JP2020200287A - Method for producing carbonyl compound - Google Patents

Method for producing carbonyl compound Download PDF

Info

Publication number
JP2020200287A
JP2020200287A JP2019109306A JP2019109306A JP2020200287A JP 2020200287 A JP2020200287 A JP 2020200287A JP 2019109306 A JP2019109306 A JP 2019109306A JP 2019109306 A JP2019109306 A JP 2019109306A JP 2020200287 A JP2020200287 A JP 2020200287A
Authority
JP
Japan
Prior art keywords
group
alcohol
compound
producing
carbonyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019109306A
Other languages
Japanese (ja)
Inventor
治 尾野村
Osamu Onomura
治 尾野村
正巳 栗山
Masami Kuriyama
正巳 栗山
耕介 山本
Kosuke Yamamoto
耕介 山本
直登 菊池
Naoto Kikuchi
直登 菊池
杏梨 上原
Anri Uehara
杏梨 上原
悠紀 楠本
Yuki Kusumoto
悠紀 楠本
正之 森脇
Masayuki Moriwaki
正之 森脇
大 角田
Masaru Tsunoda
大 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University NUC
Tokuyama Corp
Original Assignee
Nagasaki University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University NUC, Tokuyama Corp filed Critical Nagasaki University NUC
Priority to JP2019109306A priority Critical patent/JP2020200287A/en
Publication of JP2020200287A publication Critical patent/JP2020200287A/en
Priority to JP2023157438A priority patent/JP2023179533A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

To allow a method that oxidizes a first or second alcohol compound to obtain a carbonyl compound to be conducted with a higher yield than that of a method that uses sodium hypochlorite as an oxidizer.SOLUTION: A first or second alcohol compound is oxidized, in the presence of tetraalkylammonium hypochlorite and, preferably, in coexistence with a nitroxy radical catalyst and a metal halide cocatalyst, to produce a carbonyl compound composed of an aldehyde compound, a carboxylic acid compound, and a ketone compound.SELECTED DRAWING: None

Description

本発明は、カルボニル化合物の製造方法、詳しくは、第一または第二アルコール化合物を反応原料とし、これを酸化させるカルボニル化合物の製造方法に関する。 The present invention relates to a method for producing a carbonyl compound, specifically, a method for producing a carbonyl compound using a primary or secondary alcohol compound as a reaction raw material and oxidizing the reaction raw material.

従来より、第一または第二アルコール化合物を反応原料とし、これを酸化させて、アルデヒド化合物、カルボン酸化合物、またはケトン化合物等のカルボニル化合物を製造することが知られている。上記反応を遂行させるためには、酸化剤の使用が必要であるが、例えば、次亜塩素酸ソーダは、比較的安価な化合物で、簡便に反応を実行できる等の理由から、その水溶液を用いた報告がある(例えば、非特許文献1,及び特許文献1〜4参照)。さらに、次亜塩素酸ソーダに代えて、次亜塩素酸ソーダ五水和物を用いて、その反応性を高めることも知られている(特許文献5)
これらの次亜塩素酸ソーダ類よる酸化では、触媒として、TEMPO(2,2,6,6−テトラメチルピペリジン−1−オキシル)や、AZADO(2−アザアダマンタン−N−オキシル)のニトロキシラジカル触媒を使用することが有効とされている。
Conventionally, it has been known that a primary or secondary alcohol compound is used as a reaction raw material and oxidized to produce a carbonyl compound such as an aldehyde compound, a carboxylic acid compound, or a ketone compound. In order to carry out the above reaction, it is necessary to use an oxidizing agent. For example, sodium hypochlorite is a relatively inexpensive compound, and an aqueous solution thereof is used because the reaction can be easily carried out. (See, for example, Non-Patent Documents 1 and 1 to 4). Further, it is also known that sodium hypochlorite pentahydrate is used instead of sodium hypochlorite to enhance its reactivity (Patent Document 5).
In the oxidation by these sodium hypochlorites, TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl) and AZADO (2-azaadamantane-N-oxyl) nitroxy radicals are used as catalysts. It is effective to use a catalyst.

P.L.Anelli,et al.,J.Org.Chem. 1987, 52, 2559-2562P. L. Anelli, et al. , J. Org. Chem. 1987, 52, 2559-2562

特許第04809229号公報Japanese Patent No. 048092229 特許第04803074号公報Japanese Patent No. 04803074 特表2002−511440号公報Special Table 2002-511440 特表2006−517584号公報Special Table 2006-517584 特開2015−63504号公報JP-A-2015-63504

しかしながら、前記次亜塩素酸ソーダ類を用いての、前記アルコール化合物の酸化反応は、上記ニトロキシラジカル触媒と組合せて反応を実施したとしても、得られるカルボニル化合物の収率において、今一歩満足できなかった。よって、さらにその反応性を高めることが求められていた。 However, the oxidation reaction of the alcohol compound using the sodium hypochlorites is one step more satisfactory in the yield of the obtained carbonyl compound even if the reaction is carried out in combination with the nitroxy radical catalyst. There wasn't. Therefore, it has been required to further enhance the reactivity.

本発明者等は、上記課題に鑑み、第一または第二アルコール化合物の酸化反応を高い収率で実施する方法を開発すべく、鋭意研究を続けてきた。その結果、次亜塩素酸テトラアルキルアンモニウムの存在下で反応を進行させることにより、上記の課題が解決できることを見出し、本発明を完成するに至った。 In view of the above problems, the present inventors have continued diligent research in order to develop a method for carrying out the oxidation reaction of the first or second alcohol compound in a high yield. As a result, they have found that the above problems can be solved by proceeding the reaction in the presence of tetraalkylammonium hypochlorite, and have completed the present invention.

即ち、本発明は、第一または第二アルコール化合物を、次亜塩素酸テトラアルキルアンモニウムの存在下に酸化させることを特徴とする、カルボニル化合物の製造方法である。 That is, the present invention is a method for producing a carbonyl compound, which comprises oxidizing a primary or secondary alcohol compound in the presence of tetraalkylammonium hypochlorous acid.

本発明によれば、第一または第二アルコール化合物を原料に、次亜塩素酸テトラアルキルアンモニウムを用いた酸化反応により、対応するカルボニル化合物を簡便に高い反応性で有機合成できる。この反応は、触媒として、ニトロキシラジカル触媒及びハロゲン化金属系助触媒の共存下に実施することにより、一層に収率を向上させることができ、工業的に極めて有用である。 According to the present invention, the corresponding carbonyl compound can be easily and highly reactively organically synthesized by an oxidation reaction using a primary or secondary alcohol compound as a raw material and tetraalkylammonium hypochlorous acid. By carrying out this reaction in the coexistence of a nitroxy radical catalyst and a metal halide-based co-catalyst as a catalyst, the yield can be further improved, which is extremely useful industrially.

本発明の実施の形態について、以下に詳細に説明する。ただし、本発明はこれらの形態に限定されるものではない。 Embodiments of the present invention will be described in detail below. However, the present invention is not limited to these forms.

本発明の製造方法では、原料として、第一または第二アルコール化合物を用いる(以下、単に「アルコール化合物」とも略する)。係る第一または第二アルコール化合物は、公知のものが特に制限なく適用できる。これらアルコール化合物は、脂肪族アルコール及び芳香族アルコールのいずれであっても良いが、好適には一般式(1) In the production method of the present invention, a primary or secondary alcohol compound is used as a raw material (hereinafter, also simply abbreviated as "alcohol compound"). As the first or second alcohol compound, known compounds can be applied without particular limitation. These alcohol compounds may be either aliphatic alcohols or aromatic alcohols, but are preferably the general formula (1).

Figure 2020200287
Figure 2020200287

(式中、R はアルキル基、芳香族炭化水素基、または脂環式炭化水素基であり、Rはアルキル基、芳香族炭化水素基、脂環式炭化水素基、または水素原子であり、R及びRは一緒になって脂肪族炭化水素環を形成していてもよい)
で示す化合物であるのが好ましい。ここで、上記アルコール化合物は、Rが水素原子の場合に第一アルコールになり、Rがアルキル基、芳香族炭化水素基、または脂環式炭化水素基の場合に第二アルコールになる。
(In the formula, R 1 is an alkyl group, an aromatic hydrocarbon group, or an alicyclic hydrocarbon group, and R 2 is an alkyl group, an aromatic hydrocarbon group, an alicyclic hydrocarbon group, or a hydrogen atom. , R 1 and R 2 may be combined to form an aliphatic hydrocarbon ring)
It is preferably the compound shown by. Here, the alcohol compound becomes a primary alcohol when R 2 is a hydrogen atom, and becomes a secondary alcohol when R 2 is an alkyl group, an aromatic hydrocarbon group, or an alicyclic hydrocarbon group.

一般式(1)において、R、Rのアルキル基は、直鎖状でも分岐状でもよく、例えば、炭素数1〜20のアルキル基が挙げられる。このようなアルキル基として、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、tert−ペンチル基、イソペンチル基、2−メチルブチル基、1−エチルプロピル基、ヘキシル基、イソヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,2−ジメチルブチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、セチル基、ステアリル基等が挙げられる。上記アルキル基の炭素数は1〜12が好ましく、1〜6の低級アルキル基がより好ましく、メチル基であるのが最も好ましい。 In the general formula (1), the alkyl groups of R 1 and R 2 may be linear or branched, and examples thereof include alkyl groups having 1 to 20 carbon atoms. As such alkyl groups, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, neopentyl group, tert-pentyl group. Group, isopentyl group, 2-methylbutyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3- Dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2 -Ethylbutyl group, heptyl group, octyl group, nonyl group, decyl group, cetyl group, stearyl group and the like can be mentioned. The alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 lower alkyl groups, and most preferably a methyl group.

また、芳香族炭化水素基は、例えば炭素数6〜20の基が挙げられ、具体的には、フェニル基、1−ナフチル基、2−ナフチル基、アントリル基、フェナンスリル基、2−ビフェニル基、3−ビフェニル基、4−ビフェニル基、ターフェニル基等が挙げられ、フェニル基が特に好ましい。 Examples of the aromatic hydrocarbon group include a group having 6 to 20 carbon atoms, and specifically, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an anthryl group, a phenanthryl group, a 2-biphenyl group, and the like. Examples thereof include 3-biphenyl group, 4-biphenyl group and terphenyl group, and a phenyl group is particularly preferable.

さらに、脂環式炭化水素基は、例えば炭素数が3〜20とすればよく、5〜15が好ましく、6〜12がより好ましい。具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、メチルシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の単環式基,アダマンチル基、ビシクロ(2,2,1)ヘプチル基等の有橋脂環基が挙げられ、このうちシクロヘキシル基が特に好ましい。また、これらの脂環基は、芳香族炭化水素環や、さらに他の脂肪族炭化水素環が縮合した縮合脂環基であっても良い。 Further, the alicyclic hydrocarbon group may have, for example, 3 to 20 carbon atoms, preferably 5 to 15, and more preferably 6 to 12. Specifically, monocyclic groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, methylcyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, adamantyl group, bicyclo (2,2,1) heptyl group and the like. Arihashi alicyclic group is mentioned, and cyclohexyl group is particularly preferable. Further, these alicyclic groups may be an aromatic hydrocarbon ring or a condensed alicyclic group in which another aliphatic hydrocarbon ring is condensed.

さらに、これらのR及びRは一緒になって脂肪族炭化水素環を形成していてもよい。こうしたR及びRが一緒になって形成される脂肪族炭化水素環は、前記R、Rで示した脂環式炭化水素基に対応するスピロ環が挙げられ、特には、シクロアルキル環や、これに芳香族環や、他の脂肪族環が縮合した縮合脂肪族環が好ましい。 Furthermore, these R 1 and R 2 may be combined to form an aliphatic hydrocarbon ring. Aliphatic hydrocarbon ring such R 1 and R 2 are formed together are spiro ring, and corresponding to the alicyclic hydrocarbon group represented by the R 1, R 2, in particular, cycloalkyl A ring, an aromatic ring, or a condensed aliphatic ring in which another aliphatic ring is condensed is preferable.

前記R、Rがアルキル基の場合において、該アルキル基は置換基を有していても良い。こうした置換基としては、ハロゲン原子(好ましくは、塩素原子)、保護基で保護されたアミノ基、前記で示した芳香族炭化水素基または脂環式炭化水素基等が挙げられる。特に、末端炭素に芳香族炭化水素基が結合したアリールアルキル基であるのが好ましい。 When R 1 and R 2 are alkyl groups, the alkyl group may have a substituent. Examples of such a substituent include a halogen atom (preferably a chlorine atom), an amino group protected by a protective group, an aromatic hydrocarbon group or an alicyclic hydrocarbon group shown above, and the like. In particular, it is preferably an arylalkyl group in which an aromatic hydrocarbon group is bonded to the terminal carbon.

さらに、R、Rが芳香族炭化水素基または脂環式炭化水素基の場合において、これら基も置換基を有していても良く、こうした置換基としては、前記で示したアルキル基や、ハロゲン原子(好ましくは、塩素原子)、チオ基、水酸基等が挙げられる。 Further, when R 1 and R 2 are aromatic hydrocarbon groups or alicyclic hydrocarbon groups, these groups may also have substituents, and such substituents include the alkyl groups shown above. , Halogen atom (preferably chlorine atom), thio group, hydroxyl group and the like.

本発明の方法では、こうしたアルコール化合物を、次亜塩素酸テトラアルキルアンモニウムの存在下に酸化させて、カルボニル化合物を生成させる。得られるカルボニル化合物は、反応原料のアルコール化合物が第一アルコールであれば、これが酸化されたアルデヒド化合物、例えば、一般式(2) In the method of the present invention, such an alcohol compound is oxidized in the presence of tetraalkylammonium hypochlorous acid to produce a carbonyl compound. If the alcohol compound as the reaction raw material is the primary alcohol, the obtained carbonyl compound is an aldehyde compound in which it is oxidized, for example, the general formula (2).

Figure 2020200287
Figure 2020200287

(式中、Rは、前記一般式(1)と同じである)
になり、さらに酸化が進行した場合には、その少なくとも一部がカルボン酸化合物、例えば、一般式(3)
(In the formula, R 1 is the same as the general formula (1))
When the oxidation further progresses, at least a part thereof is a carboxylic acid compound, for example, the general formula (3).

Figure 2020200287
Figure 2020200287

(式中、Rは、前記一般式(1)と同じである)
に置き換わる。酸化反応が、アルデヒド化合物で留まるか、或いはカルボン酸化合物にまでどの程度進行するかは、原料の第一アルコールの構造によって異なり、一概には決定されない。
(In the formula, R 1 is the same as the general formula (1))
Replaces with. The extent to which the oxidation reaction remains in the aldehyde compound or proceeds to the carboxylic acid compound depends on the structure of the primary alcohol of the raw material and is not unconditionally determined.

他方で、反応原料のアルコール化合物が第二アルコールであれば、これが酸化されたケトン化合物、例えば、一般式(4) On the other hand, if the alcohol compound as the reaction raw material is a secondary alcohol, it is an oxidized ketone compound, for example, the general formula (4).

Figure 2020200287
Figure 2020200287

(式中、R及びRは、前記一般式(1)と同じである)
になる。
(In the formula, R 1 and R 2 are the same as the general formula (1)).
become.

酸化に存在させる次亜塩素酸テトラアルキルアンモニウムは、アルキル基として、メチル基、エチル基等の炭素数1〜5のものを有するものが好適である。このような次亜塩素酸テトラアルキルアンモニウムとしては、次亜塩素酸テトラメチルアンモニウム、次亜塩素酸テトラエチルアンモニウム、次亜塩素酸テトラプロピルアンモニウム、次亜塩素酸テトラブチルアンモニウム等が例示され、次亜塩素酸テトラメチルアンモニウム及び次亜塩素酸テトラエチルアンモニウムが特に好ましい。これら次亜塩素酸テトラアルキルアンモニウムは、2種以上を混合して使用することもできる。 The tetraalkylammonium hypochlorous acid present in the oxidation is preferably one having 1 to 5 carbon atoms such as a methyl group and an ethyl group as the alkyl group. Examples of such tetraalkylammonium hypochlorous acid include tetramethylammonium hypochlorous acid, tetraethylammonium hypochlorite, tetrapropylammonium hypochlorous acid, tetrabutylammonium hypochlorous acid, and the like. Tetramethylammonium chlorate and tetraethylammonium hypochlorous acid are particularly preferred. These tetraalkylammonium hypochlorites can also be used by mixing two or more kinds.

上記次亜塩素酸テトラアルキルアンモニウムは、如何なる製造方法によって得られたものを用いても良く、具体的には、テトラアルキルアンモニウム水酸化物溶液に塩素ガスを吹き込んで当該目的化合物を生成させる塩素化法や、テトラアルキルアンモニウム水酸化物溶液をイオン交換樹脂に通過させてテトラアルキルアンモニウムに置換し、次いで次亜塩素酸ナトリウム等の次亜塩素酸塩溶液を通過させることで、当該目的化合物を溶離させるイオン交換樹脂法で得られたものが好ましい。これら製法に由来して、これら次亜塩素酸テトラアルキルアンモニウムには、テトラアルキルアンモニウムクロリドやテトラアルキルアンモニウム水酸化物等が混存していても良い。 As the tetraalkylammonium hypochlorite, one obtained by any production method may be used. Specifically, chlorination is performed by blowing chlorine gas into a tetraalkylammonium hydroxide solution to produce the target compound. The target compound is eluted by the method or by passing a tetraalkylammonium hydroxide solution through an ion exchange resin to replace it with tetraalkylammonium, and then passing it through a hypochlorite solution such as sodium hypochlorite. The one obtained by the ion exchange resin method is preferable. Derived from these production methods, tetraalkylammonium chloride, tetraalkylammonium hydroxide and the like may coexist in these tetraalkylammonium hypochlorites.

次亜塩素酸テトラアルキルアンモニウムの使用量は、特に制限されるものではないが、アルコール化合物の1モルに対して等モル以上が好ましい。目的とするカルボニル化合物を高収量で得る観点から、より好ましくは1〜6モルであり、特に好ましくは1.2〜5モルである。 The amount of tetraalkylammonium hypochlorite used is not particularly limited, but is preferably equal to or more than 1 mol with respect to 1 mol of the alcohol compound. From the viewpoint of obtaining the desired carbonyl compound in high yield, it is more preferably 1 to 6 mol, and particularly preferably 1.2 to 5 mol.

上記アルコール化合物の酸化反応を実施するための溶媒は、係る原料化合物を溶解させる有機溶媒において、該有機溶媒自体が、酸化剤の次亜塩素酸テトラアルキルアンモニウムに酸化されにくいものが使用される。具体的には、ジクロロメタン、クロロホルム、エチレンジクロリド等のハロゲン系溶媒や、例えば酢酸エチル、酢酸ブチル等のエステル系溶媒や、アセトニトリル、ピロピオニトリル等の脂肪族ニトリル系溶媒、例えばニトロベンゼン、ベンゾトリフルオリド、4−クロロベンゾトリフルオリド等の電子不足型の芳香族系溶媒等を例示でき、好適にはハロゲン系溶媒であり、特に好適にはジクロロメタンである。これらは2種以上を混合して使用しても良い。さらに、ハロゲン系溶媒は、アルコール、酸化剤等を溶解させるとの理由から、少量の水、具体的には、ハロゲン系溶媒1モルに対して、水を0.5〜20モル混合させて用いるのが好適態様である。 As the solvent for carrying out the oxidation reaction of the alcohol compound, an organic solvent for dissolving the raw material compound, in which the organic solvent itself is not easily oxidized by the oxidizing agent tetraalkylammonium hypochlorite, is used. Specifically, halogen-based solvents such as dichloromethane, chloroform, and ethylene dichloride, ester-based solvents such as ethyl acetate and butyl acetate, and aliphatic nitrile solvents such as acetonitrile and pyropionitrile, such as nitrobenzene and benzotrifluoride. , 4-Chlorobenzotrifluoride and other electron-deficient aromatic solvents can be exemplified, preferably halogen-based solvents, and particularly preferably dichloromethane. These may be used by mixing two or more kinds. Further, since the halogen-based solvent dissolves alcohol, an oxidizing agent, etc., 0.5 to 20 mol of water is mixed with a small amount of water, specifically, 1 mol of the halogen-based solvent. Is a preferred embodiment.

溶媒の好適な使用量は、溶媒1mlに対して、原料化合物を0.02〜0.5mmol、より好適には0.03〜0.4mmol溶解させる量である。 A suitable amount of the solvent is an amount that dissolves 0.02 to 0.5 mmol, more preferably 0.03 to 0.4 mmol of the raw material compound in 1 ml of the solvent.

前記第一または第二アルコール化合物の、次亜塩素酸テトラアルキルアンモニウムの存在下での酸化反応は、さらに、ニトロキシラジカル触媒及びハロゲン化金属系助触媒の共存下に実施することで、その反応性を大きく高めることができる。特に、該アルコール化合物の酸化反応は、第一アルコールよりも、第二アルコールにおいて反応性がより高い。従って、第二アルコールの場合には、前記次亜塩素酸テトラアルキルアンモニウムを存在させるだけで、ある程度の収率の高さで目的とするカルボニル化合物を得ることができるが、これが第一アルコールの場合には、十分な収率で当該目的化合物を得ることができないことが多く、上記ニトロキシラジカル触媒及びハロゲン化金属系助触媒の共存させるのが望ましい。 The oxidation reaction of the first or second alcohol compound in the presence of tetraalkylammonium hypochlorous acid is further carried out in the presence of a nitroxy radical catalyst and a metal halide-based co-catalyst. The sex can be greatly enhanced. In particular, the oxidation reaction of the alcohol compound is more reactive in the secondary alcohol than in the primary alcohol. Therefore, in the case of the secondary alcohol, the desired carbonyl compound can be obtained with a high yield to some extent only by the presence of the tetraalkylammonium hypochlorous acid, but in the case of the primary alcohol. In many cases, the target compound cannot be obtained in a sufficient yield, and it is desirable that the nitroxy radical catalyst and the metal halide-based co-catalyst coexist.

上記ニトロキシラジカル触媒としては、ニトロキシラジカル部位をもつフリーラジカル化合物として公知のものが制限無く使用できる。具体的には、2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル、4−メトキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル等のTEMPO系触媒;2−アザアダマンタン−N−ヒドロキシル(AZADO)、2−アザアダマンタン−N−オキシル、1−メチル−2−アザアダマンタン−N−オキシル、9−アザノルアダマンタン−N−オキシル、1,5−ジメチル−9−アザノルアダマンタン−N−オキシル等のAZADO系触媒、及びアザビシクロ[3,3,1]ノナン−N−オキシル化合物等を例示することができ、特に、AZADO系触媒が、第一アルコールに対する酸化反応の活性化作用が高く好ましい。これらニトロキシラジカル触媒は、その1 種のみを単独で使用できるほか、2 種以上の混合物として使用することもできる。 As the nitroxy radical catalyst, known free radical compounds having a nitroxy radical moiety can be used without limitation. Specifically, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-methoxy-2, TEMPO-based catalysts such as 2,6,6-tetramethylpiperidin-1-oxyl; 2-azaadamantan-N-hydroxyl (AZADO), 2-azaadamantan-N-oxyl, 1-methyl-2-azaadamantan-N AZADO-based catalysts such as −oxyl, 9-azanor adamantan-N-oxyl, 1,5-dimethyl-9-azanor adamantan-N-oxyl, and azabicyclo [3,3,1] nonane-N-oxyl compounds, etc. In particular, the AZADO-based catalyst is preferable because it has a high activating effect on the oxidation reaction with respect to the primary alcohol. These nitroxy radical catalysts can be used alone or as a mixture of two or more.

上記ニトロキシルラジカル触媒の使用量は、いわゆる触媒量の使用量でよく、アルコール化合物1モルに対して、通常0.00001〜0.1モル、好ましくは0.001〜0.01モルの範囲で使用される。 The amount of the nitroxyl radical catalyst used may be a so-called catalyst amount, and is usually in the range of 0.00001 to 0.1 mol, preferably 0.001 to 0.01 mol, based on 1 mol of the alcohol compound. used.

他方、ハロゲン化金属系助触媒は、代表的にはハロゲン原子とアルカリ金属またはアルカリ土類金属との塩が挙げられる。好適なハロゲン化金属を例示すれば、ヨウ化カリウム、ヨウ化カルシウム等のヨウ化物;臭化カリウム、臭化カルシウム等の臭化物;塩化カルシウム等の塩化物を挙げることができる。これらハロゲン化金属塩は各々単一で使用しても、2 種以上を混合して使用してもよい。 On the other hand, the metal halide-based co-catalyst is typically a salt of a halogen atom and an alkali metal or an alkaline earth metal. Examples of suitable metal halides include iodides such as potassium iodide and calcium iodide; bromides such as potassium bromide and calcium bromide; and chlorides such as calcium chloride. Each of these metal halide salts may be used alone or in combination of two or more.

上記ハロゲン化金属系助触媒の使用量は、特に制限はないが、大過剰に使用しても使用量に見合った効果が得られなく、あまり量が少ないと十分な酸化反応向上効果が得られないため、アルコール化合物1モルに対して、通常0.01〜10モル、好ましくは0.05〜2モルの範囲で使用される。 The amount of the metal halide co-catalyst used is not particularly limited, but even if it is used in a large excess, an effect commensurate with the amount used cannot be obtained, and if the amount is too small, a sufficient effect of improving the oxidation reaction can be obtained. Therefore, it is usually used in the range of 0.01 to 10 mol, preferably 0.05 to 2 mol, per 1 mol of the alcohol compound.

前記したように、本発明のアルコール化合物の酸化反応は、次亜塩素酸テトラアルキルアンモニウムに加えて、ニトロキシラジカル触媒及びハロゲン化金属系助触媒の共存下に実施すれば、該反応性が低い第一アルコールにおいても、その収率を大きく高めることができ有用である。特に、第一アルコールにおいて、アルキルアルコールの2位の炭素に、保護基で保護されたアミノ基が結合したアミノアルコールを原料とした場合には、医薬品、農薬、香料などの生理活性物質の中間体化合物として有用なアミノアルデヒド、アミノカルボン酸を高収率で得ることを可能にするため好ましい。上記アミノアルコールは、アルキルアルコールにおいて、アルキル基の末端炭素に芳香族炭化水素基が結合した構造のものが前記有用性に優れる。 As described above, if the oxidation reaction of the alcohol compound of the present invention is carried out in the coexistence of a nitroxy radical catalyst and a metal halide-based co-catalyst in addition to tetraalkylammonium hypochlorite, the reactivity is low. The first alcohol is also useful because its yield can be greatly increased. In particular, in the case of primary alcohols, when an amino alcohol in which an amino group protected by a protecting group is bonded to the carbon at the 2-position of the alkyl alcohol is used as a raw material, it is an intermediate of physiologically active substances such as pharmaceuticals, pesticides and fragrances. It is preferable because it enables high yields of aminoaldehyde and aminocarboxylic acid, which are useful as compounds. The amino alcohol has a structure in which an aromatic hydrocarbon group is bonded to the terminal carbon of the alkyl group, which is excellent in usefulness.

特に、一般式(5) In particular, the general formula (5)

Figure 2020200287
Figure 2020200287

(式中、R は芳香族炭化水素基であり、Rはアルキル基、芳香族炭化水素基、脂環式炭化水素基、または水素原子であり、Aはアミノ基の保護基であり、nは1〜6の整数である)
で示されるアミノアルコールは、不斉炭素原子を有しており、これを原料とすれば、一般式(6)
(In the formula, R 3 is an aromatic hydrocarbon group, R 4 is an alkyl group, an aromatic hydrocarbon group, an alicyclic hydrocarbon group, or a hydrogen atom, and A is a protective group for an amino group. n is an integer from 1 to 6)
The amino alcohol represented by (1) has an asymmetric carbon atom, and if this is used as a raw material, the general formula (6)

Figure 2020200287
Figure 2020200287

(式中、R 、R、A、及びnは、前記一般式(5)と同じである)
で示されるアミノアルデヒドと
一般式(7)
(In the formula, R 3 , R 4 , A, and n are the same as the general formula (5)).
Aminoaldehyde represented by and general formula (7)

Figure 2020200287
Figure 2020200287

(式中、R 、R、A、及びnは、前記一般式(5)と同じである)で示されるアミノカルボン酸とが得られ、光学活性物質の合成法として展開でき価値が高い。 (In the formula, R 3 , R 4 , A, and n are the same as the general formula (5)), and the aminocarboxylic acid represented by the above formula (5) can be obtained, which can be developed as a method for synthesizing an optically active substance and has high value. ..

ここで、R及びRの芳香族炭化水素基は、前記一般式(1)のR及びRで示したものと同様の基が挙げられ、フェニル基が特に好ましい。同じく、Rのアルキル基、及び脂環式炭化水素基も、前記一般式(1)のR及びRで示したものと同様の基が挙げられ、メチル基等のアルキル基が特に好ましい。 Here, as the aromatic hydrocarbon groups of R 3 and R 4 , the same groups as those represented by R 1 and R 2 of the general formula (1) can be mentioned, and a phenyl group is particularly preferable. Similarly, the alkyl group of R 4, and also alicyclic hydrocarbon group, the same groups as those shown by R 1 and R 2 in the general formula (1) can be mentioned, and particularly preferably an alkyl group such as a methyl group ..

また、Aで示されるアミノ基の保護基は、該アミノ基を不活性な官能基に変換しうる公知の基が適宜採択でき、例えば、メチル基; アリル基; tert−ブチル基; ベンジル基;p−ニトロベンジル基;アセチル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基などのアシル基系保護基;メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、アリルオキシカルボニル基、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基などのアルコキシカルボニル基系保護基; トリメチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基、tert−ブチルジフェニルシリル基などのシリル基系保護基;メシル基、トシル基、p−ニトロベンゼンスルホニル基、トリフルオロメタンスルホニル基などのスルホニル基系保護基などが挙げられる。このうちスルホニル基系保護基が好ましく、トシル基が最も好ましい。 Further, as the protective group of the amino group represented by A, a known group capable of converting the amino group into an inactive functional group can be appropriately adopted. For example, a methyl group; an allyl group; a tert-butyl group; a benzyl group; p-Nitrobenzyl group; acyl group-based protective group such as acetyl group, pivaloyl group, benzoyl group, trifluoroacetyl group; methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, allyloxycarbonyl group, tert-butoxycarbonyl group , An alkoxycarbonyl group-based protective group such as a benzyloxycarbonyl group; a silyl group-based protective group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group; a mesyl group, a tosyl group, p- Examples thereof include a sulfonyl group-based protective group such as a nitrobenzene sulfonyl group and a trifluoromethane sulfonyl group. Of these, a sulfonyl group protecting group is preferable, and a tosyl group is most preferable.

前記一般式(5)において、nは1〜6の整数であり、1〜4であるのが特に好ましい。 In the general formula (5), n is an integer of 1 to 6, and is particularly preferably 1 to 4.

また、第一アルコールとして、前記アルキルアルコールの2位の炭素に、保護基で保護されたアミノ基が結合したアミノアルコールを使用する場合、該アミノアルコールは、2位の炭素と、保護基で保護されたアミノ基の窒素原子との間で、アジリジン環が形成された構造であっても良い。アルコールの酸化反応が進行しても、上記アジリジン環は良好に維持され、対応するアジリジン環含有アルデヒド、カルボン酸が収率良く得られる。従って、この方法も、光学活性物質の合成法として適用でき有用である。具体的には、一般式(8) When an amino alcohol in which an amino group protected by a protecting group is bonded to the carbon at the 2-position of the alkyl alcohol is used as the primary alcohol, the amino alcohol is protected by the carbon at the 2-position and a protecting group. It may have a structure in which an aziridine ring is formed between the nitrogen atom of the amino group formed therein. Even if the oxidation reaction of the alcohol proceeds, the aziridine ring is maintained well, and the corresponding aziridine ring-containing aldehyde and carboxylic acid can be obtained in good yield. Therefore, this method is also applicable and useful as a method for synthesizing an optically active substance. Specifically, the general formula (8)

Figure 2020200287
Figure 2020200287

(式中、Rはアルキル基、芳香族炭化水素基、脂環式炭化水素基、または水素原子であり、Aはアミノ基の保護基である)
で示されるアジリジン環含有アルコールをとして用い、一般式(9)
(In the formula, R 5 is an alkyl group, an aromatic hydrocarbon group, an alicyclic hydrocarbon group, or a hydrogen atom, and A is a protective group for an amino group.)
Using the aziridine ring-containing alcohol represented by the above, the general formula (9)

Figure 2020200287
Figure 2020200287

(式中、R及びAは、前記一般式(8)と同じである)
で示されるアジリジン環含有アルデヒドと一般式(10)
(Wherein, R 5 and A are the same as defined above, and the formula (8))
Aziridine ring-containing aldehyde represented by and general formula (10)

Figure 2020200287
Figure 2020200287

(式中、R及びAは、前記一般式(8)と同じである)
で示されるアジリジン環含有カルボン酸を得る反応である。
(Wherein, R 5 and A are the same as defined above, and the formula (8))
This is a reaction for obtaining an aziridine ring-containing carboxylic acid represented by.

以上の酸化反応は、通常、0〜50℃の反応温度で撹拌下に行われ、好ましくは0〜35℃の反応温度で撹拌下に行われる。反応温度を60℃以上にすることは、次亜塩素酸テトラアルキルアンモニウムの分解反応と酸化反応との競争反応になり、次亜塩素酸テトラアルキルアンモニウムの使用量が増大するので好ましくなく、また、反応温度を反応系が固化しない程度の低温(0℃未満)まで下げることは、特別に設備的な対応が必要になるほか、反応速度の低下を招く等、かえって利点が少ない。 The above oxidation reaction is usually carried out under stirring at a reaction temperature of 0 to 50 ° C., preferably at a reaction temperature of 0 to 35 ° C. Setting the reaction temperature to 60 ° C. or higher is not preferable because it causes a competitive reaction between the decomposition reaction of tetraalkylammonium hypochlorous acid and the oxidation reaction and increases the amount of tetraalkylammonium hypochlorous acid used. Lowering the reaction temperature to a low temperature (less than 0 ° C.) at which the reaction system does not solidify requires special equipment measures and causes a decrease in the reaction rate, which is rather less advantageous.

反応時間は通常、0.2〜8時間、より好ましくは0.5〜4時間の範囲から採択される。 The reaction time is usually selected from the range of 0.2 to 8 hours, more preferably 0.5 to 4 hours.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1
酢酸エチル0.62mlを溶媒に、第二アルコールである、1−フェニルエタノールを0.5mmol、次亜塩素酸テトラメチルアンモニウムを1mmol、酢酸を1mmol仕込み、室温で2時間撹拌することで反応させた。
Example 1
Using 0.62 ml of ethyl acetate as a solvent, 0.5 mmol of 1-phenylethanol, which is a secondary alcohol, 1 mmol of tetramethylammonium hypochlorous acid, and 1 mmol of acetic acid were charged, and the mixture was reacted by stirring at room temperature for 2 hours. ..

得られた反応液について、生成物をH−NMRにより測定し、アセトフェノンが収率78%で得られることを確認した。 The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that acetophenone was obtained in a yield of 78%.

実施例2
次亜塩素酸テトラメチルアンモニウムの代わりに、次亜塩素酸テトラエチルアンモニウムを用いる以外は実施例1と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、アセトフェノンが収率89%で得られることを確認した。
Example 2
The procedure was the same as in Example 1 except that tetraethylammonium hypochlorite was used instead of tetramethylammonium hypochlorite. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that acetophenone was obtained in a yield of 89%.

比較例1
次亜塩素酸テトラメチルアンモニウムの代わりに、次亜塩素酸ソーダ五水和物を用いる以外は実施例1と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、アセトフェノンが収率57%で得られることを確認した。
Comparative Example 1
The procedure was the same as in Example 1 except that sodium hypochlorite pentahydrate was used instead of tetramethylammonium hypochlorite. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that acetophenone was obtained in a yield of 57%.

実施例3
ジクロロメタン1.3mlと水2.7mlの溶媒に、第一アルコールである、オクチルアルコールを0.5mmol、次亜塩素酸テトラメチルアンモニウムを1.25mmol、2,2,6,6−テトラメチルピペリジン−1−オキシル0.005mmol、臭化カリウム0.05mmol仕込み、室温で15時間撹拌することで反応させた。得られた反応液について、生成物をH−NMRにより測定し、オクタン酸が収率32%、オクチルアルデヒドが収率15%で得られることを確認した。
Example 3
In a solvent of 1.3 ml of dichloromethane and 2.7 ml of water, 0.5 mmol of the primary alcohol, octyl alcohol, 1.25 mmol of tetramethylammonium hypochlorous acid, 2,2,6,6-tetramethylpiperidine- The reaction was carried out by charging 0.005 mmol of 1-oxyl and 0.05 mmol of potassium bromide and stirring at room temperature for 15 hours. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that octanic acid was obtained in a yield of 32% and octylaldehyde was obtained in a yield of 15%.

実施例4
2,2,6,6−テトラメチルピペリジン−1−オキシルの代わりに2−ヒドロキシ−2−アザアダマンタンを用いて、室温で23時間撹拌する以外は実施例3と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、オクタン酸が収率87%で得られることを確認した。
Example 4
The procedure was the same as in Example 3 except that 2-hydroxy-2-azaadamantane was used instead of 2,2,6,6-tetramethylpiperidine-1-oxyl and the mixture was stirred at room temperature for 23 hours. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that octanoic acid was obtained in a yield of 87%.

実施例5
次亜塩素酸テトラメチルアンモニウムの代わりに、次亜塩素酸テトラエチルアルキルアンモニウムを用いる以外は実施例4と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、オクタン酸が収率78%で得られることを確認した。
Example 5
The procedure was the same as in Example 4 except that tetraethylalkylammonium hypochlorite was used instead of tetramethylammonium hypochlorite. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that octanoic acid was obtained in a yield of 78%.

比較例2
次亜塩素酸テトラエチルアンモニウムの代わりに、次亜塩素酸ソーダ五水和物を用いる以外は実施例5と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、オクタン酸が収率12%、オクチルアルデヒドが収率5%で得られることを確認した。
Comparative Example 2
The procedure was the same as in Example 5 except that sodium hypochlorite pentahydrate was used instead of tetraethylammonium hypochlorite. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that octanic acid was obtained in a yield of 12% and octylaldehyde was obtained in a yield of 5%.

実施例6
ジクロロメタン1.3mlと水2.7mlの溶媒に、ベンジルアルコールを0.5mmol、次亜塩素酸テトラメチルアンモニウムを1.75mmol、2−ヒドロキシ−2−アザアダマンタン0.005mmol、臭化カリウム0.05mmol仕込み、室温で24時間撹拌することで反応させた。得られた反応液について、生成物をH−NMRにより測定し、安息香酸が収率62%、ベンズアルデヒドが収率26%で得られることを確認した。
Example 6
In a solvent of 1.3 ml of dichloromethane and 2.7 ml of water, 0.5 mmol of benzyl alcohol, 1.75 mmol of tetramethylammonium hypochlorous acid, 0.005 mmol of 2-hydroxy-2-azaadamantane, 0.05 mmol of potassium bromide. The reaction was carried out by charging and stirring at room temperature for 24 hours. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that benzoic acid was obtained in a yield of 62% and benzaldehyde was obtained in a yield of 26%.

実施例7
第一アルコールとして、ベンジルアルコールの代わりに、ペンチルアルコールを用いる以外は実施例6と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、ペンタン酸が収率95%で得れることを確認した。
Example 7
The procedure was the same as in Example 6 except that pentyl alcohol was used as the primary alcohol instead of benzyl alcohol. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that pentanoic acid could be obtained in a yield of 95%.

実施例8
第一アルコールとして、ベンジルアルコールの代わりに、ヘキシルアルコールを用いる以外は実施例6と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、ヘキサン酸が収率83%、ヘキシルアルデヒドが僅かに検出されることを確認した。
Example 8
The same procedure as in Example 6 was carried out except that hexyl alcohol was used as the primary alcohol instead of benzyl alcohol. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that the yield of caproic acid was 83% and that hexylaldehyde was slightly detected.

実施例9
第一アルコールとして、ベンジルアルコールの代わりに、ドデシルアルコールを用いる以外は実施例6と同様に行った。得られた反応液について、生成物をH−NMRにより測定し、ドデカン酸が収率95%で得られることを確認した。
Example 9
The same procedure as in Example 6 was carried out except that dodecyl alcohol was used as the primary alcohol instead of benzyl alcohol. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that dodecanoic acid was obtained in a yield of 95%.

実施例10
酢酸エチル0.62mlの溶媒に、(2−メチル−1−トシルアジリジン−2−イル)メタノールを0.25mmol、次亜塩素酸テトラメチルアンモニウムを0.6mmol、2−ヒドロキシ−2−アザアダマンタン0.0025mmol、臭化カリウム0.025mmol仕込み、0℃で6.5時間撹拌することで反応させた。得られた反応液から、(2−メチル−1−トシルアジリジン−2−イル)カルボン酸を収率89%で単離した。得られた(2−メチル−1−トシルアジリジン−2−イル)カルボン酸は、H−NMRにより測定した下記のデータより同定した。
H−NMR(400MHz,CDCl):δ1.95(s,3H),2.46(s,3H),2.70(s,1H),2.84(s,1H),7.36(d,J=8.3Hz,2H),7.85(d,J=8.3Hz,2H).
実施例11
酢酸エチル0.62mlの溶媒に、(2−メチル−1−トシルアジリジン−2−イル)メタノールを0.25mmol、次亜塩素酸テトラメチルアンモニウムを0.3mmol、2−ヒドロキシ−2−アザアダマンタン0.0025mmol、臭化カリウム0.025mmol仕込み、0℃で6.5時間撹拌することで反応させた。得られた反応液から、(2−メチル−1−トシルアジリジン−2−イル)カルボン酸を収率45%で単離した。合わせて(2−メチル−1−トシルアジリジン−2−イル)カルボアルデヒドを収率14%で得た。得られた(2−メチル−1−トシルアジリジン−2−イル)カルボアルデヒドは、H−NMRにより測定した下記のデータより同定した。
H−NMR(400MHz,CDCl):δ1.69(s,3H),2.46(s,3H),2.84(s,1H),2.88(s,1H),7.36(d,J=8.8Hz,2H),7.85(d,J=8.2Hz,2H),9.07(s,1H).
実施例12
ジクロロメタン0.62mlの溶媒に、2−メチル−3−フェニル−2−トシルアミノ−1−プロピルアルコールを0.25mmol、次亜塩素酸テトラメチルアルキルアンモニウムを0.3mmol、2−ヒドロキシ−2−アザアダマンタン0.0025mmol、臭化カリウム0.025mmol仕込み、0℃で17.5時間撹拌することで反応させた。得られた反応液について、生成物をH−NMRにより測定し、2−メチル−3−フェニル−2−トシルアミノ−1−プロピルアルデヒドを収率67%で得られることを確認した。得られた2−メチル−3−フェニル−2−トシルアミノ−1−プロピルアルデヒドは、H−NMRにより測定した下記のデータより同定した。
H−NMR(400MHz,CDCl):δ1.30(s,3H),2.41(s,3H),3.08(d,J=14.1Hz,1H),3.11(d,J=13.7Hz,1H),5.13(s,1H),7.14−7.31(m,7H),7.71(d,J=8.3Hz,2H),9.47(s,1H).
Example 10
In a solvent of 0.62 ml of ethyl acetate, 0.25 mmol of (2-methyl-1-tosylaziridin-2-yl) methanol, 0.6 mmol of tetramethylammonium hypochlorous acid, 2-hydroxy-2-azaadamantan 0. The reaction was carried out by charging .0025 mmol and 0.025 mmol of potassium bromide and stirring at 0 ° C. for 6.5 hours. From the obtained reaction solution, (2-methyl-1-tosylaziridin-2-yl) carboxylic acid was isolated in a yield of 89%. The obtained (2-methyl-1-tosylaziridin-2-yl) carboxylic acid was identified from the following data measured by 1 H-NMR.
1 1 H-NMR (400 MHz, CDCl 3 ): δ1.95 (s, 3H), 2.46 (s, 3H), 2.70 (s, 1H), 2.84 (s, 1H), 7.36 (D, J = 8.3Hz, 2H), 7.85 (d, J = 8.3Hz, 2H).
Example 11
In a solvent of 0.62 ml of ethyl acetate, 0.25 mmol of (2-methyl-1-tosylaziridin-2-yl) methanol, 0.3 mmol of tetramethylammonium hypochlorous acid, 2-hydroxy-2-azaadamantan 0. The reaction was carried out by charging .0025 mmol and 0.025 mmol of potassium bromide and stirring at 0 ° C. for 6.5 hours. From the obtained reaction solution, (2-methyl-1-tosylaziridin-2-yl) carboxylic acid was isolated in a yield of 45%. Together, (2-methyl-1-tosylaziridin-2-yl) carboaldehyde was obtained in 14% yield. The obtained (2-methyl-1-tosylaziridin-2-yl) carboaldehyde was identified from the following data measured by 1 H-NMR.
1 1 H-NMR (400 MHz, CDCl 3 ): δ1.69 (s, 3H), 2.46 (s, 3H), 2.84 (s, 1H), 2.88 (s, 1H), 7.36 (D, J = 8.8Hz, 2H), 7.85 (d, J = 8.2Hz, 2H), 9.07 (s, 1H).
Example 12
In a solvent of 0.62 ml of dichloromethane, 0.25 mmol of 2-methyl-3-phenyl-2-tosylamino-1-propyl alcohol, 0.3 mmol of tetramethylalkylammonium hypochlorite, 2-hydroxy-2-azaadamantan The reaction was carried out by charging 0.0025 mmol and 0.025 mmol of potassium bromide and stirring at 0 ° C. for 17.5 hours. The product of the obtained reaction solution was measured by 1 H-NMR, and it was confirmed that 2-methyl-3-phenyl-2-tosylamino-1-propylaldehyde could be obtained in a yield of 67%. The obtained 2-methyl-3-phenyl-2-tosylamino-1-propylaldehyde was identified from the following data measured by 1 H-NMR.
1 1 H-NMR (400 MHz, CDCl 3 ): δ1.30 (s, 3H), 2.41 (s, 3H), 3.08 (d, J = 14.1 Hz, 1H), 3.11 (d, J = 13.7Hz, 1H), 5.13 (s, 1H), 7.14-7.31 (m, 7H), 7.71 (d, J = 8.3Hz, 2H), 9.47 ( s, 1H).

Claims (10)

第一または第二アルコール化合物を、次亜塩素酸テトラアルキルアンモニウムの存在下に酸化させることを特徴とする、カルボニル化合物の製造方法。 A method for producing a carbonyl compound, which comprises oxidizing a primary or secondary alcohol compound in the presence of tetraalkylammonium hypochlorous acid. 第一または第二アルコール化合物の、次亜塩素酸テトラアルキルアンモニウムの存在下での酸化を、さらに、ニトロキシラジカル触媒及びハロゲン化金属系助触媒の共存下に実施する、請求項1記載のカルボニル化合物の製造方法。 The carbonyl according to claim 1, wherein the oxidation of the primary or secondary alcohol compound in the presence of tetraalkylammonium hypochlorous acid is further carried out in the presence of a nitroxy radical catalyst and a metal halide-based co-catalyst. Method for producing a compound. 第一アルコール化合物を酸化して、アルデヒド化合物及び/又はカルボン酸化合物を生成させる、請求項1記載のカルボニル化合物の製造方法。 The method for producing a carbonyl compound according to claim 1, wherein the primary alcohol compound is oxidized to produce an aldehyde compound and / or a carboxylic acid compound. 第一アルコールが、アルキルアルコールの2位の炭素に、保護基で保護されたアミノ基が結合したアミノアルコールである、請求項3記載のカルボニル化合物の製造方法。 The method for producing a carbonyl compound according to claim 3, wherein the primary alcohol is an amino alcohol in which an amino group protected by a protecting group is bonded to the carbon at the 2-position of the alkyl alcohol. アルキルアルコールが、アルキル基の末端炭素に芳香族炭化水素基が結合した構造である、請求項4記載のカルボニル化合物の製造方法。 The method for producing a carbonyl compound according to claim 4, wherein the alkyl alcohol has a structure in which an aromatic hydrocarbon group is bonded to the terminal carbon of the alkyl group. アルキルアルコールの2位の炭素に、保護基で保護されたアミノ基が結合したアミノアルコールが、該2位の炭素と、保護基で保護されたアミノ基の窒素原子との間で、アジリジン環が形成された構造である、請求項4記載のカルボニル化合物の製造方法。 An amino alcohol in which an amino group protected by a protecting group is bonded to the carbon at the 2-position of the alkyl alcohol forms an aziridine ring between the carbon at the 2-position and the nitrogen atom of the amino group protected by the protecting group. The method for producing a carbonyl compound according to claim 4, which is a formed structure. アミノ基の保護基が、トシル基である、請求項4〜6のいずれか一項に記載のカルボニル化合物の製造方法。 The method for producing a carbonyl compound according to any one of claims 4 to 6, wherein the protecting group for the amino group is a tosyl group. 次亜塩素酸テトラアルキルアンモニウムが、次亜塩素酸テトラメチルアンモニウムまたは次亜塩素酸テトラエチルアンモニウムである、請求項1〜7のいずれか一項に記載のカルボニル化合物の製造方法。 The method for producing a carbonyl compound according to any one of claims 1 to 7, wherein the tetraalkylammonium hypochlorite is tetramethylammonium hypochlorite or tetraethylammonium hypochlorite. ニトロキシラジカル触媒が、2,2,6,6−テトラメチルピペリジン−1−オキシル系触媒、または2−アザアダマンタン−N−オキシル化合物系触媒である、請求項2〜8のいずれか一項に記載のカルボニル化合物の製造方法。 In any one of claims 2 to 8, the nitroxy radical catalyst is a 2,2,6,6-tetramethylpiperidin-1-oxyl-based catalyst or a 2-azaadamantane-N-oxyl compound-based catalyst. The method for producing a carbonyl compound according to the above. ハロゲン化金属系助触媒が、臭化カリウムである、請求項2〜9のいずれか一項に記載のカルボニル化合物の製造方法。 The method for producing a carbonyl compound according to any one of claims 2 to 9, wherein the metal halide-based cocatalyst is potassium bromide.
JP2019109306A 2019-06-12 2019-06-12 Method for producing carbonyl compound Pending JP2020200287A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019109306A JP2020200287A (en) 2019-06-12 2019-06-12 Method for producing carbonyl compound
JP2023157438A JP2023179533A (en) 2019-06-12 2023-09-22 Method for producing carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019109306A JP2020200287A (en) 2019-06-12 2019-06-12 Method for producing carbonyl compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023157438A Division JP2023179533A (en) 2019-06-12 2023-09-22 Method for producing carbonyl compound

Publications (1)

Publication Number Publication Date
JP2020200287A true JP2020200287A (en) 2020-12-17

Family

ID=73742436

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019109306A Pending JP2020200287A (en) 2019-06-12 2019-06-12 Method for producing carbonyl compound
JP2023157438A Pending JP2023179533A (en) 2019-06-12 2023-09-22 Method for producing carbonyl compound

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023157438A Pending JP2023179533A (en) 2019-06-12 2023-09-22 Method for producing carbonyl compound

Country Status (1)

Country Link
JP (2) JP2020200287A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506337A (en) * 1992-01-21 1995-07-13 ヘキスト・シェーリング・アグレボ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing trifluoromethyl ketone
JP2002265409A (en) * 2001-03-12 2002-09-18 Nippon Soda Co Ltd Method for manufacturing carbonium compound
JP2003267907A (en) * 2002-03-14 2003-09-25 Sumika Fine Chemicals Co Ltd Method for producing ketone
WO2012008228A1 (en) * 2010-07-16 2012-01-19 第一三共株式会社 Method for oxidizing alcohols
WO2013125688A1 (en) * 2012-02-24 2013-08-29 国立大学法人東北大学 9-azanoradamantane n-oxyl compound and method for producing same, and organic oxidation catalyst and method for oxidizing alcohols using 9-azanoradamantane n-oxyl compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506337A (en) * 1992-01-21 1995-07-13 ヘキスト・シェーリング・アグレボ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing trifluoromethyl ketone
JP2002265409A (en) * 2001-03-12 2002-09-18 Nippon Soda Co Ltd Method for manufacturing carbonium compound
JP2003267907A (en) * 2002-03-14 2003-09-25 Sumika Fine Chemicals Co Ltd Method for producing ketone
WO2012008228A1 (en) * 2010-07-16 2012-01-19 第一三共株式会社 Method for oxidizing alcohols
WO2013125688A1 (en) * 2012-02-24 2013-08-29 国立大学法人東北大学 9-azanoradamantane n-oxyl compound and method for producing same, and organic oxidation catalyst and method for oxidizing alcohols using 9-azanoradamantane n-oxyl compound

Also Published As

Publication number Publication date
JP2023179533A (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP2020200287A (en) Method for producing carbonyl compound
US6750371B2 (en) Process for the oxidation of alcohols to aldehydes and ketones in the presence of nitroxyl compounds as catalysts
JP2022034093A (en) Method of producing alkane iodide derivative
JP2009155280A (en) METHOD FOR PRODUCING gamma-BUTYROLACTONE COMPOUND
JP2003335735A (en) Method for producing perfluoroisopropylanilines
JP3857369B2 (en) Method for producing chlorinated hydrocarbons
JP5347591B2 (en) Method for producing fluorine-containing epoxy ester
US20010020110A1 (en) Production methods of alpha, alpha, alpha-trifluoromethylphenyl-substituted benzoic acid and intermediate therefor
JP6124015B2 (en) Method for producing pentafluorosulfanylbenzoic acid
JP5197106B2 (en) Method for producing halogenated phthalic acid compound
JP2001199910A (en) Method for producing aromatic compound
JPS60178829A (en) Production of fluorine-containing aromatic compound derivative
JP2003261547A (en) Method of producing 4-alkyl-5-formylthiazole derivative
WO2005014514A1 (en) Process for producing 4-hydroxydiphenyl ether
JPH09188647A (en) Production of acetophenones
JP4182396B2 (en) Method for producing aromatic aldehyde
JP4248693B2 (en) Process for producing 3-hydroxy-1-cycloalkene
JP3288121B2 (en) Preparation of cyclic compounds
JP4088904B2 (en) Process for producing α, β-dibromoethylbenzenes and α-bromostyrenes
JP2004083424A (en) Method for producing 6-acyloxy-1-acylindole
JP2003064051A (en) Method for producing sulfonyl compound
JP3833758B2 (en) Process for producing aromatic substituted chlorinated hydrocarbons
JP2013121923A (en) Method of producing 4,4-difluoro-3,4-dihydroisoquinolines
JPH04360848A (en) Production of cyclic mono-or sesquiterpene ketone
JP2020200290A (en) Method for preparing chlorinated ketone compounds

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230627