0.00000E + 00

[Various data]
Zoom ratio 6.73
Wide-angle medium telephoto focal length 28.84 72.00 194.00
F number 3.50 4.56 5.71
Full angle of view 2ω 75.57 31.93 12.24
Image height Y 21.63 21.63 21.63
Total lens length 139.12 160.81 224.81

[Variable interval data]
Wide-angle intermediate telephoto
d0 ∞ ∞ ∞
d7 1.0000 26.4004 69.3389
d15 24.9357 4.1011 0.1500
d26 1.7991 8.2240 1.2259
d29 4.0000 6.6813 17.5647
d35 24.1346 32.1457 53.2770
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length
G1 1 132.25
G2 8 -21.80
G3 17 25.68
G4 27 -35.95
G5 30 211.51

以下に上記の各実施例に対応する条件式対応値を示す。
[条件式対応値]
条件式 実施例1 実施例2 実施例3 実施例4
(1) ※1 0.17 0.03 0.03 0.03
(2) ※2 -0.16 -0.34 -0.34 -0.15
(3) f5/√(fW×fT) 8.43 7.03 2.84 2.83
(4) B_5 0.89 0.90 0.73 0.73
(5) V_5A 39.68 44.27 44.27 34.71
(6) V_5B 81.60 68.63 95.10 81.61
(7) ΔPgF_5B 0.04 0.02 0.05 0.04
(8) V_21 67.02 67.02 71.68 67.02
(9) ΔPgF_21 0.01 0.01 0.02 0.01

※1 (1/(1/fW_34+1/DsW) ― EW)/√(fW×fT)
※2 (1/(1/fT_34+1/DsT) ― ET)/√(fW×fT)
The conditional expression corresponding values corresponding to each of the above examples are shown below.
[Conditional expression correspondence value]
Conditional expression Example 1 Example 2 Example 3 Example 4
(1) * 1 0.17 0.03 0.03 0.03
(2) * 2 -0.16 -0.34 -0.34 -0.15
(3) f5 / √ (fW × fT) 8.43 7.03 2.84 2.83
(4) B_5 0.89 0.90 0.73 0.73
(5) V_5A 39.68 44.27 44.27 34.71
(6) V_5B 81.60 68.63 95.10 81.61
(7) ΔPgF_5B 0.04 0.02 0.05 0.04
(8) V_21 67.02 67.02 71.68 67.02
(9) ΔPgF_21 0.01 0.01 0.02 0.01

* 1 (1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW x fT)
* 2 (1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW x fT)

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
S 開口絞り
F フィルター
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group S Aperture aperture F Filter I Image plane

Claims (6)

物体側より順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞りS、正の屈折力を有する第3レンズ群G3、負の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5からなり、
広角端から望遠端への変倍の際に、前記第1レンズ群G1と前記第2レンズ群G2の間の空気間隔が増大し、前記第2レンズ群G2と前記第3レンズ群G3の間の空気間隔が縮小し、前記第3レンズ群G3と前記第4レンズ群G4の間の空気間隔が変化し、前記第4レンズ群G4と前記第5レンズ群G5の間の空気間隔が変化し、
以下の条件式を満足することを特徴とするズームレンズ。
(1) (1/(1/fW_34+1/DsW)−EW)/√(fW×fT) > 0
(2) (1/(1/fT_34+1/DsT)−ET)/√(fW×fT) < 0
ただし、
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
fW_34:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
fT_34:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成焦点距離
DsW:広角端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
DsT:望遠端における、前記開口絞りSから、前記第3レンズ群G3と前記第4レンズ群G4の合成系の前側主点までの距離
EW:広角端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ET:望遠端における、前記第3レンズ群G3と前記第4レンズ群G4の合成系の後側主点から、前記第5レンズ群G5の前側主点までの距離
ここで、距離とは物体側から像側へ向かう方向を正とし、光軸上で測るものとする。
From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the aperture aperture S, the third lens group G3 having a positive refractive power, and the negative refractive power. It consists of a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a positive refractive power.
When scaling from the wide-angle end to the telephoto end, the air gap between the first lens group G1 and the second lens group G2 increases, and between the second lens group G2 and the third lens group G3. The air spacing between the third lens group G3 and the fourth lens group G4 changes, and the air spacing between the fourth lens group G4 and the fifth lens group G5 changes. ,
A zoom lens characterized by satisfying the following conditional expression.
(1) (1 / (1 / fW_34 + 1 / DsW) -EW) / √ (fW × fT)> 0
(2) (1 / (1 / fT_34 + 1 / DsT) -ET) / √ (fW × fT) <0
However,
fW: Focus distance of the whole system at infinity focusing at the wide-angle end fT: Focus distance of the whole system at infinity focusing at the telephoto end fW_34: The third lens group G3 and the fourth lens group at the wide-angle end Combined focal point of G4 fT_34: Combined focal point of the third lens group G3 and the fourth lens group G4 at the telephoto end DsW: From the aperture aperture S at the wide-angle end, the third lens group G3 and the fourth lens group Distance to the front principal point of the composite system of the lens group G4 DsT: Distance from the aperture aperture S at the telephoto end to the front principal point of the composite system of the third lens group G3 and the fourth lens group G4 EW: Distance from the rear principal point of the composite system of the third lens group G3 and the fourth lens group G4 at the wide-angle end to the front principal point of the fifth lens group G5 ET: The third lens at the telephoto end Distance from the rear principal point of the composite system of the group G3 and the fourth lens group G4 to the front principal point of the fifth lens group G5 Here, the distance is positive in the direction from the object side to the image side. It shall be measured on the optical axis.
無限遠から近距離へのフォーカシングに際し、前記第4レンズ群G4が像側に移動することを特徴とする請求項1に記載のズームレンズ。
The zoom lens according to claim 1, wherein the fourth lens group G4 moves to the image side when focusing from infinity to a short distance.
前記第4レンズ群G4は正レンズと負レンズの2枚のレンズで構成されていることを特徴とする請求項1又は2に記載のズームレンズ。
The zoom lens according to claim 1 or 2, wherein the fourth lens group G4 is composed of two lenses, a positive lens and a negative lens.
前記第5レンズ群G5は下記条件式を満たすことを特徴とする請求項1乃至3のいずれかに記載のズームレンズ。
(3) 2<f5/√(fW×fT)<10
(4) 0.5<B_5<1
ただし、
f5:前記第5レンズ群G5の焦点距離
fW:広角端の無限遠合焦時における全系の焦点距離
fT:望遠端の無限遠合焦時における全系の焦点距離
B_5:前記第5レンズ群G5の広角端の無限遠合焦時における倍率
The zoom lens according to any one of claims 1 to 3, wherein the fifth lens group G5 satisfies the following conditional expression.
(3) 2 <f5 / √ (fW × fT) <10
(4) 0.5 <B_5 <1
However,
f5: Focal length of the fifth lens group G5 fW: Focal length of the entire system at the infinity focusing at the wide-angle end fT: Focal length of the entire system at the infinity focusing at the telephoto end B_5: The fifth lens group Magnification at infinity focus at the wide-angle end of G5
前記第5レンズ群G5は最も物体側に正レンズAを有し、負レンズBを有し、下記条件式を満足することを特徴とする請求項1乃至4のいずれかに記載のズームレンズ。
(5) V_5A<50
(6) V_5B>50
(7) ΔPgF_5B>0
ただし、
V_5A:前記正レンズAのアッベ数
V_5B:前記負レンズBのアッベ数
ΔPgF_5B:前記負レンズBの異常分散性
The zoom lens according to any one of claims 1 to 4, wherein the fifth lens group G5 has a positive lens A on the most object side, a negative lens B, and satisfies the following conditional expression.
(5) V_5A <50
(6) V_5B> 50
(7) ΔPgF_5B> 0
However,
V_5A: Abbe number of the positive lens A V_5B: Abbe number of the negative lens B ΔPgF_5B: Anomalous dispersibility of the negative lens B
前記第2レンズ群G2は、最も物体側に下記条件式を満足する負レンズを有することを特徴とする請求項1乃至5のいずれかに記載のズームレンズ
(8) V_21>55
(9) ΔPgF_21>0
ただし、
V_21:前記第2レンズ群G2の最も物体側の負レンズのアッベ数
ΔPgF_21:前記第2レンズ群G2の最も物体側の負レンズの異常分散性
The zoom lens (8) V_21> 55 according to any one of claims 1 to 5, wherein the second lens group G2 has a negative lens most satisfying the following conditional expression on the object side.
(9) ΔPgF_21> 0
However,
V_21: Abbe number of the negative lens on the most object side of the second lens group G2 ΔPgF_21: Anomalous dispersibility of the negative lens on the most object side of the second lens group G2
JP2019111781A 2019-06-17 2019-06-17 zoom lens Active JP7239955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019111781A JP7239955B2 (en) 2019-06-17 2019-06-17 zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111781A JP7239955B2 (en) 2019-06-17 2019-06-17 zoom lens

Publications (2)

Publication Number Publication Date
JP2020204684A true JP2020204684A (en) 2020-12-24
JP7239955B2 JP7239955B2 (en) 2023-03-15

Family

ID=73837987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111781A Active JP7239955B2 (en) 2019-06-17 2019-06-17 zoom lens

Country Status (1)

Country Link
JP (1) JP7239955B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230285A (en) * 1993-02-02 1994-08-19 Canon Inc Zoom lens
JP2003066334A (en) * 2001-08-29 2003-03-05 Pentax Corp High variable power zoom lens system
JP2013242431A (en) * 2012-05-21 2013-12-05 Canon Inc Zoom lens and imaging apparatus including the same
JP2015055858A (en) * 2013-09-13 2015-03-23 株式会社シグマ Zoom lens with vibration-proof function
JP2017068116A (en) * 2015-09-30 2017-04-06 株式会社ニコン Zoom lens, optical device, and method for manufacturing the zoom lens
JP2017107065A (en) * 2015-12-09 2017-06-15 株式会社ニコン Zoom lens, optical apparatus and method for manufacturing zoom lens
JP2019144518A (en) * 2018-02-16 2019-08-29 株式会社タムロン Zoom lens and imaging apparatus
JP2020134684A (en) * 2019-02-19 2020-08-31 株式会社タムロン Zoom lens and imaging apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230285B2 (en) 2012-08-24 2017-11-15 セイコーインスツル株式会社 Electronic device, MEMS sensor, and method of manufacturing electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230285A (en) * 1993-02-02 1994-08-19 Canon Inc Zoom lens
JP2003066334A (en) * 2001-08-29 2003-03-05 Pentax Corp High variable power zoom lens system
JP2013242431A (en) * 2012-05-21 2013-12-05 Canon Inc Zoom lens and imaging apparatus including the same
JP2015055858A (en) * 2013-09-13 2015-03-23 株式会社シグマ Zoom lens with vibration-proof function
JP2017068116A (en) * 2015-09-30 2017-04-06 株式会社ニコン Zoom lens, optical device, and method for manufacturing the zoom lens
JP2017107065A (en) * 2015-12-09 2017-06-15 株式会社ニコン Zoom lens, optical apparatus and method for manufacturing zoom lens
JP2019144518A (en) * 2018-02-16 2019-08-29 株式会社タムロン Zoom lens and imaging apparatus
JP2020134684A (en) * 2019-02-19 2020-08-31 株式会社タムロン Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP7239955B2 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
US20080259454A1 (en) Zoom lens and image pickup apparatus including the lens
JP5836654B2 (en) Zoom lens and imaging apparatus having the same
US20110080650A1 (en) Zoom lens system and image pickup apparatus including the same
JP6615159B2 (en) Optical system and imaging apparatus having the same
JP5919519B2 (en) Zoom lens system, imaging device and camera
JP2019060918A (en) Imaging lens and imaging apparatus
JP2018025623A (en) Zoom lens and imaging apparatus having the same
JP2019032353A (en) Variable power imaging optical system
WO2013031180A1 (en) Zoom lens and imaging device
JP6745430B2 (en) Zoom lens system, imaging device
JP5615141B2 (en) Zoom lens
JP5919518B2 (en) Zoom lens system, imaging device and camera
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP7263122B2 (en) Zoom lens and imaging device
WO2013031110A1 (en) Zoom lens and imaging device
JP7160326B2 (en) Wide-angle lens system
JP2014202806A5 (en)
WO2006025130A1 (en) Zoom lens with high zoom ratio
JP2012103302A (en) Zoom lens and imaging optical system using the same
JP2020012908A (en) Zoom lens and image capturing device
JP7146708B2 (en) Imaging lens and imaging device
JP7239955B2 (en) zoom lens
JPH0772388A (en) Small-sized zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230223

R150 Certificate of patent or registration of utility model

Ref document number: 7239955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150