JP2020200423A - Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method - Google Patents

Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method Download PDF

Info

Publication number
JP2020200423A
JP2020200423A JP2019110031A JP2019110031A JP2020200423A JP 2020200423 A JP2020200423 A JP 2020200423A JP 2019110031 A JP2019110031 A JP 2019110031A JP 2019110031 A JP2019110031 A JP 2019110031A JP 2020200423 A JP2020200423 A JP 2020200423A
Authority
JP
Japan
Prior art keywords
ether ketone
polyarylene ether
ketone resin
mass
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019110031A
Other languages
Japanese (ja)
Other versions
JP7272126B2 (en
Inventor
龍一 松岡
Ryuichi Matsuoka
龍一 松岡
桝本 雅也
Masaya Masumoto
雅也 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2019110031A priority Critical patent/JP7272126B2/en
Publication of JP2020200423A publication Critical patent/JP2020200423A/en
Application granted granted Critical
Publication of JP7272126B2 publication Critical patent/JP7272126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a polyarylene ether ketone resin which enables formation of a molding that prevents black discoloration and has less discoloration even when the polyarylene ether ketone resin is melted at high temperature to form the molding.SOLUTION: A method for purifying a polyarylene ether ketone resin includes a first step of mixing a polyarylene ether ketone resin with an organic solvent (1) having a hydroxyl group and an acid dissociation constant pKa of 5-15 and a poor solvent (2) having a solubility to the polyarylene ether ketone resin lower than that of the organic solvent (1) to obtain a mixed liquid, and a second step of separating the polyarylene ether ketone resin from the mixed liquid obtained in the first step.SELECTED DRAWING: None

Description

本発明は、ポリアリーレンエーテルケトン樹脂の精製方法、及び該精製方法を含むポリアリーレンエーテルケトン樹脂の製造方法に関する。 The present invention relates to a method for purifying a polyarylene ether ketone resin, and a method for producing a polyarylene ether ketone resin including the purification method.

ポリアリーレンエーテルケトン樹脂(以下「PAEK樹脂」と略すことがある。)は、耐熱性、耐薬品性、強靭性等に優れ、高温で連続使用可能な結晶性スーパーエンプラとして、電気電子部品、自動車部品、医療用部品、繊維、フィルム用途等に幅広く利用されている。 Polyaryletherketone resin (hereinafter sometimes abbreviated as "PAEK resin") has excellent heat resistance, chemical resistance, toughness, etc., and is a crystalline super engineering plastic that can be used continuously at high temperatures, such as electrical and electronic parts and automobiles. It is widely used in parts, medical parts, textiles, film applications, etc.

従来、PAEK樹脂としては、4,4’−ジフルオロベンゾフェノンとハイドロキノンの2つのモノマーを、ジフェニルスルホン中で炭酸カリウムを用いた芳香族求核置換型溶液重縮合反応(例えば、特許文献1参照)により製造される、1つの繰り返し単位中に2つのエーテル基と1つのケトン基を持つポリエーテルエーテルケトン樹脂(以下「PEEK樹脂」と略すことがある。)がよく知られている。
しかしながら、芳香族求核置換型溶液重縮合反応は、モノマーに高価な4,4’−ジフルオロベンゾフェノンを使用するため原料費が高く、かつ、反応温度が300℃以上で製造工程費も高いという欠点があり、樹脂の価格が高くなる傾向にある。
Conventionally, as a PAEK resin, two monomers, 4,4'-difluorobenzophenone and hydroquinone, are subjected to an aromatic nucleophilic substitution type solution polycondensation reaction using potassium carbonate in diphenyl sulfone (see, for example, Patent Document 1). A polyether etherketone resin (hereinafter, may be abbreviated as "PEEK resin") having two ether groups and one ketone group in one repeating unit to be produced is well known.
However, the aromatic nucleophilic substitution type solution polycondensation reaction has the disadvantages that the raw material cost is high because expensive 4,4'-difluorobenzophenone is used as the monomer, and the reaction temperature is 300 ° C. or higher and the manufacturing process cost is also high. There is a tendency for the price of resin to increase.

そこで、モノマーに4,4’−ジフルオロベンゾフェノンを用いることなく、かつ、温和な重合条件で、PAEK樹脂を製造する芳香族求電子置換型溶液重縮合反応が知られている。
芳香族求電子置換型溶液重縮合反応を用いた例として、4−フェノキシ安息香酸クロリドをフッ化水素−三フッ化ホウ素の存在下で反応させる方法によるポリエーテルケトン樹脂(例えば、特許文献2参照)、テレフタル酸クロリドとジフェニルエーテルをルイス酸の存在下で反応させる方法によるポリエーテルケトンケトン樹脂(例えば、特許文献3参照)、4−フェノキシ安息香酸をメタンスルホン酸と五酸化二リンの混合物存在下で反応させる方法によるポリエーテルケトン樹脂(例えば、特許文献4参照)等がある。
Therefore, an aromatic electrophilic substitution type solution polycondensation reaction for producing a PAEK resin without using 4,4'-difluorobenzophenone as a monomer and under mild polymerization conditions is known.
As an example using the aromatic electrophobic substitution type solution polycondensation reaction, a polyether ketone resin by a method of reacting 4-phenoxybenzoic acid chloride in the presence of hydrogen fluoride-boron trifluoride (see, for example, Patent Document 2). ), Polyether ketone ketone resin by reacting terephthalic acid chloride and diphenyl ether in the presence of Lewis acid (see, for example, Patent Document 3), 4-phenoxybenzoic acid in the presence of a mixture of methanesulfonic acid and diphosphorus pentoxide. There is a polyether ketone resin (see, for example, Patent Document 4) by the method of reacting with.

また、優れた特性を有するPAEK樹脂の重要性から、従来より、PAEK樹脂の精製方法についても各種の検討がなされている。
例えば、PAEK樹脂を、スルホラン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン及びN−メチルピロリドンからなる群より選択される水溶性の非プロトン溶媒と混合することにより、PAEK樹脂を精製する方法が開示されている(例えば、特許文献5参照)。また、PAEK樹脂を、100℃を超える温度及び大気圧を超える圧力の溶媒調合物(より具体的には、高圧及び高温の液体の水)を接触させることにより、PAEK樹脂を精製する方法が開示されている(例えば、特許文献6参照)。また、PAEK樹脂を、炭素数が2ないし18の脂肪族α−ヒドロキシカルボン酸、又は芳香族オルトヒドロキシカルボン酸(より具体的には、乳酸、サリチル酸、グリコール酸等)と接触させることにより、PAEK樹脂を精製する方法が開示されている(例えば、特許文献7参照)。
Further, due to the importance of PAEK resin having excellent properties, various studies have been made on methods for purifying PAEK resin.
For example, the PAEK resin is mixed with a water-soluble aprotic solvent selected from the group consisting of sulfolane, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone and N-methylpyrrolidone. Discloses a method for purifying PAEK resin (see, for example, Patent Document 5). Further disclosed is a method for purifying PAEK resin by contacting PAEK resin with a solvent formulation having a temperature exceeding 100 ° C. and a pressure exceeding atmospheric pressure (more specifically, liquid water having high pressure and high temperature). (See, for example, Patent Document 6). Further, by contacting the PAEK resin with an aliphatic α-hydroxycarboxylic acid having 2 to 18 carbon atoms or an aromatic orthohydroxycarboxylic acid (more specifically, lactic acid, salicylic acid, glycolic acid, etc.), PAEK A method for purifying a resin is disclosed (see, for example, Patent Document 7).

米国特許第4320224号明細書U.S. Pat. No. 4,320,224 米国特許第3953400号明細書U.S. Pat. No. 3,953,400 米国特許第3065205号明細書U.S. Pat. No. 30,650,205 特開昭61−247731号公報Japanese Unexamined Patent Publication No. 61-247731 特許第5534815号公報Japanese Patent No. 5534815 特表2004−526859号公報Japanese Patent Publication No. 2004-526859 特公平6−62760号公報Special Fair 6-62760 Gazette

上述した従来のポリエーテルエーテルケトン、ポリエーテルケトン等は、部分結晶性のポリマーであり、そのガラス転移温度は140℃以上と高く、耐熱性に優れるものの、結晶融点も340℃以上と高く、成形加工温度としては、390℃以上の温度が必要となる。
本発明者らが検討したところ、従来のPAEK樹脂は、そのような高温での溶融状態で成形体を形成すると、その成形体は黒変してしまうため、外観が重視される外装部材等での使用ができないという問題が生じることがわかった。
The above-mentioned conventional polyetheretherketone, polyetherketone, etc. are partially crystalline polymers, and although their glass transition temperature is as high as 140 ° C or higher and heat resistance is excellent, their crystal melting point is also as high as 340 ° C or higher, and molding is performed. As the processing temperature, a temperature of 390 ° C. or higher is required.
As a result of examination by the present inventors, in the conventional PAEK resin, when a molded body is formed in such a molten state at a high temperature, the molded body turns black, so that the exterior member or the like in which the appearance is important is used. It turns out that there is a problem that it cannot be used.

そこで、本発明は、PAEK樹脂を高温で溶融し成形体を形成させても、その成形体が黒変せず、変色の少ない成形体を形成することができるPAEK樹脂を提供することを目的とする。 Therefore, an object of the present invention is to provide a PAEK resin capable of forming a molded product with less discoloration without blackening the molded product even when the PAEK resin is melted at a high temperature to form a molded product. To do.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の工程を含むPAEK樹脂の精製方法により精製されたPAEK樹脂が上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor has found that a PAEK resin purified by a method for purifying a PAEK resin including a specific step can solve the above problems, and completes the present invention. I arrived.

すなわち、本発明は、以下の態様を包含するものである。
[1]ポリアリーレンエーテルケトン樹脂を、水酸基を有し、かつ酸解離定数pKaが5〜15である有機溶剤(1)と、前記有機溶剤(1)よりも前記ポリアリーレンエーテルケトン樹脂に対する溶解度が低い貧溶媒(2)とに混合して混合液を得る第1の工程と、
前記第1の工程で得られた前記混合液からポリアリーレンエーテルケトン樹脂を分離する第2の工程と
を含むことを特徴とするポリアリーレンエーテルケトン樹脂の精製方法。
[2]前記有機溶剤(1)と前記貧溶媒(2)との合計質量に対する、前記有機溶剤(1)の質量の割合が、5〜95%である、前記[1]に記載のポリアリーレンエーテルケトン樹脂の精製方法。
[3]前記ポリアリーレンエーテルケトン樹脂が、下記一般式(3)で表される構造を有する、前記[1]に記載のポリアリーレンエーテルケトン樹脂の精製方法。
That is, the present invention includes the following aspects.
[1] The polyarylene ether ketone resin has a higher solubility in the polyarylene ether ketone resin than the organic solvent (1) having a hydroxyl group and an acid dissociation constant pKa of 5 to 15 and the organic solvent (1). The first step of mixing with a low antisolvent (2) to obtain a mixed solution, and
A method for purifying a polyarylene ether ketone resin, which comprises a second step of separating the polyarylene ether ketone resin from the mixed solution obtained in the first step.
[2] The polyarylene according to the above [1], wherein the ratio of the mass of the organic solvent (1) to the total mass of the organic solvent (1) and the poor solvent (2) is 5 to 95%. A method for purifying an ether ketone resin.
[3] The method for purifying a polyarylene ether ketone resin according to the above [1], wherein the polyarylene ether ketone resin has a structure represented by the following general formula (3).

Figure 2020200423
ただしXは下記一般式(3−1)、Yは下記一般式(3−2)で表される。
Figure 2020200423
However, X is represented by the following general formula (3-1), and Y is represented by the following general formula (3-2).

Figure 2020200423
(式中、mは0〜2のいずれかの整数を示す。)
Figure 2020200423
(In the formula, m indicates an integer of 0 to 2.)

Figure 2020200423
(式中、nは0〜3のいずれかの整数を示す。)
[4]前記ポリアリーレンエーテルケトン樹脂が、下記一般式(4―1)及び(4−2)で表されるモノマーの群から選ばれるモノマーを、有機スルホン酸及び五酸化二リンの混合物の存在下で反応させることで製造される、前記[3]に記載のポリアリーレンエーテルケトン樹脂の精製方法。
Figure 2020200423
(In the formula, n indicates an integer of 0 to 3.)
[4] The presence of a mixture of an organic sulfonic acid and diphosphorus pentoxide, wherein the polyarylene ether ketone resin is a monomer selected from the group of monomers represented by the following general formulas (4-1) and (4-2). The method for purifying a polyarylene ether ketone resin according to the above [3], which is produced by reacting underneath.

Figure 2020200423
(式中、mは0〜2のいずれかの整数を示す。)
Figure 2020200423
(In the formula, m indicates an integer of 0 to 2.)

Figure 2020200423
(式中、nは0〜3のいずれかの整数を示す。)
[5]ポリアリーレンエーテルケトン樹脂を合成する工程と、
前記[1]〜[4]のいずれか一項に記載のポリアリーレンエーテルケトン樹脂の精製方法を用いて、前記ポリアリーレンエーテルケトン樹脂を精製する工程と
を含むことを特徴とするポリアリーレンエーテルケトン樹脂の製造方法。
Figure 2020200423
(In the formula, n indicates an integer of 0 to 3.)
[5] The process of synthesizing the polyarylene ether ketone resin and
The polyarylene ether ketone is characterized by comprising a step of purifying the polyarylene ether ketone resin by using the method for purifying the polyarylene ether ketone resin according to any one of the above [1] to [4]. Resin manufacturing method.

本発明のPAEK樹脂の精製方法、及び該精製方法を含むPAEK樹脂の製造方法によれば、PAEK樹脂を高温で溶融し成形体を形成させても、その成形体が黒変せず、変色の少ない成形体を形成することができるPAEK樹脂を提供することができる。 According to the method for purifying a PAEK resin of the present invention and the method for producing a PAEK resin including the purification method, even if the PAEK resin is melted at a high temperature to form a molded product, the molded product does not turn black and discolors. It is possible to provide a PAEK resin capable of forming a small number of molded products.

本発明者は、PAEK樹脂を高温で溶融し成形体を形成させる際に生じる成形体の黒変について検討した。その結果、PAEK樹脂を高温で溶融する際、PAEK樹脂中の低分子量成分が熱劣化して変色するため、その成形体が黒変することがわかった。
そこで、PAEK樹脂中の低分子量成分の含有量を低減する方法として、PAEK樹脂の精製方法について検討をすすめた。
しかし、従来知られている上記特許文献5〜7に記載のPAEK樹脂の精製方法では、下記実施例でも示す通り、変色の少ない成形体を形成できるPAEK樹脂を提供することはできなかった。
そこで、本発明者らはさらに検討をすすめた結果、以下の構成のPAEK樹脂の精製方法を用いると、変色の少ない成形体を形成できるPAEK樹脂を提供することができることを見出した。
The present inventor investigated the blackening of a molded product that occurs when the PAEK resin is melted at a high temperature to form a molded product. As a result, it was found that when the PAEK resin is melted at a high temperature, the low molecular weight component in the PAEK resin is thermally deteriorated and discolored, so that the molded product turns black.
Therefore, as a method for reducing the content of low molecular weight components in the PAEK resin, a method for purifying the PAEK resin has been studied.
However, the conventionally known methods for purifying PAEK resins described in Patent Documents 5 to 7 have not been able to provide PAEK resins capable of forming molded bodies with less discoloration, as shown in the following examples.
Therefore, as a result of further studies, the present inventors have found that a PAEK resin capable of forming a molded product with less discoloration can be provided by using a method for purifying a PAEK resin having the following constitution.

以下、本発明のPAEK樹脂の精製方法、及び該精製方法を含むPAEK樹脂の製造方法について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。 Hereinafter, the method for purifying the PAEK resin of the present invention and the method for producing the PAEK resin including the purification method will be described in detail, but the description of the constituent requirements described below is an example as an embodiment of the present invention. , It is not specified in these contents.

(ポリアリーレンエーテルケトン樹脂(PAEK樹脂)の精製方法)
本発明のPAEK樹脂の精製方法は、PAEK樹脂を、水酸基を有し、かつ酸解離定数pKaが5〜15である有機溶剤(1)と、有機溶剤(1)よりもPAEK樹脂に対する溶解度が低い貧溶媒(2)とに混合して混合液を得る第1の工程を含む。
本発明のPAEK樹脂の精製方法は、第1の工程で得られた混合液からPAEK樹脂を分離する第2の工程を含む。
本発明に係るPAEK樹脂を製造する方法については、後で詳しく説明する。
(Purification method of polyarylene ether ketone resin (PAEK resin))
In the method for purifying a PAEK resin of the present invention, the solubility of a PAEK resin in an organic solvent (1) having a hydroxyl group and an acid dissociation constant pKa of 5 to 15 is lower than that of the organic solvent (1). The first step of mixing with a poor solvent (2) to obtain a mixed solution is included.
The method for purifying a PAEK resin of the present invention includes a second step of separating the PAEK resin from the mixed solution obtained in the first step.
The method for producing the PAEK resin according to the present invention will be described in detail later.

<第1の工程>
第1の工程では、PAEK樹脂と、有機溶剤(1)と、有機溶剤(1)よりもPAEK樹脂に対する溶解度が低い貧溶媒(2)とを混合して、混合液を作製する。
有機溶剤(1)は、水酸基を有し、かつ酸解離定数pKaが5〜15を示す。
有機溶剤(1)は、PAEK樹脂のケトン基と親和性が高く、PAEK樹脂を溶解する力が強く、低分子量成分の除去効果も大きいと考えられる。有機溶剤(1)を用いることで、PAEK樹脂に含まれる低分子量成分の含有量を効果的に低減させることができ、その結果、PAEK樹脂を高温で溶融し成形体を形成させても、その成形体は黒変せず、変色しないと思われる。
<First step>
In the first step, the PAEK resin, the organic solvent (1), and the poor solvent (2) having a lower solubility in the PAEK resin than the organic solvent (1) are mixed to prepare a mixed solution.
The organic solvent (1) has a hydroxyl group and has an acid dissociation constant pKa of 5 to 15.
It is considered that the organic solvent (1) has a high affinity with the ketone group of the PAEK resin, has a strong ability to dissolve the PAEK resin, and has a large effect of removing low molecular weight components. By using the organic solvent (1), the content of the low molecular weight component contained in the PAEK resin can be effectively reduced, and as a result, even if the PAEK resin is melted at a high temperature to form a molded product, the content thereof can be effectively reduced. The molded product does not turn black and does not appear to turn color.

有機溶剤(1)のpKaが15より大きいと、PAEK樹脂に対する溶解力が弱く、低分子量成分の除去効果が小さいことから、成形体が黒変しないという本発明の所望のPAEK樹脂を得ることは難しい。一方、有機溶剤(1)のpKaが5より小さいと、有機溶剤(1)とPAEK樹脂との相互作用が強すぎて、PAEK樹脂中に有機溶剤(1)が残存し、PAEK樹脂の十分な精製が行われず、本発明の所望のPAEK樹脂を得ることは難しい。また、有機溶剤(1)のpKaが5より小さいと、有機溶剤(1)とPAEK樹脂との相互作用が強すぎて、貧溶媒(2)とPAEK樹脂との分離工程(濾過工程)の所要時間が長くなるという問題も生じる。
有機溶剤(1)のpKaは、6〜13がより好ましく、7〜10がさらに好ましい。
When the pKa of the organic solvent (1) is larger than 15, the dissolving power for the PAEK resin is weak and the effect of removing low molecular weight components is small. Therefore, it is possible to obtain the desired PAEK resin of the present invention in which the molded product does not turn black. difficult. On the other hand, when the pKa of the organic solvent (1) is smaller than 5, the interaction between the organic solvent (1) and the PAEK resin is too strong, the organic solvent (1) remains in the PAEK resin, and the PAEK resin is sufficient. It is difficult to obtain the desired PAEK resin of the present invention without purification. Further, when the pKa of the organic solvent (1) is smaller than 5, the interaction between the organic solvent (1) and the PAEK resin is too strong, and a separation step (filtration step) between the poor solvent (2) and the PAEK resin is required. There is also the problem of longer time.
The pKa of the organic solvent (1) is more preferably 6 to 13, and even more preferably 7 to 10.

有機溶剤(1)としては、例えば、下記の有機溶剤が挙げられる(尚、カッコ()内はpKaの値を示す)。
フェノール(9.95)、オルソクロロフェノール(8.56)、メタクロロフェノール(9.12)、パラクロロフェノール(9.4)、2,4−ジクロロフェノール(7.89)、2,6−ジクロロフェノール(7.02)、2,3,4,6−テトラクロロフェノール(5.22)、トリクロロフェノール(6.0)、2−フルオロエタノール(13.92)トリフルオロエタノール(12.5)、ヘキサフルオロイソプロピルアルコール(9.3)、2−クロロエタノール(12.38)、トリクロロエタノール(12.24)等の有機溶剤が挙げられる。
Examples of the organic solvent (1) include the following organic solvents (note that the values in parentheses () indicate the pKa value).
Phenol (9.95), orthochlorophenol (8.56), metachlorophenol (9.12), parachlorophenol (9.4), 2,4-dichlorophenol (7.89), 2,6- Dichlorophenol (7.02), 2,3,4,6-tetrachlorophenol (5.22), trichlorophenol (6.0), 2-fluoroethanol (13.92) trifluoroethanol (12.5) , Hexafluoroisopropyl alcohol (9.3), 2-chloroethanol (12.38), trichloroethanol (12.24) and other organic solvents.

貧溶媒(2)は、有機溶剤(1)よりもPAEK樹脂に対する溶解度が低い溶媒であり、有機溶剤(1)に対して相溶性を示す溶媒である。貧溶媒(2)としては、これらの要件を満たせば、特に制限はなく、目的に応じて適宜選択されるが、例えば、有機溶剤(1)と混和する下記(a)から(b)に記載の有機溶剤や、(c)水が好ましく挙げられる。
(a)水酸基を有し、かつ酸解離定数pKaが15を超える有機溶剤(尚、カッコ()内はpKaの値を示す);
例えば、メタノール(15.5)、エタノール(15.9)、イソプロピルアルコール(16.5)、ターシャルブタノール(17.0)等。
(b)水酸基を有さない有機溶剤;
例えば、アセトン、メチルエチルケトン、メチルブチルケトン、酢酸エチル、酢酸ブチル、トルエン等。
(c)水
中でも、コストや入手容易性等の実用上の観点から、貧溶媒(2)が、水もしくはメタノールであるとより好ましい。
The poor solvent (2) is a solvent having a lower solubility in the PAEK resin than the organic solvent (1), and is a solvent showing compatibility with the organic solvent (1). The poor solvent (2) is not particularly limited as long as these requirements are satisfied, and is appropriately selected according to the purpose. For example, the following (a) to (b), which are miscible with the organic solvent (1), are described. The organic solvent of (c) and water (c) are preferably mentioned.
(A) An organic solvent having a hydroxyl group and having an acid dissociation constant pKa exceeding 15 (note that the value in parentheses () indicates the value of pKa);
For example, methanol (15.5), ethanol (15.9), isopropyl alcohol (16.5), tarshal butanol (17.0) and the like.
(B) Organic solvent having no hydroxyl group;
For example, acetone, methyl ethyl ketone, methyl butyl ketone, ethyl acetate, butyl acetate, toluene and the like.
(C) Among water, it is more preferable that the poor solvent (2) is water or methanol from the viewpoint of practical use such as cost and availability.

混合液中には、塩基性物質やアミン等の添加剤を含有させてもよい。
PAEK樹脂の製造の際に使用した反応溶媒であるメタンスルホン酸がPAEK樹脂中に残留している場合もあり、そのメタンスルホン酸を中和する目的で、これらの添加剤を含有させることができる。
ここで、塩基性物質としては、例えば、水酸化カリウム、水酸化ナトリウム等を用いることができる。また、アミンとしては、例えば、アンモニア水、トリエチルアミン、ジメチルエタノールアミン等を用いることができる。
これらの添加剤の中でも、コストや入手容易性等の実用上の観点から水酸化ナトリウムを用いることが好ましい。
Additives such as basic substances and amines may be contained in the mixed solution.
Methanesulfonic acid, which is a reaction solvent used in the production of PAEK resin, may remain in PAEK resin, and these additives can be contained for the purpose of neutralizing the methanesulfonic acid. ..
Here, as the basic substance, for example, potassium hydroxide, sodium hydroxide and the like can be used. Further, as the amine, for example, aqueous ammonia, triethylamine, dimethylethanolamine and the like can be used.
Among these additives, it is preferable to use sodium hydroxide from the viewpoint of practical use such as cost and availability.

有機溶剤(1)と貧溶媒(2)との合計質量に対する、有機溶剤(1)の質量の割合は、5〜95質量%であることが好ましい。
有機溶剤(1)の質量の割合が、95質量%より多いと、混合液に含まれるPAEK樹脂の溶解量が多く、混合液の粘度が高くなり、濾過が遅くなり、固液分離に長時間を要し、経済性が悪くなる。一方、有機溶剤(1)の質量の割合が、5質量%より少ないと、混合液に含まれるPAEK樹脂の溶解量が少なく、低分子量成分の残存量が高くなり、PAEK樹脂を高温で溶融し成形体を形成させた際に成形体に黒変が生じる場合がある。
有機溶剤(1)と貧溶媒(2)との合計質量に対する、有機溶剤(1)の質量の割合は、10〜90質量%であることがより好ましく、15〜85質量%であることがさらに好ましく、50〜70質量%であることが特に好ましい。
The ratio of the mass of the organic solvent (1) to the total mass of the organic solvent (1) and the poor solvent (2) is preferably 5 to 95% by mass.
When the mass ratio of the organic solvent (1) is more than 95% by mass, the amount of PAEK resin dissolved in the mixed solution is large, the viscosity of the mixed solution is high, the filtration is slow, and the solid-liquid separation takes a long time. It takes a lot of money and the economy becomes worse. On the other hand, when the mass ratio of the organic solvent (1) is less than 5% by mass, the dissolved amount of the PAEK resin contained in the mixed solution is small, the residual amount of the low molecular weight component is high, and the PAEK resin is melted at a high temperature. When the molded body is formed, blackening may occur in the molded body.
The ratio of the mass of the organic solvent (1) to the total mass of the organic solvent (1) and the poor solvent (2) is more preferably 10 to 90% by mass, and further preferably 15 to 85% by mass. It is preferably 50 to 70% by mass, and particularly preferably 50 to 70% by mass.

第1の工程において、混合液を得る際のPAEK樹脂と有機溶剤(1)との混合割合は、5:1〜1:50(質量比)が好ましく、2:1〜1:20(質量比)がより好ましく、1:1〜1:10(質量比)がさらに好ましく、1:5〜1:9.5(質量比)が特に好ましい。 In the first step, the mixing ratio of the PAEK resin and the organic solvent (1) when obtaining the mixed solution is preferably 5: 1 to 1:50 (mass ratio), and 2: 1 to 1:20 (mass ratio). ) Is more preferable, 1: 1 to 1:10 (mass ratio) is further preferable, and 1: 5 to 1: 9.5 (mass ratio) is particularly preferable.

第1の工程において、混合液を得る際、PAEK樹脂に対する有機溶剤(1)と貧溶媒(2)の混合順序は特に制限はなく、目的に応じて適宜選択することができる。
例えば、第1の工程における混合手順として、下記(A)から(C)に示す各態様を挙げることができる。
(A)有機溶剤(1)と貧溶媒(2)とを同時にPAEK樹脂に混合させる。
(B)有機溶剤(1)を先にPAEK樹脂と混合させ、その後、貧溶媒(2)を混合させる。
(C)貧溶媒(2)を先にPAEK樹脂と混合させ、その後、有機溶剤(1)を混合させる。
In the first step, when the mixed solution is obtained, the mixing order of the organic solvent (1) and the poor solvent (2) with respect to the PAEK resin is not particularly limited and can be appropriately selected depending on the intended purpose.
For example, as the mixing procedure in the first step, each aspect shown in the following (A) to (C) can be mentioned.
(A) The organic solvent (1) and the poor solvent (2) are simultaneously mixed with the PAEK resin.
(B) The organic solvent (1) is first mixed with the PAEK resin, and then the poor solvent (2) is mixed.
(C) The poor solvent (2) is first mixed with the PAEK resin, and then the organic solvent (1) is mixed.

第1の工程において、有機溶剤(1)と貧溶媒(2)の混合に供されるPAEK樹脂は、乾燥された状態のPAEK樹脂であっても、メタノール等の溶媒を含むスラリー状態のPAEK樹脂であってもよい。
例えば、PAEK樹脂の製造において、溶媒中に析出したPAEK樹脂を濾過し、その濾過物を乾燥させることにより、乾燥された状態のPAEK樹脂を作製した場合、係る乾燥状態のPEAK樹脂を用いて、第1の工程を行うことができる。
係る乾燥状態のPEAK樹脂に対して、上記(A)又は(B)又は(C)の混合手順により、有機溶剤(1)と貧溶媒(2)とを混合させ混合液を得ることができる。
In the first step, the PAEK resin used for mixing the organic solvent (1) and the poor solvent (2) is a PAEK resin in a slurry state containing a solvent such as methanol, even if it is a dried PAEK resin. It may be.
For example, in the production of PAEK resin, when a dried PAEK resin is produced by filtering the PAEK resin precipitated in a solvent and drying the filtered product, the dried PEAK resin is used. The first step can be performed.
The organic solvent (1) and the poor solvent (2) can be mixed with the dry PEAK resin by the above-mentioned mixing procedure of (A), (B) or (C) to obtain a mixed solution.

あるいは、PAEK樹脂の製造において、溶媒中に析出したPAEK樹脂に対して、濾過工程を行わず、又は濾過工程を行っても乾燥工程は行わずに得られた、溶媒を含むスラリー状態のPAEK樹脂を用いて、第1の工程を行うこともできる。
溶媒を含むスラリー状態のPAEK樹脂に対して、上記(A)又は(B)又は(C)の混合手順により、有機溶剤(1)と貧溶媒(2)とを混合させ混合液を得ることができる。
尚、溶媒を含むスラリー状態のPAEK樹脂に対して、第1の工程を行う場合、上記(B)の混合手順により、有機溶剤(1)と貧溶媒(2)とを混合させることがより好ましい。より好ましい態様として、下記(D)の態様を挙げることができる。
(D)溶媒を含むスラリー状態のPAEK樹脂に対して、有機溶剤(1)を混合させる。その得られた混合物を昇温することにより、PAEK樹脂に含まれている溶媒を揮発させる。その後、貧溶媒(2)を混合させ混合液を得る。
Alternatively, in the production of PAEK resin, the PAEK resin precipitated in the solvent is obtained in a slurry state containing a solvent, which is obtained without performing a filtration step or a drying step even if a filtration step is performed. Can also be used to perform the first step.
The organic solvent (1) and the poor solvent (2) can be mixed with the PAEK resin in a slurry state containing a solvent by the above mixing procedure of (A), (B) or (C) to obtain a mixed solution. it can.
When the first step is performed on the PAEK resin in a slurry state containing a solvent, it is more preferable to mix the organic solvent (1) and the poor solvent (2) by the mixing procedure of (B) above. .. As a more preferable embodiment, the following embodiment (D) can be mentioned.
(D) The organic solvent (1) is mixed with the PAEK resin in a slurry state containing the solvent. By raising the temperature of the obtained mixture, the solvent contained in the PAEK resin is volatilized. Then, the poor solvent (2) is mixed to obtain a mixed solution.

第1の工程において混合液を得るための混合条件(温度、時間等)は、特に制限はなく、目的に応じて適宜設定することができる。例えば、20から200℃の温度条件下で混合することができる。混合時間は、適宜設定することができるが、例えば、0.5から10hrsとすることができる。より好ましい実施態様として、40から100℃の温度条件下で1から5hrs混合することができる。
また、第1の工程が、上記(D)の態様である場合には、混合条件(温度、時間等)としては、例えば、以下のように設定することができる。溶媒を含むスラリー状態のPAEK樹脂に対して、有機溶剤(1)を混合した後、80から200℃程度まで昇温する。設定温度に到達後、0.5から10hrs混合する。その後、40から80℃程度まで冷却し、貧溶媒(2)を混合する。さらに、その冷却温度で0.5から10hrs混合する。より好ましい実施態様として、溶媒を含むスラリー状態のPAEK樹脂に対して、有機溶剤(1)を混合した後、100から200℃程度まで昇温する。設定温度に到達後、1から5hrs混合する。その後、60から70℃程度まで冷却し、貧溶媒(2)を混合し、さらに、1から5hrs混合することができる。
The mixing conditions (temperature, time, etc.) for obtaining the mixed solution in the first step are not particularly limited and can be appropriately set according to the purpose. For example, it can be mixed under temperature conditions of 20 to 200 ° C. The mixing time can be appropriately set, and can be, for example, 0.5 to 10 hrs. In a more preferred embodiment, 1 to 5 hrs can be mixed under temperature conditions of 40 to 100 ° C.
Further, when the first step is the aspect (D) described above, the mixing conditions (temperature, time, etc.) can be set as follows, for example. After mixing the organic solvent (1) with the PAEK resin in a slurry state containing a solvent, the temperature is raised from 80 to about 200 ° C. After reaching the set temperature, mix for 0.5 to 10 hrs. Then, the mixture is cooled to about 40 to 80 ° C. and the poor solvent (2) is mixed. Further, the mixture is mixed at the cooling temperature for 0.5 to 10 hrs. As a more preferable embodiment, the organic solvent (1) is mixed with the PAEK resin in a slurry state containing a solvent, and then the temperature is raised from 100 to 200 ° C. After reaching the set temperature, mix for 1 to 5 hrs. After that, it is cooled to about 60 to 70 ° C., the poor solvent (2) is mixed, and further, 1 to 5 hrs can be mixed.

<第2の工程>
第2の工程では、第1の工程で得られた混合液からPAEK樹脂を分離する。
混合液を自然、減圧、加圧、又は遠心といった各種の濾過を施すことにより、混合液からPAEK樹脂を分離することができる。
固液分離により、濾液としてPAEK樹脂の低分子量成分を含有する有機溶剤(1)が、濾物として低分子量成分を非含有あるいは含有量をかなり低く抑えたPAEK樹脂が、それぞれ得られる。濾物として得られたPAEK樹脂は、低分子量成分を含まないかあるいは含有量がかなり低く抑えられているため、該PAEK樹脂を高温で溶融し成形体を形成させても、その成形体は黒変せず、変色は生じない。
濾過後は、得られた濾物を乾燥することにより、本発明の所望とする精製されたPAEK樹脂を乾燥状態で得ることができる。
尚、濾物を乾燥させる前に、より好ましい態様として、洗浄工程を行うとよい。洗浄工程としては、メタノール等の溶媒で洗浄する、及び/又は水で洗浄することが挙げられる。これにより、PAEK樹脂から有機溶剤(1)を確実に取り除くことができ、より精製されたPAEK樹脂を得ることができる。
<Second step>
In the second step, the PAEK resin is separated from the mixed solution obtained in the first step.
The PAEK resin can be separated from the mixed solution by subjecting the mixed solution to various types of filtration such as natural, reduced pressure, pressurization, or centrifugation.
By solid-liquid separation, an organic solvent (1) containing a low molecular weight component of the PAEK resin as a filtrate and a PAEK resin containing no low molecular weight component or having a considerably low content as a filter can be obtained. Since the PAEK resin obtained as a filter does not contain a low molecular weight component or has a considerably low content, even if the PAEK resin is melted at a high temperature to form a molded product, the molded product is black. It does not change and no discoloration occurs.
After filtration, the obtained filter medium can be dried to obtain the desired purified PAEK resin of the present invention in a dry state.
In addition, it is preferable to carry out a washing step as a more preferable embodiment before drying the filter medium. Examples of the washing step include washing with a solvent such as methanol and / or washing with water. As a result, the organic solvent (1) can be reliably removed from the PAEK resin, and a more purified PAEK resin can be obtained.

(ポリアリーレンエーテルケトン樹脂(PAEK樹脂)の製造方法)
本発明のPAEK樹脂の製造方法は、PAEK樹脂を合成する工程と、本発明のPAEK樹脂の精製方法を用いて、PAEK樹脂を精製する工程とを含む。
本発明のPAEK樹脂の製造方法を用いると、PAEK樹脂中の低分子量成分の含有量を低減することができ、PAEK樹脂を高温で溶融し成形体を形成させても、その成形体が黒変せず、変色の少ない成形体を形成することができる。
(Manufacturing method of polyarylene ether ketone resin (PAEK resin))
The method for producing a PAEK resin of the present invention includes a step of synthesizing the PAEK resin and a step of purifying the PAEK resin using the method for purifying the PAEK resin of the present invention.
By using the method for producing a PAEK resin of the present invention, the content of low molecular weight components in the PAEK resin can be reduced, and even if the PAEK resin is melted at a high temperature to form a molded product, the molded product turns black. It is possible to form a molded product with less discoloration without discoloration.

<ポリアリーレンエーテルケトン樹脂(PAEK樹脂)の構造>
本発明で製造対象とするPAEK樹脂としては、特に制限はなく、目的に応じて適宜選択されるが、例えば、下記一般式(3)で表される構造を有するものであることが好ましい。
<Structure of polyarylene ether ketone resin (PAEK resin)>
The PAEK resin to be produced in the present invention is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it preferably has a structure represented by the following general formula (3).

Figure 2020200423
ただしXは下記一般式(3−1)、Yは下記一般式(3−2)で表される。
Figure 2020200423
However, X is represented by the following general formula (3-1), and Y is represented by the following general formula (3-2).

Figure 2020200423
(式中、mは0〜2のいずれかの整数を示す。)
Figure 2020200423
(In the formula, m indicates an integer of 0 to 2.)

Figure 2020200423
(式中、nは0〜3のいずれかの整数を示す。)
以下に、本発明に係るPAEK樹脂の製造方法について詳しく説明する。
Figure 2020200423
(In the formula, n indicates an integer of 0 to 3.)
The method for producing the PAEK resin according to the present invention will be described in detail below.

<ポリアリーレンエーテルケトン樹脂(PAEK樹脂)の製造方法の具体的態様>
PAEK樹脂の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、下記(i)又は(ii)に示す反応工程を含む製造方法により、PAEK樹脂を製造することができる。
PAEK樹脂の製造方法の第1の実施態様としては、(i)下記一般式(4−1)及び下記一般式(4−2)で表されるモノマーを、有機スルホン酸及び五酸化二リンの混合物の存在下で反応させる反応工程を含むPAEK樹脂の製造方法が挙げられる。
<Specific aspects of the method for producing a polyarylene ether ketone resin (PAEK resin)>
The method for producing the PAEK resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the PAEK resin is produced by a production method including the reaction steps shown in (i) or (ii) below. be able to.
In the first embodiment of the method for producing a PAEK resin, (i) the monomers represented by the following general formulas (4-1) and the following general formula (4-2) are made of organic sulfonic acid and diphosphorus pentoxide. Examples thereof include a method for producing a PAEK resin, which comprises a reaction step of reacting in the presence of a mixture.

Figure 2020200423
(式中、mは0〜2のいずれかの整数を示す。)
Figure 2020200423
(In the formula, m indicates an integer of 0 to 2.)

Figure 2020200423
(式中、nは0〜3のいずれかの整数を示す。)
Figure 2020200423
(In the formula, n indicates an integer of 0 to 3.)

また、PAEK樹脂の製造方法の第2の実施態様としては、通常用いられているPAEK樹脂の製造方法、例えば、芳香族求核置換反応によりPAEK樹脂を製造する方法や、ルイス酸触媒を用いてPAEK樹脂を製造する方法等が挙げられる。中でも(ii)ルイス酸触媒下で、上記一般式(4−1)で表されるモノマーを反応させてPAEK樹脂を製造する方法が挙げられる。 In addition, as a second embodiment of the method for producing PAEK resin, a commonly used method for producing PAEK resin, for example, a method for producing PAEK resin by an aromatic nucleophilic substitution reaction, or a Lewis acid catalyst is used. Examples thereof include a method for producing PAEK resin. Among them, a method of producing a PAEK resin by reacting a monomer represented by the above general formula (4-1) under a Lewis acid catalyst (ii) can be mentioned.

上記一般式(4−1)で表されるモノマーとしては、ジフェニルエーテル(m=0)、1、4−ジフェノキシベンゼン(m=1)、4,4’−オキシビス(フェノキシベンゼン)(m=2)が挙げられる。 Examples of the monomer represented by the above general formula (4-1) include diphenyl ether (m = 0), 1,4-diphenoxybenzene (m = 1), and 4,4'-oxybis (phenoxybenzene) (m = 2). ).

上記一般式(4−2)で表されるモノマーとしては、テレフタル酸(n=0)、4、4’−オキシビス安息香酸(n=1)、1,4−ビス(4−カルボキシフェノキシ)ベンゼン(n=2)、4,4’−ビス(p−カルボキシフェノキシ)ジフェニルエーテル(n=3)が挙げられる。 Examples of the monomer represented by the above general formula (4-2) include terephthalic acid (n = 0), 4,4'-oxybis benzoic acid (n = 1), and 1,4-bis (4-carboxyphenoxy) benzene. Examples thereof include (n = 2) and 4,4'-bis (p-carboxyphenoxy) diphenyl ether (n = 3).

PAEK樹脂の製造方法においては、本発明に係るPAEK樹脂の効果を維持する範囲で、上記一般式(4−1)で表されるエーテル基を有する芳香族モノマーや、上記一般式(4−2)で表されるカルボン酸モノマー以外にも、他のエーテル基を有する芳香族モノマーや他のカルボン酸モノマー等のその他のモノマーを併用することができる。その他のモノマーとしては、例えば、イソフタル酸、5−メチルイソフタル酸、2−メチルイソフタル酸、4−メチルイソフタル酸、5−エチルイソフタル酸、2−エチルイソフタル酸、4−エチルイソフタル酸、5−プロピルイソフタル酸、2−プロピルイソフタル酸、4−プロピルイソフタル酸、5−ブチルイソフタル酸、2−ブチルイソフタル酸、4−ブチルイソフタル酸、ジフェン酸、2、2’−ビフェニルジカルボン酸、6,6’−ジメチルビフェニル−2,2’−ジカルボン酸等が挙げられる。 In the method for producing a PAEK resin, an aromatic monomer having an ether group represented by the above general formula (4-1) and the above general formula (4-2) are used as long as the effect of the PAEK resin according to the present invention is maintained. In addition to the carboxylic acid monomer represented by), other monomers such as an aromatic monomer having another ether group and another carboxylic acid monomer can be used in combination. Examples of other monomers include isophthalic acid, 5-methylisophthalic acid, 2-methylisophthalic acid, 4-methylisophthalic acid, 5-ethylisophthalic acid, 2-ethylisophthalic acid, 4-ethylisophthalic acid and 5-propyl. Isophthalic acid, 2-propylisophthalic acid, 4-propylisophthalic acid, 5-butylisophthalic acid, 2-butylisophthalic acid, 4-butylisophthalic acid, diphenylic acid, 2,2'-biphenyldicarboxylic acid, 6,6'- Examples thereof include dimethylbiphenyl-2,2'-dicarboxylic acid.

有機スルホン酸としては、特に制限はなく、目的に応じて適宜選択できるが、例えば、脂肪族スルホン酸、芳香族スルホン酸等が挙げられる。中でも、脂肪族スルホン酸が好ましい。より具体的には、有機スルホン酸として、例えば、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸(トシル酸)等が挙げられる。 The organic sulfonic acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic sulfonic acid and aromatic sulfonic acid. Of these, aliphatic sulfonic acids are preferable. More specifically, examples of the organic sulfonic acid include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid (tosilic acid) and the like.

有機スルホン酸の添加量と、五酸化二リンの添加量との割合は、特に制限はなく、目的に応じて適宜選択できるが、例えば、質量比で、100:25〜100:1の範囲であることが好ましく、100:20〜100:2の範囲であることがより好ましく、100:15〜100:5の範囲であることがさらに好ましい。 The ratio of the amount of organic sulfonic acid added to the amount of diphosphorus pentoxide added is not particularly limited and can be appropriately selected depending on the intended purpose. For example, the mass ratio is in the range of 100:25 to 100: 1. It is preferably in the range of 100:20 to 100: 2, more preferably in the range of 100: 15 to 100: 5, and even more preferably in the range of 100: 15 to 100: 5.

上記第1の実施態様の製造方法について、以下詳しく説明する。
上記第1の実施態様の製造方法において、上記一般式(4−1)で表されるモノマーの添加量と、上記一般式(4−2)で表されるモノマーの添加量との割合は、特に制限はなく、目的に応じて適宜選択できるが、例えば、以下の割合であることが好ましい。尚、反応成分中、エーテル基を有する芳香族モノマーが、上記一般式(4−1)のモノマー以外の他のエーテル基を有する芳香族モノマーも含む場合には、下記割合は、上記一般式(4−1)のモノマーを含む芳香族モノマー全体の合計量を基準としている。また、反応成分中、カルボン酸モノマーが、上記一般式(4−2)のモノマー以外の他のカルボン酸モノマーも含む場合には、下記割合は、上記一般式(4−2)のモノマーを含むカルボン酸モノマー全体の合計量を基準としている。つまり、エーテル基を有する芳香族モノマー(上記一般式(4−1)のモノマーを含む)/カルボン酸モノマー(上記一般式(4−2)のモノマーを含む)は、モル比で、0.8〜1.2が好ましく、0.9〜1.1がより好ましく、1.0〜1.1がさらに好ましい。
芳香族モノマー/カルボン酸モノマーが0.8以上であれば、カルボン酸モノマーの割合が高くなることにより生じる問題、つまりポリマー末端構造にカルボキシ基が存在し、そのカルボキシ基により成形加工時に脱炭酸反応が起こりガスが発生し、成形物にボイドが生じるという問題を有効に防止することができる。一方、芳香族モノマー/カルボン酸モノマーが1.2以下であれば、実用上十分な分子量のPAEK樹脂を得ることができる。
The manufacturing method of the first embodiment will be described in detail below.
In the production method of the first embodiment, the ratio of the addition amount of the monomer represented by the general formula (4-1) to the addition amount of the monomer represented by the general formula (4-2) is determined. There is no particular limitation, and it can be appropriately selected depending on the purpose, but for example, the following ratio is preferable. When the aromatic monomer having an ether group also contains an aromatic monomer having an ether group other than the monomer of the general formula (4-1) in the reaction component, the following ratio is the above general formula ( The total amount of all aromatic monomers including the monomer of 4-1) is used as a reference. When the carboxylic acid monomer contains a carboxylic acid monomer other than the monomer of the general formula (4-2) in the reaction component, the following ratio contains the monomer of the general formula (4-2). It is based on the total amount of all carboxylic acid monomers. That is, the aromatic monomer having an ether group (including the monomer of the general formula (4-1)) / the carboxylic acid monomer (including the monomer of the general formula (4-2)) has a molar ratio of 0.8. ~ 1.2 is preferable, 0.9 to 1.1 is more preferable, and 1.0 to 1.1 is further preferable.
If the amount of aromatic monomer / carboxylic acid monomer is 0.8 or more, a problem caused by a high proportion of carboxylic acid monomer, that is, a carboxy group is present in the polymer terminal structure, and the carboxy group causes a decarboxylation reaction during molding. Can be effectively prevented from the problem that gas is generated and voids are generated in the molded product. On the other hand, when the aromatic monomer / carboxylic acid monomer is 1.2 or less, a PAEK resin having a practically sufficient molecular weight can be obtained.

上記一般式(4−1)で表されるモノマー及び上記一般式(4−2)で表されるモノマーの合計の添加量と、有機スルホン酸及び五酸化二リンの合計の添加量との割合は、特に制限はなく、目的に応じて適宜選択できるが、例えば、質量比で、1:100〜40:100の範囲であることが好ましく、2:100〜30:100の範囲であることがより好ましく、5:100〜20:100の範囲であることがさらに好ましい。 Ratio of the total amount of the monomer represented by the general formula (4-1) and the monomer represented by the above general formula (4-2) to the total amount of organic sulfonic acid and diphosphorus pentoxide added. Is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the mass ratio is preferably in the range of 1: 100 to 40: 100, and preferably in the range of 2: 100 to 30: 100. More preferably, it is in the range of 5: 100 to 20: 100.

上記第2の実施態様の製造方法について、以下詳しく説明する。
上述したように、PAEK樹脂の製造方法の第2の実施態様としては、(ii)ルイス酸触媒下で、上記一般式(4−1)で表されるモノマーを反応させてPAEK樹脂を製造する方法が挙げられる。
上記(ii)の方法のさらに具体的な態様として、(ii−1)上記一般式(4−1)で表されるモノマーと、イソフタロイルクロリド及びテレフタロイルクロリドとを、ルイス酸触媒の存在下で反応させるPAEK樹脂の製造方法を挙げることができる。
ここで、ルイス酸触媒としては、例えば、無水塩化アルミニウム等が挙げられる。
また、例えば、溶剤として1、2−ジクロロベンゼンを用いて、1、2−ジクロロベンゼンと、イソフタロイルクロリドと、テレフタロイルクロリドと、上記一般式(4−1)で表されるモノマーとを、ルイス酸触媒の存在下で反応させることによりPAEK樹脂を得てもよい。
The manufacturing method of the second embodiment will be described in detail below.
As described above, as a second embodiment of the method for producing a PAEK resin, a PAEK resin is produced by reacting a monomer represented by the above general formula (4-1) under a Lewis acid catalyst (ii). The method can be mentioned.
As a more specific embodiment of the method (ii), (ii-1) the monomer represented by the general formula (4-1) and isophthaloyl chloride and terephthaloyl chloride are used in a Lewis acid catalyst. Examples thereof include a method for producing a PAEK resin to be reacted in the presence.
Here, examples of the Lewis acid catalyst include anhydrous aluminum chloride.
Further, for example, using 1,2-dichlorobenzene as a solvent, 1,2-dichlorobenzene, isophthaloyl chloride, terephthaloyl chloride, and the monomer represented by the above general formula (4-1) May be reacted in the presence of a Lewis acid catalyst to obtain a PAEK resin.

上記(ii−1)の実施態様において、上記一般式(4−1)で表されるモノマーと、イソフタロイルクロリドと、テレフタロイルクロリドとの混合割合は、特に制限はなく、目的に応じて適宜選択できるが、例えば、モル比で、100:10:90〜100:50:50であることが好ましい。
1、2−ジクロロベンゼンの溶剤を用いる場合、1、2−ジクロロベンゼンの添加量と、上記一般式(4−1)で表されるモノマー、イソフタロイルクロリド、及びテレフタロイルクロリドの合計の添加量との割合は、特に制限はなく、目的に応じて適宜選択できるが、例えば、質量比で、100:1〜100:20の範囲であることが好ましい。
In the embodiment of (ii-1) above, the mixing ratio of the monomer represented by the general formula (4-1), isophthaloyl chloride, and terephthaloyl chloride is not particularly limited and depends on the intended purpose. However, for example, the molar ratio is preferably 100:10:90 to 100:50:50.
When a solvent of 1,2-dichlorobenzene is used, the total amount of the addition amount of 1,2-dichlorobenzene and the monomer represented by the above general formula (4-1), isophthaloyl chloride, and terephthaloyl chloride. The ratio with the addition amount is not particularly limited and may be appropriately selected depending on the intended purpose, but for example, the mass ratio is preferably in the range of 100: 1 to 100:20.

本発明のPAEK樹脂の精製方法を含む、本発明のPAEK樹脂の製造方法により製造されたPAEK樹脂は、他の配合物と合わせて樹脂組成物を作製することができる。また、本発明のPAEK樹脂の精製方法を含む、本発明のPAEK樹脂の製造方法により製造されたPAEK樹脂は、後述する各種成形品への適用が可能である。 The PAEK resin produced by the method for producing a PAEK resin of the present invention, which comprises the method for purifying the PAEK resin of the present invention, can be combined with other formulations to produce a resin composition. Further, the PAEK resin produced by the method for producing a PAEK resin of the present invention, including the method for purifying the PAEK resin of the present invention, can be applied to various molded products described later.

<ポリアリーレンエーテルケトン樹脂(PAEK樹脂)を含有する樹脂組成物>
本発明に係るPAEK樹脂は、他の配合物と合わせて樹脂組成物を作製することができる。
他の配合物としては、特に制限はなく、目的に応じて適宜選択できるが、例えば、無機フィラー、有機フィラー等が挙げられる。
フィラーの形状としては、特に限定はなく、例えば、粒子状、板状、繊維状等のフィラーが挙げられる。
PAEK樹脂を含有する樹脂組成物は、フィラーとしては繊維状フィラーを含有することがより好ましい。繊維状フィラーの中でも、カーボン繊維とガラス繊維は、産業上利用範囲が広いため、好ましい。
<Resin composition containing polyarylene ether ketone resin (PAEK resin)>
The PAEK resin according to the present invention can be combined with other formulations to prepare a resin composition.
The other formulation is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include inorganic fillers and organic fillers.
The shape of the filler is not particularly limited, and examples thereof include fillers in the form of particles, plates, and fibers.
The resin composition containing the PAEK resin more preferably contains a fibrous filler as the filler. Among the fibrous fillers, carbon fiber and glass fiber are preferable because they have a wide range of industrial use.

<ポリアリーレンエーテルケトン樹脂(PAEK樹脂)を含む成形体>
本発明に係るPAEK樹脂は、耐熱性に優れ高いガラス転移温度(Tg)を有するとともに、高い結晶性を保持したまま結晶融点(Tm)を制御することが可能で、良好な成形加工性を有する。そのため、ニートレジンとしての使用や、ガラス繊維、炭素繊維、フッ素樹脂等のコンパウンドとしての使用が可能である。そして、本発明に係るPAEK樹脂を成形することで、ロッド、ボード、フィルム、フィラメント等の一次加工品や、各種射出加工品、各種切削加工品、ギア、軸受、コンポジット、インプラント、3D成形品等の二次加工品を製造することができ、これらの本発明に係るPAEK樹脂を成形してなる成形品は、自動車、航空機、電気電子、医療用部材等の利用が可能である。
<Molded product containing polyarylene ether ketone resin (PAEK resin)>
The PAEK resin according to the present invention has excellent heat resistance, has a high glass transition temperature (Tg), can control the crystal melting point (Tm) while maintaining high crystallinity, and has good molding processability. .. Therefore, it can be used as a neat resin or as a compound of glass fiber, carbon fiber, fluororesin and the like. Then, by molding the PAEK resin according to the present invention, primary processed products such as rods, boards, films, filaments, various injection processed products, various cut processed products, gears, bearings, composites, implants, 3D molded products, etc. The secondary processed products of the above can be manufactured, and these molded products obtained by molding the PAEK resin according to the present invention can be used for automobiles, aircraft, electrical and electronic products, medical members, and the like.

以下に実施例を挙げて本発明を更に詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the scope of the present invention is not limited to these Examples.

(1%、5%重量減少温度(Td1、Td5(℃)))
リガク製TG−DTA装置 TG−8120を用いて、20mL/minの窒素流下、20℃/minの昇温速度で測定を行い、1%、あるいは5%の重量減少温度を測定した。
(1%, 5% weight loss temperature (Td1, Td5 (° C.)))
Using the TG-DTA device TG-8120 manufactured by Rigaku, measurements were carried out under a nitrogen flow of 20 mL / min at a temperature rise rate of 20 ° C./min, and a weight loss temperature of 1% or 5% was measured.

(成形体の外観)
得られたPAEK樹脂を400℃で溶融して、プレスしたのち、急冷することによって非晶性を示すダンベルを作製し、更に240℃で3時間アニーリングさせて結晶化させ、成形体を作製した。その後、成形体の外観を観測した。
(Appearance of molded product)
The obtained PAEK resin was melted at 400 ° C., pressed, and then rapidly cooled to prepare a dumbbell exhibiting amorphousness, and further annealed at 240 ° C. for 3 hours to crystallize the molded product. After that, the appearance of the molded product was observed.

(参考例)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、メタンスルホン酸818gと五酸化二リン82gを仕込み、窒素雰囲気下の室温で20時間撹拌した。その後、1、4−ジフェノキシベンゼン50.4gと4,4’−オキシビス安息香酸49.6gを添加し、60℃に昇温して40時間反応させた。室温まで冷却後、反応溶液を強撹拌したメタノール中に注ぎ込み、ポリマーを析出させ、濾過した。その後、ポリマーを真空下の120℃で20時間乾燥させた。
(Reference example)
818 g of methanesulfonic acid and 82 g of diphosphorus pentoxide were placed in a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, and the mixture was stirred at room temperature in a nitrogen atmosphere for 20 hours. Then, 50.4 g of 1,4-diphenoxybenzene and 49.6 g of 4,4'-oxybis benzoic acid were added, the temperature was raised to 60 ° C., and the reaction was carried out for 40 hours. After cooling to room temperature, the reaction solution was poured into vigorously stirred methanol to precipitate a polymer and filtered. The polymer was then dried under vacuum at 120 ° C. for 20 hours.

(実施例1)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール50質量部とメタノール50質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した(第1の工程)。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した(第2の工程)。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 1)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 50 parts by mass of parachlorophenol, and 50 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. and mixed for 5 hours in a nitrogen atmosphere (first step). After cooling to room temperature, the mixture was subjected to filter paper No. The mixture was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar (second step). Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

得られた精製後のポリマーについて、1%、及び5%の重量減少温度(℃)を測定した。
1%、及び5%の重量減少温度は、溶融安定性の指標である。PAEK樹脂の成形体を形成するうえで、実用上、例えば、1%の重量減少温度は500℃以上、5%の重量減少温度は540℃以上であることが望ましい。
また、得られた精製後のポリマーに対して、400℃で溶融して、成形体を作製したときの成形体の色を下記基準で評価した。
さらに、第2の工程における混合液からポリマーを分離する際の濾過時間について、下記基準で評価した。
それぞれの測定及び評価結果を表1に示す。
The weight loss temperatures (° C.) of 1% and 5% were measured for the obtained purified polymer.
Weight loss temperatures of 1% and 5% are indicators of melt stability. In forming a PAEK resin molded product, for practical purposes, for example, it is desirable that the weight loss temperature of 1% is 500 ° C. or higher and the weight loss temperature of 5% is 540 ° C. or higher.
Further, the color of the molded product when the obtained purified polymer was melted at 400 ° C. to prepare a molded product was evaluated according to the following criteria.
Furthermore, the filtration time when separating the polymer from the mixed solution in the second step was evaluated according to the following criteria.
Table 1 shows the results of each measurement and evaluation.

[成形体の色の評価基準]
◎:かなり薄い橙色
○:薄い橙色
△:濃い橙色
×:黒色
[Evaluation criteria for color of molded product]
◎: Very light orange ○: Light orange △: Dark orange ×: Black

[濾過時間の評価基準]
◎:3時間未満
○:3時間以上5時間未満
△:5時間以上10時間未満
×:10時間以上
[Evaluation criteria for filtration time]
⊚: less than 3 hours ○: 3 hours or more and less than 5 hours Δ: 5 hours or more and less than 10 hours ×: 10 hours or more

(実施例2)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール70質量部とメタノール30質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 2)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 70 parts by mass of parachlorophenol, and 30 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

得られた精製後のポリマーについて、実施例1と同様にして、1%、及び5%の重量減少温度(℃)を測定し、及び成形体の色と濾過時間について、評価した。
それぞれの測定及び評価結果を表1に示す。尚、以降の実施例3〜16、及び比較例1〜5についても、実施例1と同様にして、1%、及び5%の重量減少温度(℃)を測定し、及び成形体の色と濾過時間について、評価した。実施例3〜5の結果を下記表1に、実施例6〜10の結果を下記表2に、実施例11〜16の結果を下記表3に、比較例1〜5の結果を下記表4にそれぞれ示す。
For the obtained purified polymer, 1% and 5% weight loss temperatures (° C.) were measured in the same manner as in Example 1, and the color and filtration time of the molded product were evaluated.
Table 1 shows the results of each measurement and evaluation. In the following Examples 3 to 16 and Comparative Examples 1 to 5, the weight loss temperature (° C.) of 1% and 5% was measured in the same manner as in Example 1, and the color of the molded product was measured. The filtration time was evaluated. The results of Examples 3 to 5 are shown in Table 1 below, the results of Examples 6 to 10 are shown in Table 2 below, the results of Examples 11 to 16 are shown in Table 3 below, and the results of Comparative Examples 1 to 5 are shown in Table 4 below. Each is shown in.

(実施例3)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール10質量部とメタノール90質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 3)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 10 parts by mass of parachlorophenol, and 90 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例4)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール90質量部とメタノール10質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 4)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 90 parts by mass of parachlorophenol, and 10 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例5)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール5質量部とメタノール95質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 5)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 5 parts by mass of parachlorophenol, and 95 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例6)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール95質量部とメタノール5質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 6)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 95 parts by mass of parachlorophenol, and 5 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例7)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール2質量部とメタノール98質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 7)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 2 parts by mass of parachlorophenol, and 98 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例8)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール98質量部とメタノール2質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 8)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 98 parts by mass of parachlorophenol, and 2 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例9)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とパラクロロフェノール70質量部とメタノール30質量部と48%水酸化ナトリウム水溶液0.2質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 9)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer obtained in the reference example, 70 parts by mass of parachlorophenol, 30 parts by mass of methanol, and 48 parts were placed. 0.2 parts by mass of a% sodium hydroxide aqueous solution was charged, the temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例10)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、メタンスルホン酸818gと五酸化二リン82gを仕込み、窒素雰囲気下の室温で20時間撹拌した。その後、1、4−ジフェノキシベンゼン50.4gと4,4’−オキシビス安息香酸49.6gを添加し、60℃に昇温して40時間反応させた。室温まで冷却後、反応溶液を強撹拌したメタノール中に注ぎ込み、ポリマーを析出させ、濾過した。更に得られたポリマーをメタノールで2回洗浄した。得られたポリマーは80質量%のメタノールを含有していた。
(Example 10)
818 g of methanesulfonic acid and 82 g of diphosphorus pentoxide were placed in a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, and the mixture was stirred at room temperature in a nitrogen atmosphere for 20 hours. Then, 50.4 g of 1,4-diphenoxybenzene and 49.6 g of 4,4'-oxybis benzoic acid were added, the temperature was raised to 60 ° C., and the reaction was carried out for 40 hours. After cooling to room temperature, the reaction solution was poured into vigorously stirred methanol to precipitate a polymer and filtered. Further, the obtained polymer was washed twice with methanol. The resulting polymer contained 80% by weight of methanol.

窒素導入管、温度計、トラップ、及び撹拌装置を備えた4つ口のセパラブルフラスコに、得られたポリマー50質量部(うち40質量部はメタノール)とパラクロロフェノール70質量部を仕込み、窒素雰囲気下で、180℃に昇温した。昇温過程においてメタノールが揮発し、トラップ内にメタノール40質量部を捕捉した。180℃に到達後、5時間混合した。70℃まで冷却後、メタノール30質量部を添加して、更に5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。更に得られたポリマーをメタノールで2回洗浄し、続いてイオン交換水で2回洗浄した。その後、ポリマーを真空下の180℃で10時間乾燥させた。 In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a trap, and a stirrer, 50 parts by mass of the obtained polymer (of which 40 parts by mass is methanol) and 70 parts by mass of parachlorophenol were charged, and nitrogen was charged. The temperature was raised to 180 ° C. in an atmosphere. Methanol volatilized during the heating process, and 40 parts by mass of methanol was trapped in the trap. After reaching 180 ° C., mixing was performed for 5 hours. After cooling to 70 ° C., 30 parts by mass of methanol was added and mixed for another 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Further, the obtained polymer was washed twice with methanol and then twice with ion-exchanged water. The polymer was then dried under vacuum at 180 ° C. for 10 hours.

(実施例11)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、1、2−ジクロロベンゼン864gとイソフタロイルクロリド5.4gとテレフタロイルクロリド21.6gとジフェニルエーテル23.0gを仕込み、窒素雰囲気下で−5℃まで冷却した。その後、無水塩化アルミニウム86gを添加して均一になったら、2時間かけて30℃に昇温し、同温度で50時間反応させた。室温まで冷却後、反応溶液を強撹拌したメタノール中に注ぎ込み、ポリマーを析出させ、濾過した。更に得られたポリマーをメタノールで2回洗浄した。得られたポリマーは80質量%のメタノールを含有していた。
(Example 11)
In a four-neck separable flask equipped with a nitrogen inlet tube, a thermometer, a reflux condenser, and a stirrer, 864 g of 1,2-dichlorobenzene, 5.4 g of isophthaloyl chloride, and 21.6 g of terephthaloyl chloride were added. 23.0 g of diphenyl ether was charged and cooled to −5 ° C. under a nitrogen atmosphere. Then, when 86 g of anhydrous aluminum chloride was added and became uniform, the temperature was raised to 30 ° C. over 2 hours, and the reaction was carried out at the same temperature for 50 hours. After cooling to room temperature, the reaction solution was poured into vigorously stirred methanol to precipitate a polymer and filtered. Further, the obtained polymer was washed twice with methanol. The resulting polymer contained 80% by weight of methanol.

窒素導入管、温度計、トラップ、及び撹拌装置を備えた4つ口のセパラブルフラスコに、得られたポリマー50質量部(うち40質量部はメタノール)とパラクロロフェノール70質量部を仕込み、窒素雰囲気下で、180℃に昇温した。昇温過程においてメタノールが揮発し、トラップ内にメタノール40質量部を捕捉した。180℃に到達後、5時間混合した。70℃まで冷却後、メタノール30質量部を添加して、更に5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。更に得られたポリマーをメタノールで2回洗浄し、続いてイオン交換水で2回洗浄した。その後、ポリマーを真空下の180℃で10時間乾燥させた。 In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a trap, and a stirrer, 50 parts by mass of the obtained polymer (of which 40 parts by mass is methanol) and 70 parts by mass of parachlorophenol were charged, and nitrogen was charged. The temperature was raised to 180 ° C. in an atmosphere. Methanol volatilized during the heating process, and 40 parts by mass of methanol was trapped in the trap. After reaching 180 ° C., mixing was performed for 5 hours. After cooling to 70 ° C., 30 parts by mass of methanol was added and mixed for another 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Further, the obtained polymer was washed twice with methanol and then twice with ion-exchanged water. The polymer was then dried under vacuum at 180 ° C. for 10 hours.

(実施例12)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とヘキサフルオロイソプロピルアルコール50質量部と水50質量部を仕込み、窒素雰囲気下で、60℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 12)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer obtained in the reference example, 50 parts by mass of hexafluoroisopropyl alcohol, and 50 parts by mass of water were placed. The mixture was charged, heated to 60 ° C. under a nitrogen atmosphere, and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例13)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とトリクロロフェノール50質量部とエタノール50質量部を仕込み、窒素雰囲気下で、80℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 13)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 50 parts by mass of trichlorophenol, and 50 parts by mass of ethanol obtained in the reference example were charged. The temperature was raised to 80 ° C. under a nitrogen atmosphere and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例14)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とトリフルオロエタノール50質量部とメタノール50質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 14)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 50 parts by mass of trifluoroethanol, and 50 parts by mass of methanol obtained in the reference example were charged. , The temperature was raised to 70 ° C. under a nitrogen atmosphere, and the mixture was mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例15)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部と2,3,4,6−テトラクロロフェノール50質量部とイソプロピルアルコール50質量部を仕込み、窒素雰囲気下で、80℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 15)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer obtained in the reference example and 50 parts by mass of 2,3,4,6-tetrachlorophenol were obtained. A portion and 50 parts by mass of isopropyl alcohol were charged, heated to 80 ° C. in a nitrogen atmosphere, and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(実施例16)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部と2−フルオロエタノール50質量部とメタノール50質量部を仕込み、窒素雰囲気下で、70℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Example 16)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer, 50 parts by mass of 2-fluoroethanol, and 50 parts by mass of methanol obtained in the reference example were placed. The mixture was charged, heated to 70 ° C. under a nitrogen atmosphere, and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(比較例1)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とイソプロピルアルコール100質量部を仕込み、窒素雰囲気下で、80℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Comparative Example 1)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer and 100 parts by mass of isopropyl alcohol obtained in the reference example were charged, and in a nitrogen atmosphere, The temperature was raised to 80 ° C. and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(比較例2)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部と乳酸100質量部を仕込み、窒素雰囲気下で、80℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。10時間経っても濾過が終了しなかったので、その後の試験は中止した。
(Comparative Example 2)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer and 100 parts by mass of lactic acid obtained in the reference example were charged, and 80 parts by mass in a nitrogen atmosphere. The temperature was raised to ° C. and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Filtration was not completed after 10 hours, so the subsequent test was stopped.

(比較例3)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とスルホラン100質量部を仕込み、窒素雰囲気下で、270℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Comparative Example 3)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer and 100 parts by mass of sulfolane obtained in the reference example were charged, and 270 parts by mass in a nitrogen atmosphere. The temperature was raised to ° C. and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(比較例4)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例で得られたポリマー10質量部とジメチルスルホキシド100質量部を仕込み、窒素雰囲気下で、180℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Comparative Example 4)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer and 100 parts by mass of dimethyl sulfoxide obtained in the reference example were placed in a nitrogen atmosphere. The temperature was raised to 180 ° C. and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

(比較例5)
窒素導入管、温度計、還流冷却器、及び撹拌装置を備えた4つ口のセパラブルフラスコに、参考例1で得られたポリマー10質量部とN−メチルピロリドン100質量部を仕込み、窒素雰囲気下で、200℃に昇温して5時間混合した。室温まで冷却後、混合物を濾紙No.5Aを敷いた桐山ロートSU−95に移し替えて、40mbarの減圧下で吸引濾過した。その後、ポリマーを真空下、120℃で20時間乾燥させ、更に180℃で10時間乾燥させた。
(Comparative Example 5)
In a four-port separable flask equipped with a nitrogen introduction tube, a thermometer, a reflux condenser, and a stirrer, 10 parts by mass of the polymer obtained in Reference Example 1 and 100 parts by mass of N-methylpyrrolidone were charged to create a nitrogen atmosphere. Below, the temperature was raised to 200 ° C. and mixed for 5 hours. After cooling to room temperature, the mixture was subjected to filter paper No. It was transferred to Kiriyama Rohto SU-95 covered with 5A and suction-filtered under a reduced pressure of 40 mbar. Then, the polymer was dried under vacuum at 120 ° C. for 20 hours and further dried at 180 ° C. for 10 hours.

Figure 2020200423
Figure 2020200423

Figure 2020200423
Figure 2020200423

Figure 2020200423
Figure 2020200423

Figure 2020200423
Figure 2020200423

実施例で示すように、本発明のPAEK樹脂の精製方法を用いると、良好な特性を示すPAEK樹脂を得ることができる。本発明のPAEK樹脂の精製方法を用いることにより、高温で溶融し成形体を形成させても、黒変が生じず、成形体の変色が防止できるPAEK樹脂を提供できることが確認できた。

As shown in Examples, when the PAEK resin purification method of the present invention is used, a PAEK resin exhibiting good properties can be obtained. It was confirmed that by using the PAEK resin purification method of the present invention, it is possible to provide a PAEK resin that does not cause blackening even when melted at a high temperature to form a molded product and can prevent discoloration of the molded product.

Claims (5)

ポリアリーレンエーテルケトン樹脂を、水酸基を有し、かつ酸解離定数pKaが5〜15である有機溶剤(1)と、前記有機溶剤(1)よりも前記ポリアリーレンエーテルケトン樹脂に対する溶解度が低い貧溶媒(2)とに混合して混合液を得る第1の工程と、
前記第1の工程で得られた前記混合液からポリアリーレンエーテルケトン樹脂を分離する第2の工程と
を含むことを特徴とするポリアリーレンエーテルケトン樹脂の精製方法。
The polyarylene ether ketone resin is an organic solvent (1) having a hydroxyl group and having an acid dissociation constant pKa of 5 to 15, and a poor solvent having a lower solubility in the polyarylene ether ketone resin than the organic solvent (1). In the first step of mixing with (2) to obtain a mixed solution,
A method for purifying a polyarylene ether ketone resin, which comprises a second step of separating the polyarylene ether ketone resin from the mixed solution obtained in the first step.
前記有機溶剤(1)と前記貧溶媒(2)との合計質量に対する、前記有機溶剤(1)の質量の割合が、5〜95%である、請求項1に記載のポリアリーレンエーテルケトン樹脂の精製方法。 The polyarylene ether ketone resin according to claim 1, wherein the ratio of the mass of the organic solvent (1) to the total mass of the organic solvent (1) and the poor solvent (2) is 5 to 95%. Purification method. 前記ポリアリーレンエーテルケトン樹脂が、下記一般式(3)で表される構造を有する、請求項1に記載のポリアリーレンエーテルケトン樹脂の精製方法。
Figure 2020200423
ただしXは下記一般式(3−1)、Yは下記一般式(3−2)で表される。
Figure 2020200423
(式中、mは0〜2のいずれかの整数を示す。)
Figure 2020200423
(式中、nは0〜3のいずれかの整数を示す。)
The method for purifying a polyarylene ether ketone resin according to claim 1, wherein the polyarylene ether ketone resin has a structure represented by the following general formula (3).
Figure 2020200423
However, X is represented by the following general formula (3-1), and Y is represented by the following general formula (3-2).
Figure 2020200423
(In the formula, m indicates an integer of 0 to 2.)
Figure 2020200423
(In the formula, n indicates an integer of 0 to 3.)
前記ポリアリーレンエーテルケトン樹脂が、下記一般式(4―1)及び(4−2)で表されるモノマーの群から選ばれるモノマーを、有機スルホン酸及び五酸化二リンの混合物の存在下で反応させることで製造される、請求項3に記載のポリアリーレンエーテルケトン樹脂の精製方法。
Figure 2020200423
(式中、mは0〜2のいずれかの整数を示す。)
Figure 2020200423
(式中、nは0〜3のいずれかの整数を示す。)
The polyarylene ether ketone resin reacts a monomer selected from the group of monomers represented by the following general formulas (4-1) and (4-2) in the presence of a mixture of organic sulfonic acid and diphosphorus pentoxide. The method for purifying a polyarylene ether ketone resin according to claim 3, which is produced by allowing the mixture to be produced.
Figure 2020200423
(In the formula, m indicates an integer of 0 to 2.)
Figure 2020200423
(In the formula, n indicates an integer of 0 to 3.)
ポリアリーレンエーテルケトン樹脂を合成する工程と、
請求項1〜4のいずれか一項に記載のポリアリーレンエーテルケトン樹脂の精製方法を用いて、前記ポリアリーレンエーテルケトン樹脂を精製する工程と
を含むことを特徴とするポリアリーレンエーテルケトン樹脂の製造方法。
The process of synthesizing polyarylene ether ketone resin and
Production of a polyarylene ether ketone resin, which comprises a step of purifying the polyarylene ether ketone resin by using the method for purifying a polyarylene ether ketone resin according to any one of claims 1 to 4. Method.
JP2019110031A 2019-06-13 2019-06-13 Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method Active JP7272126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019110031A JP7272126B2 (en) 2019-06-13 2019-06-13 Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019110031A JP7272126B2 (en) 2019-06-13 2019-06-13 Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method

Publications (2)

Publication Number Publication Date
JP2020200423A true JP2020200423A (en) 2020-12-17
JP7272126B2 JP7272126B2 (en) 2023-05-12

Family

ID=73742551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019110031A Active JP7272126B2 (en) 2019-06-13 2019-06-13 Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method

Country Status (1)

Country Link
JP (1) JP7272126B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247731A (en) * 1985-04-26 1986-11-05 Idemitsu Kosan Co Ltd Production of polyether ketone
JPH01178520A (en) * 1988-01-08 1989-07-14 Idemitsu Kosan Co Ltd Production of aromatic polyether-ketone
WO2003050163A1 (en) * 2001-12-11 2003-06-19 Mitsui Chemicals, Inc. Polyether ketone and method for production thereof
JP2005248095A (en) * 2004-03-08 2005-09-15 Mitsui Chemicals Inc Resin composition and laminate for high-frequency circuit using the same
WO2015182621A1 (en) * 2014-05-28 2015-12-03 味の素株式会社 Polyether ketone compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247731A (en) * 1985-04-26 1986-11-05 Idemitsu Kosan Co Ltd Production of polyether ketone
JPH01178520A (en) * 1988-01-08 1989-07-14 Idemitsu Kosan Co Ltd Production of aromatic polyether-ketone
WO2003050163A1 (en) * 2001-12-11 2003-06-19 Mitsui Chemicals, Inc. Polyether ketone and method for production thereof
JP2005248095A (en) * 2004-03-08 2005-09-15 Mitsui Chemicals Inc Resin composition and laminate for high-frequency circuit using the same
WO2015182621A1 (en) * 2014-05-28 2015-12-03 味の素株式会社 Polyether ketone compound

Also Published As

Publication number Publication date
JP7272126B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
US4751274A (en) Preparation of aromatic block copolyethers
JPWO2015098748A1 (en) Polyarylene sulfide resin composition and molded article comprising the same
JPH04213330A (en) Aromatic polysulfone ether ketone and its manufacture
JPS604210B2 (en) Manufacturing method for electrical insulation polymerization
JP6819842B2 (en) Polyarylene ether ketone resin, its manufacturing method, and molded product
JPS62288631A (en) High temperature stable copolycondensate molding material
JP7272126B2 (en) Method for purifying polyarylene ether ketone resin, and method for producing polyarylene ether ketone resin including the purification method
JP6819841B1 (en) Polyarylene ether ketone resin, its manufacturing method, and molded product
JP7403120B2 (en) Polyarylene sulfane ketone resin and its molded product
JP7279357B2 (en) Polyarylene ether ketone resin, method for producing the same, and molded article
JP7310350B2 (en) Method for purifying methanesulfonic acid and method for using purified methanesulfonic acid
KR20200053003A (en) Polysulfone copolymer having improved heat resistance and processability and method for preparing the same
JP2023005590A (en) Polyarylene ether ketone resin and method for producing the same, and molding
EP3947524B1 (en) Amorphous polymer (p) comprising segments (s1), (s2) and (s3)
JP7323891B2 (en) Polyarylene ether ketone resin, method for producing the same, and molded article
JP7460614B2 (en) Copolymer of poly(aryl ether sulfone) and polydimethylsiloxane
US4008204A (en) Polysulphones as insulators
JPH0656996A (en) Aromatic polysulfone resin molding
JPH0475251B2 (en)
JP2022165022A (en) Polyarylene ether ketone resin and method for producing the same, and molded body
JP6558052B2 (en) Process for producing polyarylene sulfide
JP2022165179A (en) Polyarylene ether ketone resin and production method thereof, and molding
JPH03121125A (en) Poly(arylene ether ketone) and its production
JP2023005442A (en) Polyarylene ether ketone resin and method for producing the same, and resin composition and molding
JP2022165147A (en) Polyarylene ether ketone resin and production method thereof, and molding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R151 Written notification of patent or utility model registration

Ref document number: 7272126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151