JP2020201145A - Flow rate measurement device - Google Patents

Flow rate measurement device Download PDF

Info

Publication number
JP2020201145A
JP2020201145A JP2019108564A JP2019108564A JP2020201145A JP 2020201145 A JP2020201145 A JP 2020201145A JP 2019108564 A JP2019108564 A JP 2019108564A JP 2019108564 A JP2019108564 A JP 2019108564A JP 2020201145 A JP2020201145 A JP 2020201145A
Authority
JP
Japan
Prior art keywords
pipe
pressure
outlet
flow rate
pressure guiding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019108564A
Other languages
Japanese (ja)
Inventor
敦仁 水野
Atsuhito Mizuno
敦仁 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019108564A priority Critical patent/JP2020201145A/en
Publication of JP2020201145A publication Critical patent/JP2020201145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

To provide a flow rate measurement device that can easily and reliably perform air bleed of a connecting pipe of an outlet-side differential pressure type flowmeter for measuring the flow rate of coolant flowing in an outlet-side pipe of cooling equipment located in an environment where an inlet-side pipe inside installed at the inlet side of a cooling object is under a positive pressure while the outlet-side pipe inside is under a negative pressure.SOLUTION: A flow rate measurement device 1 measures the flow rate of coolant flowing in an outlet-side pipe 13 of cooling equipment 10 using an outlet-side differential pressure type flowmeter 3. In the cooling equipment 10, the inlet-side pipe 12 inside is under a positive pressure environment while the outlet-side pipe 13 inside is under a negative pressure environment. In the flow rate measurement device 1, the inlet-side pipe 12 and connecting pipes 33 and 34 of the outlet-side differential pressure type flowmeter 3 are connected by a bypass pipe 4 that pumps the coolant W flowing in the inlet-side pipe 12 under the positive pressure environment directly to the connecting pipes 33 and 34 during air bleed of the connecting pipes 33 and 34 of the outlet-side differential pressure type flowmeter 3.SELECTED DRAWING: Figure 2

Description

本発明は、冷却対象物の入側に設置された入側配管内が正圧環境下にあり出側配管内が負圧環境下にある冷却設備において、出側配管内を流れる冷却水の流量を測定する出側差圧式流量計の導圧管のエア抜きを確実に行うことができる流量測定装置に関する。 According to the present invention, in a cooling facility in which the inside of the inlet pipe installed on the inlet side of the object to be cooled is in a positive pressure environment and the inside of the outlet pipe is in a negative pressure environment, the flow rate of cooling water flowing in the outlet pipe The present invention relates to a flow rate measuring device capable of reliably bleeding air from a pressure guiding pipe of a discharge side differential pressure type flow meter.

例えば、製鉄所などの工場においては、冷却対象物の入側に設置された入側配管内を流れる冷却水が冷却対象物内を循環して冷却対象物を冷却し、冷却対象物を冷却した冷却水が冷却対象物の出側に設置された出側配管内を流れて排出される冷却設備が設けられることがある。冷却対象物が高温になるのを回避するためである。
このような冷却設備において、冷却対象物の冷却が適切に行われているかを検証するために冷却対象物の出側に設置された出側配管内を流れる冷却水の流量を出側差圧式流量計によって測定する場合がある。
For example, in a factory such as a steel mill, the cooling water flowing in the inlet pipe installed on the inlet side of the object to be cooled circulates in the object to be cooled to cool the object to be cooled and cool the object to be cooled. A cooling facility may be provided in which the cooling water flows through the outlet pipe installed on the outlet side of the object to be cooled and is discharged. This is to prevent the object to be cooled from becoming hot.
In such a cooling facility, in order to verify whether the cooling object is properly cooled, the flow rate of the cooling water flowing in the outlet piping installed on the outlet side of the cooling object is the outlet differential pressure flow rate. It may be measured by a meter.

ここで、従来、この種の差圧式流量計として、例えば、特許文献1乃至3に示すものが知られている。
特許文献1に示す差圧式流量測定装置は、被計測流体の流体圧力を検知する第1圧力部と第2圧力部とが圧力損失部を介して配置されている。そして、第1圧力検知部と第2圧力検知部との間を単一の流路で接続する接続流路部と、ポペット弁体を有する開閉弁部と、開閉弁部の開閉動作を制御する演算部とを備えている。
Here, conventionally, as a differential pressure type flowmeter of this kind, for example, those shown in Patent Documents 1 to 3 are known.
In the differential pressure type flow rate measuring device shown in Patent Document 1, a first pressure portion and a second pressure portion for detecting the fluid pressure of the fluid to be measured are arranged via a pressure loss portion. Then, the opening / closing operation of the connection flow path portion that connects the first pressure detection unit and the second pressure detection unit with a single flow path, the on-off valve portion having the poppet valve body, and the on-off valve portion is controlled. It has a calculation unit.

また、特許文献2に示す流量測定装置は、主流路に1次側圧力流路及び2次側圧力流路を介して差圧式流量センサー部を接続した流量測定装置であって、差圧式流量センサー部は、第1ダイヤフラムと第2ダイヤフラムによってチャンバ部を第1チャンバと第2チャンバに区画し、各ダイヤフラム間に配置された荷重検出センサーからに信号を流量信号に変換する演算部を備えている。そして、1次側圧力流路は主流路と第1チャンバを接続し、2次側圧力流路は主流路と第2チャンバを接続し、各チャンバ間に差圧を生じさせる圧力損失部と、各圧力流路が接続する間の主流路内に開閉弁部を備えている。 Further, the flow rate measuring device shown in Patent Document 2 is a flow rate measuring device in which a differential pressure type flow rate sensor unit is connected to the main flow path via a primary side pressure flow path and a secondary side pressure flow path, and is a differential pressure type flow rate sensor. The unit is provided with a calculation unit that divides the chamber unit into a first chamber and a second chamber by a first diaphragm and a second diaphragm, and converts a signal from a load detection sensor arranged between the diaphragms into a flow rate signal. .. The primary pressure flow path connects the main flow path and the first chamber, and the secondary side pressure flow path connects the main flow path and the second chamber, and a pressure loss portion that generates a differential pressure between the chambers. An on-off valve portion is provided in the main flow path while each pressure flow path is connected.

更に、特許文献3に示す流量測定装置は、主流路に1次側圧力流路及び2次側圧力流路を介して差圧式流量センサー部を接続している。そして、差圧式流量センサー部は、シャフト部の両端に対向配置された第1ダイヤフラムと第2ダイヤフラムとの間に第1チャンバと第2チャンバとを区画する中間ダイヤフラムを有する中間区画部を備えている。また、この流量測定装置は、第1ダイヤフラムの背圧を検出する荷重検出センサーからの信号を流量信号に変換する演算部と、各チャンバ間に差圧を生じさせる圧力損失部と、各圧力流路が接続する間の主流路内に開閉弁部とを備えている。 Further, in the flow rate measuring device shown in Patent Document 3, a differential pressure type flow rate sensor unit is connected to the main flow path via the primary side pressure flow path and the secondary side pressure flow path. The differential pressure type flow rate sensor unit includes an intermediate partition portion having an intermediate diaphragm that partitions the first chamber and the second chamber between the first diaphragm and the second diaphragm arranged to face each other at both ends of the shaft portion. There is. Further, this flow rate measuring device includes a calculation unit that converts a signal from a load detection sensor that detects the back pressure of the first diaphragm into a flow rate signal, a pressure loss unit that generates a differential pressure between each chamber, and each pressure flow. An on-off valve portion is provided in the main flow path while the roads are connected.

特開2010−78365号公報JP-A-2010-78365 特開2010−44011号公報JP-A-2010-44011 特開2010−44012号公報JP-A-2010-44012

ところで、前述の冷却設備において、冷却対象物の出側に設置された出側配管内を流れる冷却水の流量を出側差圧式流量計によって測定するに際しては、先ず、最初に、出側配管内の冷却水の圧力を差圧伝送器に導く、出側差圧式流量計における導圧管のエア抜きを行う必要がある。
一方、このような冷却設備において、その設備の設置状況により、冷却対象物の入側に設置された入側配管内が正圧環境下に置かれ、冷却対象物の出側に設置された出側配管内が負圧環境下に置かれることになってしまうことがある。例えば、出側配管が入側配管に対して高い場所に設置され、出側配管から排出タンクに向けて排出される冷却水の自重により出側配管内のエアが引っ張られて出側配管内が負圧になってしまう場合である。
By the way, in the above-mentioned cooling equipment, when measuring the flow rate of the cooling water flowing in the outlet pipe installed on the outlet side of the object to be cooled by the outlet differential pressure type flow meter, first of all, in the outlet pipe. It is necessary to bleed the air from the pressure guiding pipe in the outlet side differential pressure type flow meter that guides the pressure of the cooling water to the differential pressure transmitter.
On the other hand, in such a cooling facility, depending on the installation status of the facility, the inside of the inlet piping installed on the inlet side of the object to be cooled is placed in a positive pressure environment, and the outlet installed on the outlet side of the object to be cooled. The inside of the side pipe may be placed in a negative pressure environment. For example, the outlet pipe is installed at a high place with respect to the inlet pipe, and the air in the outlet pipe is pulled by the weight of the cooling water discharged from the outlet pipe toward the discharge tank, so that the inside of the outlet pipe is This is the case when the pressure becomes negative.

このような出側配管内が負圧環境下にある冷却設備において、出側差圧式流量計の導圧管のエア抜きを行うと、エア抜き弁が開放されたときに導圧管内に大気が吸引されてしまうため、導圧管のエア抜きは非常に困難な作業となる。このため、一般的に、出側配管内が負圧環境下にある冷却設備において、出側差圧式流量計の導圧管のエア抜きを行う場合、エア抜き弁から別途用意した流体を負圧によって吸引させて導圧管を流体で満たすようにし、これによりエア抜きを行うようにしている。
しかしながら、この方法にあっては、大気圧と導圧管の内部の差圧が十分に無い場合、流体が適切に吸引できず、導圧管の内部全域に流体が行きわたらないという問題がある。また、導圧管内に流体を吸引している途中で大気を吸引してしまうことがある。
In such a cooling facility where the inside of the outlet pipe is in a negative pressure environment, if the air is bleeded from the pressure guide pipe of the outlet side differential pressure type flow meter, the air is sucked into the pressure guide pipe when the air bleeding valve is opened. Therefore, bleeding air from the pressure guiding pipe is a very difficult task. For this reason, in general, in a cooling facility in which the inside of the outlet pipe is in a negative pressure environment, when air is bleeded from the pressure guiding pipe of the outlet differential pressure type flow meter, a fluid separately prepared from the air bleeding valve is used by negative pressure. It is sucked to fill the pressure guiding tube with a fluid, thereby bleeding air.
However, this method has a problem that if the difference pressure between the atmospheric pressure and the inside of the pressure guiding tube is not sufficient, the fluid cannot be sucked properly and the fluid does not spread over the entire inside of the pressure guiding tube. In addition, the atmosphere may be sucked while the fluid is being sucked into the pressure guiding tube.

一方、従来の特許文献1に示す差圧式流量測定装置、特許文献2に示す流量測定装置、及び特許文献3に示す流量測定装置にあっては、入側配管内が正圧環境下にあり出側配管内が負圧環境下にある冷却設備において、出側差圧式流量計の導圧管のエア抜きを行うことについては一切開示されていない。
従って、本発明はこの従来の問題点を解決するためになされたものであり、その目的は、冷却対象物の入側に設置された入側配管内が正圧環境下にあり出側配管内が負圧環境下にある冷却設備において、出側配管内を流れる冷却水の流量を測定する出側差圧式流量計の導圧管のエア抜きを容易、確実に行うことができる流量測定装置を提供することにある。
On the other hand, in the conventional differential pressure type flow rate measuring device shown in Patent Document 1, the flow rate measuring device shown in Patent Document 2, and the flow rate measuring device shown in Patent Document 3, the inside of the inlet pipe is in a positive pressure environment. There is no disclosure about bleeding air from the pressure guiding tube of the output side differential pressure type flow meter in a cooling facility where the inside of the side piping is in a negative pressure environment.
Therefore, the present invention has been made to solve this conventional problem, and an object of the present invention is that the inside of the inlet pipe installed on the inlet side of the object to be cooled is in a positive pressure environment and the inside of the outlet pipe. Provides a flow rate measuring device that can easily and surely bleed the air in the pressure guiding tube of the output side differential pressure type flow meter that measures the flow rate of the cooling water flowing in the output side piping in the cooling equipment in a negative pressure environment. To do.

上記課題を解決するために、本発明の一態様に係る流量測定装置は、冷却対象物の入側に設置された入側配管内を流れる冷却水が前記冷却対象物内を循環して前記冷却対象物を冷却し、前記冷却対象物を冷却した冷却水が前記冷却対象物の出側に設置された出側配管内を流れて排出される冷却設備の前記出側配管内を流れる冷却水の流量を出側差圧式流量計によって測定する流量測定装置であって、前記冷却設備において前記入側配管内が正圧環境下にあり前記出側配管内が負圧環境下にある流量測定装置において、前記入側配管と前記出側差圧式流量計の導圧管とを、前記出側差圧式流量計の導圧管のエア抜きの際に前記入側配管内を正圧環境下で流れる冷却水を前記導圧管に直接圧送するバイパス管で接続したことを要旨とする。 In order to solve the above problems, in the flow rate measuring device according to one aspect of the present invention, the cooling water flowing in the inlet pipe installed on the inlet side of the object to be cooled circulates in the object to be cooled to cool the object. Cooling water that cools the object and cools the cooling object flows through the outlet pipe of the cooling facility that is discharged by flowing through the outlet pipe installed on the outlet side of the cooling object. In a flow rate measuring device that measures the flow rate with an output side differential pressure type flow meter, in the cooling facility, the inside of the inlet side pipe is in a positive pressure environment and the inside of the outlet side pipe is in a negative pressure environment. When the inlet pipe and the pressure guiding pipe of the outlet side differential pressure type flow meter are bleeding air from the pressure guiding pipe of the outlet side differential pressure type flow meter, the cooling water flowing in the inlet pipe under a positive pressure environment is supplied. The gist is that it is connected to the pressure guiding pipe by a bypass pipe that directly pumps.

本発明に係る流量測定装置によれば、冷却対象物の入側に設置された入側配管内が正圧環境下にあり出側配管内が負圧環境下にある冷却設備において、出側配管内を流れる冷却水の流量を測定する出側差圧式流量計の導圧管のエア抜きを容易、確実に行うことができる流量測定装置を提供できる。 According to the flow rate measuring device according to the present invention, in a cooling facility in which the inside of the inlet pipe installed on the inlet side of the object to be cooled is in a positive pressure environment and the inside of the outlet pipe is in a negative pressure environment, the outlet pipe It is possible to provide a flow rate measuring device capable of easily and surely bleeding air from a pressure guiding tube of a discharge side differential pressure type flow meter that measures the flow rate of cooling water flowing inside.

本発明の第1実施形態に係る流量測定装置の全体の構成を概略的に示す図である。It is a figure which shows schematic the whole structure of the flow rate measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る流量測定装置の主要部の構成を示す図である。It is a figure which shows the structure of the main part of the flow rate measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る流量測定装置の主要部の構成を示す図である。It is a figure which shows the structure of the main part of the flow rate measuring apparatus which concerns on 2nd Embodiment of this invention.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, arrangement, etc. of the components. It is not specified in the following embodiments. The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings.

(第1実施形態)
図1には、本発明の第1実施形態に係る流量測定装置の全体の概略構成が示されており、流量測定装置1は、冷却設備10の入側配管12内を流れる冷却水Wの流量を入側差圧式流量計2によって測定するとともに、冷却設備10の出側配管13内を流れる冷却水Wの流量を出側差圧式流量計3によって測定するものである。
ここで、冷却設備10は、例えば、製鉄所内に設置される設備であり、冷却対象物11の入側に設置された入側配管12内を流れる冷却水Wが冷却対象物11内を循環して冷却対象物11を冷却し、冷却対象物11を冷却した冷却水Wが冷却対象物11の出側に設置された出側配管13内を流れて排水タンク14に排出される。この冷却設備10において、入側配管12内が正圧環境下にあり、出側配管13内が負圧環境下になっている。出側配管13の最も高い位置が入側配管12の最も高い位置よりも高く設置され、出側配管13の最も高い位置から排水タンクまでの行程が長く、出側配管から排出タンクに向けて排出される冷却水の自重により出側配管内のエアが引っ張られて出側配管内が負圧になってしまっている。
(First Embodiment)
FIG. 1 shows an overall schematic configuration of the flow rate measuring device according to the first embodiment of the present invention, in which the flow rate measuring device 1 shows the flow rate of the cooling water W flowing in the inlet pipe 12 of the cooling facility 10. Is measured by the inlet side differential pressure type flow meter 2, and the flow rate of the cooling water W flowing in the outlet side pipe 13 of the cooling facility 10 is measured by the outlet side differential pressure type flow meter 3.
Here, the cooling facility 10 is, for example, a facility installed in a steel mill, and the cooling water W flowing in the inlet pipe 12 installed on the inlet side of the cooling object 11 circulates in the cooling object 11. The cooling object 11 is cooled, and the cooling water W that has cooled the cooling object 11 flows through the outlet pipe 13 installed on the outlet side of the cooling object 11 and is discharged to the drain tank 14. In the cooling facility 10, the inside of the inlet side pipe 12 is in a positive pressure environment, and the inside of the outlet side pipe 13 is in a negative pressure environment. The highest position of the outlet pipe 13 is installed higher than the highest position of the inlet pipe 12, and the stroke from the highest position of the outlet pipe 13 to the drainage tank is long, and the pipe is discharged from the outlet pipe toward the discharge tank. The air in the outlet pipe is pulled by the weight of the cooling water, and the pressure inside the outlet pipe becomes negative.

そして、第1実施形態に係る流量測定装置1の主要部の構成が図2に示されており、入側配管12内を流れる冷却水Wの流量を測定する入側差圧式流量計2は、入側配管12を横断するように設置されたオリフィスプレート21を備えている。オリフィスプレート21には、外径が入側配管12の内径よりも小さいオリフィス21aが形成され、このオリフィス21aが圧損原を構成する。また、入側差圧式流量計2は、オリフィスプレート21の前後の入側配管12内の差圧の信号を図示しない演算器に伝送する差圧伝送器22を備えている。演算器は、差圧伝送器22からの差圧の信号に基づいて、入側配管12内を流れる冷却水Wの流量を演算する。 The configuration of the main part of the flow rate measuring device 1 according to the first embodiment is shown in FIG. 2, and the inlet differential pressure type flow meter 2 for measuring the flow rate of the cooling water W flowing in the inlet pipe 12 is It is provided with an orifice plate 21 installed so as to cross the inlet pipe 12. The orifice plate 21 is formed with an orifice 21a having an outer diameter smaller than the inner diameter of the inlet pipe 12, and this orifice 21a constitutes a pressure drop source. Further, the inlet differential pressure type flow meter 2 includes a differential pressure transmitter 22 that transmits a differential pressure signal in the inlet pipe 12 before and after the orifice plate 21 to an arithmetic unit (not shown). The arithmetic unit calculates the flow rate of the cooling water W flowing in the inlet pipe 12 based on the differential pressure signal from the differential pressure transmitter 22.

そして、入側差圧式流量計2は、オリフィスプレート21の前側(図2における左側、上流側)の入側配管12内の圧力を取り出し、差圧伝送器22に導く導圧管としての前側導圧管23と、オリフィスプレート21の後側(図2における右側、下流側)の入側配管12内の圧力を取り出し、差圧伝送器22に導く導圧管としての後側導圧管24とを備えている。
前側導圧管23は、オリフィスプレート21の前側の入側配管12内の圧力を取り出す前側第1導圧配管23aと、前側第1導圧配管23aから分岐してかかる圧力を差圧伝送器22に導く前側第2導圧配管23bとを備えている。前側第1導圧配管23aには、元弁25aが設置され、前側第2導圧配管23bは前側第1導圧配管23aの元弁25aの設置位置よりも下流側から分岐する。そして、前側第2導圧配管23bには停止弁26aが設置されている。また、前側第1導圧配管23aの下流端にはエア抜き弁28aが設置されている。
Then, the inlet differential pressure type flowmeter 2 takes out the pressure in the inlet pipe 12 on the front side (left side and upstream side in FIG. 2) of the orifice plate 21 and guides the pressure to the differential pressure transmitter 22 on the front side pressure guiding tube. 23 and a rear pressure guiding tube 24 as a pressure guiding tube for taking out the pressure in the inlet pipe 12 on the rear side (right side, downstream side in FIG. 2) of the orifice plate 21 and guiding it to the differential pressure transmitter 22 are provided. ..
The front pressure guiding pipe 23 branches from the front first pressure guiding pipe 23a for taking out the pressure in the inlet pipe 12 on the front side of the orifice plate 21 and the front first pressure guiding pipe 23a, and applies the pressure to the differential pressure transmitter 22. It is provided with a front second pressure guiding pipe 23b for guiding. A main valve 25a is installed in the front side first pressure guiding pipe 23a, and the front side second pressure guiding pipe 23b branches from the downstream side of the installation position of the main valve 25a of the front side first pressure guiding pipe 23a. A stop valve 26a is installed in the front second pressure guiding pipe 23b. Further, an air bleeding valve 28a is installed at the downstream end of the front first pressure guiding pipe 23a.

また、後側導圧管24は、オリフィスプレート21の後側の入側配管12内の圧力を取り出す後側第1導圧配管24aと、後側第1導圧配管24aから分岐してかかる圧力を差圧伝送器22に導く後側第2導圧配管24bとを備えている。後側第1導圧配管24aには、元弁25bが設置され、後側第2導圧配管24bは後側第1導圧配管24aの元弁25bの設置位置よりも下流側から分岐する。そして、後側第2導圧配管24bには停止弁26bが設置されている。また、後側第1導圧配管24aの下流端にはエア抜き弁28bが設置されている。 Further, the rear pressure guiding pipe 24 branches from the rear first pressure guiding pipe 24a for taking out the pressure in the inlet pipe 12 on the rear side of the orifice plate 21 and the pressure applied from the rear first pressure guiding pipe 24a. It is provided with a second pressure guiding pipe 24b on the rear side leading to the differential pressure transmitter 22. A main valve 25b is installed in the rear first pressure guiding pipe 24a, and the rear second pressure guiding pipe 24b branches from the downstream side of the installation position of the main valve 25b of the rear first pressure guiding pipe 24a. A stop valve 26b is installed in the second pressure guiding pipe 24b on the rear side. Further, an air bleeding valve 28b is installed at the downstream end of the rear first pressure guiding pipe 24a.

また、前側第2導圧配管23bの停止弁26aの設置位置よりも後側の位置から分岐して後側第2導圧配管24bの停止弁26bの設置位置よりも前側の位置に接続される分岐管27aが設けられ、この分岐管27aに均圧弁27が設置されている。
また、出側配管13内を流れる冷却水Wの流量を測定する出側差圧式流量計3は、出側配管13を横断するように設置されたオリフィスプレート31を備えている。オリフィスプレート31には、外径が出側配管13の内径よりも小さいオリフィス31aが形成されている。また、出側差圧式流量計3は、オリフィスプレート31の前後の出側配管13内の差圧の信号を図示しない演算器に伝送する差圧伝送器32とを備えている。演算器は、差圧伝送器32からの差圧の信号に基づいて、出側配管13内を流れる冷却水Wの流量を演算する。
Further, it branches from a position rearward from the installation position of the stop valve 26a of the front side second pressure guiding pipe 23b and is connected to a position on the front side of the installation position of the stop valve 26b of the rear side second pressure guiding pipe 24b. A branch pipe 27a is provided, and a pressure equalizing valve 27 is installed in the branch pipe 27a.
Further, the outlet side differential pressure type flow meter 3 for measuring the flow rate of the cooling water W flowing in the outlet side pipe 13 includes an orifice plate 31 installed so as to cross the outlet side pipe 13. The orifice plate 31 is formed with an orifice 31a having an outer diameter smaller than the inner diameter of the outlet pipe 13. Further, the output side differential pressure type flow meter 3 includes a differential pressure transmitter 32 that transmits a differential pressure signal in the output side pipes 13 before and after the orifice plate 31 to an arithmetic unit (not shown). The arithmetic unit calculates the flow rate of the cooling water W flowing in the outlet pipe 13 based on the differential pressure signal from the differential pressure transmitter 32.

そして、出側差圧式流量計3は、オリフィスプレート31の前側(図2における左側)の出側配管13内の圧力を取り出し、差圧伝送器32に導く導圧管としての前側導圧管33と、オリフィスプレート31の後側(図2における右側)の出側配管13内の圧力を取り出し、差圧伝送器32に導く導圧管としての後側導圧管34とを備えている。
前側導圧管33は、オリフィスプレート31の前側の出側配管13内の圧力を取り出す前側第1導圧配管33aと、前側第1導圧配管33aから分岐してかかる圧力を差圧伝送器22に導く前側第2導圧配管33bとを備えている。前側第1導圧配管33aには、元弁35aが設置され、前側第2導圧配管33bは前側第1導圧配管33aの元弁35aの設置位置よりも下流側から分岐する。そして、前側第2導圧配管33bには停止弁36aが設置されている。また、前側第1導圧配管33aの下流端にはエア抜き弁38aが設置されている。
Then, the outlet side differential pressure type flowmeter 3 takes out the pressure in the outlet side pipe 13 on the front side (left side in FIG. 2) of the orifice plate 31 and guides the pressure to the differential pressure transmitter 32 with the front side pressure guiding pipe 33 as a pressure guiding pipe. A rear pressure guiding pipe 34 is provided as a pressure guiding pipe that takes out the pressure in the outlet pipe 13 on the rear side (right side in FIG. 2) of the orifice plate 31 and guides it to the differential pressure transmitter 32.
The front pressure guiding pipe 33 branches from the front first pressure guiding pipe 33a for taking out the pressure in the outlet pipe 13 on the front side of the orifice plate 31 and the pressure applied from the front first pressure guiding pipe 33a to the differential pressure transmitter 22. It is provided with a front second pressure guiding pipe 33b for guiding. A main valve 35a is installed in the front side first pressure guiding pipe 33a, and the front side second pressure guiding pipe 33b branches from the downstream side of the installation position of the main valve 35a of the front side first pressure guiding pipe 33a. A stop valve 36a is installed in the front second pressure guiding pipe 33b. Further, an air bleeding valve 38a is installed at the downstream end of the front first pressure guiding pipe 33a.

また、後側導圧管34は、オリフィスプレート31の後側の出側配管13内の圧力を取り出す後側第1導圧配管34aと、後側第1導圧配管34aから分岐してかかる圧力を差圧伝送器32に導く後側第2導圧配管34bとを備えている。後側第1導圧配管34aには、元弁35bが設置され、後側第2導圧配管34bは後側第1導圧配管34aの元弁35bの設置位置よりも下流側から分岐する。そして、後側第2導圧配管34bには停止弁36bが設置されている。また、後側第1導圧配管34aの下流端にはエア抜き弁38bが設置されている。 Further, the rear pressure guiding pipe 34 branches from the rear first pressure guiding pipe 34a for taking out the pressure in the outlet pipe 13 on the rear side of the orifice plate 31 and the pressure applied from the rear first pressure guiding pipe 34a. It is provided with a rear second pressure guiding pipe 34b that leads to the differential pressure transmitter 32. A main valve 35b is installed in the rear first pressure guiding pipe 34a, and the rear second pressure guiding pipe 34b branches from the downstream side of the installation position of the main valve 35b of the rear first pressure guiding pipe 34a. A stop valve 36b is installed in the rear second pressure guiding pipe 34b. Further, an air bleeding valve 38b is installed at the downstream end of the rear first pressure guiding pipe 34a.

また、前側第2導圧配管33bの停止弁36aの設置位置よりも後側の位置から分岐して後側第2導圧配管34bの停止弁36bの設置位置よりも前側の位置に接続される分岐管37aが設けられ、この分岐管37aに均圧弁37が設置されている。
そして、入側差圧式流量計2によって入側配管12内を流れる冷却水Wの流量を測定するに際しては前側導圧管23及び後側導圧管24内のエア抜きを行い、出側差圧式流量計3によって出側配管13内を流れる冷却水Wの流量を測定するに際しては前側導圧管33及び後側導圧管34内のエア抜きを行う必要がある。ここで、入側配管12内は正圧環境下にあるから入側差圧式流量計2の前側導圧管23及び後側導圧管24内のエア抜きは問題とならない。一方、出側配管13内は負圧環境下にあるから出側差圧式流量計3の前側導圧管33及び後側導圧管34内のエア抜きは問題となる。
Further, it branches from a position rearward from the installation position of the stop valve 36a of the front side second pressure guiding pipe 33b and is connected to a position on the front side of the installation position of the stop valve 36b of the rear side second pressure guiding pipe 34b. A branch pipe 37a is provided, and a pressure equalizing valve 37 is installed in the branch pipe 37a.
Then, when measuring the flow rate of the cooling water W flowing in the inlet pipe 12 by the inlet differential pressure type flow meter 2, air is bleeded in the front side pressure guiding pipe 23 and the rear side pressure guiding pipe 24, and the outlet side differential pressure type flow meter is used. When measuring the flow rate of the cooling water W flowing in the outlet side pipe 13 by 3, it is necessary to bleed the air in the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34. Here, since the inside of the inlet side pipe 12 is in a positive pressure environment, air bleeding in the front side pressure guiding pipe 23 and the rear side pressure guiding pipe 24 of the inlet side differential pressure type flow meter 2 does not matter. On the other hand, since the inside of the discharge side pipe 13 is in a negative pressure environment, air bleeding in the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the discharge side differential pressure type flow meter 3 becomes a problem.

この問題について説明すると、出側差圧式流量計3の前側導圧管33及び後側導圧管34内のエア抜きに際し、元弁35a及び元弁35bを開けるとともにエア抜き弁38a及びエア抜き弁38bを開けて前側第1導圧配管33a及び後側第1導圧配管34a内のエアを抜く。また、元弁35a及び元弁35bを閉めた状態で停止弁36a、停止弁36b及び図示しないドレン弁を開けるとともに、エア抜き弁38a及びエア抜き弁38bを開けて前側第2導圧配管33b及び後側第2導圧配管34b内のエアを抜く。この際に、出側配管13内は負圧環境下にあると、エア抜き弁38a及びエア抜き弁38bを開けたときに前側導圧管33及び後側導圧管34内、特に前側第1導圧配管33a及び後側第1導圧配管34a内に大気が吸引されてしまう。このため、前側導圧管33及び後側導圧管34内のエア抜きは非常に困難な作業となる。 Explaining this problem, when bleeding air in the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, the main valve 35a and the main valve 35b are opened, and the air bleeding valve 38a and the air bleeding valve 38b are opened. Open and bleed the air in the front side first pressure guiding pipe 33a and the rear side first pressure guiding pipe 34a. Further, with the main valve 35a and the main valve 35b closed, the stop valve 36a, the stop valve 36b and the drain valve (not shown) are opened, and the air bleeding valve 38a and the air bleeding valve 38b are opened to open the front second pressure guiding pipe 33b and The air in the rear second pressure guiding pipe 34b is evacuated. At this time, if the inside of the outlet side pipe 13 is in a negative pressure environment, when the air bleeding valve 38a and the air bleeding valve 38b are opened, the inside of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34, particularly the front side first pressure guiding Atmosphere is sucked into the pipe 33a and the rear first pressure guiding pipe 34a. Therefore, bleeding air in the front pressure guiding tube 33 and the rear pressure guiding tube 34 is a very difficult task.

従って、本実施形態に係る流量測定装置1においては、入側配管12と出側差圧式流量計3の前側導圧管33及び後側導圧管34とをバイパス管4で接続している。そして、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きの際に入側配管12内を正圧環境下で流れる冷却水Wをこのバイパス管4を介して前側導圧管33及び後側導圧管34に直接圧送するようにしている。 Therefore, in the flow rate measuring device 1 according to the present embodiment, the inlet side pipe 12 and the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 are connected by a bypass pipe 4. Then, when the air is bleeded from the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, the cooling water W flowing in the inlet side pipe 12 under a positive pressure environment is passed through the bypass pipe 4 to the front side. The pressure is sent directly to the pressure guiding pipe 33 and the rear pressure guiding pipe 34.

これについて具体的に説明すると、バイパス管4として、入側差圧式流量計2の前側導圧管23のうちの前側第1導圧配管23aを用いるとともに、前側第1導圧配管23aに接続されているエア抜き弁28aに第1バイパス管40を接続し、第1バイパス管40の下流端にエア抜き弁45を設置する。また、第1バイパス管40からエア抜き弁44を設置した第2バイパス管41を接続する。更に、第2バイパス管41から第3バイパス管42を分岐して、出側差圧式流量計3の前側導圧管33のうち前側第1導圧配管33aに接続されているエア抜き弁38aに第3バイパス管42を接続する。また、第2バイパス管41の端部から第4バイパス管43を延設して、出側差圧式流量計3の後側導圧管34のうち後側第1導圧配管34aに接続されているエア抜き弁38bに第4バイパス管43を接続してある。従って、バイパス管4は、前側第1導圧配管23a、第1バイパス管40、第2バイパス管41、第3バイパス管42、及び第4バイパス管43により構成されている。 Specifically explaining this, as the bypass pipe 4, the front side first pressure guiding pipe 23a of the front side pressure guiding pipe 23 of the inlet side differential pressure type flowmeter 2 is used, and the bypass pipe 4 is connected to the front side first pressure guiding pipe 23a. The first bypass pipe 40 is connected to the air bleeding valve 28a, and the air bleeding valve 45 is installed at the downstream end of the first bypass pipe 40. Further, the first bypass pipe 40 is connected to the second bypass pipe 41 in which the air bleeding valve 44 is installed. Further, the third bypass pipe 42 is branched from the second bypass pipe 41, and the air bleeding valve 38a connected to the front first pressure guiding pipe 33a of the front side pressure guiding pipe 33 of the outlet side differential pressure type flow meter 3 is connected to the first. 3 Connect the bypass pipe 42. Further, a fourth bypass pipe 43 is extended from the end of the second bypass pipe 41 and is connected to the rear first pressure guiding pipe 34a of the rear pressure guiding pipe 34 of the output side differential pressure type flow meter 3. A fourth bypass pipe 43 is connected to the air bleeding valve 38b. Therefore, the bypass pipe 4 is composed of the front side first pressure guiding pipe 23a, the first bypass pipe 40, the second bypass pipe 41, the third bypass pipe 42, and the fourth bypass pipe 43.

そして、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きに際しては、エア抜き弁45を閉めた状態で入側差圧式流量計2の元弁25a、エア抜き弁28a、エア抜き弁44、出側差圧式流量計3のエア抜き弁38a、エア抜き弁38b、元弁35a、及び元弁35bを開ける。これにより、入側配管12内を正圧環境下で流れる冷却水Wを、図2における矢印で示すように、入側差圧式流量計2の前側第1導圧配管23a、第1バイパス管40、第2バイパス管41、及び第3バイパス管42を介して前側導圧管33の前側第1導圧配管33aに圧送する。また、同時に、当該冷却水Wを、入側差圧式流量計2の前側第1導圧配管23a、第1バイパス管40、第2バイパス管41、及び第4バイパス管43を介して後側導圧管34の後側第1導圧配管34aに圧送する。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第1導圧配管33a内、後側第1導圧配管34a内が冷却水Wで完全に満たされ、エアを含む冷却水Wは出側配管13から排水タンク14に排出される。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第1導圧配管33a、後側第1導圧配管34aのエア抜きを、外部から大気を吸引することなく行うことができる。 Then, when bleeding air from the front pressure guiding pipe 33 and the rear pressure guiding pipe 34 of the outlet side differential pressure type flowmeter 3, the main valve 25a and the air bleeding valve of the inlet side differential pressure type flowmeter 2 with the air bleeding valve 45 closed. 28a, the air bleeding valve 44, the air bleeding valve 38a of the outlet side differential pressure type flow meter 3, the air bleeding valve 38b, the main valve 35a, and the main valve 35b are opened. As a result, as shown by the arrow in FIG. 2, the cooling water W flowing in the inlet side pipe 12 under a positive pressure environment is shown by the front side first pressure guiding pipe 23a and the first bypass pipe 40 of the inlet side differential pressure type flow meter 2. , The second bypass pipe 41 and the third bypass pipe 42 are pumped to the front first pressure guiding pipe 33a of the front pressure guiding pipe 33. At the same time, the cooling water W is led to the rear side via the front side first pressure guiding pipe 23a, the first bypass pipe 40, the second bypass pipe 41, and the fourth bypass pipe 43 of the inlet side differential pressure type flow meter 2. It is pumped to the first pressure guiding pipe 34a on the rear side of the pressure pipe 34. As a result, the inside of the front side first pressure guiding pipe 33a and the inside of the rear side first pressure guiding pipe 34a of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 are completely filled with the cooling water W. Then, the cooling water W containing air is discharged from the outlet pipe 13 to the drainage tank 14. As a result, the air is evacuated from the front side first pressure guiding pipe 33a and the rear side first pressure guiding pipe 34a of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 from the outside. You can do it without doing it.

また、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第2導圧配管33b、後側第2導圧配管34bのエア抜きにつき説明する。この際には、エア抜き弁45及び出側差圧式流量計3の元弁35a及び元弁35bを閉めた状態で、入側差圧式流量計2の元弁25a、エア抜き弁28a、エア抜き弁44、出側差圧式流量計3のエア抜き弁38a、エア抜き弁38b、停止弁36a、停止弁36b及び図示しないドレン弁を開ける。これにより、入側配管12内を正圧環境下で流れる冷却水Wを、入側差圧式流量計2の前側第1導圧配管23a、第1バイパス管40、第2バイパス管41、及び第3バイパス管42を介して前側導圧管33の前側第2導圧配管33bに圧送する。また、同時に、当該冷却水Wを、入側差圧式流量計2の前側第1導圧配管23a、第1バイパス管40、第2バイパス管41、及び第4バイパス管43を介して後側導圧管34の後側第2導圧配管34bに圧送する。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第2導圧配管33b内、後側第2導圧配管34b内が冷却水Wで完全に満たされ、エアを含む冷却水Wはドレン弁から排出される。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第2導圧配管33b、後側第2導圧配管34bのエア抜きを、外部から大気を吸引することなく行うことができる。 Further, air bleeding of the front side second pressure guiding pipe 33b and the rear side second pressure guiding pipe 34b of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 will be described. At this time, with the main valve 35a and the main valve 35b of the air bleeding valve 45 and the outlet side differential pressure type flowmeter 3 closed, the main valve 25a, the air bleeding valve 28a, and the air bleeding of the inlet side differential pressure type flowmeter 2. Open the valve 44, the air bleeding valve 38a, the air bleeding valve 38b, the stop valve 36a, the stop valve 36b, and the drain valve (not shown) of the discharge side differential pressure type flow meter 3. As a result, the cooling water W flowing in the inlet side pipe 12 under a positive pressure environment is passed through the front side first pressure guiding pipe 23a, the first bypass pipe 40, the second bypass pipe 41, and the first side differential pressure type flow meter 2. 3 The pressure is sent to the front second pressure guiding pipe 33b of the front pressure guiding pipe 33 via the bypass pipe 42. At the same time, the cooling water W is led to the rear side via the front side first pressure guiding pipe 23a, the first bypass pipe 40, the second bypass pipe 41, and the fourth bypass pipe 43 of the inlet side differential pressure type flow meter 2. It is pumped to the second pressure guiding pipe 34b on the rear side of the pressure pipe 34. As a result, the inside of the front side second pressure guiding pipe 33b and the inside of the rear side second pressure guiding pipe 34b of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 are completely filled with the cooling water W. Then, the cooling water W containing air is discharged from the drain valve. As a result, the air is evacuated from the front side second pressure guiding pipe 33b and the rear side second pressure guiding pipe 34b of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, and the atmosphere is sucked from the outside. You can do it without doing it.

なお、入側差圧式流量計2の前側第1導圧配管23a及び後側第1導圧配管24aのエア抜きに際しては、エア抜き弁45、エア抜き弁28a、エア抜き弁28b、元弁25a及び元弁25bを開ける。これにより、入側配管12内を正圧環境下で流れる冷却水Wが、入側差圧式流量計2の前側第1導圧配管23a及び後側第1導圧配管24aを流れて、エアを含む冷却水Wがエア抜き弁45及びエア抜き弁28bから排出され、前側第1導圧配管23a及び後側第1導圧配管24aのエア抜きがなされる。
また、入側差圧式流量計2の前側第2導圧配管23b及び後側第2導圧配管24bのエア抜きに際しては、元弁25a及び元弁25bを閉めた状態で、エア抜き弁45、エア抜き弁28a、エア抜き弁28b、停止弁26a、停止弁26b及び図示しないドレン弁を開ける。これにより、前側第2導圧配管23b内及び後側第2導圧配管24b内のエアがドレン弁から排出される。
When bleeding air from the front side first pressure guiding pipe 23a and the rear side first pressure guiding pipe 24a of the inlet side differential pressure type flow meter 2, the air bleeding valve 45, the air bleeding valve 28a, the air bleeding valve 28b, and the main valve 25a are used. And open the main valve 25b. As a result, the cooling water W flowing in the inlet side pipe 12 under a positive pressure environment flows through the front side first pressure guiding pipe 23a and the rear side first pressure guiding pipe 24a of the inlet side differential pressure type flow meter 2 to release air. The included cooling water W is discharged from the air bleeding valve 45 and the air bleeding valve 28b, and the air is bleeded from the front side first pressure guiding pipe 23a and the rear side first pressure guiding pipe 24a.
Further, when bleeding air from the front side second pressure guiding pipe 23b and the rear side second pressure guiding pipe 24b of the inlet side differential pressure type flow meter 2, the air bleeding valve 45, with the main valve 25a and the main valve 25b closed, Open the air bleeding valve 28a, the air bleeding valve 28b, the stop valve 26a, the stop valve 26b, and the drain valve (not shown). As a result, the air in the front side second pressure guiding pipe 23b and the rear side second pressure guiding pipe 24b is discharged from the drain valve.

そして、入側差圧式流量計2によって入側配管12内を流れる冷却水Wの流量を測定するときは、元弁25a、元弁25b、停止弁26a、及び停止弁26bを開け、エア抜き弁28a、エア抜き弁28b、エア抜き弁44、及びエア抜き弁45を閉めると共に、均圧弁27を閉めた状態で行う。
また、出側差圧式流量計3によって出側配管13内を流れる冷却水Wの流量を測定する時は、元弁35a、元弁35b、停止弁36a、及び停止弁36bを開け、エア抜き弁38a及びエア抜き弁38bを閉めると共に、均圧弁37を閉めた状態で行う。
Then, when measuring the flow rate of the cooling water W flowing in the inlet pipe 12 with the inlet differential pressure type flow meter 2, the main valve 25a, the main valve 25b, the stop valve 26a, and the stop valve 26b are opened, and the air bleeding valve is opened. 28a, the air bleeding valve 28b, the air bleeding valve 44, and the air bleeding valve 45 are closed, and the pressure equalizing valve 27 is closed.
Further, when measuring the flow rate of the cooling water W flowing in the outlet side pipe 13 with the outlet side differential pressure type flow meter 3, the main valve 35a, the main valve 35b, the stop valve 36a, and the stop valve 36b are opened to open the air bleeding valve. This is performed with the pressure equalizing valve 37 closed while the 38a and the air bleeding valve 38b are closed.

このように、第1実施形態に係る流量測定装置1によれば、冷却設備10において入側配管12内が正圧環境下にあり出側配管13内が負圧環境下にある流量測定装置1において、入側配管12と出側差圧式流量計3の導圧管としての前側導圧管33及び後側導圧管34とをバイパス管4で接続している。そして、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きの際に入側配管12内を正圧環境下で流れる冷却水Wをバイパス管4を介して前側導圧管33及び後側導圧管34に直接圧送する。これにより、冷却対象物11の入側に設置された入側配管12内が正圧環境下にあり出側配管13内が負圧環境下にある冷却設備10において、出側配管13内を流れる冷却水Wの流量を測定する出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きを容易、確実に行うことができる。 As described above, according to the flow rate measuring device 1 according to the first embodiment, in the cooling facility 10, the inside of the inlet side pipe 12 is in a positive pressure environment and the inside of the outlet side pipe 13 is in a negative pressure environment. In, the inlet side pipe 12 and the front side pressure guide pipe 33 and the rear side pressure guide pipe 34 as the pressure guide pipes of the outlet side differential pressure type flowmeter 3 are connected by a bypass pipe 4. Then, when the air is bleeded from the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, the cooling water W flowing in the inlet side pipe 12 under a positive pressure environment is guided to the front side through the bypass pipe 4. It is directly pumped to the pressure tube 33 and the rear pressure guiding tube 34. As a result, in the cooling facility 10 in which the inside of the inlet pipe 12 installed on the inlet side of the object to be cooled 11 is in a positive pressure environment and the inside of the outlet pipe 13 is in a negative pressure environment, the flow flows in the outlet pipe 13. It is possible to easily and surely bleed the air from the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 for measuring the flow rate of the cooling water W.

また、第1実施形態に係る流量測定装置1によれば、入側配管12に圧損原(オリフィス21a)を設置している。そして、バイパス管4を、入側配管12の圧損原(オリフィス21a)の設置位置よりも上流側(図2における左側、前側)の位置から分岐している。そして、このバイパス管4を出側差圧式流量計3の前側導圧管33及び後側導圧管34に接続している。これにより、入側配管12に圧損原を設置しない場合よりも確実に入側配管12内の正圧を取り出すことができ、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きの際に入側配管12内を正圧環境下で流れる冷却水Wをバイパス管4を介して前側導圧管33及び後側導圧管34に確実に圧送することができる。
また、第1実施形態に係る流量測定装置によれば、オリフィスプレート21を備えた入側差圧式流量計2によって入側配管12内を流れる冷却水Wの流量を測定するので、出側配管13内のみならず入側配管12内を流れる冷却水Wの流量をも測定することができる。
Further, according to the flow rate measuring device 1 according to the first embodiment, a pressure drop source (orifice 21a) is installed in the inlet pipe 12. Then, the bypass pipe 4 is branched from a position on the upstream side (left side, front side in FIG. 2) of the installation position of the pressure drop source (orifice 21a) of the inlet side pipe 12. Then, the bypass pipe 4 is connected to the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3. As a result, the positive pressure in the inlet pipe 12 can be taken out more reliably than when the pressure drop source is not installed in the inlet pipe 12, and the front pressure pipe 33 and the rear pressure pipe 34 of the outlet differential pressure type flow meter 3 can be taken out. The cooling water W flowing in the inlet side pipe 12 under a positive pressure environment at the time of bleeding air can be reliably pumped to the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 via the bypass pipe 4.
Further, according to the flow rate measuring device according to the first embodiment, the flow rate of the cooling water W flowing in the inlet pipe 12 is measured by the inlet differential pressure type flow meter 2 provided with the orifice plate 21, so that the outlet pipe 13 It is possible to measure the flow rate of the cooling water W flowing not only inside but also inside the inlet pipe 12.

(第2実施形態)
次に、本発明の第2実施形態に係る流量測定装置について図3を参照して説明する。図3において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
図3に示す第2実施形態に係る流量測定装置1は、図2に示す流量測定装置1と基本構成は同様であるが、図2に示す流量測定装置1と異なり、入側差圧式流量計2は設けられていない。
但し、入側配管12には、この入側配管12を横断するように設置されたオリフィスプレート21が備えられている。オリフィスプレート21は、図2に示す第1実施形態に係る流量測定装置1の入側差圧式流量計2に用いられたオリフィスプレート21と同様のもので、外径が入側配管12の内径よりも小さいオリフィス21aを有している。このオリフィス21aは圧損原を構成する。
(Second Embodiment)
Next, the flow rate measuring device according to the second embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same members as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof may be omitted.
The flow rate measuring device 1 according to the second embodiment shown in FIG. 3 has the same basic configuration as the flow rate measuring device 1 shown in FIG. 2, but unlike the flow rate measuring device 1 shown in FIG. 2, an inlet differential pressure type flow meter. 2 is not provided.
However, the inlet pipe 12 is provided with an orifice plate 21 installed so as to cross the inlet pipe 12. The orifice plate 21 is the same as the orifice plate 21 used in the inlet differential pressure type flow meter 2 of the flow measuring device 1 according to the first embodiment shown in FIG. 2, and the outer diameter is larger than the inner diameter of the inlet pipe 12. Also has a small orifice 21a. The orifice 21a constitutes a pressure drop source.

そして、バイパス管4を、入側配管12のオリフィスプレート21(オリフィス21a)の設置位置よりも上流側(図3における左側、前側)の位置から分岐して、出側差圧式流量計3の前側導圧管33及び後側導圧管34に接続している。バイパス管4は、入側配管12のオリフィスプレート21(オリフィス21a)の設置位置よりも上流側から分岐する第1バイパス管50と、第1バイパス管50の端部から延設された第2バイパス管51とを備えている。また、バイパス管4は、第2バイパス管51から分岐して、出側差圧式流量計3の前側導圧管33のうち前側第1導圧配管33aに接続されているエア抜き弁38aに接続された第3バイパス管52を備えている。また、バイパス管4は、第2バイパス管51の端部から延設して、出側差圧式流量計3の後側導圧管34のうち後側第1導圧配管34aに接続されているエア抜き弁38bに接続された第4バイパス管53を備えている。 Then, the bypass pipe 4 is branched from the position on the upstream side (left side, front side in FIG. 3) of the installation position of the orifice plate 21 (orifice 21a) of the inlet side pipe 12, and is on the front side of the outlet side differential pressure type flow meter 3. It is connected to the pressure guiding pipe 33 and the rear pressure guiding pipe 34. The bypass pipe 4 includes a first bypass pipe 50 that branches from the upstream side of the installation position of the orifice plate 21 (orifice 21a) of the inlet pipe 12, and a second bypass that extends from the end of the first bypass pipe 50. It is provided with a pipe 51. Further, the bypass pipe 4 is branched from the second bypass pipe 51 and is connected to the air bleeding valve 38a connected to the front first pressure guiding pipe 33a of the front side pressure guiding pipe 33 of the outlet side differential pressure type flow meter 3. A third bypass pipe 52 is provided. Further, the bypass pipe 4 extends from the end of the second bypass pipe 51 and is connected to the rear first pressure guiding pipe 34a of the rear pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3. A fourth bypass pipe 53 connected to the vent valve 38b is provided.

この第2実施形態に係る流量測定装置1は、入側配管12内の流量測定が不要な場合に好適なもので、入側差圧式流量計2に用いられる差圧伝送器22や均圧弁27などを省略することができる。
この第2実施形態に係る流量測定装置1において、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きに際しては、エア抜き弁38a、エア抜き弁38b、元弁35a、及び元弁35bを開ける。これにより、入側配管12内を正圧環境下で流れる冷却水Wを、図3における矢印で示すように、第1バイパス管50、第2バイパス管51及び第3バイパス管52を介して前側導圧管33の前側第1導圧配管33aに圧送するとともに、第4バイパス管53を介して後側導圧管34の後側第1導圧配管34aに圧送する。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第1導圧配管33a内、後側第1導圧配管34a内が冷却水Wで完全に満たされ、エアを含む冷却水Wは出側配管13から排水タンク14に排出される。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第1導圧配管33a、後側第1導圧配管34aのエア抜きを、外部から大気を吸引することなく行うことができる。
The flow rate measuring device 1 according to the second embodiment is suitable when it is not necessary to measure the flow rate in the inlet pipe 12, and the differential pressure transmitter 22 and the pressure equalizing valve 27 used in the inlet differential pressure type flow meter 2. Etc. can be omitted.
In the flow rate measuring device 1 according to the second embodiment, when bleeding air from the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, the air bleeding valve 38a, the air bleeding valve 38b, and the main valve 35a , And open the main valve 35b. As a result, the cooling water W flowing in the inlet pipe 12 under a positive pressure environment is directed to the front side via the first bypass pipe 50, the second bypass pipe 51, and the third bypass pipe 52, as shown by the arrows in FIG. It is pumped to the front first pressure guiding pipe 33a of the pressure guiding pipe 33, and is also pressure fed to the rear first pressure guiding pipe 34a of the rear pressure guiding pipe 34 via the fourth bypass pipe 53. As a result, the inside of the front side first pressure guiding pipe 33a and the inside of the rear side first pressure guiding pipe 34a of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 are completely filled with the cooling water W. Then, the cooling water W containing air is discharged from the outlet pipe 13 to the drainage tank 14. As a result, the air is evacuated from the front side first pressure guiding pipe 33a and the rear side first pressure guiding pipe 34a of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 from the outside. You can do it without doing it.

また、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第2導圧配管33b、後側第2導圧配管34bのエア抜きに際しては、元弁35a及び元弁35bを閉めた状態で、エア抜き弁38a、エア抜き弁38b、停止弁36a、停止弁36b及び図示しないドレン弁を開ける。これにより、入側配管12内を正圧環境下で流れる冷却水Wを、第1バイパス管50、第2バイパス管51、及び第3バイパス管52を介して前側導圧管33の前側第2導圧配管33bに圧送するとともに、第4バイパス管53を介して後側導圧管34の後側第2導圧配管34bに圧送する。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第2導圧配管33b内、後側第2導圧配管34b内が冷却水Wで完全に満たされ、エアを含む冷却水Wはドレン弁から排出される。これにより、出側差圧式流量計3の前側導圧管33及び後側導圧管34のそれぞれの前側第2導圧配管33b、後側第2導圧配管34bのエア抜きを、外部から大気を吸引することなく行うことができる。 Further, when bleeding air from the front side second pressure guiding pipe 33b and the rear side second pressure guiding pipe 34b of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, the main valve 35a and the original With the valve 35b closed, the air bleeding valve 38a, the air bleeding valve 38b, the stop valve 36a, the stop valve 36b, and the drain valve (not shown) are opened. As a result, the cooling water W flowing in the inlet pipe 12 under a positive pressure environment is passed through the first bypass pipe 50, the second bypass pipe 51, and the third bypass pipe 52 to the front second guide of the front pressure guide pipe 33. It is pumped to the pressure pipe 33b and also to the rear second pressure guiding pipe 34b via the fourth bypass pipe 53. As a result, the inside of the front side second pressure guiding pipe 33b and the inside of the rear side second pressure guiding pipe 34b of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 are completely filled with the cooling water W. Then, the cooling water W containing air is discharged from the drain valve. As a result, the air is evacuated from the front side second pressure guiding pipe 33b and the rear side second pressure guiding pipe 34b of the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, and the atmosphere is sucked from the outside. You can do it without doing it.

このように構成された第2実施形態に係る流量測定装置1によっても、冷却設備10(図1参照)において入側配管12内が正圧環境下にあり出側配管13内が負圧環境下にある流量測定装置1において、入側配管12と出側差圧式流量計3の導圧管としての前側導圧管33及び後側導圧管34とをバイパス管4で接続している。そして、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きの際に入側配管12内を正圧環境下で流れる冷却水Wをバイパス管4を介して前側導圧管33及び後側導圧管34に直接圧送する。これにより、冷却対象物11の入側に設置された入側配管12内が正圧環境下にあり出側配管13内が負圧環境下にある冷却設備10において、出側配管13内を流れる冷却水Wの流量を測定する出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きを容易、確実に行うことができる。 Even with the flow rate measuring device 1 according to the second embodiment configured in this way, in the cooling facility 10 (see FIG. 1), the inside of the inlet side pipe 12 is under a positive pressure environment and the inside of the outlet side pipe 13 is under a negative pressure environment. In the flow rate measuring device 1 in the above, the inlet side pipe 12 and the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 as the pressure guiding pipes of the outlet side differential pressure type flow meter 3 are connected by a bypass pipe 4. Then, when the air is bleeded from the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3, the cooling water W flowing in the inlet side pipe 12 under a positive pressure environment is guided to the front side through the bypass pipe 4. It is directly pumped to the pressure tube 33 and the rear pressure guiding tube 34. As a result, in the cooling facility 10 in which the inside of the inlet pipe 12 installed on the inlet side of the object to be cooled 11 is in a positive pressure environment and the inside of the outlet pipe 13 is in a negative pressure environment, the flow flows in the outlet pipe 13. It is possible to easily and surely bleed the air from the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3 for measuring the flow rate of the cooling water W.

また、第2実施形態に係る流量測定装置1によっても、入側配管12に圧損原(オリフィス21a)を設置している。そして、バイパス管4を、入側配管12の圧損原(オリフィス21a)の設置位置よりも上流側(図2における左側、前側)の位置から分岐している。そして、このバイパス管4を出側差圧式流量計3の前側導圧管33及び後側導圧管34に接続している。これにより、入側配管12に圧損原を設置しない場合よりも確実に入側配管12内の正圧を取り出すことができ、出側差圧式流量計3の前側導圧管33及び後側導圧管34のエア抜きの際に入側配管12内を正圧環境下で流れる冷却水Wをバイパス管4を介して前側導圧管33及び後側導圧管34に確実に圧送することができる。 Further, the flow rate measuring device 1 according to the second embodiment also has a pressure drop source (orifice 21a) installed in the inlet pipe 12. Then, the bypass pipe 4 is branched from a position on the upstream side (left side, front side in FIG. 2) of the installation position of the pressure drop source (orifice 21a) of the inlet side pipe 12. Then, the bypass pipe 4 is connected to the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 of the outlet side differential pressure type flow meter 3. As a result, the positive pressure in the inlet pipe 12 can be taken out more reliably than when the pressure drop source is not installed in the inlet pipe 12, and the front pressure pipe 33 and the rear pressure pipe 34 of the outlet differential pressure type flow meter 3 can be taken out. The cooling water W flowing in the inlet side pipe 12 under a positive pressure environment at the time of bleeding air can be reliably pumped to the front side pressure guiding pipe 33 and the rear side pressure guiding pipe 34 via the bypass pipe 4.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、第1実施形態及び第2実施形態における出側差圧式流量計3の構成としては、オリフィスプレート31、前側導圧管33及び後側導圧管34、及び差圧伝送器32を備えている必要はあるが、その他の弁の構成や数を含め必要に応じ適宜選定することができる。また、第1実施形態における入側差圧式流量計2の構成についても同様である。
また、第2実施形態において、圧損原としてのオリフィス21aを形成したオリフィスプレート21を入側配管12に設置してあるが、この圧損原は必ずしも設置しなくてもよい。
また、第2実施形態において、オリフィス21aを圧損原としてあるが、圧損原はオリフィス21aでなくてもよく、例えば絞りであってもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and various modifications and improvements can be made.
For example, the configuration of the output side differential pressure type flowmeter 3 in the first embodiment and the second embodiment needs to include an orifice plate 31, a front side pressure guiding tube 33, a rear side pressure guiding tube 34, and a differential pressure transmitter 32. However, it can be selected as needed, including the configuration and number of other valves. The same applies to the configuration of the inlet differential pressure type flow meter 2 in the first embodiment.
Further, in the second embodiment, the orifice plate 21 having the orifice 21a formed as a pressure drop source is installed in the inlet pipe 12, but this pressure drop source does not necessarily have to be installed.
Further, in the second embodiment, the orifice 21a is used as a pressure drop source, but the pressure drop source does not have to be the orifice 21a, and may be, for example, a throttle.

1 流量測定装置
2 入側差圧式流量計
3 出側差圧式流量計
4 バイパス管
10 冷却設備
11 冷却対象物
12 入側配管
13 出側配管
14 排水タンク
21 オリフィスプレート
21a オリフィス(圧損原)
22 差圧伝送器
23 前側導圧管
23a 前側第1導圧配管
23b 前側第2導圧配管
24 後側導圧管
24a 後側第1導圧配管
24b 後側第2導圧配管
25a,25b 元弁
26a,26b 停止弁
27 均圧弁
27a 分岐管
28a,28b エア抜き弁
31 オリフィスプレート
31a オリフィス
32 差圧伝送器
33 前側導圧管(導圧管)
33a 前側第1導圧配管
33b 前側第2導圧配管
34 後側導圧管(導圧管)
34a 後側第1導圧配管
34b 後側第2導圧配管
35a,35b 元弁
36a,36b 停止弁
37 均圧弁
37a 分岐管
38a,38b エア抜き弁
40 第1バイパス管
41 第2バイパス管
42 第3バイパス管
43 第4バイパス管
44 エア抜き弁
45 エア抜き弁
50 第1バイパス管
51 第2バイパス管
52 第3バイパス管
53 第4バイパス管
W 冷却水
1 Flow measuring device 2 Input side differential pressure type flow meter 3 Outside differential pressure type flow meter 4 Bypass pipe 10 Cooling equipment 11 Cooling object 12 Input side piping 13 Outlet side piping 14 Drainage tank 21 Orifice plate 21a Orifice plate (pressure drop source)
22 Differential pressure transmitter 23 Front side pressure guiding pipe 23a Front side first pressure guiding pipe 23b Front side second pressure guiding pipe 24 Rear side pressure guiding pipe 24a Rear side first pressure guiding pipe 24b Rear side second pressure guiding pipe 25a, 25b Main valve 26a , 26b Stop valve 27 Pressure equalizing valve 27a Branch pipe 28a, 28b Air bleeding valve 31 Orifice plate 31a Orifice 32 Differential pressure transmitter 33 Front side pressure guiding pipe (pressure guiding pipe)
33a Front side first pressure guiding pipe 33b Front side second pressure guiding pipe 34 Rear side pressure guiding pipe (pressure guiding pipe)
34a Rear side 1st pressure guiding pipe 34b Rear side 2nd pressure guiding pipe 35a, 35b Main valve 36a, 36b Stop valve 37 Pressure equalizing valve 37a Branch pipe 38a, 38b Air bleeding valve 40 1st bypass pipe 41 2nd bypass pipe 42 3 Bypass pipe 43 4th bypass pipe 44 Air bleeding valve 45 Air bleeding valve 50 1st bypass pipe 51 2nd bypass pipe 52 3rd bypass pipe 53 4th bypass pipe W Cooling water

Claims (4)

冷却対象物の入側に設置された入側配管内を流れる冷却水が前記冷却対象物内を循環して前記冷却対象物を冷却し、前記冷却対象物を冷却した冷却水が前記冷却対象物の出側に設置された出側配管内を流れて排出される冷却設備の前記出側配管内を流れる冷却水の流量を出側差圧式流量計によって測定する流量測定装置であって、前記冷却設備において前記入側配管内が正圧環境下にあり前記出側配管内が負圧環境下にある流量測定装置において、
前記入側配管と前記出側差圧式流量計の導圧管とを、前記出側差圧式流量計の導圧管のエア抜きの際に前記入側配管内を正圧環境下で流れる冷却水を前記導圧管に直接圧送するバイパス管で接続したことを特徴とする流量測定装置。
The cooling water flowing in the inlet pipe installed on the inlet side of the object to be cooled circulates in the object to be cooled to cool the object to be cooled, and the cooling water obtained by cooling the object to be cooled is the object to be cooled. A flow measuring device that measures the flow rate of cooling water flowing through the outlet pipe of a cooling facility installed on the outlet side of the cooling facility with a differential pressure type flow meter. In the equipment, in a flow rate measuring device in which the inside of the inlet pipe is in a positive pressure environment and the inside of the outlet pipe is in a negative pressure environment.
The cooling water that flows through the inlet pipe and the pressure guiding pipe of the outlet side differential pressure type flow meter in a positive pressure environment when air is bleeded from the pressure guiding pipe of the outlet side differential pressure type flow meter. A flow rate measuring device characterized in that it is connected to a pressure guiding pipe by a bypass pipe that directly pumps water.
前記入側配管に圧損原を設置するとともに、前記バイパス管を、前記入側配管の前記圧損原の設置位置よりも上流側の位置から分岐して、前記出側差圧式流量計の導圧管に接続することを特徴とする請求項1に記載の流量測定装置。 A pressure drop source is installed in the inlet pipe, and the bypass pipe is branched from a position upstream of the installation position of the pressure drop source in the inlet pipe to form a pressure guiding pipe of the outlet differential pressure flowmeter. The flow rate measuring device according to claim 1, wherein the flow rate measuring device is connected. 前記圧損原は、前記入側配管を横断するように設置されたオリフィスプレートに形成された、外径が前記入側配管の内径よりも小さいオリフィスであることを特徴とする請求項2に記載の流量測定装置。 The pressure drop source according to claim 2, wherein the pressure drop source is an orifice formed on an orifice plate installed so as to cross the inlet pipe and having an outer diameter smaller than the inner diameter of the inlet pipe. Flow measuring device. 前記オリフィスプレートを備えた入側差圧式流量計によって前記入側配管内を流れる冷却水の流量を測定することを特徴とする請求項3に記載の流量測定装置。 The flow rate measuring device according to claim 3, wherein the flow rate of the cooling water flowing in the inlet pipe is measured by an inlet differential pressure type flow meter provided with the orifice plate.
JP2019108564A 2019-06-11 2019-06-11 Flow rate measurement device Pending JP2020201145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108564A JP2020201145A (en) 2019-06-11 2019-06-11 Flow rate measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108564A JP2020201145A (en) 2019-06-11 2019-06-11 Flow rate measurement device

Publications (1)

Publication Number Publication Date
JP2020201145A true JP2020201145A (en) 2020-12-17

Family

ID=73742036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108564A Pending JP2020201145A (en) 2019-06-11 2019-06-11 Flow rate measurement device

Country Status (1)

Country Link
JP (1) JP2020201145A (en)

Similar Documents

Publication Publication Date Title
CN104359661B (en) universal valve performance test device
RU2012158359A (en) FUEL LEAKAGE DETECTION SYSTEM AND TURBINE SUPPLIED WITH SUCH SYSTEM
RU2393380C1 (en) Method for measurement of gas flow through untight gate of closed ball valve of stop and control valves of manifold pipeline and device for its implementation
NO325608B1 (en) Apparatus for painting fluid drums
JP2018012136A (en) Metal mold cooling device
US20100064778A1 (en) Testing apparatus and method for valves
RU2011123882A (en) INSERT FOR FLOW HEATER
CN105181271A (en) Relief device for pipeline leakage monitoring system performance test and testing method
CN105547670B (en) A kind of balanced valve incoming test device
JP2020201145A (en) Flow rate measurement device
TW202107525A (en) Apparatus for measuring a fluid flow through a pipe of a semiconductor manufacturing device
CN109029943B (en) Two-loop check valve test device
CN103038449A (en) Control device for an extracting unit in the work face of a mine
CN106370243B (en) Orifice device and method for removing orifice plate from or installing orifice plate in orifice device
CN103851339B (en) The system and method for detection pipe leakage
JP2008164446A (en) Particle number measuring system
JP2010210448A (en) Operation inspection system and operation inspection method of excessive flow rate blocking valve
RU169290U1 (en) The unit for connecting the compressor station to the main gas pipeline, equipped with means for checking the flow meter integrated in the main gas pipeline
KR100932469B1 (en) Stagnant water circulation system at the end of water supply system
JP2014048212A (en) Capillary tube bubble detection device and bubble detection method thereof
RU2396483C1 (en) Bench for fluid and gas leaks control in ball cocks of mains
JP2011163806A (en) Device for measurement of particulate matter
JPH0552700A (en) Leakage detection of pipeline
CN210981374U (en) Flow constant temperature and pressure measuring device for parts
CN109029942B (en) Single loop check valve test device