JP2020203587A - Automatic driving system - Google Patents
Automatic driving system Download PDFInfo
- Publication number
- JP2020203587A JP2020203587A JP2019112528A JP2019112528A JP2020203587A JP 2020203587 A JP2020203587 A JP 2020203587A JP 2019112528 A JP2019112528 A JP 2019112528A JP 2019112528 A JP2019112528 A JP 2019112528A JP 2020203587 A JP2020203587 A JP 2020203587A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- automatic driving
- responsibility
- information
- driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001149 cognitive effect Effects 0.000 claims description 29
- 230000003068 static effect Effects 0.000 claims description 28
- 238000004891 communication Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 description 24
- 230000007246 mechanism Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 230000006399 behavior Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000010391 action planning Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
本発明は、自動運転システムに関する。 The present invention relates to an automated driving system.
自動運転システムの高安全化技術として、例えば、特許文献1に記載された車両用警報装置がある。特許文献1には、対象物子供/大人識別部と、警報判定部を備え、対象物子供/大人識別部は、撮像装置により撮像された自車両前方の画像から“人物”が検出されると、前記検出された“人物”が“子供”であるか“大人”であるかを識別し、警報判定部は、対象物子供/大人識別部の識別結果に応じて、前記自車両のドライバへ注意を促す警報を出力する車両用警報装置が示されている。こうすることで、対象物が子供である場合、道路への飛び出しの危険性が高いと判断し、警報範囲を大きく設定し、対象物が大人である場合は、道路への飛び出しの危険性が低いと判断し、警報範囲を低く設定することができる。すなわち、対象物の種類に応じた飛び出しの危険性を考慮し、警報を出力できるとしている。
As a high safety technology for an automatic driving system, for example, there is a vehicle alarm device described in
また、従来技術として特許文献2がある。特許文献2には、自車周辺の対象物のリスクポテンシャルと今後リスクが増加する可能性を予測した仮想リスクポテンシャルを算出し、このリスクポテンシャルと仮想リスクポテンシャルに基づいて自車の経路や速度を計画する走行支援技術が開示されている。
Further, there is
特許文献1に記載の技術においては、検出された“人物”が“子供”であるか“大人”であるかを識別して対象物(オブジェクト)の種類に応じて警報を発しているが、対象物が特定できない場合の対処法については考慮されていなかった。
In the technique described in
また、特許文献2に記載の技術においては、リスクポテンシャルと仮想リスクポテンシャルに基づいて自車の経路や速度を計画するようにしているが、対象物が特定できない場合の対処法については考慮されていなかった。
Further, in the technique described in
本発明の目的は、オブジェクトの種類が特定できない場合においても走行支援を行うことのできる自動運転システムを提供することにある。 An object of the present invention is to provide an automatic driving system capable of providing driving support even when the type of an object cannot be specified.
上記目的を達成するために本発明では、車両の外界情報を取得する外界センサと、前記外界センサの情報に基づいてオブジェクトとの衝突を回避するように前記車両の目標軌道を算出する認知判断装置とを備えた自動運転システムであって、
前記認知判断装置は、前記車両がシステム責任の自動運転状態において、前記外界センサが前記オブジェクトの情報を検出すると前記オブジェクトの種類を判別し、前記オブジェクトの種類が特定できない場合には前記オブジェクトが動的か否かを判別し、判別結果の応じた運転支援を行うことを特徴とする。
In order to achieve the above object, in the present invention, an outside world sensor that acquires outside world information of a vehicle and a cognitive determination device that calculates a target trajectory of the vehicle so as to avoid a collision with an object based on the information of the outside world sensor. It is an automatic driving system equipped with
The cognitive determination device determines the type of the object when the external sensor detects the information of the object while the vehicle is in the system-responsible automatic driving state, and when the type of the object cannot be specified, the object moves. It is characterized in that it determines whether or not it is appropriate and provides driving support according to the determination result.
本発明によれば、オブジェクトの種類が特定できない場合においても走行支援を行うことのできる自動運転システムを提供することができる。 According to the present invention, it is possible to provide an automatic driving system capable of providing driving support even when the type of an object cannot be specified.
本発明の実施例の説明に先立ち、本発明の実施形態について説明する。以下の説明では、周辺環境を認識し、その情報に基づき自動運転を行うことが可能な移動体が利用されていることを想定する。なお、移動体の一例として車両を用いるが、それに限定するものではない。 An embodiment of the present invention will be described prior to the description of the examples of the present invention. In the following explanation, it is assumed that a moving body capable of recognizing the surrounding environment and performing automatic driving based on the information is used. A vehicle is used as an example of a moving body, but the present invention is not limited thereto.
本発明の実施形態は、車両に搭載されたセンサ情報から前記車両の周囲のオブジェクトの位置と速度と種類を認識し、前記オブジェクトの位置と速度と種類に基づいて前記オブジェクトの衝突リスクを予測し、前記衝突リスクに基づき前記オブジェクトとの衝突を回避する自動運転システムに関するものである。本実施形態では、種類が特定できるオブジェクトが存在する場合、自車両はそのオブジェクトの種類に応じて衝突回避の軌道を算出し、その軌道に基づいてシステム責任の自動運転を継続する。また、種類不明の静的オブジェクトが存在する場合には、自車両はシステム責任の自動運転を継続する。一方、種類不明の動的オブジェクトが存在する場合には、自車両はシステム責任の自動運転からドライバ責任の自動運転に切り替えるともに、運転の監視者にドライバ責任の自動運転であることを報知して、ハンドルを把持するように要求する等の注意喚起を行う。 In the embodiment of the present invention, the position, speed and type of an object around the vehicle are recognized from the sensor information mounted on the vehicle, and the collision risk of the object is predicted based on the position, speed and type of the object. The present invention relates to an automatic operation system that avoids a collision with the object based on the collision risk. In the present embodiment, when there is an object whose type can be specified, the own vehicle calculates a collision avoidance trajectory according to the type of the object, and continues the system-responsible automatic driving based on the trajectory. In addition, if there is a static object of unknown type, the own vehicle will continue the system-responsible automatic driving. On the other hand, if an unknown type of dynamic object exists, the own vehicle switches from system-responsible automatic driving to driver-responsible automatic driving, and notifies the driving observer that the driving is driver-responsible automatic driving. , Requesting that the handle be gripped, etc.
ここで、動的オブジェクトとは、他車両、歩行者のように移動可能なオブジェクトであり、静的オブジェクトは建築物のように移動不能なオブジェクトである。なお、システム責任の自動運転とは、SAE(Society of Automotive Engineers)で定義された自動運転レベルとレベル3以上(緊急時やODD(Operational Design Domain)範囲外を除く)であり、運転の監視者の責任の自動運転とはレベル2である。
Here, the dynamic object is an object that can be moved like another vehicle or a pedestrian, and the static object is an object that cannot be moved like a building. In addition, system-responsible automatic driving is the automatic driving level defined by SAE (Society of Automotive Engineers) and
本実施形態に示した自動運転システムを適用することで、オブジェクトの種類が特定できない場合において、動的オブジェクトか静的オブジェクトかに応じて自動運転レベルを適切に変更し、走行の安全性と自動運転システムの可用性を両立することができる。すなわち、オブジェクトの正確なリスク予測ができない“オブジェクトの種類は不明だが、オブジェクトが動的な場合”は、ドライバ責任の自動運転に切り替えることで、ドライバに予め正確なリスク予測ができない可能性を伝えることができ、システムの安全性を向上させることができる。オブジェクトの正確なリスク予測ができる“オブジェクトの種類は不明だが、オブジェクトが静的な場合”は、システム責任の自動運転を継続することで自動運転システムの可用性を向上させることができる。 By applying the automatic driving system shown in this embodiment, when the type of object cannot be specified, the automatic driving level is appropriately changed according to whether it is a dynamic object or a static object, and driving safety and automatic operation are performed. The availability of the driving system can be compatible. In other words, if the accurate risk prediction of the object is not possible "the type of the object is unknown, but the object is dynamic", by switching to the driver-responsible automatic operation, the driver is informed of the possibility that the accurate risk prediction cannot be made in advance. It is possible to improve the safety of the system. When the risk of an object can be predicted accurately "when the type of object is unknown, but the object is static", the availability of the autonomous driving system can be improved by continuing the automatic operation of system responsibility.
以下に図面を参照しながら、本発明の好適な実施形態について説明する。以下の実施形態に示す擬態的な数値等は、発明の理解を容易するための例示に過ぎず、特に断る場合を除き、それに限定されるものではない。 A preferred embodiment of the present invention will be described below with reference to the drawings. The mimicry numerical values and the like shown in the following embodiments are merely examples for facilitating the understanding of the invention, and are not limited thereto unless otherwise specified.
以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。 Hereinafter, examples of the present invention will be described with reference to the accompanying drawings. Similar components are designated by the same reference numerals, and the same description will not be repeated.
本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。 The various components of the present invention do not necessarily have to be independent of each other, and one component is composed of a plurality of members, a plurality of components are composed of one member, and a certain component is different. It is allowed that a part of one component overlaps with a part of another component.
図1は本発明の第1実施例に係る車載制御システムのシステム構成図である。図1に示すように、車載制御システム1は、自車両の外界の情報を取得する外界センサ2と、自車両の内部状態を検出する内界センサ3と、自車両の位置の検出および目的地までの目標ルートを算出するナビゲーションシステム4と、ドライバ(ユーザ)および乗員と自車両の車載制御システムの間に情報をやり取りするHMI装置5(HMI:Human Machine Interface)と、外界センサ2と内界センサ3の情報に基づき自車両の走行制御を行う上で目標軌道を算出する認知判断装置6と、認知判断装置6の目標軌道に基づき自車両の操舵制御機構(図示せず)、車両速度制御機構(図示せず)、およびブレーキ制御機構(図示せず)への指令値を演算する車両運動制御装置7と、車両運動制御装置7の指令値に基づき前記自車両の操舵制御機構を制御する操舵制御装置8と、当該指令値に基づき車両速度制御機構を制御し自車両の速度を調整する車両速度制御装置9と、当該指令値に基づきブレーキ制御機構を制御し各車輪のブレーキの力を制御するブレーキ制御装置10と、を備える。
FIG. 1 is a system configuration diagram of an in-vehicle control system according to a first embodiment of the present invention. As shown in FIG. 1, the in-
上述のように、外界センサ2は、自車両の外界の情報を取得するための機器である。外界センサ2は、光波(例えば赤外線を含む)、電磁波(例えばミリ波レーダを含む)、カメラ等のうち、一つまたは複数を備える。第1実施例では、外界センサ2として、前方にステレオカメラとミリ波レーダ、左右側にレーザレーダ、後方にミリ波レーダを備える。なお、第1実施例では、センサ構成の一例として上記のセンサの組み合わせを示しているが、それに限定するものではなく、例えば、超音波センサ、単眼カメラ、LiDAR(Light Detection and Ranging)などとの組み合わせでも良い。また、上述のセンサ種類やセンシング領域は一例として示したものに過ぎず、それに限定されるものではない。
As described above, the
内界センサ3は自車両の内部状態を取得するための機器である。自車両の内部状態は、自車両の速度、加速度、姿勢、舵角、操舵トルク、ペダルの踏み込み量と踏み込み速度等のうち、少なくとも1つを備える。内界センサ3として、車速センサ、IMU(Inertial Measurement Unit)、舵角センサ、操舵トルクセンサ、ペダルセンサを備える。なお、本実施例は、センサ構成の一例として上記のセンサの組み合わせを示したものに過ぎず、それに限定されるものではない。
The
車速センサは、車両の車輪の回転速度をパルス信号として検出することにより、車両の進行方向への速度を測定するための機器ある。 The vehicle speed sensor is a device for measuring the speed in the traveling direction of the vehicle by detecting the rotation speed of the wheels of the vehicle as a pulse signal.
IMUは自車両の加速度および姿勢を検出するための機器である。IMUの構成としては、例えば3軸の角速度センサ(ジャイロセンサ)および3軸の加速度センサを備え、3次元の角速度および加速度信号を計測することにより、自車両の加速度および姿勢を検出する。 The IMU is a device for detecting the acceleration and attitude of the own vehicle. The IMU is composed of, for example, a three-axis angular velocity sensor (gyro sensor) and a three-axis acceleration sensor, and detects the acceleration and attitude of the own vehicle by measuring the three-dimensional angular velocity and the acceleration signal.
舵角センサは、自車両の舵角を検出するための機器である。舵角センサは、操舵制御装置8の内部に内蔵されていても良い。
The steering angle sensor is a device for detecting the steering angle of the own vehicle. The steering angle sensor may be built in the
操舵トルクセンサは、例えば、車両のステアリングシャフトに対して設けられ、車両のドライバがステアリングホイールに与える操舵トルクを検出する。 The steering torque sensor is provided on the steering shaft of the vehicle, for example, and detects the steering torque applied to the steering wheel by the driver of the vehicle.
前記の外界センサ2および内界センサ3によって取得された情報は認知判断装置6へ送信される。ナビゲーションシステム4(詳細は図示せず)は、HMI装置5(詳細は後述する)を介し自車両の乗員によって設定された目的地まで自車両を案内する装置である。
The information acquired by the
ナビゲーションシステム4は、GNSS(Global Navigation Satellite System)および地図データベースから構成されており、GNSSからの自車両の絶対位置情報(例えば自車両の緯度および経度)と、外界センサ2のステレオカメラからのランドマークの情報と、内界センサ3の加速度センサ、角速度センサ、車速センサの情報と、地図データベースの情報に基づき地図上における自車両の位置(自己位置)を推定し、自車両周辺の地図情報をHMI装置5を介して出力する。また、ナビゲーションシステム4は、推定された自車両の位置情報および地図データベースの地図情報に基づいて、設定された目的地に至るまでの目標ルートを算出する。自車両の位置情報および地図情報は、認知判断装置6へ送信される。
The
HMI装置5は、自車両のドライバもしくは乗員、もしくはその両方と車両の車載制御システムとの間で情報の入力および出力を行う手段を備えた装置である。HMI装置5によって取得された入力情報はナビゲーションシステムまたは認知判断装置6へ送信される。情報入力操作手段としては、タッチパネルであっても操作ボタン、音声入力であっても良く、ドライバ、もしくは乗員が情報をHMI装置5に情報を入力することができる手段であれば良い。
The
タッチパネルは、例えば目的地や経路の設定、地図の拡大および縮小、運転モード(自動運転または手動運転)の設定等を行うのに用いられる。操作ボタンは、例えば音量調整や自動運転から手動運転への切り替え等を行うのに用いられる。 The touch panel is used, for example, to set a destination or a route, enlarge or reduce a map, set an operation mode (automatic operation or manual operation), and the like. The operation buttons are used, for example, for adjusting the volume and switching from automatic operation to manual operation.
また、ドライバおよび乗員に対し、情報および警報を出力するための手段として、文字または画像情報を表示するディスプレイ装置と音を発生するスピーカーを備える。ディスプレイは、目標ルートの表示、目的地までの案内表示(次の交差点を左折するなど)、運転モードの表示、自車両の走行状態のモニタリング等を行うのに用いられる。スピーカーは、ディスプレイの表示と連動して、目的地までの案内、自車両の走行または周辺環境に関する警報および注意喚起、運転操作の指示等を発信するのに用いられる。 Further, as a means for outputting information and an alarm to the driver and the occupant, a display device for displaying text or image information and a speaker for generating sound are provided. The display is used to display the target route, guide to the destination (turn left at the next intersection, etc.), display the driving mode, monitor the driving state of the own vehicle, and the like. The speaker is used in conjunction with the display to transmit guidance to the destination, warning and alerting regarding the driving of the own vehicle or the surrounding environment, instruction of driving operation, and the like.
なお、本実施の形態では、HMI装置5の一例として上記の装置の組み合わせを示しているが、それに限定するものではなく、例えば情報入力のHMI装置として、音声認識装置を備えてもよい。また、情報出力のHMI装置5として、ランプ、ドライバに振動を与える振動器、ドライバ用座席の角度又は位置を変更するドライバ座席調整器等を備えてもよい。
In the present embodiment, the combination of the above devices is shown as an example of the
認知判断装置6は、図1に詳細を図示しないが、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリおよび入出力インタフェース等を有しており、自車両を制御するコンピュータである。上記ROMには、オブジェクトを認識し、その認識結果に基づき自動運転レベルを切り替えるか否かを判断する認識部と、自動運転の戦略を決定する運転行動計画と、自車の軌道を計画する軌道計画部のプログラムと、が記憶されており、自車両の周辺環境を認識し、その認識結果に基づき、自車両が安全にオブジェクトを回避できる目標軌道を生成し、車両運動制御装置7へ送信する。ただし、上記機能は一例に過ぎず、それに限定されるものではない。車両運動制御装置7は自車両が目標軌道に追従するように前記操舵制御機構の指令値、エンジン制御機構の指令値、およびブレーキ制御機構の指令値を演算し、各制御機構の操舵制御装置8、車両速度制御装置9、ブレーキ制御装置10へ送信する。各制御機構の操舵制御装置8、車両速度制御装置9、ブレーキ制御装置10は、認知判断装置6の指令値を受信し、当該の指令値に基づき各制御機構を制御する。なお、認知判断装置6は、複数の認知判断装置から構成されていても良い。
Although the details are not shown in FIG. 1, the
操舵制御装置8は、例えば、車両のEPS(Electric Power Steering:電動パワーステアリングシステム)を制御する電子ユニットである。操舵制御装置8は、電動パワーステアリングシステムのうち、車両の操舵トルクをコントロールするアシストモータを駆動させることにより、車両の操舵角を制御する。操舵制御装置8は、認知判断装置6からの制御信号に応じて操舵角を制御する。
The
車両速度制御装置9は、車両の車両速度を制御する電子制御ユニットである。車両速度制御装置9は、例えば、エンジンに対する燃料の供給量及び空気の供給量をコントロールすることで車両の速度を制御する。なお、車両速度制御装置9は、車両がハイブリッド車又は電気自動車である場合には、動力源として駆動するモータの制御を行うモータ制御部として機能する。車両速度制御装置9は、車両運動制御装置7からの制御信号に応じて車両の速度を制御する。
The vehicle speed control device 9 is an electronic control unit that controls the vehicle speed of the vehicle. The vehicle speed control device 9 controls the speed of the vehicle by, for example, controlling the amount of fuel supplied to the engine and the amount of air supplied. When the vehicle is a hybrid vehicle or an electric vehicle, the vehicle speed control device 9 functions as a motor control unit that controls a motor driven as a power source. The vehicle speed control device 9 controls the speed of the vehicle in response to a control signal from the vehicle
ブレーキ制御装置10は、車両のブレーキ制御機構を制御する電子制御ユニットである。ブレーキ制御機構としては、例えば、液圧ブレーキ制御機構を用いることができる。ブレーキ制御装置10は、液圧ブレーキ制御機構に付与する液圧を調整することで、車両の車輪へ付与する制動力をコントロールする。ブレーキ制御装置10は、認知判断装置6からの制御信号に応じて車輪への制動力を制御する。なお、ブレーキ制御装置10は、車両が回生ブレーキ制御機構を備えている場合、液圧ブレーキ制御機構及び回生ブレーキ制御機構の両方を制御してもよい。
The
以上により、車載制御システム1は、認識した自車両の周囲環境に応じて、車両速度制御装置9、ブレーキ制御装置10を制御することで車両の速度を適切に制御するとともに、操舵制御機構を制御し自動車線維持制御、自動車線変更制御、自動合流制御、自動分岐制御、運転レベルの切り替えなどを実現することができる。
As described above, the in-
次に、図2を参照して、認知判断装置6の構成について説明する。図2は本発明の第1実施例に係る認知判断装置のブロック構成図である。
Next, the configuration of the
図2に示すように、認知判断装置6は、認識部61、責任判定部62、リスク予測部63、運転行動計画部64、軌道計画部65から構成されている。これらの制御プログラムはROMに記憶されており、CPUにて実行される。
As shown in FIG. 2, the
認識部61は、各外界センサ2の情報に基づき標識、白線、道路端、オブジェクトを認識し、標識、白線、道路端、オブジェクトの認識結果をリスク予測部63、運転行動計画部64、軌道計画部65に出力し、オブジェクトの認識結果を責任判定部62に出力する。ここで、オブジェクトの情報は、オブジェクトの位置、速度、種類、オブジェクトが動的か静的なものかの情報を含む。オブジェクトを認識するためには、まず、外界センサ2から得られた情報に基づいて自車両周辺のオブジェクトを検出する。オブジェクトを検出するには、例えばミリ波レーダ(図示しない)を照射し、オブジェクトに反射されて帰ってくる電波を検出することにより、オブジェクトまでの距離と方向が検出される。別の手法(図示しない)では、距離センサにより検出された物標点の形状があらかじめ記憶されているテンプレートの形状と一致するか否かに基づいて、オブジェクトが検出される。上記手法により、オブジェクトを検出することで、オブジェクトの大きさ、形状、自車両からの位置、絶対および相対速度の情報が得られる。なお、上記のオブジェクト検出手法は一例を示したものに過ぎず、それに限定されるものではない。オブジェクト検出の方法は他にも存在するので、発明を実施するにあたっては任意の手法を適宜選択すれば良い。
The
次に、オブジェクトが検出された後、外界センサ2の情報に基づいて、オブジェクトの種類を特定する。オブジェクトを特定するのに、例えばステレオカメラから取得された画像を、あらかじめ機械学習された識別器に与え、その識別器の出力結果に後処理(詳細は後述する)を加えることによってオブジェクトがデータベース上のどの種類に属しているかが特定される。なお、識別器としてニューラルネットワークやサポートベクターマシン等があり、本実施例では、任意の識別器を用いても良い。また、複数の識別器を組み合わせて使用するようにしても良い。さらに、詳細は割愛するが、画像を識別器に入力する前に、カメラから取得された画像に対し、フィルタリング等の前処理や特徴抽出の処理を施しても良い。
Next, after the object is detected, the type of the object is specified based on the information of the
次に、前記後処理の一例を説明するために、識別器としてニューラルネットワークが用いられると仮定する。一般に、ニューラルネットワークは、入力画像があらかじめ定義された各々の種類に属する可能性を割合として出力する。前記ニューラルネットワークの出力結果から、出力値が最も高いものを選択し、その値があらかじめ設定された閾値以上の場合は、オブジェクトの種類を前記の出力値に対応した種類と決定する。一方、前記の出力値が閾値未満のとき、オブジェクトの種類は特定不能とする。すなわち、オブジェクトの種類は不明である。なお、上記の後処理の手法は一例であり、本発明の理解を容易するための例示に過ぎず、本発明は上述の手法に限定されるものではない。なお,標識、白線、道路端の認識手法は、パターンマッチングやハフ変換によるエッジ抽出などの一般的な手法を用いる。 Next, in order to explain an example of the post-processing, it is assumed that a neural network is used as a discriminator. In general, the neural network outputs the possibility that the input image belongs to each of the predefined types as a percentage. From the output results of the neural network, the one having the highest output value is selected, and when the value is equal to or more than a preset threshold value, the type of the object is determined to be the type corresponding to the output value. On the other hand, when the output value is less than the threshold value, the type of the object cannot be specified. That is, the type of object is unknown. The above-mentioned post-treatment method is an example, and is merely an example for facilitating the understanding of the present invention, and the present invention is not limited to the above-mentioned method. For the recognition method of signs, white lines, and road edges, general methods such as pattern matching and edge extraction by Hough transform are used.
責任判定部62は、車両がシステム責任の自動運転状態において、認識部61のオブジェクト情報と外界センサ2の情報に基づき自動運転レベルを切り替える必要があるかどうかを判断し、ドライバ責任の自動運転か、システム責任の自動運転かを表す責任状態量をHMI装置5に出力するとともに、オブジェクトが静的オブジェクトか動的オブジェクトかの判定結果をリスク予測部63に出力する。HMI装置5は責任判定部62の情報を出力して報知し、ドライバに注意喚起を行う。なお、標識、白線、道路端の認識結果を、責任判定部62の判断に用いる構成としてもよい。
The
次に、リスク予測部63は、前記認識部61の認識結果と前記責任判定部62の判定結果に基づいてオブジェクトの衝突リスクを予測し、衝突危険度を運転行動計画部64と軌道計画部65に出力する。オブジェクトの衝突危険度として、例えば最大値を100、最小値を0とし、その数値が高いほど衝突危険度が高いことを表すようにしても良い。リスク予測部63は、例えば次のように、オブジェクトの相対位置、相対速度、オブジェクトの種類、動的オブジェクトであるか静的オブジェクトであるか等に基づき衝突危険度を設定する。
Next, the
次に図3を用いて、オブジェクトに対する回避軌道について説明する。図3Aは種類が特定できるオブジェクトが存在する場合の回避軌道を示す図である。 Next, the avoidance trajectory for the object will be described with reference to FIG. FIG. 3A is a diagram showing an avoidance trajectory when an object whose type can be specified exists.
図3Aにおいて、自車両はシステム責任の自動運転状態において片側2車線の道路の左側車線を走行している。左側車線には障害物となるオブジェクトが存在する。オブジェクトの周りには、オブジェクトを中心として円状に分別された衝突危険度を設定する。衝突危険度は、オブジェクトその物の危険度が高く、オブジェクトからの距離が遠くなるほど低くなる。また、衝突危険度を示す円の大きさは、検出されるオブジェクトの種類によって異なるよう設定する。 In FIG. 3A, the own vehicle is traveling in the left lane of a road having two lanes on each side in a system-responsible automatic driving state. There are obstacles in the left lane. Around the object, the collision risk is set in a circle around the object. The collision risk is high for the object itself and decreases as the distance from the object increases. In addition, the size of the circle indicating the collision risk is set so as to differ depending on the type of the detected object.
図3Aにおいて、(a)はオブジェクトが子供と判断された場合の回避軌道を示しており、(b)はオブジェクトが大人と判断された場合の回避軌道を示している。 In FIG. 3A, (a) shows an avoidance trajectory when the object is determined to be a child, and (b) shows an avoidance trajectory when the object is determined to be an adult.
図3Aに示すように、外界センサ2から得られた情報に基づいて、オブジェクトの種類が特定できる場合は、オブジェクトの種類に基づいて衝突危険度のエリアを算出する。例えば、(a)に示すようにオブジェクトが子供と判断された場合は、(b)に示す大人と判断された場合よりも衝突危険度のエリアを広く予測する。このようにすることで、子供と判断された場合には、後述する軌道計画部65は、子供が飛び出す可能性を考慮した大きな回避軌道を生成することができる。すなわち、オブジェクトの種類に応じて適切な回避軌道を生成することができる。責任判定部62は、システム責任の自動運転状態において、外界センサ2から得られた情報に基づいてオブジェクトの種類が特定できる場合は、システム責任の自動運転状態を継続する。
As shown in FIG. 3A, when the type of the object can be specified based on the information obtained from the
次にオブジェクトの種類が特定できない場合について説明する。図3Bは種類の特定不可の静的オブジェクトが存在する場合の回避軌道を示す図である。図3Cは種類の特定不可の動的オブジェクトが存在する場合の回避軌道を示す図である。 Next, the case where the object type cannot be specified will be described. FIG. 3B is a diagram showing an avoidance trajectory when a static object of an unspecified type exists. FIG. 3C is a diagram showing an avoidance trajectory when a type of unspecified dynamic object exists.
図3Bに示すように、オブジェクトの種類が特定できず、かつ静的オブジェクトである場合は、オブジェクトが動かないという前提で、オブジェクト周辺に衝突危険度を設定する。このようにすることで、後述する軌道計画部65は、衝突リスクを過大に評価して大きな回避軌道をとることなく、ドライバの感覚に合った回避軌道を生成することができる。責任判定部62は、システム責任の自動運転状態において、外界センサ2から得られた情報に基づいてオブジェクトの種類が特定できず、かつ静的オブジェクトである場合は、システム責任の自動運転状態を継続する。
As shown in FIG. 3B, when the type of the object cannot be specified and it is a static object, the collision risk is set around the object on the assumption that the object does not move. By doing so, the
また、図3Cに示すように、オブジェクトの種類が特定できず、かつ動的オブジェクトである場合は、オブジェクトがどのような挙動をするか予測できないため、例えば子供と同様にオブジェクトが道路に飛び出すことを想定し、静的オブジェクトよりも広い範囲となるように衝突危険度を設定する。
責任判定部62は、システム責任の自動運転状態において、外界センサ2から得られた情報に基づいてオブジェクトの種類が特定できず、かつ動的オブジェクトである場合は、システム責任の自動運転状態からドライバ責任の自動運転状態に切り替える。このようにすることで、オブジェクトの種類が特定できない、かつ動的オブジェクトである場合は、最悪状態を想定した回避軌道を生成することができる。上記の衝突危険度の算出方法は、一例に過ぎず、それに限定されるものではない。リスク予測部63で算出した前記衝突危険度を運転行動計画部64と軌道計画部65に出力する。
Further, as shown in FIG. 3C, when the type of the object cannot be specified and it is a dynamic object, it is not possible to predict how the object will behave. Therefore, for example, the object jumps out on the road like a child. Assuming, set the collision risk so that it has a wider range than static objects.
In the system-responsible automatic operation state, the
運転行動計画部64は、各内界センサ3の情報、ナビゲーションシステム4からの地図情報、前記リスク予測部63の出力結果、認識部61の標識、白線、道路端、オブジェクトの情報に基づき、自車両が今後とる運転行動(実行される機能)を計画する。ここで、運転行動は、例えば自車線内走行制御、自動合流制御、自動車線変更制御、自動分岐制御、交差点右折、交差点左折、交差点直進などの自動運転の機能である。ただし、上記機能に限定されるものではなく、運転行動は走行車線などの情報で表現されても良い。軌道計画部65は、前記運転行動、地図情報、白線、道路端、オブジェクトの情報、リスク予測部63の出力結果に基づき、目標軌道を計画する。
The driving
次に、図4を参照して、第1実施例に係る車載制御システム1の責任判定部62の処理フローについて説明する。図4は本発明の第1実施例に係る責任判定部のフローチャートである。
Next, with reference to FIG. 4, the processing flow of the
この処理により、自車両の周辺環境に応じて、システム責任の自動運転を継続するか、ドライバ責任の自動運転に切り替えるかを判断することができる。以下に説明する状況では、車載制御システム1により、自動車線維持制御、自動車線変更制御、および航行制御を含む自動運転が行われていることを想定する。
By this process, it is possible to determine whether to continue the system-responsible automatic driving or switch to the driver-responsible automatic driving according to the surrounding environment of the own vehicle. In the situation described below, it is assumed that the vehicle-mounted
ステップS101では、認識部61のオブジェクト認識結果を受信し、オブジェクトの情報を取得する。
In step S101, the object recognition result of the
次に、ステップS102では、前記認識部61のオブジェクト認識結果に基づいてオブジェクトの種類が特定可能かどうかを判断する。ここで、オブジェクトの種類が特定可能の場合(ステップS102のYes)、責任判定部62は、システム責任の自動運転レベルをHMI装置5に出力し、システム責任の自動運転をそのまま継続し、システム責任の自動運転に対応した責任状態量を設定する(ステップS105)。
Next, in step S102, it is determined whether or not the type of the object can be specified based on the object recognition result of the
一方、オブジェクトの種類が特定不能の場合(ステップS102のNo)、ステップS103に進み、外界センサ2の情報に基づいて、オブジェクトが動的オブジェクトであるか静的オブジェクトであるかを判別する。動的オブジェクトは、他車両、歩行者のように移動可能なオブジェクトであり、静的オブジェクトは建築物のように移動不能なオブジェクトである。
On the other hand, when the type of the object cannot be specified (No in step S102), the process proceeds to step S103, and it is determined whether the object is a dynamic object or a static object based on the information of the
なお、オブジェクトを静的オブジェクトあるいは動的オブジェクトの判別は、フィルタ、オプティカルフロー(動きベクトル)、およびパターンマッチングなどの一般的な手法のうち、任意の手法を用いる。また、オプティカルフローとパターンマッチングのように、複数の手法を組み合わせて利用するようにしても良い。 To determine whether an object is a static object or a dynamic object, any of the general methods such as filter, optical flow (motion vector), and pattern matching is used. Further, a plurality of methods may be used in combination, such as optical flow and pattern matching.
オプティカルフローは、オブジェクトの種類によらずオブジェクトの動きを検出することができるが、止まっている歩行者のような場合では、歩行者は静的オブジェクトに判別される。一方、パターンマッチングは、オブジェクトの動きによらずに、オブジェクトを静的かあるいは動的オブジェクトかの判別は可能であるが、あらかじめ学習されていないオブジェクトには判別できない。このように、オプティカルフローとパターンマッチングを組み合わせることによって、歩行者のような動く可能性があるオブジェクトを正しく判別することが可能で、さらには、未知のオブジェクトでも、そのオブジェクトが動いていれば正しく判別することができる。 Optical flow can detect the movement of an object regardless of the type of object, but in the case of a stationary pedestrian, the pedestrian is identified as a static object. On the other hand, pattern matching can discriminate whether an object is static or dynamic regardless of the movement of the object, but cannot discriminate an object that has not been learned in advance. In this way, by combining optical flow and pattern matching, it is possible to correctly identify objects that may move, such as pedestrians, and even unknown objects are correct if they are moving. It can be determined.
上記判断に基づき、オブジェクトが静的オブジェクトに判別された場合(ステップS103のYes)、責任判定部62は、システム責任の自動運転レベルをHMI装置5に出力し、システム責任の自動運転を継続し、システム責任の自動運転に対応した責任状態量を設定する(ステップS105)。
When the object is determined to be a static object based on the above determination (Yes in step S103), the
一方、オブジェクトが動的オブジェクトに判別された場合(ステップS103のNo)、ステップS104に進み、責任判定部62は、ドライバ責任の自動運転に対応した責任状態量を設定し、その責任状態量をHMI装置5に出力する。責任判定部62は、HMI装置5を介してドライバに注意喚起し、ハンドルを把持するように要求する等の働き掛けを行い、ドライバ責任の自動運転に切り替える。図示しないが、上記のいずれの自動運転レベルであっても、ドライバが運転操作(ハンドル操作、ブレーキやアクセルを踏む等)を行った場合は、自動運転システムは自動運転を終了する。
On the other hand, when the object is determined to be a dynamic object (No in step S103), the process proceeds to step S104, and the
ステップS106では、静的のオブジェクトであるか動的のオブジェクトであるかの情報をリスク予測部63に送信するとともに、責任状態量をHMI装置5に出力する。
In step S106, information on whether the object is a static object or a dynamic object is transmitted to the
以上説明した自動運転システムを適用した場合の動作例を図5に示す。
図5Aは種類が特定できるオブジェクトが存在する場合の自動運転システムの動作を示す図、図5Bは種類の特定不可の静的オブジェクトが存在する場合の自動運転システムの動作を示す図、図5Cは種類の特定不可の動的オブジェクトが存在する場合の自動運転システムの動作を示す図である。
FIG. 5 shows an operation example when the automatic driving system described above is applied.
FIG. 5A is a diagram showing the operation of the automatic driving system when an object whose type can be specified exists, FIG. 5B is a diagram showing the operation of the automatic driving system when a static object whose type cannot be specified exists, and FIG. 5C is a diagram showing the operation of the automatic driving system. It is a figure which shows the operation of the automatic driving system when the dynamic object of an unspecified kind exists.
図5Aに示すように、種類が特定できるオブジェクトが存在する場合、自車両の認知判断装置6はそのオブジェクトの種類に応じて衝突回避の軌道を算出し、その軌道に基づいてシステム責任の自動運転を継続する。
As shown in FIG. 5A, when there is an object whose type can be specified, the
また、図5Bに示すように、種類特定不可の静的オブジェクトが存在する場合、自車両の認知判断装置6は静的オブジェクトに応じて衝突回避の軌道を算出し、システム責任の自動運転を継続する。
Further, as shown in FIG. 5B, when there is a static object whose type cannot be specified, the
一方、図5Cに示すように、ステップS103の処理(図4)により、種類特定不可の動的オブジェクトが存在する場合には、自車両の認知判断装置6は、ステップS104の処理(図4)により、システム責任の自動運転からドライバ責任の自動運転に切り替えるよう自動運転レベルを変更するともに、HMI装置5を介してドライバに注意喚起し、ハンドルを把持するように要求する等の働き掛けを行う。
On the other hand, as shown in FIG. 5C, when there is a dynamic object whose type cannot be specified by the process of step S103 (FIG. 4), the
以上より、本実施例に示した自動運転システムを適用することで、オブジェクトの種類が特定できない場合において、動的オブジェクトか静的オブジェクトかに応じて自動運転レベルを適切に変更し、走行の安全性と自動運転システムの可用性を両立することができる。すなわち、オブジェクトの正確なリスク予測ができない“オブジェクトの種類は不明だが、オブジェクトが動的な場合”は、ドライバ責任の自動運転に切り替えることで、ドライバに予め正確なリスク予測ができない可能性を伝えることができ、システムの安全性を向上させることができる。オブジェクトの正確なリスク予測ができる“オブジェクトの種類は不明だが、オブジェクトが静的な場合”は、システム責任の自動運転を継続することで自動運転システムの可用性を向上させることができる。 From the above, by applying the automatic driving system shown in this embodiment, when the type of object cannot be specified, the automatic driving level is appropriately changed according to whether it is a dynamic object or a static object, and driving safety is achieved. It is possible to achieve both safety and availability of the autonomous driving system. In other words, if the accurate risk prediction of the object is not possible "the type of the object is unknown, but the object is dynamic", by switching to the driver-responsible automatic operation, the driver is informed of the possibility that the accurate risk prediction cannot be made in advance. It is possible to improve the safety of the system. When the risk of an object can be predicted accurately "when the type of object is unknown, but the object is static", the availability of the autonomous driving system can be improved by continuing the automatic operation of system responsibility.
次に本発明の第2実施例について図6を用いて説明する。図6は本発明の第2実施例に係る責任判定部のフローチャートである。第1実施例と同様の内容については、適宜その説明を省略する。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a flowchart of the responsibility determination unit according to the second embodiment of the present invention. The description of the same contents as those in the first embodiment will be omitted as appropriate.
図6において、第1実施例と異なるところは、認識されたオブジェクトまでの距離Lが閾値TL以上であるかどうかを判断する処理(ステップS201)を有することにある。オブジェクトまでの距離は、例えば第1実施例で説明したミリ波レーダを使用する。 FIG. 6 is different from the first embodiment in that it has a process (step S201) of determining whether or not the distance L to the recognized object is equal to or greater than the threshold value TL. For the distance to the object, for example, the millimeter wave radar described in the first embodiment is used.
第2実施例では、認識部61によりオブジェクトが認識された後、その認識結果に基づき、オブジェクトとの距離を判定する。具体的には、自車両とオブジェクトまでの距離Lを、あらかじめ設定した閾値TLと比較し、距離Lが閾値TL以上の場合(ステップS201のYes)は、ステップS105に進んでシステム責任の自動運転を継続し、距離Lが閾値TL未満の場合(ステップS201のNo)は、ステップS102に遷移する。
In the second embodiment, after the object is recognized by the
ここで、閾値TLは、例えば認識性能試験において、様々なオブジェクトの距離の条件下で、オブジェクトの認識性能が所定の性能に達成できるオブジェクトの距離の最大値に設定する。なお、上記のTL算出方法は一例に過ぎず、それに限定されるものではない。また、オブジェクトの距離は、上述のように認識部61の認識結果から取得する方法以外に、例えば自車両外部のセンサからオブジェクトの距離情報を取得することもできる。本発明の実施にあたっては、オブジェクトの距離情報の取得は、任意の手法を適宜用いるようにすると良い。
Here, the threshold value TL is set to the maximum value of the object distance at which the object recognition performance can achieve a predetermined performance under the conditions of various object distances, for example, in a recognition performance test. The above TL calculation method is merely an example, and is not limited thereto. In addition to the method of acquiring the distance of the object from the recognition result of the
第2実施例では、遠くに存在する物体の種類の特定や、静的オブジェクトであるか動的オブジェクトであるかを判断することが技術的に難しく、誤判定が起こりやすいことから、頻繁に自動運転レベルを解除してしまう恐れがあり、この場合ドライバの利便性を損なう問題があった。そこで、第2実施例を適用することにより、認識の必要がない十分に遠く存在するオブジェクトを無視することによって、自動運転レベルの切り替え回数を抑制することができ、ドライバの利便性を向上することができる。 In the second embodiment, it is technically difficult to identify the type of an object existing in the distance and to determine whether it is a static object or a dynamic object, and erroneous determination is likely to occur. There is a risk that the driving level will be canceled, and in this case there is a problem that the convenience of the driver is impaired. Therefore, by applying the second embodiment, it is possible to suppress the number of times the automatic driving level is switched by ignoring objects that exist far enough away that do not need to be recognized, and improve the convenience of the driver. Can be done.
次に本発明の第3実施例について図7及び図8を用いて説明する。なお、第1実施例と同様の内容については、適宜その説明を省略する。図7は本発明の第3実施例に係る車載制御システムのシステム構成図、図8は本発明の第3実施例に係る責任判定部のフローチャートである。 Next, a third embodiment of the present invention will be described with reference to FIGS. 7 and 8. The same contents as those in the first embodiment will be omitted as appropriate. FIG. 7 is a system configuration diagram of the vehicle-mounted control system according to the third embodiment of the present invention, and FIG. 8 is a flowchart of the responsibility determination unit according to the third embodiment of the present invention.
図7において、第1実施例(図1)と異なるところは、無線通信装置11を備えたことにある。
In FIG. 7, the difference from the first embodiment (FIG. 1) is that the
無線通信装置11は、自車両と外部の車載制御システムと通信するための機器である。図7に示すように、無線通信装置11は、外界センサ2と内界センサ3とHMI装置5の情報を取得し、遠隔制御システム12へ送信する機能を有する。また、図7に示すように、遠隔制御システム12からの指令を無線通信装置11を介して受信することが可能になる。遠隔制御システム12は、車両から離れた位置において車両を制御するものである。第3実施例では、オペレータが遠隔制御システム12を用いて車両の制御を行う。
The
オペレータは、遠隔制御システム12を用いて車両の走行状態をモニタリングし、ハンドルとブレーキとアクセルの指令値を生成することで、操舵制御装置8、車両速度制御装置9、ブレーキ制御装置10を制御することができる。すなわち、オペレータは第1実施例、第2実施例では実現できなかった、車両の遠隔操作を行うことができる。
The operator controls the
次に、図8を用いて、第3実施例における認知判断装置の責任判定部62の処理フローについて説明する。なお、図8におけるステップS101−S106は、第1実施例の説明における図4のステップS101−S106と同様であるため、その説明を省略する。第1実施例と異なるところは、第1実施例のフローチャートにステップS301−ステップS303の処理を追加したところにある。
Next, the processing flow of the
第3実施例では、ステップS103にてオブジェクトが静的オブジェクトである動的オブジェクトであるかの判断を行い、オブジェクトが動的オブジェクトである場合、内界センサ3の情報に基づいて、車内にドライバが存在しているか否かを判断する(ステップS301)。ここで、使用する内界センサは、例えば座席に搭載されている着座センサである。着座センサに基づいて、ドライバが車内に存在する場合(ステップS301のYes)は、第1実施例と同様に、ドライバ責任の自動運転に対応した責任状態量を設定(ステップS104)し、その責任状態量をHMI装置5に出力し、HMI装置5を介してドライバに注意喚起し、ハンドルを把持するように要求する等の働き掛けを行い、ドライバ責任の自動運転に切り替える。
In the third embodiment, it is determined in step S103 whether the object is a dynamic object that is a static object, and if the object is a dynamic object, the driver in the vehicle is based on the information of the
一方、車内にドライバが存在しないと判断された場合(ステップS301のNo)は、まず、自車両の内部情報と周辺環境の情報を外部車載制御システムへ転送し(S9)、次に、オペレータ責任の自動運転に対応した責任状態量を設定(ステップS303)し、その責任状態量をHMI装置5に出力し、HMI装置5は無線通信装置11を介してその情報を遠隔に居るオペレータに注意喚起し、遠隔操作が行える体制で待機するように要求等の働き掛けを行い、オペレータ責任の自動運転に切り替える。ここで、オペレータの判断によりオーバーライドが必要な場合は、遠隔操作用の操作デバイスを用いて運転操作(ジョイスティックやハンドル操作、ブレーキやアクセルを踏む等)を行うことにより、オーバーライドすることが可能である(図示しない)。
On the other hand, when it is determined that the driver does not exist in the vehicle (No in step S301), the internal information of the own vehicle and the information of the surrounding environment are first transferred to the external in-vehicle control system (S9), and then the operator is responsible. The responsible state amount corresponding to the automatic operation of the above is set (step S303), the responsible state amount is output to the
なお、図示はしないが、第3実施例の責任判定部には、ステップS101とステップS102との間に、第2実施例の図6で用いたステップS201の処理を挿入することも可能である。ステップS201の処理を追加することにより、認識する必要のない遠くに存在する物体を無視することができ、自動運転レベルの切り替え回数を抑制することができ、運転の監視者の利便性を向上することができる。 Although not shown, it is also possible to insert the process of step S201 used in FIG. 6 of the second embodiment between step S101 and step S102 in the responsibility determination unit of the third embodiment. .. By adding the process of step S201, it is possible to ignore an object existing in a distant place that does not need to be recognized, the number of times of switching the automatic driving level can be suppressed, and the convenience of the driving monitor is improved. be able to.
第1実施例と第2実施例では、車内にドライバが存在することを想定していた。第3実施例では、車内にドライバが存在しない無人走行車両においても、安全にオブジェクトを回避できるので、自動運転システムの可用性を向上することができる。 In the first embodiment and the second embodiment, it was assumed that the driver exists in the vehicle. In the third embodiment, the object can be safely avoided even in an unmanned traveling vehicle in which the driver does not exist in the vehicle, so that the availability of the automatic driving system can be improved.
第1実施例〜第3実施例では、認知判断装置6を車両に搭載した例で説明したが、認知判断装置6は車両外の任意の場所に設置することも可能ある。その場合、車両には第3実施例で説明したような無線通信装置11を搭載し、車両に搭載された各機器と、任意の場所に設置された認知判断装置6との間を無線で接続する。
このように構成することにより、認知判断装置6を任意の場所に設置した場合においても、認知判断装置6を車両に搭載したものと同等の機能を実現することができる。
In the first to third embodiments, the
With this configuration, even when the
さらに、本発明の適用可能な分野は車載システムに限らず、詳細は割愛するが、自律運転のロボット等も適応することも可能である。 Further, the applicable field of the present invention is not limited to the in-vehicle system, and although details are omitted, autonomous driving robots and the like can also be applied.
なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。 The present invention is not limited to the above-described examples, and includes various modifications. The above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
1…車載制御システム、2…外界センサ、3…内界センサ、4…ナビゲーションシステム、5…HMI装置、6…認知判断装置、7…車両運動制御装置、8…操舵制御装置、9…車両速度制御装置、10…ブレーキ制御装置、11…無線通信装置、12…遠隔制御システム、61…認識部、62…責任判定部、63…リスク予測部、64…運転行動計画部、65…軌道計画部。 1 ... In-vehicle control system, 2 ... External sensor, 3 ... Internal sensor, 4 ... Navigation system, 5 ... HMI device, 6 ... Cognitive judgment device, 7 ... Vehicle motion control device, 8 ... Steering control device, 9 ... Vehicle speed Control device, 10 ... Brake control device, 11 ... Wireless communication device, 12 ... Remote control system, 61 ... Recognition unit, 62 ... Responsibility judgment unit, 63 ... Risk prediction unit, 64 ... Driving behavior planning unit, 65 ... Track planning unit ..
Claims (8)
前記認知判断装置は、前記車両がシステム責任の自動運転状態において、前記外界センサが前記オブジェクトの情報を検出すると前記オブジェクトの種類を判別し、前記オブジェクトの種類が特定できない場合には前記オブジェクトが動的か否かを判別し、判別結果の応じた運転支援を行うことを特徴とする自動運転システム。 An automatic driving system including an outside world sensor that acquires outside world information of a vehicle and a cognitive determination device that calculates a target trajectory of the vehicle so as to avoid a collision with an object based on the information of the outside world sensor.
The cognitive determination device determines the type of the object when the external sensor detects the information of the object in the automatic driving state in which the vehicle is responsible for the system, and moves the object when the type of the object cannot be specified. An automatic driving system characterized in that it determines whether or not it is correct and provides driving support according to the determination result.
前記認知判断装置は、責任判定部を備え、
前記責任判定部は、前記オブジェクトが動的か否かを判別し、前記オブジェクトが静的の場合には、前記システム責任の自動運転を継続させることを特徴とする自動運転システム。 In claim 1,
The cognitive judgment device includes a responsibility judgment unit.
The responsibility determination unit determines whether or not the object is dynamic, and if the object is static, the automatic operation system is characterized in that the automatic operation of the system responsibility is continued.
前記責任判定部は、前記オブジェクトが動的の場合には、前記システム責任の自動運転からドライバ責任の自動運転に切り替えることを特徴とする自動運転システム。 In claim 2,
The responsibility determination unit is an automatic driving system characterized in that when the object is dynamic, the automatic driving of the system responsibility is switched to the automatic driving of the driver responsibility.
前記責任判定部の情報を出力するHMI装置を備え、
前記責任判定部は、前記オブジェクトが動的の場合には、ドライバ責任の自動運転であることを前記HMI装置を介してドライバに報知すること特徴とする自動運転システム。 In claim 3,
It is equipped with an HMI device that outputs the information of the responsibility determination unit.
The responsible determination unit is an automatic driving system characterized in that, when the object is dynamic, the driver is notified via the HMI device that the automatic driving is the responsibility of the driver.
前記責任判定部は、前記外界センサから得られる前記オブジェクトとの距離が、予め設定した閾値以上の場合には前記システム責任の自動運転を継続させることを特徴とする自動運転システム。 In claim 3,
The responsible determination unit is an automatic driving system characterized in that when the distance to the object obtained from the external sensor is equal to or greater than a preset threshold value, the automatic operation of the system responsibility is continued.
前記責任判定部は、前記外界センサから得られる前記オブジェクトとの距離が、予め設定した閾値未満の場合には前記オブジェクトの種類を判別することを特徴とする自動運転システム。 In claim 5,
The responsibility determination unit is an automatic driving system characterized in that when the distance to the object obtained from the outside world sensor is less than a preset threshold value, the type of the object is determined.
前記車両の内部状態を検出する内界センサを備え、
前記責任判定部は、前記内界センサの情報に基づき、前記車両内にドライバが存在しているか否かを判断し、前記オブジェクトが動的の場合であって、前記車両内に前記ドライバが存在している場合には、前記システム責任の自動運転からドライバ責任の自動運転に切り替えることを特徴とする自動運転システム。 In claim 3,
It is equipped with an internal sensor that detects the internal state of the vehicle.
The responsibility determination unit determines whether or not a driver exists in the vehicle based on the information of the internal sensor, and when the object is dynamic, the driver exists in the vehicle. If so, the automatic driving system is characterized by switching from the system-responsible automatic driving to the driver-responsible automatic driving.
オペレータが前記車両の遠隔操作を行う遠隔制御システムとの間で通信を行う無線通信装置を備え、
前記責任判定部は、前記オブジェクトが動的の場合であって、前記車両内に前記ドライバが存在していない場合には、前記システム責任の自動運転から前記オペレータが前記遠隔制御システムを用いて前記車両の制御を行うオペレータ責任の自動運転に切り替えることを特徴とする自動運転システム。 In claim 7,
A wireless communication device for the operator to communicate with a remote control system for remote control of the vehicle is provided.
In the case where the object is dynamic and the driver does not exist in the vehicle, the responsibility determination unit causes the operator to use the remote control system from the automatic operation of the system responsibility. An automatic driving system characterized by switching to automatic driving that is the responsibility of the operator who controls the vehicle.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019112528A JP7285705B2 (en) | 2019-06-18 | 2019-06-18 | Autonomous driving system |
PCT/JP2020/022283 WO2020255751A1 (en) | 2019-06-18 | 2020-06-05 | Autonomous driving system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019112528A JP7285705B2 (en) | 2019-06-18 | 2019-06-18 | Autonomous driving system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020203587A true JP2020203587A (en) | 2020-12-24 |
JP7285705B2 JP7285705B2 (en) | 2023-06-02 |
Family
ID=73836873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019112528A Active JP7285705B2 (en) | 2019-06-18 | 2019-06-18 | Autonomous driving system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7285705B2 (en) |
WO (1) | WO2020255751A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102327664B1 (en) * | 2020-12-31 | 2021-11-18 | (주)제인모터스 | Forced Control System For Electic Vehicles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024053344A1 (en) * | 2022-09-05 | 2024-03-14 | パナソニックIpマネジメント株式会社 | Information processing method, information processing device, and program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016037149A (en) * | 2014-08-07 | 2016-03-22 | 日立オートモティブシステムズ株式会社 | Vehicle control system, and action plan system equipped with the same |
JP2018176879A (en) * | 2017-04-06 | 2018-11-15 | トヨタ自動車株式会社 | Course setting device and course setting method |
WO2019003295A1 (en) * | 2017-06-27 | 2019-01-03 | 本田技研工業株式会社 | Travel control system and vehicle control method |
JP2019045985A (en) * | 2017-08-30 | 2019-03-22 | 本田技研工業株式会社 | Vehicle control device, vehicle, vehicle control method, and program |
-
2019
- 2019-06-18 JP JP2019112528A patent/JP7285705B2/en active Active
-
2020
- 2020-06-05 WO PCT/JP2020/022283 patent/WO2020255751A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016037149A (en) * | 2014-08-07 | 2016-03-22 | 日立オートモティブシステムズ株式会社 | Vehicle control system, and action plan system equipped with the same |
JP2018176879A (en) * | 2017-04-06 | 2018-11-15 | トヨタ自動車株式会社 | Course setting device and course setting method |
WO2019003295A1 (en) * | 2017-06-27 | 2019-01-03 | 本田技研工業株式会社 | Travel control system and vehicle control method |
JP2019045985A (en) * | 2017-08-30 | 2019-03-22 | 本田技研工業株式会社 | Vehicle control device, vehicle, vehicle control method, and program |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102327664B1 (en) * | 2020-12-31 | 2021-11-18 | (주)제인모터스 | Forced Control System For Electic Vehicles |
Also Published As
Publication number | Publication date |
---|---|
WO2020255751A1 (en) | 2020-12-24 |
JP7285705B2 (en) | 2023-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11738779B2 (en) | Autonomous driving vehicle system | |
US11809194B2 (en) | Target abnormality determination device | |
US9963149B2 (en) | Vehicle control device | |
US20230015466A1 (en) | Vehicle control system, and vehicle control method | |
JP6361567B2 (en) | Automated driving vehicle system | |
US9796416B2 (en) | Automated driving apparatus and automated driving system | |
JP6323385B2 (en) | Vehicle travel control device | |
CN110473416B (en) | Vehicle control device | |
US9896098B2 (en) | Vehicle travel control device | |
JP2017013749A (en) | Automatic driving vehicle control device | |
US10421394B2 (en) | Driving assistance device, and storage medium | |
JP7163729B2 (en) | vehicle controller | |
US11332128B2 (en) | Driving assistance apparatus | |
JP2018154215A (en) | Driving assist control device | |
CN109720343B (en) | Vehicle control apparatus | |
US20220253065A1 (en) | Information processing apparatus, information processing method, and information processing program | |
KR20190045308A (en) | A vehicle judging method, a traveling path correcting method, a vehicle judging device, and a traveling path correcting device | |
EP3885238A1 (en) | An incremental lateral control system using feedbacks for autonomous driving vehicles | |
JP7379033B2 (en) | Driving support method and driving support device | |
WO2020255751A1 (en) | Autonomous driving system | |
KR20180126224A (en) | vehicle handling methods and devices during vehicle driving | |
JP2017073059A (en) | Lane change support device | |
JP7531539B2 (en) | Vehicle control device, vehicle control method, and program | |
JP7075550B1 (en) | Vehicle control devices, vehicle control methods, and programs | |
JP7461989B2 (en) | Driving assistance device, driving assistance method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7285705 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |