JP2020198736A - DC cooperation system - Google Patents

DC cooperation system Download PDF

Info

Publication number
JP2020198736A
JP2020198736A JP2019104709A JP2019104709A JP2020198736A JP 2020198736 A JP2020198736 A JP 2020198736A JP 2019104709 A JP2019104709 A JP 2019104709A JP 2019104709 A JP2019104709 A JP 2019104709A JP 2020198736 A JP2020198736 A JP 2020198736A
Authority
JP
Japan
Prior art keywords
power
load
circuit
protection circuit
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104709A
Other languages
Japanese (ja)
Other versions
JP7274944B2 (en
Inventor
彰訓 加藤
Akikuni Kato
彰訓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Electric Inc
Original Assignee
Kawamura Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Electric Inc filed Critical Kawamura Electric Inc
Priority to JP2019104709A priority Critical patent/JP7274944B2/en
Publication of JP2020198736A publication Critical patent/JP2020198736A/en
Application granted granted Critical
Publication of JP7274944B2 publication Critical patent/JP7274944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

To provide a DC cooperation system for efficiently supplying power generated by a private power generator to a load without implementing complicated power control.SOLUTION: A solar power generation device 21, a wind power generation device 22, a storage battery 25, and commercial power 26 are used as power sources. The electric power is converted into a direct current of a predetermined voltage and integrated on a direct current bus 6. The integrated direct current power is supplied to a plurality of loads 2. In a load electric circuit 6a branched from the direct current bus 6, a load priority setting circuit 8 for setting a priority for each load 2 is provided. When the power supplied decreases, the power supply is stopped from the load set with a lower priority.SELECTED DRAWING: Figure 1

Description

本発明は、自家発電電力と商用電源を連携させて効率良く直流負荷に電力を供給する直流連携システムに関する。 The present invention relates to a DC cooperation system that efficiently supplies power to a DC load by linking privately generated power and a commercial power source.

従来より、太陽光発電等の自家発電装置により発電した電力、及び蓄電池に蓄えられた電力を使用して直流負荷を稼働させる直流連携システムがある。
例えば、特許文献1では、直流幹線に電力を供給するために、商用電力を直流変換する整流調整装置、太陽光発電の出力を昇圧するDC/DCコンバータ、蓄電池の電圧を昇圧するDC/DCコンバータをそれぞれ設けると共に、個々の出力電力を検出して制御する電力調整装置を別途設けて、特定の電源設備が過負荷にならないよう制御した。
Conventionally, there is a DC cooperation system that operates a DC load by using electric power generated by a private power generation device such as photovoltaic power generation and electric power stored in a storage battery.
For example, in Patent Document 1, a rectifier / regulator that converts commercial power into DC, a DC / DC converter that boosts the output of solar power generation, and a DC / DC converter that boosts the voltage of a storage battery in order to supply power to a DC trunk line. In addition to each, a power regulator that detects and controls each output power is separately provided to control the specific power supply equipment so that it does not become overloaded.

特開2004−208426号公報Japanese Unexamined Patent Publication No. 2004-208426

上述した従来の直流連携システムでは、太陽光発電や蓄電池に電流センサを設けて電力を監視し、電力監視装置により発電電力量や充放電電力を管理したため、自家発電装置による発電電力と商用電力を連携して直流負荷に電力を供給するには複雑な電力制御を実施していた。 In the conventional DC cooperation system described above, a current sensor is provided in the solar power generation or storage battery to monitor the power, and the power generation amount and charge / discharge power are managed by the power monitoring device. In order to supply power to the DC load in cooperation, complicated power control was carried out.

そこで、本発明はこのような問題点に鑑み、複雑な電力制御を実施することなく自家発電装置による発電電力を負荷に供給する直流連携システムを提供することを目的としている。 Therefore, in view of such a problem, an object of the present invention is to provide a DC cooperation system that supplies power generated by a private power generation device to a load without performing complicated power control.

上記課題を解決する為に、請求項1の発明は、自家発電電力、蓄電池、及び商用電力の3種類のうち、少なくとも2種類の電力を電源として、所定電圧の直流に変換して直流母線に重畳させて統合し、統合した直流電力を複数の負荷に供給する直流連携システムであって、直流母線を分岐して負荷に電力を供給する負荷電路には、負荷毎に優先順位を設定する負荷優先順位設定回路が設けられており、供給される電力が低下すると、優先順位が低く設定された負荷から電力の供給が停止されることを特徴とする。
この構成によれば、供給される電力が低下すると、優先順位が低く設定された負荷から順に停止するため、一斉に負荷が停止する事態を防止できる。一方、極力停止を回避したい負荷は優先順位を高く設定することで、安全確保がし易い。
そして、自家発電電力や蓄電池に電流センサを設けて電力を監視しないため、電力を監視して制御する複雑な制御をすること無く複数の電源を連携させて直流負荷に電力を供給できる。
In order to solve the above problem, the invention of claim 1 uses at least two types of electric power out of three types of privately generated electric power, storage battery, and commercial electric power as a power source and converts them into direct current of a predetermined voltage to form a direct current bus. A DC linkage system that superimposes and integrates and supplies integrated DC power to multiple loads. Loads that branch the DC bus to supply power to the load and set priorities for each load. A priority setting circuit is provided, and when the supplied power decreases, the power supply is stopped from the load set with a low priority.
According to this configuration, when the supplied power decreases, the loads are stopped in order from the load set with the lowest priority, so that it is possible to prevent the load from being stopped all at once. On the other hand, it is easy to ensure safety by setting a high priority for loads that want to avoid stopping as much as possible.
Further, since the privately generated power or the storage battery is provided with a current sensor to not monitor the power, it is possible to supply power to the DC load by linking a plurality of power sources without performing complicated control for monitoring and controlling the power.

請求項2の発明は、請求項1に記載の構成において、直流母線と各負荷との間には、突入電流から負荷を保護する負荷保護回路が配置されていることを特徴とする。
この構成によれば、電源投入時に発生する突入電流から負荷を保護でき、負荷の劣化を防止できる。
The invention of claim 2 is characterized in that, in the configuration according to claim 1, a load protection circuit for protecting the load from an inrush current is arranged between the DC bus and each load.
According to this configuration, the load can be protected from the inrush current generated when the power is turned on, and the deterioration of the load can be prevented.

請求項3の発明は、請求項1又は2に記載の構成において、電源は自家発電電力を含み、自家発電電力は、逆流防止回路を含む入力保護回路を介して直流母線に重畳されることを特徴とする。
この構成によれば、自家発電装置には電流の逆流が発生しないため、自家発電装置を保護できる。
According to the invention of claim 3, in the configuration according to claim 1 or 2, the power source includes the privately generated power, and the privately generated power is superimposed on the DC bus via an input protection circuit including a backflow prevention circuit. It is a feature.
According to this configuration, since the backflow of current does not occur in the private power generation device, the private power generation device can be protected.

請求項4の発明は、請求項3に記載の構成において、入力保護回路は、逆流防止回路に加えて、アーク保護回路、サージ保護回路を具備して成ることを特徴とする。
この構成によれば、商用電力等から直流母線に流れ込んだ雷サージや、接点開閉等で発生するアークから自家発電装置を保護できる。
The invention of claim 4 is characterized in that, in the configuration according to claim 3, the input protection circuit includes an arc protection circuit and a surge protection circuit in addition to the backflow prevention circuit.
According to this configuration, it is possible to protect the private power generation device from lightning surges that flow into the DC bus from commercial power and the like, and arcs generated by opening and closing contacts.

請求項5の発明は、請求項2に記載の構成において、負荷優先順位設定回路と、負荷保護回路と、直流母線とが共通する盤に組み付けられ、盤には、電源を接続する複数の入力部、負荷を接続するための複数の出力部が設けられて成ることを特徴とする。
この構成によれば、直流連携させるための主要回路が1つの盤に収容されているため、直流連携システムの施工がし易い。
The invention of claim 5 is assembled on a board in which a load priority setting circuit, a load protection circuit, and a DC bus are common in the configuration according to claim 2, and a plurality of inputs for connecting a power supply are connected to the board. It is characterized in that a plurality of output units for connecting units and loads are provided.
According to this configuration, since the main circuit for DC cooperation is housed in one board, it is easy to construct the DC cooperation system.

請求項6の発明は、請求項5に記載の構成において、電源は蓄電池及び商用電力を含み、盤には、蓄電池の出力を所定電圧に昇圧/降圧するDC/DCコンバータと、商用電力を所定電圧の直流に変換するAC/DCコンバータが組み付けられていることを特徴とする。
この構成によれば、蓄電池の出力を昇圧/降圧するDC/DCコンバータと、商用電力を直流に変換するAC/DCコンバータが盤に組み付けられているため、蓄電池、商用電力が直接盤に接続でき、簡易な施工で済む。
According to the invention of claim 6, in the configuration according to claim 5, the power source includes a storage battery and commercial power, and the panel defines a DC / DC converter that boosts / lowers the output of the storage battery to a predetermined voltage and commercial power. It is characterized in that an AC / DC converter that converts voltage to direct current is installed.
According to this configuration, a DC / DC converter that boosts / steps down the output of the storage battery and an AC / DC converter that converts commercial power to direct current are assembled on the board, so the storage battery and commercial power can be directly connected to the board. , Simple construction is enough.

本発明によれば、供給される電力が十分でなければ、優先順位の低い所定の負荷から順に停止するため、一斉に負荷が停止する事態を防止できる。また、重要な負荷は優先順位を高く設定することで、緊急時の安全確保がし易い。
そして、自家発電電力や蓄電池に電流センサを設けて電力を監視しないため、電力を監視して制御する複雑な制御をすること無く複数の電源を連携させて直流負荷に電力を供給できる。
According to the present invention, if the power supplied is not sufficient, the loads are stopped in order from a predetermined load having a lower priority, so that it is possible to prevent a situation in which the loads are stopped all at once. In addition, it is easy to ensure safety in an emergency by setting a high priority for important loads.
Further, since the privately generated power or the storage battery is provided with a current sensor to not monitor the power, it is possible to supply power to the DC load by linking a plurality of power sources without performing complicated control for monitoring and controlling the power.

本発明に係る直流連携システムの一例を示す構成図である。It is a block diagram which shows an example of the DC cooperation system which concerns on this invention. 入力保護回路の回路図である。It is a circuit diagram of an input protection circuit. 負荷優先順位設定回路及び負荷保護回路の回路図である。It is a circuit diagram of a load priority setting circuit and a load protection circuit.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る直流連携システムの一例を示す構成図であり、主要回路は箱状に形成された盤(直流連携盤)1に組み付けられ、収容されている。
盤1には複数の入力部11、出力部12が設けられ、入力部11には各種電源が接続され、出力部12には複数の負荷2が接続されている。
Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of a DC cooperation system according to the present invention, and a main circuit is assembled and housed in a box-shaped board (DC cooperation board) 1.
The board 1 is provided with a plurality of input units 11 and output units 12, various power supplies are connected to the input unit 11, and a plurality of loads 2 are connected to the output unit 12.

図1では、入力部11は第1〜第4入力部(11a〜11d)の4入力部により構成され、出力部12は第1〜第4出力部(12a〜12d)の4出力部より構成されている。
そして盤1の内部には、2つの入力保護回路3、蓄電池25の電圧を昇圧/降圧するためのDC/DCコンバータ4、商用電力26を直流変換するAC/DCコンバータ5、入力された直流電力が重畳される直流母線6、直流母線6を保護する主幹保護回路7、負荷優先順位設定回路8、負荷保護回路9等が組み付けられている。
In FIG. 1, the input unit 11 is composed of four input units of the first to fourth input units (11a to 11d), and the output unit 12 is composed of four output units of the first to fourth output units (12a to 12d). Has been done.
Inside the board 1, two input protection circuits 3, a DC / DC converter 4 for stepping up / down the voltage of the storage battery 25, an AC / DC converter 5 for converting commercial power 26 to DC, and input DC power The DC bus 6, the main protection circuit 7 that protects the DC bus 6, the load priority setting circuit 8, the load protection circuit 9, and the like are assembled.

第1入力部11a、第2入力部11bは自家発電装置の入力部であり、ここでは再生可能エネルギーである太陽光発電装置21と風力発電装置22が接続されている。
但し、太陽光発電装置21はDC/DCコンバータ23aを備えた制御盤23を介して接続され、所定電圧に昇圧された直流電力が入力される。
また風力発電装置22は、AC/DCコンバータ24a備えた制御盤24を介して接続され、発電電力が所定の電圧の直流に変換されて入力される。
そして、太陽光発電装置21が接続された第1入力部11a、及び風力発電装置22が接続された第2入力部11bは、盤1内でそれぞれ入力保護回路3に接続されたのち直流母線6に接続され、入力された電力が重畳され一体化される。
The first input unit 11a and the second input unit 11b are input units of the private power generation device, and here, the solar power generation device 21 and the wind power generation device 22 which are renewable energies are connected.
However, the photovoltaic power generation device 21 is connected via a control panel 23 provided with a DC / DC converter 23a, and DC power boosted to a predetermined voltage is input.
Further, the wind power generation device 22 is connected via a control panel 24 provided with an AC / DC converter 24a, and the generated power is converted into a direct current having a predetermined voltage and input.
The first input unit 11a to which the photovoltaic power generation device 21 is connected and the second input unit 11b to which the wind power generation device 22 is connected are connected to the input protection circuit 3 in the panel 1, and then the DC bus 6 is connected. The input power is superimposed and integrated.

第3入力部11cには蓄電池25が接続され、盤1内でDC/DCコンバータ4により所定の直流電圧に昇圧/降圧されて直流母線6に重畳される。
第4入力部11dには商用電力26が接続され、盤1内でAC/DCコンバータ5により所定の直流電圧に変換されて直流母線6に重畳される。
A storage battery 25 is connected to the third input unit 11c, and is boosted / stepped down to a predetermined DC voltage by the DC / DC converter 4 in the panel 1 and superimposed on the DC bus 6.
Commercial power 26 is connected to the fourth input unit 11d, is converted into a predetermined DC voltage by the AC / DC converter 5 in the panel 1, and is superimposed on the DC bus 6.

こうして、4種類の電源による直流電力が重畳された直流母線6は、主幹保護回路7を介した後分岐され、負荷優先順位設定回路8及び負荷保護回路9を介して負荷2が接続された個々の出力部12に接続されている。 In this way, the DC bus 6 on which the DC power of the four types of power sources is superimposed is branched after passing through the main protection circuit 7, and the load 2 is connected via the load priority setting circuit 8 and the load protection circuit 9. It is connected to the output unit 12 of.

図2は入力保護回路3の回路図である。入力保護回路3は、直流開閉器31、アーク保護回路32、サージ保護回路33、逆流防止回路34を具備している。
アーク保護回路32は、閉路状態にある直流開閉器31を開操作した際に発生する直流アークを抑制する回路である。コンデンサC1に蓄積された電荷により、直流開閉器31を開操作した瞬間の接点間の電圧は緩やかに変化し、アークの発生が防止される。
サージ保護回路33は、落雷等で電路に入り込んだ高電圧から電源を保護する。
FIG. 2 is a circuit diagram of the input protection circuit 3. The input protection circuit 3 includes a DC switch 31, an arc protection circuit 32, a surge protection circuit 33, and a backflow prevention circuit 34.
The arc protection circuit 32 is a circuit that suppresses a DC arc generated when the DC switch 31 in a closed circuit state is opened. Due to the electric charge accumulated in the capacitor C1, the voltage between the contacts at the moment when the DC switch 31 is opened is gradually changed, and the generation of an arc is prevented.
The surge protection circuit 33 protects the power supply from a high voltage that has entered the electric circuit due to a lightning strike or the like.

逆流防止回路34は、順方向のみに電流が流れ、逆方向に流れないよう阻止する回路である。直流母線6に接続される電路上にMOSFETから成るスイッチング素子M5が配置され、逆流発生時このスイッチング素子M5がオフする。
具体的に、電路電流が順方向に流れているとき(スイッチング素子M5がオンしているとき)、スイッチング素子M5のドレイン側とソース側の電圧をみると、ソース側の電位がドレイン側に比べて高い。このとき、トランジスタQ1はオフ状態でコレクタ側に電源電圧が印加されている。
一方、逆方向に流れようとすると、スイッチング素子M5のソース側の電位がドレイン側に比べて低くなる。このとき、トランジスタQ1はオンしてスイッチング素子M5のゲート電圧がゼロになる。こうして、スイッチング素子M5はオフして逆方向の流れが防止される。
The backflow prevention circuit 34 is a circuit that prevents current from flowing only in the forward direction and does not flow in the reverse direction. A switching element M5 made of MOSFET is arranged on the electric circuit connected to the DC bus 6, and the switching element M5 is turned off when backflow occurs.
Specifically, when the electric circuit current is flowing in the forward direction (when the switching element M5 is on), the voltage on the drain side and the source side of the switching element M5 is higher than that on the drain side. Is expensive. At this time, the power supply voltage is applied to the collector side in the off state of the transistor Q1.
On the other hand, when the flow is attempted in the opposite direction, the potential on the source side of the switching element M5 becomes lower than that on the drain side. At this time, the transistor Q1 is turned on and the gate voltage of the switching element M5 becomes zero. In this way, the switching element M5 is turned off to prevent the flow in the reverse direction.

図3は負荷優先順位設定回路8、負荷保護回路9の回路図であり、これらの回路は直流母線6から分岐した負荷電路6aに設けられている。尚、10は負荷優先順位設定回路8及び負荷保護回路9の電源回路である。
負荷優先順位設定回路8は、ボリューム抵抗VR1、コンパレータIC1−1、MOSFETから成るスイッチング素子M1−1を主要素子として構成されている。
ボリューム抵抗VR1を調整してコンパレータIC1−1への電圧指令値を設定し、コンパレータIC1−1出力の「Hi」或いは「Lo」の出力の閾値が設定される。こうして、直流母線6の電圧の変化に応じて負荷2への出力がオン/オフ操作され、ボリューム抵抗VR1の操作により負荷の優先順位が設定される。
FIG. 3 is a circuit diagram of the load priority setting circuit 8 and the load protection circuit 9, and these circuits are provided in the load electric circuit 6a branched from the DC bus 6. Reference numeral 10 denotes a power supply circuit for the load priority setting circuit 8 and the load protection circuit 9.
The load priority setting circuit 8 is configured with a switching element M1-1 including a volume resistor VR1, a comparator IC1-1, and a MOSFET as a main element.
The volume resistor VR1 is adjusted to set the voltage command value to the comparator IC1-1, and the threshold value of the output of "Hi" or "Lo" of the output of the comparator IC1-1 is set. In this way, the output to the load 2 is turned on / off according to the change in the voltage of the DC bus 6, and the priority of the load is set by the operation of the volume resistor VR1.

ボリューム抵抗VR1の操作によりコンパレータIC1−1の「+」入力を上げると直流母線6の電圧変動に対して広いレンジで「Hi」信号を出力し、結果高い優先順位となる。一方、ボリューム抵抗VR1の操作によりコンパレータIC1−1の「+」入力を下げると直流母線6の電圧変動に対して狭いレンジで「Hi」信号を出力し、結果低い優先順位となる。 When the "+" input of the comparator IC1-1 is raised by operating the volume resistor VR1, a "Hi" signal is output in a wide range with respect to the voltage fluctuation of the DC bus 6, resulting in a high priority. On the other hand, when the "+" input of the comparator IC1-1 is lowered by operating the volume resistor VR1, a "Hi" signal is output in a narrow range with respect to the voltage fluctuation of the DC bus 6, resulting in a low priority.

負荷保護回路9は、抵抗(突入防止抵抗)R17、MOSFETから成るスイッチング素子M1−1、M1−2、ツェナーダイオードZD5、トランジスタQ101−1を主要素子として構成されている。突入防止抵抗R17により、電源投入時に負荷2に容量成分が存在した場合に発生する突入電流が制限される。 The load protection circuit 9 is composed of a resistor (rush prevention resistor) R17, switching elements M1-1 and M1-2 composed of MOSFETs, a Zener diode ZD5, and a transistor Q101-1 as main elements. The inrush prevention resistor R17 limits the inrush current generated when a capacitance component is present in the load 2 when the power is turned on.

具体的に、電源投入時、スイッチング素子M1−1がオンし、負荷電流が流れる。このとに突入防止抵抗R17、スイッチング素子M1−1に負荷電流が流れる。
このとき、スイッチング素子M1−2はオフしているが、突入電流が減少して行き、突入防止抵抗R17にかかる電圧がツェナーダイオードZD5の電圧以下になると、トランジスタQ101−1がオンし、スイッチング素子M1−2がオンする。すると、スイッチング素子M1−1はゲート電圧がゼロになるためオフし、電路電流(直流母線6の分岐電流)は、スイッチング素子M1−2を通り、突入防止抵抗R17を通らない。
こうして、電源投入時のみ突入防止抵抗R17を介して電路電流が流れることで、突入電流が制限される。
Specifically, when the power is turned on, the switching element M1-1 is turned on and a load current flows. A load current flows through the inrush prevention resistor R17 and the switching element M1-1.
At this time, the switching element M1-2 is off, but when the inrush current decreases and the voltage applied to the inrush prevention resistor R17 becomes equal to or lower than the voltage of the Zener diode ZD5, the transistor Q101-1 is turned on and the switching element is turned on. M1-2 turns on. Then, the switching element M1-1 is turned off because the gate voltage becomes zero, and the electric circuit current (branch current of the DC bus 6) passes through the switching element M1-2 and does not pass through the inrush prevention resistor R17.
In this way, the inrush current is limited by the electric circuit current flowing through the inrush prevention resistor R17 only when the power is turned on.

このように、負荷優先順位設定回路8を備えるため、供給される電力が低下すると、優先順位が低く設定された負荷2から順に停止するため、一斉に負荷2が停止する事態を防止できる。一方、極力停止を回避したい負荷2は優先順位を高く設定することで、安全確保がし易い。
そして、自家発電電力や蓄電池25に電流センサを設けて電力を監視しないため、電力を監視して制御する複雑な制御をすること無く複数の電源を連携させて直流負荷に電力を供給できる。
また、負荷保護回路9により、電源投入時に発生する突入電流から負荷2を保護でき、負荷2の劣化を防止できる。
更に、入力保護回路3により自家発電装置には電流の逆流が発生しないため、自家発電装置を保護できるし、商用電力等から直流母線6に流れ込んだ雷サージや、接点開閉等で発生するアークから自家発電装置を保護できる。
また、直流連携させるための主要回路が1つの盤1に収容されているため、直流連携システムの施工がし易いし、盤1には更に蓄電池25の出力を昇圧/降圧するDC/DCコンバータ4と、商用電力26を直流に変換するAC/DCコンバータ5も組み付けられているため、蓄電池25、商用電力26を直接盤1に接続でき、更に簡易な施工で済む。
Since the load priority setting circuit 8 is provided in this way, when the supplied power decreases, the loads 2 are stopped in order from the load 2 set with the lower priority, so that the situation in which the loads 2 are stopped all at once can be prevented. On the other hand, it is easy to ensure safety by setting a high priority for the load 2 that wants to avoid stopping as much as possible.
Further, since the privately generated electric power or the storage battery 25 is provided with a current sensor to not monitor the electric power, it is possible to supply the electric power to the DC load by linking a plurality of power sources without performing complicated control for monitoring and controlling the electric power.
Further, the load protection circuit 9 can protect the load 2 from the inrush current generated when the power is turned on, and can prevent the load 2 from deteriorating.
Further, since the input protection circuit 3 does not generate a backflow of current in the private power generation device, the private power generation device can be protected from lightning surges flowing into the DC bus 6 from commercial power or the like, or arcs generated by contact opening / closing. You can protect your own power generator.
Further, since the main circuit for direct current cooperation is housed in one board 1, it is easy to construct the DC cooperation system, and the board 1 further boosts / lowers the output of the storage battery 25. Since the AC / DC converter 5 that converts the commercial power 26 to direct current is also assembled, the storage battery 25 and the commercial power 26 can be directly connected to the panel 1, and the construction is simpler.

尚、上記実施形態では、自家発電電力、蓄電池25、及び商用電力26の3種類の電源を直流母線6に重畳して負荷2に供給しているが、3種類に限定するもので無く、何れか2種類の電源のみを直流母線6に重畳させても良い。
また、主要回路を盤1内に組み付けてシステムを構成しているが、自家発電電力の入力保護回路3と蓄電池25のDC/DCコンバータ4は、発電している場所や蓄電池25の設置場所に分散配置しても良い。その場合、それらの出力を盤1の直流母線6に接続すれば良い。
更に、商用電力26を直流変換するAC/DCコンバータ5を盤1から独立させても良いし、逆に太陽光発電装置21の制御盤23、風力発電装置22の制御盤24を盤1と一体に形成しても良い。
また、自家発電装置として再生可能エネルギーである太陽光発電装置21と風力発電装置22を備えているが、何れか一方のみでも良いし他の発電設備であっても良い。
In the above embodiment, three types of power sources, privately generated power, storage battery 25, and commercial power 26, are superimposed on the DC bus 6 and supplied to the load 2, but the power is not limited to the three types. Alternatively, only two types of power sources may be superimposed on the DC bus 6.
Further, although the main circuit is assembled in the panel 1 to form the system, the input protection circuit 3 of the privately generated power and the DC / DC converter 4 of the storage battery 25 are located at the place where the power is generated or the storage battery 25 is installed. It may be distributed. In that case, those outputs may be connected to the DC bus 6 of the board 1.
Further, the AC / DC converter 5 that converts the commercial power 26 into direct current may be made independent from the board 1, and conversely, the control board 23 of the photovoltaic power generation device 21 and the control board 24 of the wind power generation device 22 are integrated with the board 1. It may be formed in.
Further, although the private power generation device includes a solar power generation device 21 and a wind power generation device 22 which are renewable energies, only one of them may be used or another power generation facility may be used.

1・・盤、2・・負荷、3・・入力保護回路、4・・DC/DCコンバータ、5・・AC/DCコンバータ、6・・直流母線、6a・・負荷電路、7・・主幹保護回路、8・・負荷優先順位設定回路、9・・負荷保護回路、11・・入力部、12・・出力部、21・・太陽光発電装置、22・・風力発電装置、23a・・DC/DCコンバータ、24a・・AC/DCコンバータ、25・・蓄電池、26・・商用電力、32・・アーク保護回路、33・・サージ保護回路、34・・逆流防止回路。 1 ... board, 2 ... load, 3 ... input protection circuit, 4 ... DC / DC converter, 5 ... AC / DC converter, 6 ... DC bus, 6a ... load circuit, 7 ... main protection Circuit, 8 ... Load priority setting circuit, 9 ... Load protection circuit, 11 ... Input section, 12 ... Output section, 21 ... Solar power generation device, 22 ... Wind power generation device, 23a ... DC / DC converter, 24a ... AC / DC converter, 25 ... storage battery, 26 ... commercial power, 32 ... arc protection circuit, 33 ... surge protection circuit, 34 ... backflow prevention circuit.

Claims (6)

自家発電電力、蓄電池、及び商用電力の3種類のうち、少なくとも2種類の電力を電源として、所定電圧の直流に変換して直流母線に重畳させて統合し、統合した直流電力を複数の負荷に供給する直流連携システムであって、
前記直流母線を分岐して前記負荷に電力を供給する負荷電路には、負荷毎に優先順位を設定する負荷優先順位設定回路が設けられており、
供給される電力が低下すると、優先順位が低く設定された負荷から電力の供給が停止されることを特徴とする直流連携システム。
Of the three types of privately generated power, storage battery, and commercial power, at least two types of power are used as the power source, converted to DC at a predetermined voltage, superimposed on the DC bus, and integrated, and the integrated DC power is combined into multiple loads. It is a DC cooperation system to supply
A load priority setting circuit for setting a priority for each load is provided in a load electric circuit that branches the DC bus to supply electric power to the load.
A DC linkage system characterized in that when the power supplied decreases, the power supply is stopped from a load set with a low priority.
前記直流母線と各負荷との間には、突入電流から負荷を保護する負荷保護回路が配置されていることを特徴とする請求項1記載の直流連携システム。 The DC linkage system according to claim 1, wherein a load protection circuit that protects the load from an inrush current is arranged between the DC bus and each load. 前記電源は前記自家発電電力を含み、前記自家発電電力は、逆流防止回路を含む入力保護回路を介して前記直流母線に重畳されることを特徴とする請求項1又は2記載の直流連携システム。 The DC cooperation system according to claim 1 or 2, wherein the power source includes the self-generated power, and the self-generated power is superimposed on the DC bus via an input protection circuit including a backflow prevention circuit. 前記入力保護回路は、前記逆流防止回路に加えて、アーク保護回路、サージ保護回路を具備して成ることを特徴とする請求項3記載の直流連携システム。 The DC linkage system according to claim 3, wherein the input protection circuit includes an arc protection circuit and a surge protection circuit in addition to the backflow prevention circuit. 前記負荷優先順位設定回路と、前記負荷保護回路と、前記直流母線とが共通する盤に組み付けられ、
前記盤には、前記電源を接続する複数の入力部、負荷を接続するための複数の出力部が設けられて成ることを特徴とする請求項2記載の直流連携システム。
The load priority setting circuit, the load protection circuit, and the DC bus are assembled on a common board.
The DC linkage system according to claim 2, wherein the panel is provided with a plurality of input units for connecting the power supply and a plurality of output units for connecting the load.
前記電源は前記蓄電池及び前記商用電力を含み、前記盤には、前記蓄電池の出力を所定電圧に昇圧/降圧するDC/DCコンバータと、前記商用電力を所定電圧の直流に変換するAC/DCコンバータが組み付けられていることを特徴とする請求項5記載の直流連携システム。 The power source includes the storage battery and the commercial power, and the panel includes a DC / DC converter that boosts / lowers the output of the storage battery to a predetermined voltage, and an AC / DC converter that converts the commercial power into a direct current of a predetermined voltage. The DC linkage system according to claim 5, wherein the DC linkage system is assembled.
JP2019104709A 2019-06-04 2019-06-04 DC link system Active JP7274944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104709A JP7274944B2 (en) 2019-06-04 2019-06-04 DC link system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104709A JP7274944B2 (en) 2019-06-04 2019-06-04 DC link system

Publications (2)

Publication Number Publication Date
JP2020198736A true JP2020198736A (en) 2020-12-10
JP7274944B2 JP7274944B2 (en) 2023-05-17

Family

ID=73649469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104709A Active JP7274944B2 (en) 2019-06-04 2019-06-04 DC link system

Country Status (1)

Country Link
JP (1) JP7274944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022116512A (en) * 2021-01-29 2022-08-10 株式会社豊田中央研究所 power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148009A (en) * 2007-12-11 2009-07-02 Panasonic Electric Works Co Ltd Power supply system
JP2013038871A (en) * 2011-08-05 2013-02-21 Sanyo Electric Co Ltd Switching device
JP2013223318A (en) * 2012-04-16 2013-10-28 Nippon Telegr & Teleph Corp <Ntt> Current distribution device
JP2013230005A (en) * 2012-04-25 2013-11-07 Kyocera Corp Control apparatus and power supply method
JP2014134445A (en) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp Arc detection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148009A (en) * 2007-12-11 2009-07-02 Panasonic Electric Works Co Ltd Power supply system
JP2013038871A (en) * 2011-08-05 2013-02-21 Sanyo Electric Co Ltd Switching device
JP2013223318A (en) * 2012-04-16 2013-10-28 Nippon Telegr & Teleph Corp <Ntt> Current distribution device
JP2013230005A (en) * 2012-04-25 2013-11-07 Kyocera Corp Control apparatus and power supply method
JP2014134445A (en) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp Arc detection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022116512A (en) * 2021-01-29 2022-08-10 株式会社豊田中央研究所 power supply system
JP7264181B2 (en) 2021-01-29 2023-04-25 株式会社豊田中央研究所 power supply system

Also Published As

Publication number Publication date
JP7274944B2 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
US7602626B2 (en) Power conversion apparatus
US6118676A (en) Dynamic voltage sag correction
JP2017216795A (en) Power supply device
US10396654B2 (en) Start-up circuit
JP6635671B2 (en) Power converter
JP6730826B2 (en) Power conditioner, power supply system and current control method
JP3941346B2 (en) Power conditioner in solar power generation system
JP7042694B2 (en) Control method for power conditioner and reverse connection
JP2020198736A (en) DC cooperation system
JP6340939B2 (en) Power supply device and power conversion device
JP2019180189A (en) Switching device, power conversion device, power conversion system, and connection box
JP6801788B2 (en) Reactive power suppression methods for power converters, power systems and power systems
JPH10289025A (en) Power conditioner for solar power generation system
WO2019003867A1 (en) Vehicle-mounted power supply circuit and vehicle-mounted power supply device
JP7117493B2 (en) Grid-connected system
JP2014055902A (en) Dc power supply facility for nuclear power plant
JP2017158265A (en) Electric power supply system and electric power conversion system
JP2017143607A (en) Shunt device, electric power system, and space structure
JP2016010232A (en) Step-up connection circuit for power generation system, and power conditioner
US20140071568A1 (en) DC Power Source Isolation with Diode and Bypass Switch
JP6928837B2 (en) Power system
JP6315821B2 (en) Power supply device and power storage system
KR101792540B1 (en) Power control device for sub-module of mmc converter
JP2018121399A (en) Battery interruption circuit
RU2314621C1 (en) Two-cascade voltage transformer with intelligent protection from overload modes and short circuit currents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7274944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150