JP2020200681A - Lowering method of ground water cut-off property - Google Patents

Lowering method of ground water cut-off property Download PDF

Info

Publication number
JP2020200681A
JP2020200681A JP2019108594A JP2019108594A JP2020200681A JP 2020200681 A JP2020200681 A JP 2020200681A JP 2019108594 A JP2019108594 A JP 2019108594A JP 2019108594 A JP2019108594 A JP 2019108594A JP 2020200681 A JP2020200681 A JP 2020200681A
Authority
JP
Japan
Prior art keywords
water
stopping
ground
region
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019108594A
Other languages
Japanese (ja)
Other versions
JP7149227B2 (en
Inventor
智志 篠原
Satoshi Shinohara
智志 篠原
圭二郎 伊藤
Keijiro Ito
圭二郎 伊藤
裕 上島
Yutaka Uejima
裕 上島
河合 達司
Tatsuji Kawai
達司 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2019108594A priority Critical patent/JP7149227B2/en
Publication of JP2020200681A publication Critical patent/JP2020200681A/en
Application granted granted Critical
Publication of JP7149227B2 publication Critical patent/JP7149227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a lowering method of water cut-off property capable of lowering water cut-off property in a water cut-off region formed in a ground.SOLUTION: With a water cut-off region 5A which is solidified by utilizing an oxidation-reduction reaction in a ground 5 to have improved water cut-off property as an object, a chemical specie whose positive/negative of an oxidation-reduction potential is opposite to positive/negative of an oxidation-reduction potential of the water cut-off region 5A is made to be in contact with the water cut-off region 5A. By decomposing to dissolve an object contributing to solidification of the ground 5, a densified ground returns to a state before the solidification.SELECTED DRAWING: Figure 2

Description

本発明は、地盤の止水性低下方法に関する。 The present invention relates to a method for lowering the water stopping property of the ground.

従来、地盤の止水性を向上させるために、薬液を地盤に注入することが行われている。薬液としての注入材料が地盤の間隙に存在する水を追い出すとともに固化することで地盤の透水性を低下させる(すなわち止水性を向上させる)方法として、例えば、水ガラスを主材としこれに硬化剤や助剤を加えるものが知られている。また、地盤内で鉄イオンと酸化剤を混合して反応させることで地盤内に難溶性の析出物を発生させて止水性を向上させる方法が知られている(例えば、特許文献1参照)。 Conventionally, a chemical solution has been injected into the ground in order to improve the water stopping property of the ground. As a method of reducing the permeability of the ground (that is, improving the water stopping property) by expelling and solidifying the water existing in the gaps of the ground by the injection material as a chemical solution, for example, water glass is used as the main material and a curing agent is used. And those that add auxiliaries are known. Further, a method is known in which iron ions and an oxidizing agent are mixed and reacted in the ground to generate a sparingly soluble precipitate in the ground to improve water stopping property (see, for example, Patent Document 1).

特許第3600892号公報Japanese Patent No. 360892

このようにして止水性が向上した地盤は、その用を終えた後に特別な処理がなされることなく放置されているのが現状である。しかしながら、止水領域が存続するとその両側において地下水位が互いに異なる状況となるため、止水性に関して原状回復することが望ましい場合がある。 At present, the ground with improved water stopping property is left untreated without any special treatment after its use. However, if the water blocking area continues, the groundwater levels will be different from each other on both sides, so it may be desirable to restore the original state with respect to water stopping.

そこで本発明は、地盤中に形成した止水領域の止水性を低下させることができる止水性低下方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for reducing water stoppage, which can reduce the water stoppage of a water stoppage region formed in the ground.

本発明は、地盤内での酸化還元反応を利用して固化され止水性が向上した止水領域を対象とし、酸化還元電位の正負が止水領域の酸化還元電位の正負とは逆である化学種を止水領域に接触させる、地盤の止水性低下方法を提供する。 The present invention targets a water-stopping region that is solidified by utilizing an oxidation-reduction reaction in the ground and has improved water-stopping properties, and the positive and negative of the redox potential is opposite to the positive and negative of the redox potential of the water-stopping region. Provided is a method for reducing the water-stopping property of the ground by bringing the seed into contact with the water-stopping area.

この方法では、止水領域の酸化還元電位とは正負が逆の酸化還元電位を有する化学種を用いるので、地盤の固化に寄与している物質を酸化還元反応によって分解して溶解させることができる。これにより、緻密化していた地盤が固化前の状態に復帰し、止水領域の止水性を低下させることができる。 In this method, since a chemical species having an oxidation-reduction potential opposite to the oxidation-reduction potential of the still water region is used, the substance contributing to the solidification of the ground can be decomposed and dissolved by the redox reaction. .. As a result, the densified ground can be restored to the state before solidification, and the water stopping property of the water stopping area can be lowered.

この方法において、止水領域は、硫化鉱物の生成により止水性が向上したものであることができ、この場合、化学種は酸化剤であることができる。この例は、止水領域の酸化還元電位が負であり、化学種の酸化還元電位が正である例である。このとき、酸化剤は酸素又は過酸化水素であることが好ましく、溶存酸素濃度が8mg/L以上の水溶液として止水領域に接触させることが好ましい。 In this method, the water blocking region can be one in which the water stopping property is improved by the formation of sulfide minerals, in which case the chemical species can be an oxidizing agent. This example is an example in which the redox potential of the still water region is negative and the redox potential of the chemical species is positive. At this time, the oxidizing agent is preferably oxygen or hydrogen peroxide, and is preferably brought into contact with the water blocking region as an aqueous solution having a dissolved oxygen concentration of 8 mg / L or more.

本発明の方法では、化学種を止水領域内に注入することが好ましい。この場合、止水領域に直接化学種が接触するので、酸化還元反応が生じる効率が高い。 In the method of the present invention, it is preferable to inject the chemical species into the still water region. In this case, since the chemical species comes into direct contact with the water blocking region, the efficiency of redox reaction is high.

本発明の方法では、止水領域に対する地下水の下流側に井戸を設けて止水領域の止水性が低下したことを確認することが好ましい。また、止水領域に対する地下水の上流側に井戸を設けて当該井戸から化学種を注入してもよい。 In the method of the present invention, it is preferable to provide a well on the downstream side of the groundwater with respect to the water stop region and confirm that the water stoppage of the water stop region is lowered. Further, a well may be provided on the upstream side of the groundwater with respect to the water stop region, and the chemical species may be injected from the well.

本発明によれば、地盤中に形成した止水領域の止水性を低下させることができる止水性低下方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for lowering the water stopping property of a water stopping area formed in the ground.

止水システムを示す図である。It is a figure which shows the water stop system. 本発明の一実施形態の止水性低下システムを示す図である。It is a figure which shows the water-stopping reduction system of one Embodiment of this invention. 本発明の一実施形態の止水性低下システムの変形例を示す図である。It is a figure which shows the modification of the water-stopping reduction system of one Embodiment of this invention. 止水性向上試験を実施する装置の図である。It is a figure of the apparatus which carries out the water-stopping improvement test. 止水性低下試験を実施する装置の図である。It is a figure of the apparatus which carries out the water-stopping reduction test. 止水性向上試験及び止水性低下試験での透水係数比の変化を示すグラフである。It is a graph which shows the change of the hydraulic conductivity ratio in the water-stopping improvement test and the water-stopping lowering test.

以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted.

本発明は、地盤内での酸化還元反応を利用して固化され止水性が向上した止水領域を対象とし、その止水性を低下させる方法である。止水性を向上させる際に生じた酸化還元反応を打ち消す方向の酸化還元反応を行うことで、地盤が固化前の状態に復帰して止水性が低下する。この方法では、止水領域の酸化還元電位が正である場合は負の酸化還元電位を有する化学種を用い、反対に、止水領域の酸化還元電位が負である場合は正の酸化還元電位を有する化学種を用いる。以下に示す実施形態では、止水領域の酸化還元電位が負であり、化学種の酸化還元電位が正である場合を例にして説明する。 The present invention is a method for reducing the water-stopping property of a water-stopping region that has been solidified by utilizing an oxidation-reduction reaction in the ground to improve the water-stopping property. By performing the redox reaction in the direction of canceling the redox reaction that occurred when improving the water stopping property, the ground returns to the state before solidification and the water stopping property is lowered. In this method, a chemical species having a negative redox potential is used when the redox potential of the water-stopping region is positive, and conversely, a positive redox potential is used when the redox potential of the water-stopping region is negative. Use a chemical species that has. In the embodiment shown below, a case where the redox potential of the water-stopping region is negative and the redox potential of the chemical species is positive will be described as an example.

はじめに、地盤の止水性を向上させる方法について説明し、その後、同地盤の止水性を低下させる方法について説明する。 First, a method for improving the water-stopping property of the ground will be described, and then a method for reducing the water-stopping property of the ground will be described.

<地盤の止水性向上方法>
(止水システム)
地盤の止水性を向上させるために、図1に示された止水システム1を用いる。止水システム1は、止水対象とする地盤5内及び地盤5上に設けられており、隣接する複数の井戸3、及び、地上に設置された薬剤注入ポンプ15を備えている。
<Method of improving water stopping of the ground>
(Water stop system)
In order to improve the water stopping property of the ground, the water stopping system 1 shown in FIG. 1 is used. The water stop system 1 is provided in and on the ground 5 to be stopped, and includes a plurality of adjacent wells 3 and a drug injection pump 15 installed on the ground.

井戸3は、帯水層である地盤5を掘削して難透水層17にまで達するボーリング穴2に対し、スリットや貫通孔を壁面に有するストレーナー4が挿通されてなるものである。止水システム1においては、地盤5に存在する地下水は流れていてもよく、流れていなくてもよい。各井戸3の内部において、ストレーナー4の径はボーリング穴2の径よりも小さく、径の差分として生じた空間には砂7が充填されている。 The well 3 is formed by inserting a strainer 4 having a slit or a through hole in the wall surface through a boring hole 2 that excavates the ground 5 that is an aquifer and reaches the impermeable layer 17. In the water stop system 1, the groundwater existing in the ground 5 may or may not flow. Inside each well 3, the diameter of the strainer 4 is smaller than the diameter of the boring hole 2, and the space created as the difference in diameter is filled with sand 7.

砂7が充填されている空間において、井戸3の深さの約半分の高さ位置には、砂7の代わりに遮水材としてのベントナイト9が充填されている。そして、井戸内におけるベントナイト9が充填された高さ位置には、送水ポンプ11が設置されている。送水ポンプ11は、送水方向を上下に制御可能であって、送水ポンプ11の流量は、例えば10〜100L/分とする。複数が配置された井戸3のうち、一の井戸3aでは送水方向を上向きとし、他の井戸3bでは送水方向を下向きとする。 In the space filled with sand 7, bentonite 9 as a water-shielding material is filled in place of sand 7 at a height position of about half the depth of the well 3. A water pump 11 is installed at a height position in the well where the bentonite 9 is filled. The water supply pump 11 can control the water supply direction up and down, and the flow rate of the water supply pump 11 is, for example, 10 to 100 L / min. Of the wells 3 in which a plurality of wells are arranged, one well 3a has a water supply direction upward, and the other well 3b has a water supply direction downward.

ベントナイト9及び送水ポンプ11によって井戸3の内部における地下水の上下方向の移動が制限され、井戸3内が深さ方向に上部領域31と下部領域32とに区分されている。ここで、上部領域31と下部領域32との間の遮水性を確実にするために、送水ポンプ11を設置した周囲にパッカー(図示せず)を詰めてもよい。パッカーは中心部に孔が開いた環状の風船であり、これが膨らむことによって送水ポンプ11や井戸3の内周壁に密着するので、井戸3内の上部領域31と下部領域32との間の遮水性を高くすることができる。 The bentonite 9 and the water supply pump 11 restrict the vertical movement of groundwater inside the well 3, and the inside of the well 3 is divided into an upper region 31 and a lower region 32 in the depth direction. Here, in order to ensure water shielding between the upper region 31 and the lower region 32, a packer (not shown) may be packed around the water supply pump 11 installed. The packer is an annular balloon with a hole in the center, and when it inflates, it comes into close contact with the inner peripheral wall of the water pump 11 and the well 3, so that the water shield between the upper region 31 and the lower region 32 in the well 3 Can be raised.

各井戸3には、それぞれ地下水の硫酸イオン濃度及び全有機炭素(TOC)濃度、並びに、各井戸3内の水位及び流速を測定できる計器(図示せず)が設けられている。 Each well 3 is provided with an instrument (not shown) capable of measuring the sulfate ion concentration and total organic carbon (TOC) concentration of groundwater, and the water level and flow velocity in each well 3.

地上には、薬剤注入ポンプ15が設置されている。薬剤注入ポンプ15から各井戸3ヘ向かってパイプ13aが延び、パイプ13aの端部は各井戸3内に達している。 A drug injection pump 15 is installed on the ground. A pipe 13a extends from the drug injection pump 15 toward each well 3, and the end of the pipe 13a reaches the inside of each well 3.

薬剤注入ポンプ15を通じて、水中で硫酸イオンを生じる第1の化学種(強酸を除く。)及び嫌気バイオ剤が井戸3内に添加される。ここで、嫌気バイオ剤は地盤5に生息する微生物を活性化させるものである。 Through the drug injection pump 15, the first chemical species (excluding strong acids) that generate sulfate ions in water and the anaerobic bioagent are added into the well 3. Here, the anaerobic bioagent activates the microorganisms that inhabit the ground 5.

「水中で硫酸イオンを生じる第1の化学種(強酸を除く。)」の具体例としては、例えば硫酸塩が挙げられる。すなわち、地下水中で電離して硫酸イオン(SO 2−)を生じる化学種であり、硫酸ナトリウム、硫酸カリウム、硫酸第一鉄、硫酸第二鉄、硫酸マグネシウム、硫酸アルミニウム等が挙げられる。これらは水和物であってもよい。 Specific examples of the "first chemical species (excluding strong acids) that generate sulfate ions in water" include sulfates. That is, ionized underground water is a chemical species that produce sulfate ion (SO 4 2-), sodium sulfate, potassium sulfate, ferrous, ferric sulfate, magnesium sulfate, and aluminum sulfate and the like. These may be hydrates.

嫌気バイオ剤としては、即効性の高いものを選択してもよく、即効性は低いが持続性の高いものを選択してもよい。前者の嫌気バイオ剤の具体例としては、乳酸、グルコース、エタノール、グリセロール、酢酸、酪酸、プロピオン酸、蟻酸、ソルビトール、オリゴ乳酸、シュークロース等の成分を1種又は2種以上含有するものが挙げられる。後者の嫌気バイオ剤としては、前者の嫌気バイオ剤よりも分子量が大きいものが挙げられ、具体例としては、ポリ乳酸、植物油、エマルジョン油、高級脂肪酸等の成分を1種又は2種以上含有するものが挙げられる。ここで後者の嫌気バイオ剤の「持続」とは、一定量当たりの効果発現が嫌気バイオ剤の中でも長時間緩慢に続く様子を意味している。本実施形態では、即効性の高い嫌気バイオ剤を用いることが好ましい。 As the anaerobic bioagent, one having a high immediate effect may be selected, or one having a low immediate effect but a long duration may be selected. Specific examples of the former anaerobic bioagent include those containing one or more components such as lactic acid, glucose, ethanol, glycerol, acetic acid, butyric acid, propionic acid, formic acid, sorbitol, oligolactic acid, and shoe cloth. Be done. Examples of the latter anaerobic bioagent have a higher molecular weight than the former anaerobic bioagent, and specific examples thereof include one or more components such as polylactic acid, vegetable oil, emulsion oil, and higher fatty acid. Things can be mentioned. Here, the latter "sustained" of the anaerobic bioagent means that the onset of effect per fixed amount continues slowly for a long time even among the anaerobic bioagents. In this embodiment, it is preferable to use an anaerobic bioagent having a high immediate effect.

水中で硫酸イオンを生じる第1の化学種、及び、嫌気バイオ剤は、それぞれ水に混合しておき、使用時には薬剤注入ポンプ15を用いて井戸3へ注入する。 The first chemical species that produces sulfate ions in water and the anaerobic bioagent are each mixed with water and injected into the well 3 using a drug injection pump 15 at the time of use.

(循環流形成工程)
以下、止水システム1を用いた地盤の止水性向上方法の手順を示す。はじめに、各井戸3内の送水ポンプ11を駆動させる。このとき、一の井戸3aでは送水方向を上向きとし、これに隣接する他の井戸3bでは送水方向を下向きとする(図1の白矢印A及びB)。すると、隣接する井戸3a,3b間の地盤5において、上部領域31,31同士、及び、下部領域32,32同士を結ぶ地下水の移動が起こり、その移動の向きは上部領域31,31間と下部領域32,32間とで逆向きとなる(図1の白矢印C及びD)。これによって、隣接する井戸3a,3b間で地下水が循環するように移動することとなる。また、各井戸3には上部領域31と下部領域32とを短絡する流れも生じる(図1の白矢印E)。
(Circulation flow formation process)
Hereinafter, the procedure of the method for improving the water stopping property of the ground using the water stopping system 1 will be shown. First, the water supply pump 11 in each well 3 is driven. At this time, the water supply direction is upward in one well 3a, and the water supply direction is downward in the other wells 3b adjacent to the well 3a (white arrows A and B in FIG. 1). Then, in the ground 5 between the adjacent wells 3a and 3b, the groundwater that connects the upper regions 31 and 31 and the lower regions 32 and 32 moves, and the direction of the movement is between the upper regions 31 and 31 and the lower region. The directions are opposite between the regions 32 and 32 (white arrows C and D in FIG. 1). As a result, the groundwater moves so as to circulate between the adjacent wells 3a and 3b. Further, each well 3 also has a flow of short-circuiting the upper region 31 and the lower region 32 (white arrow E in FIG. 1).

(第1の拡散工程)
薬剤注入ポンプ15を駆動し、隣接する井戸3a,3bのうちの少なくとも一方の井戸から、水中で硫酸イオンを生じる第1の化学種(以下単に「第1の化学種」と呼ぶ。)を添加する。ここで、第1の化学種の添加量は、地盤5内における濃度が地盤5の乾燥重量に対する硫黄分として0.001〜1重量%となる量を使用する。当該濃度は、改質対象とする地盤5の全体積の見積もりと、添加する第1の化学種の重量と、第1の化学種内に占める硫黄原子の重量とから計算することができる。
(First diffusion step)
The drug injection pump 15 is driven, and a first chemical species (hereinafter, simply referred to as “first chemical species”) that produces sulfate ions in water is added from at least one of the adjacent wells 3a and 3b. To do. Here, the amount of the first chemical species added is such that the concentration in the ground 5 is 0.001 to 1% by weight as the sulfur content with respect to the dry weight of the ground 5. The concentration can be calculated from an estimate of the total volume of the ground 5 to be reformed, the weight of the first chemical species to be added, and the weight of sulfur atoms in the first chemical species.

当該添加量は、0.01〜1重量%であってもよく、0.001〜0.1重量%であってもよく、0.01〜0.1重量%であってもよく、0.05〜1重量%であってもよく、0.05〜0.1重量%であってもよい。これらの数値範囲の下限としては、0.02質量%、0.03質量%、0.04質量%、0.06質量%、0.07質量%、0.08質量%、0.092質量%を採用してもよい。これらの数値範囲の上限としては、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%を採用してもよい。 The addition amount may be 0.01 to 1% by weight, 0.001 to 0.1% by weight, 0.01 to 0.1% by weight, or 0. It may be 05 to 1% by weight, or 0.05 to 0.1% by weight. The lower limits of these numerical ranges are 0.02% by mass, 0.03% by mass, 0.04% by mass, 0.06% by mass, 0.07% by mass, 0.08% by mass, and 0.092% by mass. May be adopted. The upper limits of these numerical ranges are 0.2% by weight, 0.3% by weight, 0.4% by weight, 0.5% by weight, 0.6% by weight, 0.7% by weight, and 0.8% by weight. , 0.9% by weight may be adopted.

添加された第1の化学種は地下水中で電離して硫酸イオンを生じるとともに、送水ポンプ11の働きで形成された地下水の循環に乗って、地盤5内に拡散する。硫酸イオンが地盤5内に十分に拡散するよう、送水ポンプ11の駆動を継続する。 The added first chemical species is ionized in groundwater to generate sulfate ions, and diffuses into the ground 5 by riding on the circulation of groundwater formed by the action of the water supply pump 11. The water supply pump 11 is continuously driven so that the sulfate ions are sufficiently diffused in the ground 5.

(第1の測定工程)
第1の拡散工程と並行して、第1の測定工程を行う。すなわち、第1の化学種を添加した直後に、又は、所定時間経過後に、井戸3から地下水を採取し、硫酸イオンの濃度を測定する。このとき、硫酸イオンが十分に拡散したことを確認するため、第1の化学種を添加した井戸とは反対側の井戸内の地下水を測定対象とすることが好ましい。測定の結果、硫酸イオンの濃度が所定の値、例えば第1の化学種を添加した地点の硫酸イオンの濃度が0.1重量%の場合、反対側の井戸内の地下水中の硫酸イオンの濃度が0.1重量%に達していたら、第1の化学種の添加、すなわち第1の拡散工程を終了する。0.1重量%に達していなかったら、再度第1の化学種の添加を行う。ここでは、地盤5内における硫酸イオンの濃度が0.001〜1重量%を維持することが好ましい。
(First measurement step)
A first measurement step is performed in parallel with the first diffusion step. That is, immediately after the addition of the first chemical species or after a lapse of a predetermined time, groundwater is collected from the well 3 and the concentration of sulfate ions is measured. At this time, in order to confirm that the sulfate ions are sufficiently diffused, it is preferable to measure the groundwater in the well on the opposite side of the well to which the first chemical species is added. As a result of the measurement, when the concentration of sulfate ion is a predetermined value, for example, the concentration of sulfate ion at the point where the first chemical species is added is 0.1% by weight, the concentration of sulfate ion in the groundwater in the well on the opposite side. When it reaches 0.1% by weight, the addition of the first chemical species, that is, the first diffusion step is completed. If it does not reach 0.1% by weight, the first chemical species is added again. Here, it is preferable to maintain the concentration of sulfate ions in the ground 5 at 0.001 to 1% by weight.

(第2の拡散工程)
第1の拡散工程及び第1の測定工程を終えた後に、隣接する井戸3a,3bのうちの少なくとも一方の井戸から、嫌気バイオ剤を添加する。嫌気バイオ剤の添加量は、地盤5への吸着量が0.3〜3.0kg/mとなる量とする。この添加量と吸着量との関係は、井戸3を設置するときに生じた掘削土を利用した試験によって事前に求めることができ、例えば、地下水1Lあたり5〜50mgに設定することができる。
(Second diffusion step)
After completing the first diffusion step and the first measurement step, the anaerobic bioagent is added from at least one of the adjacent wells 3a and 3b. The amount of the anaerobic bioagent added is such that the amount adsorbed on the ground 5 is 0.3 to 3.0 kg / m 3 . The relationship between the addition amount and the adsorption amount can be determined in advance by a test using the excavated soil generated when the well 3 is installed, and can be set to, for example, 5 to 50 mg per 1 L of groundwater.

添加された嫌気バイオ剤は、送水ポンプ11の働きで形成された地下水の循環に乗って、地盤5内に拡散する。嫌気バイオ剤が地盤5内に十分に拡散するよう、送水ポンプ11の駆動を継続する。 The added anaerobic bioagent rides on the circulation of groundwater formed by the action of the water supply pump 11 and diffuses into the ground 5. The water pump 11 is continuously driven so that the anaerobic bioagent is sufficiently diffused into the ground 5.

添加した嫌気バイオ剤は地盤5中の微生物を活性化し、微生物は、地盤5に元々含まれている硫酸イオン又は地下水中で硫酸塩が電離して生じた硫酸イオンを還元して硫化水素イオンHS(更には硫化物イオンS2−)に変化させる。硫化水素イオン(及び硫化物イオン)は更に硫化鉱物となって(例えば地盤5中に存在する鉄イオンと反応して生じる硫化鉄となって)沈殿する。これによって井戸3a,3b間の地盤5が緻密化され、地盤5の止水性が向上する。同時に、地盤5の酸化還元電位が低下し、負の値となっていく。なお、止水性が向上した領域を止水領域5Aと呼ぶ(図2参照)。 The added anaerobic bioagent activates the microorganisms in the ground 5, and the microorganisms reduce the sulfate ions originally contained in the ground 5 or the sulfate ions generated by the ionization of sulfate in the ground water to reduce the sulfate ions generated, and the hydrogen sulfide ion HS. - (Furthermore, sulfide ion S 2- ) is changed. Hydrogen sulfide ions (and sulfide ions) further become sulfide minerals (for example, iron sulfide generated by reacting with iron ions existing in the ground 5) and precipitate. As a result, the ground 5 between the wells 3a and 3b is densified, and the water stopping property of the ground 5 is improved. At the same time, the redox potential of the ground 5 decreases and becomes a negative value. The region where the water stopping property is improved is referred to as a water stopping area 5A (see FIG. 2).

(第2の測定工程)
第2の拡散工程と並行して、第2の測定工程を行う。すなわち、嫌気バイオ剤を添加するのと同時に、地下水の硫酸イオン濃度、全有機炭素濃度、並びに、井戸3a,3b内の水位及び流速を測定する。この測定は、以後継続する。ここで、微生物が活性化して活動が高まるほど全有機炭素濃度低下していくので、微生物の活動度を維持するために、全有機炭素濃度が所定の値以下に低下した場合に、嫌気バイオ剤を追加添加することが好ましい。反対に、嫌気バイオ剤の濃度が所定の値に達したときは、嫌気バイオ剤の添加を止める。また、井戸3a,3b内の水位及び流速を測定することで、地盤5の止水性の向上度合いを確認することができる。特に、両井戸3a,3b内の水位差と両井戸3a,3b内の流速との関係から止水性の向上度合いを確認することができる。
(Second measurement step)
A second measurement step is performed in parallel with the second diffusion step. That is, at the same time as adding the anaerobic bioagent, the sulfate ion concentration of the groundwater, the total organic carbon concentration, and the water level and the flow velocity in the wells 3a and 3b are measured. This measurement will continue thereafter. Here, since the total organic carbon concentration decreases as the activity of the microorganism is activated and the activity is increased, the anaerobic bioagent is used when the total organic carbon concentration is reduced to a predetermined value or less in order to maintain the activity of the microorganism. Is preferably added additionally. On the contrary, when the concentration of the anaerobic bioagent reaches a predetermined value, the addition of the anaerobic bioagent is stopped. Further, by measuring the water level and the flow velocity in the wells 3a and 3b, it is possible to confirm the degree of improvement in the water stopping property of the ground 5. In particular, the degree of improvement in water stopping property can be confirmed from the relationship between the water level difference in both wells 3a and 3b and the flow velocity in both wells 3a and 3b.

ここで、全有機炭素濃度は、100〜1000mg/Lの範囲を維持することが好ましく、100〜600mg/Lの範囲を維持することがより好ましい。1000mg/Lを超えるとpHが低下し微生物活性が生じにくい環境へ傾く傾向があり、反対に100mg/Lを下回ると微生物活性が生じにくくなる傾向がある。 Here, the total organic carbon concentration is preferably maintained in the range of 100 to 1000 mg / L, and more preferably maintained in the range of 100 to 600 mg / L. If it exceeds 1000 mg / L, the pH tends to decrease and the environment tends to be less prone to microbial activity, while if it is less than 100 mg / L, the microbial activity tends to be less likely to occur.

硫酸イオンの濃度が所定の値、例えば0重量%にまで低下したとき、且つ、止水性の向上度合いが所望の程度に達していると推定される場合は、送水ポンプ11の駆動を停止し、地下水の循環を止める。すなわち第2の拡散工程を終了する。一方、硫酸イオンの濃度が所定の値以下に低下していない場合、又は、止水性の向上度合いが所望の値に達していないと推定される場合は、送水ポンプ11を駆動し続け、第1の化学種や嫌気バイオ剤の追加添加を行ってもよい。 When the concentration of sulfate ions drops to a predetermined value, for example, 0% by weight, and when it is estimated that the degree of improvement in water stopping property has reached a desired degree, the drive of the water supply pump 11 is stopped. Stop the circulation of groundwater. That is, the second diffusion step is completed. On the other hand, if the concentration of sulfate ions has not decreased below a predetermined value, or if it is estimated that the degree of improvement in water stopping property has not reached a desired value, the water supply pump 11 is continuously driven and the first Additional additions of chemical species and anaerobic biologics may be made.

(透水試験)
上記の手順を終えた後、止水の程度を確認するために、例えば原位置透水試験を行う。例えば、井戸3aから揚水を行い、地下水位を低下させる。そこから時間を計り水位の回復の経時変化を測定する。得られた水位の回復の経時変化をグラフに示し(横軸:時間、縦軸:水位回復量)、グラフより得られる水位変化の傾きから透水係数を算出する。止水システム1の使用前後の透水試験を比較することで、止水性能を確認する。
(Water permeability test)
After completing the above procedure, for example, an in-situ water permeability test is performed to confirm the degree of water stoppage. For example, water is pumped from the well 3a to lower the groundwater level. From there, time is measured to measure the time course of water level recovery. The time course of the obtained water level recovery is shown in a graph (horizontal axis: time, vertical axis: water level recovery amount), and the hydraulic conductivity is calculated from the slope of the water level change obtained from the graph. The water stopping performance is confirmed by comparing the water permeability tests before and after the use of the water stopping system 1.

(効果)
止水システム1を用いたこの止水性向上方法においては、井戸3a,3b間で地下水の循環流が生じているため、井戸3a,3b内の地下水に添加した第1の化学種や嫌気バイオ剤が地盤5内に効率的に拡散することができる。そして、微生物が介在する上記還元反応は、化合物のみが関与する反応に比べて反応速度が緩やかであるので、第1の化学種及び嫌気バイオ剤の注入箇所である井戸3a,3b付近で集中的に反応する虞が小さく、第1の化学種や嫌気バイオ剤が地盤5内の広い範囲に拡散しやすい。このため、目標とする改質範囲まで均質且つ十分に地盤を改質することができる。
(effect)
In this method for improving water stoppage using the water stoppage system 1, since a circulating flow of groundwater is generated between the wells 3a and 3b, the first chemical species and anaerobic bioagent added to the groundwater in the wells 3a and 3b Can be efficiently diffused into the ground 5. Since the reaction rate of the reduction reaction involving microorganisms is slower than that of the reaction involving only the compound, it is concentrated near the wells 3a and 3b where the first chemical species and the anaerobic bioagent are injected. The first chemical species and the anaerobic bioagent are likely to spread over a wide area in the ground 5. Therefore, the ground can be uniformly and sufficiently reformed to the target reforming range.

また、仮に、先に嫌気バイオ剤を先に地盤5内に拡散させたとすると、嫌気バイオ剤によって地盤5内の微生物が活性化したところへ硫酸イオンが浸入してくることになり、井戸3a,3bの周辺領域が特に集中して反応が起こる虞が考えられる。これに対し、本実施形態では先に第1の化学種を添加していることから、微生物の活性化が十分でない況で硫酸イオンが地盤内に浸入でき、このため地盤改質の均質性が向上する。そして、本実施形態で用いる第1の化学種や嫌気バイオ剤は環境負荷が小さいという利点がある。 Further, if the anaerobic bioagent is first diffused into the ground 5, sulfate ions will infiltrate into the place where the microorganisms in the ground 5 are activated by the anaerobic bioagent, and the well 3a, It is conceivable that the peripheral region of 3b may be particularly concentrated and the reaction may occur. On the other hand, in the present embodiment, since the first chemical species is added first, sulfate ions can infiltrate into the ground when the activation of microorganisms is not sufficient, and therefore the homogeneity of ground modification is improved. improves. The first chemical species and anaerobic bioagent used in the present embodiment have an advantage of having a small environmental load.

<地盤の止水性低下方法>
本実施形態の地盤の止水性低下方法は、図2に示された止水性低下システム100Aを用いる。止水性低下システム100Aは、上記の止水性向上方法で用いた複数の井戸3,3と、地上に設置された高濃度酸素水発生装置16とを備えている。高濃度酸素水発生装置16からは各井戸3へ向かってパイプ13bが延び、パイプ13bの端部は各井戸3内に達している。図2において、地盤5には上記の止水性向上方法によって形成された止水領域5Aが存在し、これによって、止水領域5Aが延びる方向と直交する方向に流れている地下水の上流側では流れが強く(白矢印F)、下流側では流れが弱く(白矢印G)なっている。また、止水性低下システム100Aは、止水領域5Aに対する地下水の下流側(図示左側)に下流側井戸30a、及び、上流側(図示右側)に上流側井戸30bを備えている。
<Method of reducing water stopping of the ground>
The method for lowering the water-stopping property of the ground of the present embodiment uses the water-stopping water-stopping system 100A shown in FIG. The water stoppage lowering system 100A includes a plurality of wells 3 and 3 used in the above water stoppage improvement method, and a high-concentration oxygen water generator 16 installed on the ground. A pipe 13b extends from the high-concentration oxygen water generator 16 toward each well 3, and the end of the pipe 13b reaches the inside of each well 3. In FIG. 2, the ground 5 has a water-stopping region 5A formed by the above-mentioned water-stopping improving method, whereby the water-stopping region 5A flows on the upstream side of the groundwater flowing in the direction orthogonal to the extending direction. Is strong (white arrow F), and the flow is weak on the downstream side (white arrow G). Further, the water stoppage lowering system 100A is provided with a downstream well 30a on the downstream side (left side in the drawing) of groundwater and an upstream well 30b on the upstream side (right side in the drawing) with respect to the water stoppage region 5A.

上記の止水性向上方法における循環流形成工程及び第1の拡散工程と同様の要領で、高濃度酸素水発生装置16からポンプを用いて高濃度酸素水を井戸3内に注入し、止水領域5A内に拡散及び循環させる。高濃度酸素水は、酸素の微小泡を含むウルトラファインバブル水又はマイクロバブル水であることが好ましい。また、高濃度酸素水は、その溶存酸素(DO)濃度が8mg/L以上であることが好ましく、20mg/L以上であることがより好ましく、25mg/L以上であることが更に好ましく、30mg/L以上であることが特に好ましい。ここで、DO濃度の測定は例えば蛍光式溶存酸素計を用いて行うことができる。高濃度酸素水を井戸3内に注入する場面、及び、高濃度酸素水のDO濃度を測定する場面では、酸素は必ずしも水に溶解している必要はなく、酸素の微小泡を含んでいる場合は、その状態で測定をした場合の値をDO濃度値とする。 High-concentration oxygen water is injected into the well 3 from the high-concentration oxygen water generator 16 using a pump in the same manner as in the circulation flow forming step and the first diffusion step in the above water-stopping improvement method, and the water-stopping region Diffuse and circulate within 5A. The high-concentration oxygen water is preferably ultrafine bubble water or microbubble water containing microbubbles of oxygen. Further, the dissolved oxygen (DO) concentration of the high-concentration oxygenated water is preferably 8 mg / L or more, more preferably 20 mg / L or more, further preferably 25 mg / L or more, and 30 mg / L or more. It is particularly preferable that it is L or more. Here, the measurement of the DO concentration can be performed using, for example, a fluorescent dissolved oxygen meter. In the scene where high-concentration oxygen water is injected into the well 3 and the scene where the DO concentration of high-concentration oxygen water is measured, oxygen does not necessarily have to be dissolved in water, and when it contains fine bubbles of oxygen. Is the value when measured in that state as the DO concentration value.

注入する高濃度酸素水は、酸化還元電位が正の値を示すものであり、+100〜+500mV程度であることが好ましい。ここでの酸化還元電位は、白金電極及び比較電極(銀/塩化銀電極)もしくは複合電極を用いて測定した場合の値である。 The high-concentration oxygenated water to be injected has a positive redox potential, and is preferably about +100 to +500 mV. The oxidation-reduction potential here is a value measured using a platinum electrode and a comparative electrode (silver / silver chloride electrode) or a composite electrode.

なお、ここでは止水領域5A内に拡散及び循環させるものとして高濃度酸素水を用いているが、酸化還元電位が正を示す物質であって地盤内を酸化することができる酸化剤であれば、他の化学種でもよい。酸化還元電位が正を示す物質であって地盤内を酸化することができる他の酸化剤(以下単に「第2の化学種」と呼ぶ。)としては、酸素の他に、例えば過酸化水素、オゾン、過酢酸ナトリウム、過炭酸ナトリウムが挙げられる。過酸化水素を添加する場合は、過酸化水素水として用い、その量はDO濃度に換算したときに上記の範囲となる量であることが好ましい。第2の化学種としては、酸素原子を含む化学種であることが好ましい。酸化剤の注入時は水溶液として注入することが好ましい。 Here, high-concentration oxygenated water is used to diffuse and circulate in the water-stopping region 5A, but any oxidant that has a positive redox potential and can oxidize the inside of the ground. , Other chemical species may be used. Other oxidants that have a positive redox potential and can oxidize the inside of the ground (hereinafter simply referred to as "second chemical species") include, for example, hydrogen peroxide. Examples include ozone, sodium peracetate, and sodium percarbonate. When hydrogen peroxide is added, it is preferably used as a hydrogen peroxide solution, and the amount thereof is preferably in the above range when converted to the DO concentration. The second chemical species is preferably a chemical species containing an oxygen atom. When injecting the oxidizing agent, it is preferable to inject it as an aqueous solution.

高濃度酸素水が止水領域5Aに接触すると、酸化還元反応が進行し、上記の止水性向上方法にて形成された硫化鉱物の沈殿物が溶解し、硫酸イオンが遊離する。その結果、緻密化していた地盤が固化前の状態に復帰し、止水領域5Aの止水性が低下する。同時に、遊離した硫酸イオンは地下水の流れに乗って下流側へ移動する。 When the high-concentration oxygenated water comes into contact with the water-stopping region 5A, the redox reaction proceeds, the precipitate of the sulfide mineral formed by the above-mentioned water-stopping improving method is dissolved, and the sulfate ion is liberated. As a result, the densified ground returns to the state before solidification, and the water stopping property of the water stopping area 5A is lowered. At the same time, the liberated sulfate ions move downstream along with the flow of groundwater.

高濃度酸素水の注入と併せて、下流側井戸30aにおいて、硫酸イオン濃度のモニタリングを行う。硫酸イオン濃度が高濃度(例えば500mg/L以上)になったとき、下流側井戸30aから地下水を汲み上げて硫酸イオンを回収する。この汲み上げによってもなお硫酸イオン濃度が高濃度で検出され続ける場合は、井戸3でも地下水を汲み上げることによって、地盤5内での硫酸イオンの拡散を防止することができる。 Along with the injection of high-concentration oxygenated water, the sulfate ion concentration is monitored in the downstream well 30a. When the sulfate ion concentration becomes high (for example, 500 mg / L or more), groundwater is pumped from the downstream well 30a to recover the sulfate ion. If the sulfate ion concentration is still detected at a high concentration even after this pumping, the diffusion of sulfate ions in the ground 5 can be prevented by pumping groundwater even in the well 3.

止水領域5Aの止水性が低下したかどうかの確認は、下流側井戸30a及び上流側井戸30bを用いて原位置透水試験を行うことで確認することができる。また、複数の井戸3,3間において、循環水量が止水改良前の状態に戻ったことを確認することで止水性が低下したことを確認することができる。これらの試験により、止水性に関する原状回復がなされたことを詳細に評価でき、結果の信頼性が高まる。 Whether or not the water stopping property of the water stopping area 5A has decreased can be confirmed by performing an in-situ water permeability test using the downstream well 30a and the upstream well 30b. In addition, it can be confirmed that the water stoppage has decreased by confirming that the amount of circulating water has returned to the state before the water stoppage improvement between the plurality of wells 3 and 3. These tests allow detailed assessment of the restoration of water stopping properties and increase the reliability of the results.

この止水性低下方法において、循環水量が極端に小さく高濃度酸素水の拡散浸透が遅いと考えられる場合は、図3に示されている止水性低下システム100Bのとおり、複数の井戸3,3間の止水領域5A内に新たに注入井戸40を設け、ここにも高濃度酸素水を注入する態様としてもよい。これにより、止水領域5Aへの酸素の供給を促進することができる。 In this method for reducing water stoppage, when it is considered that the amount of circulating water is extremely small and the diffusion and permeation of high-concentration oxygen water is slow, as in the water stoppage reduction system 100B shown in FIG. 3, between a plurality of wells 3 and 3. A new injection well 40 may be provided in the water stop region 5A of the above, and high-concentration oxygen water may be injected there as well. Thereby, the supply of oxygen to the water stop region 5A can be promoted.

また、上流側井戸30bに対しても高濃度酸素水を注入してもよい。この場合、止水領域5A内の循環流とは異なる方向からも酸素が供給されることになり、硫化鉱物の溶解効率を高めることができる。 In addition, high-concentration oxygen water may be injected into the upstream well 30b. In this case, oxygen is supplied from a direction different from the circulating flow in the water stop region 5A, and the dissolution efficiency of the sulfide mineral can be improved.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。上記実施形態では、止水領域の酸化還元電位が負であり、化学種の酸化還元電位が正である場合を例にして説明したが、酸化還元電位の関係を逆転させた状況として実施することもできる。例えば、止水性向上方法において、硫酸第一鉄又は硫酸第二鉄(及びその水和物でも可)と酸素水を用いて地盤を固化して止水領域の酸化還元電位を正にし、その後、止水性低下方法において、酸素、過酸化水素等の酸化剤を添加する代わりに水素水等の還元水、嫌気バイオ剤を添加してもよい。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. In the above embodiment, the case where the redox potential of the water-stopping region is negative and the redox potential of the chemical species is positive has been described as an example, but it is carried out in a situation where the relationship between the redox potentials is reversed. You can also. For example, in a method for improving water-stopping, ferrous sulfate or ferric sulfate (and its hydrate is also acceptable) and oxygenated water are used to solidify the ground to make the redox potential of the water-stopping region positive, and then In the method for lowering the water stopping property, instead of adding an oxidizing agent such as oxygen or hydrogen peroxide, reduced water such as hydrogen water or an anaerobic bioagent may be added.

なお、本発明は地盤内での酸化還元反応を利用して固化され止水性が向上した止水領域を対象とする止水性低下方法であるので、例えば水ガラスを主材として固化させた地盤や、セメント系固化材を用いて固化させた地盤は対象としない。 Since the present invention is a water-stopping reduction method for a water-stopping region that is solidified by utilizing an oxidation-reduction reaction in the ground and has improved water-stopping properties, for example, a ground solidified using water glass as a main material or , Ground solidified using cement-based solidifying material is not included.

以下、実施例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

(止水性向上試験)
図4に示されているとおり、長さ10cm、内径3cmのガラス製カラム51を用意し、これに微生物を含む原土Sを146.24g充填した。硫酸イオンを生じる化学種として硫酸ナトリウム十水和物を0.15質量%(原土の乾燥重量に対する硫黄分としての質量%)、嫌気バイオ剤として栄養塩(1g中の全有機炭素含有量が0.37gである物)を900mg(全有機炭素量を100mg/Lに調整するために必要となる量。100mg/Lを大きく超えると、pHが低下し微生物活性が生じにくい環境となる。反対に100mg/Lを大きく下回ると微生物活性が生じない。)を溶解させた水溶液52aを調製し、これを原土Sを充填したガラス製カラム51に対して動水勾配が0.5となるようにして通水した。この通水の駆動力は、浸出側に貯留する水溶液52bとの水位差による。浸出側に貯留した水溶液52bは流速1mL/分でポンプ53により元の水溶液52a側に返水した。こうした構成で60日間循環通水した。60日間の各時点において、通水した水量・通水時間・動水勾配・ガラス製カラムの断面積から、透水係数(k)を求めた。60日間の間、酸化還元電位は0〜−300mVを推移していた。
(Water stoppage improvement test)
As shown in FIG. 4, a glass column 51 having a length of 10 cm and an inner diameter of 3 cm was prepared, and 146.24 g of raw soil S containing microorganisms was filled therein. 0.15% by mass of sodium sulfate decahydrate as a chemical species that produces sulfate ions (% by mass as sulfur content with respect to the dry weight of the raw soil), and nutrient salt as an anaerobic bioagent (total organic carbon content in 1 g) 900 mg (the amount required to adjust the total organic carbon amount to 100 mg / L) of 0.37 g). If it greatly exceeds 100 mg / L, the pH is lowered and microbial activity is unlikely to occur. An aqueous solution 52a in which microbial activity is not generated when the amount is significantly lower than 100 mg / L) is prepared, and the hydraulic gradient is 0.5 with respect to the glass column 51 filled with the raw soil S. And passed water. The driving force for this water flow depends on the difference in water level from the aqueous solution 52b stored on the leaching side. The aqueous solution 52b stored on the leaching side was returned to the original aqueous solution 52a side by the pump 53 at a flow rate of 1 mL / min. With this configuration, water was circulated for 60 days. The hydraulic conductivity (k) was determined from the amount of water passed, the water flow time, the hydraulic gradient, and the cross-sectional area of the glass column at each time point for 60 days. For 60 days, the redox potential was in the range of 0-300 mV.

(止水性低下試験)
その後、上記の止水性向上試験を実施したガラス製カラムに対して、図5に示されているとおり、高濃度酸素水(マイクロバブル水、DO濃度=30mg/L)54を通水した。開始時の動水勾配は0.5とし、40日間通水した。通水させた高濃度酸素水54は循環利用をせず、液溜め55に溜めた。40日間の各時点において、通水した水量・通水時間・動水勾配・ガラス製カラムの断面積から、透水係数(k)を求めた。
(Water stoppage reduction test)
Then, as shown in FIG. 5, high-concentration oxygen water (microbubble water, DO concentration = 30 mg / L) 54 was passed through the glass column subjected to the above water-stopping improvement test. The running water gradient at the start was 0.5, and water was passed for 40 days. The high-concentration oxygenated water 54 through which water was passed was not recycled and was stored in the liquid reservoir 55. The hydraulic conductivity (k) was determined from the amount of water passed, the water flow time, the hydraulic gradient, and the cross-sectional area of the glass column at each time point for 40 days.

止水性向上試験及び止水性低下試験の結果を併せて図6のグラフに示す。このグラフでは、止水性向上試験開始前の透水係数(k)を1とし、これに対する各測定時点における透水係数の比(透水係数比)を透水性の指標としている。経過時間が60日までは止水性向上試験における透水係数比を示しており、その後100日までは止水性低下試験における透水係数比を示している。 The results of the water-stopping improvement test and the water-stopping lowering test are also shown in the graph of FIG. In this graph, the hydraulic conductivity (k 0 ) before the start of the water stopping property improvement test is set to 1, and the ratio of the hydraulic conductivity to this at each measurement time point (permeability coefficient ratio) is used as an index of hydraulic conductivity. The elapsed time shows the hydraulic conductivity ratio in the water-stopping improvement test up to 60 days, and then shows the hydraulic conductivity ratio in the water-stopping lowering test up to 100 days.

図6に示した結果から、硫酸イオンを生じる化学種と嫌気バイオ剤とが溶解した水溶液では止水性を高める改質を行えることが分かった。また、その方法にて止水性が上昇した(透水性が低下した)原土は、その後に高濃度の酸素に晒されると止水性が改質前の状態に回復することが分かった。 From the results shown in FIG. 6, it was found that an aqueous solution in which a chemical species that produces sulfate ions and an anaerobic bioagent are dissolved can be modified to enhance water stopping. It was also found that the raw soil whose water-stopping property was increased (water permeability was decreased) by that method was subsequently exposed to a high concentration of oxygen to restore the water-stopping property to the state before modification.

本発明は、一旦固化して止水性を向上させた地盤を元の状態に回復したい場合に利用可能である。 The present invention can be used when it is desired to restore the ground once solidified and improved in water stopping property to the original state.

1…止水システム、2…ボーリング穴、3(3a,3b)…井戸、4…ストレーナー、5…地盤、7…砂、9…ベントナイト、11…送水ポンプ、13a,13b…パイプ、15…薬剤注入ポンプ、17…難透水層、30a…下流側井戸、30b…上流側井戸、31…上部領域、32…下部領域、40…注入井戸、51…ガラス製カラム、52a,52b…水溶液、53…ポンプ、54…高濃度酸素水、55…液溜め、100A,100B…止水性低下システム、S…原土。

1 ... Water stop system, 2 ... Boring hole, 3 (3a, 3b) ... Well, 4 ... Strainer, 5 ... Ground, 7 ... Sand, 9 ... Bentnite, 11 ... Water pump, 13a, 13b ... Pipe, 15 ... Chemical Injection pump, 17 ... impervious layer, 30a ... downstream well, 30b ... upstream well, 31 ... upper region, 32 ... lower region, 40 ... injection well, 51 ... glass column, 52a, 52b ... aqueous solution, 53 ... Pump, 54 ... High concentration oxygenated water, 55 ... Liquid reservoir, 100A, 100B ... Water stoppage reduction system, S ... Raw soil.

Claims (6)

地盤内での酸化還元反応を利用して固化され止水性が向上した止水領域を対象とし、
酸化還元電位の正負が前記止水領域の酸化還元電位の正負とは逆である化学種を前記止水領域に接触させる、地盤の止水性低下方法。
Targeting the water-stopping area that is solidified by utilizing the redox reaction in the ground and has improved water-stopping
A method for lowering the water-stopping property of the ground by bringing a chemical species whose redox potential is opposite to the positive / negative of the redox potential in the water-stopping region into contact with the water-stopping region.
前記止水領域は、硫化鉱物の生成により止水性が向上したものであり、
前記化学種は、酸化剤である、請求項1記載の方法。
The water blocking region has improved water stopping due to the formation of sulfide minerals.
The method according to claim 1, wherein the chemical species is an oxidizing agent.
前記酸化剤は、酸素又は過酸化水素であり、溶存酸素濃度が8mg/L以上の水溶液として前記止水領域に接触させる、請求項2記載の方法。 The method according to claim 2, wherein the oxidizing agent is oxygen or hydrogen peroxide, and the aqueous solution having a dissolved oxygen concentration of 8 mg / L or more is brought into contact with the water-stopping region. 前記化学種を前記止水領域内に注入する、請求項1〜3のいずれか一項記載の方法。 The method according to any one of claims 1 to 3, wherein the chemical species is injected into the waterproof region. 前記止水領域に対する地下水の下流側に井戸を設けて前記止水領域の止水性が低下したことを確認する、請求項1〜4のいずれか一項記載の方法。 The method according to any one of claims 1 to 4, wherein a well is provided on the downstream side of the groundwater with respect to the water blocking area, and it is confirmed that the water stopping property of the water stopping area is lowered. 前記止水領域に対する地下水の上流側に井戸を設けて当該井戸から前記化学種を注入する、請求項1〜5のいずれか一項記載の方法。

The method according to any one of claims 1 to 5, wherein a well is provided on the upstream side of the groundwater with respect to the still area, and the chemical species is injected from the well.

JP2019108594A 2019-06-11 2019-06-11 Method for lowering water stoppage of ground Active JP7149227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019108594A JP7149227B2 (en) 2019-06-11 2019-06-11 Method for lowering water stoppage of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108594A JP7149227B2 (en) 2019-06-11 2019-06-11 Method for lowering water stoppage of ground

Publications (2)

Publication Number Publication Date
JP2020200681A true JP2020200681A (en) 2020-12-17
JP7149227B2 JP7149227B2 (en) 2022-10-06

Family

ID=73742597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108594A Active JP7149227B2 (en) 2019-06-11 2019-06-11 Method for lowering water stoppage of ground

Country Status (1)

Country Link
JP (1) JP7149227B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137520A (en) * 1977-05-06 1978-12-01 Obayashi Gumi Kk Method of injection into ground
JPS60892B2 (en) * 1980-07-02 1985-01-10 日立造船株式会社 Centrifugal molding equipment
JP2003176529A (en) * 2001-12-10 2003-06-24 Takenaka Komuten Co Ltd Method for lowering water permeability of ground
JP2008188478A (en) * 2006-06-23 2008-08-21 Takenaka Komuten Co Ltd Method and system for purifying polluted soil
JP2010088991A (en) * 2008-10-07 2010-04-22 Waseda Univ Water treatment agent and water treatment method
JP2017209621A (en) * 2016-05-25 2017-11-30 鹿島建設株式会社 Diffusion prevention method of polluted ground water
US20180340113A1 (en) * 2017-05-26 2018-11-29 Saudi Arabian Oil Company Iron sulfide removal in oilfield applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137520A (en) * 1977-05-06 1978-12-01 Obayashi Gumi Kk Method of injection into ground
JPS60892B2 (en) * 1980-07-02 1985-01-10 日立造船株式会社 Centrifugal molding equipment
JP2003176529A (en) * 2001-12-10 2003-06-24 Takenaka Komuten Co Ltd Method for lowering water permeability of ground
JP2008188478A (en) * 2006-06-23 2008-08-21 Takenaka Komuten Co Ltd Method and system for purifying polluted soil
JP2010088991A (en) * 2008-10-07 2010-04-22 Waseda Univ Water treatment agent and water treatment method
JP2017209621A (en) * 2016-05-25 2017-11-30 鹿島建設株式会社 Diffusion prevention method of polluted ground water
US20180340113A1 (en) * 2017-05-26 2018-11-29 Saudi Arabian Oil Company Iron sulfide removal in oilfield applications

Also Published As

Publication number Publication date
JP7149227B2 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP0181211B1 (en) Method for decontaminating a permeable subterranean formation
CN104624634B (en) A kind of chemical oxidation restorative procedure of organic polluted soil
JPS61135592A (en) Stimulation of bio-oxidation in ground
CA2816466A1 (en) Preventing mobilization of trace metals in subsurface aquifers due to the introduction of oxygenated water
US6679992B1 (en) Method and apparatus for purifying polluted substances containing halogenated organic compound
JP2011042858A (en) Method for leaching laminated body of copper from copper sulfide ore
JP4700083B2 (en) In-situ chemical oxidation purification method for underground ground
JP2009285609A5 (en)
JP7149227B2 (en) Method for lowering water stoppage of ground
US5520482A (en) Barrier to prevent spread of soil contamination
EP2065103B1 (en) Plant and process for in situ decontamination of soils and groundwater
Muller et al. Methods for delivery and distribution of amendments for subsurface remediation: a critical review
JP5148764B2 (en) Ground improvement method using microorganisms
JP5405936B2 (en) Microbial purification method
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
JP2019151988A (en) Method for improving water-stopping property of ground
EP3148669A1 (en) In-situ subsurface extraction and decontamination
JP5252754B2 (en) Ground improvement method using microorganisms
CN108408992A (en) A kind of regulation and control method in situ of water-bearing layer Redox Condition
JP5722006B2 (en) Groundwater purification method
JP2017209621A (en) Diffusion prevention method of polluted ground water
JP2022001342A (en) Method for estimating concentration of grouting agent
JP2022001343A (en) Method for estimating concentration of grouting agent
JP2005279345A (en) Soil decontamination method
JP6639947B2 (en) Aquifer purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150