JP2020198718A - Stator, rotary electric machine, and manufacturing method of rotary electric machine - Google Patents

Stator, rotary electric machine, and manufacturing method of rotary electric machine Download PDF

Info

Publication number
JP2020198718A
JP2020198718A JP2019104232A JP2019104232A JP2020198718A JP 2020198718 A JP2020198718 A JP 2020198718A JP 2019104232 A JP2019104232 A JP 2019104232A JP 2019104232 A JP2019104232 A JP 2019104232A JP 2020198718 A JP2020198718 A JP 2020198718A
Authority
JP
Japan
Prior art keywords
mold portion
stator
refrigerant
mold
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104232A
Other languages
Japanese (ja)
Other versions
JP7289223B2 (en
Inventor
永田 稔
Minoru Nagata
稔 永田
榎本 裕治
Yuji Enomoto
裕治 榎本
日野 徳昭
Tokuaki Hino
徳昭 日野
公則 澤畠
Kiminori Sawahata
公則 澤畠
雅寛 堀
Masahiro Hori
雅寛 堀
暁史 高橋
Akifumi Takahashi
暁史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019104232A priority Critical patent/JP7289223B2/en
Publication of JP2020198718A publication Critical patent/JP2020198718A/en
Application granted granted Critical
Publication of JP7289223B2 publication Critical patent/JP7289223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

To provide a stator, a rotary electric machine, and a manufacturing method of the rotary electric machine which can form a flow path of a refrigerant for cooling a coil while suppressing an increase in manufacturing man-hours.SOLUTION: A stator includes: a plurality of coils formed in a manner of arranging a plurality of linear members 223 and 224, which are respectively formed such that both ends face the same direction, such that the ends face the same direction, exposing the ends, molding with insulating members 213 and 214 to respectively integrally form a first mold portion 203 and a second mold portion 204, and arranging the two molding portions such that the ends of the linear members 223 and 224 face each other; a stator core 201 that houses exposed parts of the plurality of coils with the first mold portion 203 and the second mold portion 204 arranged at both ends; and a plurality of pipelines 202 that forms a flow path for a refrigerant between the first mold portion 203 and the second mold portion 204 inside the stator core 201.SELECTED DRAWING: Figure 1

Description

本発明は、固定子、回転電機及び回転電機の製造方法に関する。 The present invention relates to a stator, a rotary electric machine, and a method for manufacturing a rotary electric machine.

近年の地球環境保護への意識の高まりに伴い、自動車産業においても従来の内燃機関駆動から駆動時に温暖化ガスを排出しないモータ駆動による電動化へのシフトが進んでいる。一方で、モータへ電気を供給するバッテリは高価であって車載可能な重量も限られるため、モータの小型化が求められている。 With the growing awareness of global environmental protection in recent years, the automobile industry is also shifting from the conventional internal combustion engine drive to the motor drive that does not emit warming gas when driven. On the other hand, the battery that supplies electricity to the motor is expensive and the weight that can be mounted on the motor is limited, so that the motor is required to be miniaturized.

一般に、モータを小型化すると損失密度が増加することが知られている。モータの損失は、コア材料の鉄損とコイルの銅損がほとんどを占めている。鉄損は、使用する材料や形状によって低減可能であり、例えば、電磁鋼板はその厚さやケイ素(Si)の含有量によって損失が変わり、また、電磁鋼板以外のアモルファス材やナノ結晶材などの高機能材料を使用することで損失を低減することも検討されている。一方、銅損は、コイルの抵抗値と電流によって決まる。銅損を低減するためには、例えば、固定子のスロット内で可能な限りコイルの断面積を確保して抵抗値を減らすことが考えられる。しかしながら、モータの小型化を進めると銅損の低減による発熱の抑制は難しくなるため、コイルの冷却性能を向上する必要がある。 It is generally known that the loss density increases as the motor is miniaturized. Most of the motor loss is iron loss of the core material and copper loss of the coil. The iron loss can be reduced depending on the material and shape used. For example, the loss of electrical steel sheets varies depending on the thickness and silicon (Si) content, and the height of amorphous materials and nanocrystal materials other than electrical steel sheets is high. It is also being considered to reduce the loss by using functional materials. On the other hand, copper loss is determined by the resistance value and current of the coil. In order to reduce the copper loss, for example, it is conceivable to secure the cross-sectional area of the coil as much as possible in the slot of the stator to reduce the resistance value. However, as the size of the motor is reduced, it becomes difficult to suppress heat generation by reducing the copper loss, so it is necessary to improve the cooling performance of the coil.

モータにおけるコイルの冷却方法としては、コイルの近くに冷媒が流れる流路を配置する技術が知られており、例えば、特許文献1には、それぞれの軸心が同一となるように配置された固定子及び回転子を有する回転電機であり、前記固定子が、周方向に延在するヨークと、当該ヨークから径方向に延在するティースと、前記ティースの間の空間であるスロットを通り前記ティースに対して巻き回されているコイルとを有する回転電機を冷却する回転電機の冷却方法であって、前記スロットの前記軸心の方向における一端から、前記コイルを構成する電線の隙間を通って、前記スロットの前記軸心の方向における他端に到達するように、前記スロットの前記軸心の方向における一端に冷却媒体を供給する供給工程を有する回転電機の冷却方法が開示されている。 As a method for cooling a coil in a motor, a technique of arranging a flow path through which a refrigerant flows is known near the coil is known. For example, in Patent Document 1, fixing is arranged so that the respective axes are the same. A rotary electric motor having a child and a rotor, wherein the stator passes through a yoke extending in the circumferential direction, a tooth extending in the radial direction from the yoke, and a slot which is a space between the teeth. A cooling method for a rotary electric motor that cools a rotary electric motor having a coil that is wound around the coil, from one end of the slot in the direction of the axial center, through a gap between wires constituting the coil. A cooling method for a rotary electric motor having a supply step of supplying a cooling medium to one end of the slot in the direction of the axis so as to reach the other end in the direction of the axis of the slot is disclosed.

特開2010−172129号公報JP-A-2010-172129

しかしながら、上記従来技術においては、コイル挿入後にスロット内に流路を設けており、スロット開口部をふさぐ形で部材を配置し流路を形成するため、冷媒の封止が困難である。また、コイルを固定してから作業する必要があるため作業性が非常に低く、作業工数が増加してしまう。 However, in the above-mentioned conventional technique, since the flow path is provided in the slot after the coil is inserted and the members are arranged so as to block the slot opening to form the flow path, it is difficult to seal the refrigerant. Further, since it is necessary to work after fixing the coil, the workability is very low and the work man-hours increase.

本発明は上記に鑑みてなされたものであり、製造工数の増加を抑制しつつコイルを冷却するための冷媒の流路を形成することができる固定子、回転電機及び回転電機の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and provides a stator, a rotary electric machine, and a method for manufacturing a rotary electric machine capable of forming a flow path of a refrigerant for cooling a coil while suppressing an increase in manufacturing man-hours. The purpose is to do.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、両方の端部が同じ方向に向くようにそれぞれ形成された複数の線状部材を前記端部が同じ方向を向くように配置し、かつ、前記端部を露出させて絶縁部材によりモールドしてそれぞれ一体的に形成した第一モールド部および第二モールド部の2つのモールド部を、前記線状部材の端部が対向するように配置して前記端部を接合することで形成された複数のコイルと、前記第一モールド部と前記第二モールド部とを両端に配置することで前記複数のコイルの前記絶縁部材から露出した部分を収納する固定子コアと、前記固定子コアの内部であって前記第一モールド部と前記第二モールド部との間に冷媒の流路を形成する複数の管路とを備えたものとする。 The present application includes a plurality of means for solving the above problems. For example, a plurality of linear members formed so that both ends face in the same direction are provided with the ends facing the same direction. The two mold portions, the first mold portion and the second mold portion, which are arranged so as to face each other and are integrally formed by exposing the end portion and molding with an insulating member, are formed at the end portion of the linear member. The insulation of the plurality of coils by arranging the plurality of coils formed by joining the ends thereof and the first mold portion and the second mold portion at both ends. A stator core for accommodating a portion exposed from a member, and a plurality of pipelines inside the stator core that form a flow path for a refrigerant between the first mold portion and the second mold portion. It shall be prepared.

本発明によれば、製造工数の増加を抑制しつつコイルを冷却するための冷媒の流路を形成することができる。 According to the present invention, it is possible to form a flow path of a refrigerant for cooling the coil while suppressing an increase in manufacturing man-hours.

第1の実施の形態に係る回転電機を軸方向に分解して概略的に示す図である。It is a figure which shows roughly by disassembling the rotary electric machine which concerns on 1st Embodiment in the axial direction. 固定子の一部を抜き出して示す図である。It is a figure which shows by extracting a part of a stator. 回転電機の回転軸を通る平面における断面図である。It is sectional drawing in the plane passing through the rotation axis of a rotary electric machine. モールド部を抜き出して図3におけるA−Aの位置での断面を示す図である。It is a figure which shows the cross section at the position of AA in FIG. 3 by pulling out a mold part. モールド部を抜き出して図3におけるB−B線の位置での断面を示す図である。It is a figure which shows the cross section at the position of the line BB in FIG. 3 by pulling out a mold part. コイルを構成する線状部材の一部を固定子コアの位置部とともに抜き出して示す図である。It is a figure which shows by taking out a part of the linear member which constitutes a coil together with the position part of a stator core. 線状部材の先端を接合する様子を示す図である。It is a figure which shows the state of joining the tip of a linear member. 線状部材の先端を接合する様子を示す図である。It is a figure which shows the state of joining the tip of a linear member. 第2の実施の形態に係る回転電機の回転軸を通る平面における断面図である。It is sectional drawing in the plane passing through the rotation axis of the rotary electric machine which concerns on 2nd Embodiment. モールド部を抜き出して図8におけるC−C線の位置での断面を示す図である。It is a figure which shows the cross section at the position of the CC line in FIG. 8 by pulling out a mold part. モールド部を抜き出して図8におけるD−D線の位置での断面を示す図である。It is a figure which shows the cross section at the position of the DD line in FIG. 8 by pulling out a mold part. 第3の実施の形態に係る第二モールド部を抜き出して回転軸に垂直な平面での断面を示す図である。It is a figure which shows the cross section in the plane perpendicular to the rotation axis by extracting the 2nd mold part which concerns on 3rd Embodiment.

以下、本発明の実施の形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1の実施の形態>
本発明の第1の実施の形態を図1〜図7を参照しつつ説明する。
<First Embodiment>
The first embodiment of the present invention will be described with reference to FIGS. 1 to 7.

図1は、本実施の形態に係る回転電機を軸方向に分解して概略的に示す図であり、図2は固定子の一部を抜き出して示す図である。また、図3は、回転電機の回転軸を通る平面における断面図であり、図4及び図5はそれぞれモールド部を抜き出して図3におけるA−A線およびB−B線の位置での断面を示す図である。 FIG. 1 is a diagram schematically showing a rotary electric machine according to the present embodiment disassembled in the axial direction, and FIG. 2 is a diagram showing a part of a stator extracted. Further, FIG. 3 is a cross-sectional view on a plane passing through the rotation axis of the rotary electric machine, and FIGS. 4 and 5 show the cross-sectional views at the positions of lines AA and BB in FIG. 3 by extracting the mold portion, respectively. It is a figure which shows.

図1〜図3に示すように、回転電機100は、固定子200と、固定子200の内部に固定子200と同軸状に配置された回転子300と、固定子200と回転子300とを内包するモータ筐体205と、固定子200と回転子300とをモータ筐体205内部に支持するブラケット206,207とから構成されている。回転子300は回転軸400に相対的に固定されており、回転軸400を中心として回転駆動される。 As shown in FIGS. 1 to 3, the rotary electric motor 100 includes a stator 200, a rotor 300 arranged coaxially with the stator 200 inside the stator 200, and a stator 200 and a rotor 300. It is composed of a motor housing 205 to be included, and brackets 206 and 207 that support the stator 200 and the rotor 300 inside the motor housing 205. The rotor 300 is relatively fixed to the rotation shaft 400, and is rotationally driven around the rotation shaft 400.

固定子200は、導電体で形成された複数の線状部材223,224により形成される複数のコイルと、複数のコイルの少なくとも一部を収納する固定子コア201と、固定子コア201の内部に冷媒の流路を形成する複数の管路202とから構成されている。 The stator 200 includes a plurality of coils formed by a plurality of linear members 223 and 224 formed of a conductor, a stator core 201 that houses at least a part of the plurality of coils, and the inside of the stator core 201. It is composed of a plurality of pipelines 202 that form a flow path for the refrigerant.

複数の線状部材223は、それぞれ、両方の端部が同じ方向に向くように形成されており、その端部が同じ方向を向くように精度良く整列配置された状態で端部を露出させて絶縁部材213によりモールドされて一体的に第一モールド部203を形成している。第一モールド部203は、回転軸400を囲む環状に形成されており、複数の線状部材223は環状の第一モールド部203の軸方向一方にその端部を露出し、第一モールド部203に沿って環状に配置されている。 Each of the plurality of linear members 223 is formed so that both ends face in the same direction, and the ends are exposed in a state where the ends are accurately aligned and arranged so that the ends face the same direction. It is molded by the insulating member 213 to integrally form the first mold portion 203. The first mold portion 203 is formed in an annular shape surrounding the rotation shaft 400, and the plurality of linear members 223 expose their ends in one axial direction of the annular first mold portion 203, and the first mold portion 203 is formed. It is arranged in a ring along the.

同様に、複数の線状部材224は、それぞれ、両方の端部が同じ方向に向くように形成されており、その端部が同じ方向を向くように精度良く整列配置された状態で端部を露出させて絶縁部材214によりモールドされて一体的に第二モールド部204を形成している。第二モールド部204は、回転軸400を囲む環状に形成されており、複数の線状部材224は環状の第二モールド部204の軸方向一方にその端部を露出し、第二モールド部に沿って環状に配置されている。 Similarly, each of the plurality of linear members 224 is formed so that both ends face in the same direction, and the ends are accurately aligned and arranged so that the ends face the same direction. It is exposed and molded by the insulating member 214 to integrally form the second mold portion 204. The second mold portion 204 is formed in an annular shape surrounding the rotation shaft 400, and the plurality of linear members 224 expose their ends in one axial direction of the annular second mold portion 204 in the second mold portion. It is arranged in a ring along the line.

なお、モールドに用いる素材は、樹脂やゴムなどの弾性部品でもよく、材質を特に限定しない。 The material used for the mold may be an elastic part such as resin or rubber, and the material is not particularly limited.

図6は、コイルを構成する線状部材の一部を固定子コアの位置部とともに抜き出して示す図である。また、図7A及び図7Bは、線状部材の先端を接合する様子を示す図である。 FIG. 6 is a diagram showing a part of the linear member constituting the coil extracted together with the position portion of the stator core. Further, FIGS. 7A and 7B are views showing how the tips of the linear members are joined.

図6に示すように、線状部材223の先端には、先端方向に凸状に形成された嵌合構造部223aが形成されている。同様に、線状部材224の先端には、先端方向から見て凹状に形成された嵌合構造部224aが形成されている。また、固定子コア201の内部には、軸方向に延在するようにスロット201aが設けられている。線状部材223,224を固定子コア201に軸方向の両側から挿入し、線状部材223,224の嵌合構造部223a,224aを嵌合して線状部材223,224を接合することができる。このとき、線状部材223の両端を異なる線状部材224に、また、線状部材224の両端を異なる線状部材223にそれぞれ接合することでコイルが形成される。つまり、複数の線状部材223,224はそれぞれコイルの一部を形成する部材(コイルセグメント)である。 As shown in FIG. 6, a fitting structure portion 223a formed in a convex shape in the tip direction is formed at the tip of the linear member 223. Similarly, at the tip of the linear member 224, a fitting structure portion 224a formed in a concave shape when viewed from the tip direction is formed. Further, inside the stator core 201, a slot 201a is provided so as to extend in the axial direction. The linear members 223 and 224 can be inserted into the stator core 201 from both sides in the axial direction, and the fitting structure portions 223a and 224a of the linear members 223 and 224 can be fitted to join the linear members 223 and 224. it can. At this time, a coil is formed by joining both ends of the linear member 223 to different linear members 224 and both ends of the linear member 224 to different linear members 223. That is, each of the plurality of linear members 223 and 224 is a member (coil segment) forming a part of the coil.

なお、本実施の形態では、線状部材223の先端に凸状に形成された嵌合構造部223aを線状部材224の先端に凹状に形成された嵌合構造部224aに挿入することで嵌合して線状部材223,224を接合する場合を例示して説明したが、嵌合構造部223a,224aがスロット201a内で接合可能な構造であればよく、例えば、線状部材223,224で嵌合構造部223a,224aの凹凸を入れ替えても良い。また、嵌合構造部は凹凸形状に限られず、接続面が1つの段差を有する階段状に形成されていてもよい。この場合には、接続される線状部材の端部の対向する面が固定子コア201の軸方向と平行になっていることで、線状部材の長さにばらつきがある場合でも、対向する面が接触することで導通を確保することが可能である。 In the present embodiment, the fitting structure portion 223a formed convexly at the tip of the linear member 223 is inserted into the fitting structure portion 224a formed concavely at the tip of the linear member 224 to fit. The case where the linear members 223 and 224 are joined together has been described as an example, but the fitting structure portions 223a and 224a may have a structure that can be joined in the slot 201a. For example, the linear members 223 and 224 may be joined. The unevenness of the fitting structure portions 223a and 224a may be replaced with each other. Further, the fitting structure portion is not limited to the concave-convex shape, and the connecting surface may be formed in a stepped shape having one step. In this case, since the opposing surfaces of the ends of the linear members to be connected are parallel to the axial direction of the stator core 201, they face each other even if the lengths of the linear members vary. It is possible to ensure continuity by contacting the surfaces.

本実施の形態では、第一モールド部203および第二モールド部204の2つのモールド部を線状部材223,224の端部が対向するように配置し、線状部材223,224の絶縁部材213,214から露出した端部を固定子コア201のスロット201aに挿入して、スロット201a内で嵌合構造部223a,224aを嵌合させることで複数のコイルを形成している。 In the present embodiment, the two mold portions of the first mold portion 203 and the second mold portion 204 are arranged so that the ends of the linear members 223 and 224 face each other, and the insulating member 213 of the linear members 223 and 224 is arranged. , 214 The end exposed from 214 is inserted into the slot 201a of the stator core 201, and the fitting structure portions 223a and 224a are fitted in the slot 201a to form a plurality of coils.

管路202は、固定子コア201の内部(スロット201a)に複数配置されており、第一モールド部203と第二モールド部204との間に冷媒の流路を形成している。 A plurality of pipelines 202 are arranged inside the stator core 201 (slot 201a), and form a flow path for the refrigerant between the first mold portion 203 and the second mold portion 204.

図3及び図4に示すように、第一モールド部203の絶縁部材213は、モータ筐体205に設けられた開口部205aを介して冷媒が供給される入口部213aと、入口部213aから供給された冷媒を管路202に導く第一中継部213bとを有している。第一中継部213bは、絶縁部材213に配置された複数の線状部材223の内側に沿って環状に設けられている。第一中継部213bの軸方向であって線状部材223の端部が露出する一方には、管路202を挿入して接続することで第一中継部213bと管路202とを連通させるための複数の接続穴202aが第一中継部213bに沿って設けられている。 As shown in FIGS. 3 and 4, the insulating member 213 of the first mold portion 203 is supplied from the inlet portion 213a and the inlet portion 213a to which the refrigerant is supplied through the opening 205a provided in the motor housing 205. It has a first relay unit 213b that guides the generated refrigerant to the pipeline 202. The first relay portion 213b is provided in an annular shape along the inside of the plurality of linear members 223 arranged on the insulating member 213. In order to communicate the first relay portion 213b and the pipeline 202 by inserting and connecting the pipeline 202 to the one where the end portion of the linear member 223 is exposed in the axial direction of the first relay portion 213b. A plurality of connection holes 202a are provided along the first relay portion 213b.

また、図3及び図5に示すように、第二モールド部204の絶縁部材214は、モータ筐体205に設けられた開口部205bを介して冷媒が排出される出口部214aと、第一モールド部203から管路202を介して供給される冷媒を出口部214aに導く第二中継部214bとを有している。第二中継部214bは、絶縁部材214に配置された複数の線状部材224の内側に沿って環状に設けられている。第二中継部214bの軸方向であって線状部材224の端部が露出する一方には、管路202を挿入して接続することで第二中継部214bと管路202とを連通させるための複数の接続穴202bが第二中継部214bに沿って設けられている。 Further, as shown in FIGS. 3 and 5, the insulating member 214 of the second mold portion 204 has an outlet portion 214a through which the refrigerant is discharged through the opening 205b provided in the motor housing 205 and the first mold. It has a second relay portion 214b that guides the refrigerant supplied from the portion 203 via the pipeline 202 to the outlet portion 214a. The second relay portion 214b is provided in an annular shape along the inside of the plurality of linear members 224 arranged on the insulating member 214. In order to communicate the second relay portion 214b and the pipeline 202 by inserting and connecting the pipeline 202 while the end portion of the linear member 224 is exposed in the axial direction of the second relay portion 214b. A plurality of connection holes 202b are provided along the second relay portion 214b.

第一モールド部203および第二モールド部204の線状部材223,224の端部が対向するように線状部材223,224の絶縁部材213,214から露出した部分を固定子コア201のスロット201aに挿入して線状部材223,224の端部223a,224aを嵌合することで複数のコイルを形成するのと同時に、固定子コア201の内部(ここでは、スロット201aの線状部材223,224よりも回転軸400側)に第一モールド部203と第二モールド部204との間に冷媒の流路を形成する複数の管路202を挿入し、複数の管路202の端部を絶縁部材213,214の接続穴202a,202bに挿入して接続することで、固定子200が形成される。 Slots 201a of the stator core 201 are exposed from the insulating members 213 and 214 of the linear members 223 and 224 so that the ends of the linear members 223 and 224 of the first mold portion 203 and the second mold portion 204 face each other. A plurality of coils are formed by fitting the ends 223a and 224a of the linear members 223 and 224 into the stator core 201, and at the same time, the inside of the stator core 201 (here, the linear members 223 and the slot 201a). A plurality of pipelines 202 forming a flow path for the refrigerant are inserted between the first mold portion 203 and the second mold portion 204 (on the rotation shaft 400 side of the 224), and the ends of the plurality of pipelines 202 are insulated. The stator 200 is formed by inserting and connecting the members 213 and 214 into the connection holes 202a and 202b.

接続穴202a,202bは、管路202の断面形状と相似形状となっており、寸法公差によって管路202との接続部が封止される。なお、接続穴202a,202bの内周と管路202との間に隙間が出来る場合には、シーリングテープのような封止部材を使用して封止する。また、管路202の長さは、コイルセグメントである線状部材223,224の端部の向かい合う面同士の距離よりも短くなるように構成しており、これによって、管路202が外れることなく線状部材223,224を接続することができる。 The connection holes 202a and 202b have a shape similar to the cross-sectional shape of the pipeline 202, and the connection portion with the pipeline 202 is sealed by the dimensional tolerance. If there is a gap between the inner circumference of the connection holes 202a and 202b and the pipeline 202, a sealing member such as a sealing tape is used to seal the connection. Further, the length of the pipeline 202 is configured to be shorter than the distance between the facing surfaces of the ends of the linear members 223 and 224, which are coil segments, so that the pipeline 202 does not come off. The linear members 223 and 224 can be connected.

ブラケット206,207は、第一モールド部203と第二モールド部204とを軸方向の両側からおさえることによって線状部材223,224の端部の嵌合構造部の嵌合状態を維持するとともに、管路202の接続穴202a,202bとの接続状態を維持している。なお、本実施の形態では、ブラケット206,207によって第一モールド部203及び第二モールド部204を抑える場合を例示して説明しているが、線状部材223,224の端部の嵌合状態を一定の力で支持する圧力調整装置によっておさえることにより、嵌合部分における接触抵抗のばらつきを抑えるように構成してもよい。 The brackets 206 and 207 maintain the fitting state of the fitting structure at the ends of the linear members 223 and 224 by holding the first mold portion 203 and the second mold portion 204 from both sides in the axial direction. The connection state with the connection holes 202a and 202b of the pipeline 202 is maintained. In the present embodiment, the case where the first mold portion 203 and the second mold portion 204 are suppressed by the brackets 206 and 207 is illustrated and described, but the fitted state of the ends of the linear members 223 and 224 is described. May be configured to suppress variations in contact resistance at the mating portion by holding the pressure with a pressure adjusting device that supports the fitting portion with a constant force.

図3に示すように、モータ筐体205の開口部205aを介して入口部213aに供給された冷媒は、第一中継部213bを介して管路202に導かれ、管路202を通った冷媒は、第二中継部214bを介して出口部214aに導かれ、モータ筐体205の開口部205bを介して排出される。 As shown in FIG. 3, the refrigerant supplied to the inlet 213a through the opening 205a of the motor housing 205 is guided to the pipeline 202 via the first relay portion 213b and passes through the conduit 202. Is guided to the outlet portion 214a via the second relay portion 214b, and is discharged through the opening 205b of the motor housing 205.

以上のように構成した本実施の効果を説明する。 The effect of this implementation configured as described above will be described.

従来技術においては、コイル挿入後にスロット内に流路を設けており、スロット開口部をふさぐ形で部材を配置し流路を形成するため、冷媒の封止が困難である。また、コイルを固定してから作業する必要があるため作業性が非常に低く、作業工数が増加してしまう。 In the prior art, since the flow path is provided in the slot after the coil is inserted and the members are arranged so as to block the slot opening to form the flow path, it is difficult to seal the refrigerant. Further, since it is necessary to work after fixing the coil, the workability is very low and the work man-hours increase.

これに対して本実施の形態においては、両方の端部が同じ方向に向くようにそれぞれ形成された複数の線状部材223,224を端部が同じ方向を向くように配置し、かつ、端部を露出させて絶縁部材213,214によりモールドしてそれぞれ一体的に形成した第一モールド部203および第二モールド部204の2つのモールド部を、線状部材223,224の端部が対向するように配置して端部を嵌合して接続することで形成された複数のコイルと、第一モールド部203と第二モールド部204とを両端に配置することで複数のコイルの絶縁部材213,214から露出した部分を収納する固定子コア201と、固定子コア201の内部であって第一モールド部203と第二モールド部204との間に冷媒の流路を形成する複数の管路202とを備えるように構成したので、製造工数の増加を抑制しつつコイルを冷却するための冷媒の流路を形成することができる。 On the other hand, in the present embodiment, a plurality of linear members 223 and 224 formed so that both ends face in the same direction are arranged so that the ends face in the same direction, and the ends are oriented. The ends of the linear members 223 and 224 face each other of the two mold portions of the first mold portion 203 and the second mold portion 204, which are integrally formed by exposing the portions and molding them with the insulating members 213 and 214. A plurality of coils formed by fitting and connecting the ends thereof and the insulating member 213 of the plurality of coils by arranging the first mold portion 203 and the second mold portion 204 at both ends. , A plurality of conduits that form a flow path for the refrigerant between the stator core 201 that houses the portion exposed from 214 and the first mold portion 203 and the second mold portion 204 inside the stator core 201. Since it is configured to include the 202, it is possible to form a flow path of the refrigerant for cooling the coil while suppressing an increase in manufacturing man-hours.

なお、本実施の形態においては、1スロットあたり4本のコイルを固定した場合を例示して説明しているが、1スロットあたりのコイルの数はこれに限られない。 In the present embodiment, the case where four coils are fixed per slot is illustrated and described, but the number of coils per slot is not limited to this.

<第2の実施の形態>
本発明の第2の実施の形態を図8〜図10を参照しつつ説明する。本実施の形態では、第1の実施の形態との相違点についてのみ説明するものとし、本実施の形態で用いる図面において第1の実施の形態と同様の部材には同じ符号を付し、説明を省略する。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIGS. 8 to 10. In the present embodiment, only the differences from the first embodiment will be described, and in the drawings used in the present embodiment, the same members as those in the first embodiment are designated by the same reference numerals and described. Is omitted.

本実施の形態は、第一モールド部に冷媒の入口部と出口部の両方を設け、第二モールド部には入口部及び出口部の何れも設けないよう構成したものである。 In this embodiment, the first mold portion is provided with both an inlet portion and an outlet portion of the refrigerant, and the second mold portion is configured so that neither the inlet portion nor the outlet portion is provided.

図8は、回転電機の回転軸を通る平面における断面図であり、図9及び図10はそれぞれモールド部を抜き出して図8におけるC−C線およびD−D線の位置での断面を示す図である。 FIG. 8 is a cross-sectional view in a plane passing through the rotation axis of the rotary electric machine, and FIGS. 9 and 10 are views showing cross-sectional views at positions of the CC line and the DD line in FIG. 8 by extracting the mold portion, respectively. Is.

図8及び図9に示すように、第一モールド部203Aの絶縁部材213は、モータ筐体205に設けられた開口部205aを介して冷媒が供給される入口部213aと、モータ筐体205に設けられた開口部205bを介して冷媒が排出される出口部213cと、入口部213aから供給された冷媒を複数の管路202の一部で構成される第一管路群に導く第一中継部213bと、複数の管路202の第一管路群以外の複数の管路202で構成される第二管路群を介して供給された冷媒を出口部213cに導く第三中継部213dとを有している。第一中継部213bは、絶縁部材213に配置された複数の線状部材223の内側に沿って軸周りに半周だけ設けられている。第一中継部213bの軸方向であって線状部材223の端部が露出する一方には、管路202を挿入して接続することで第一中継部213bと管路202とを連通させるための複数の接続穴202aが第一中継部213bに沿って設けられている。同様に、第三中継部213dは、絶縁部材213に配置された複数の線状部材223の内側に沿って、第一中継部213bの反対の位置に軸周りの半周だけ設けられている。第三中継部213dの軸方向であって線状部材223の端部が露出する一方には、管路202を挿入して接続することで第三中継部213dと管路202とを連通させるための複数の接続穴202aが第三中継部213dに沿って設けられている。 As shown in FIGS. 8 and 9, the insulating member 213 of the first mold portion 203A is provided to the inlet portion 213a to which the refrigerant is supplied through the opening 205a provided in the motor housing 205 and the motor housing 205. The first relay that guides the refrigerant supplied from the outlet portion 213c through which the refrigerant is discharged through the provided opening 205b and the refrigerant supplied from the inlet portion 213a to the first pipeline group composed of a part of the plurality of pipelines 202. Section 213b and a third relay section 213d that guides the refrigerant supplied through the second line group composed of a plurality of line lines 202 other than the first line group of the plurality of line lines 202 to the outlet part 213c. have. The first relay portion 213b is provided about only half a circumference along the inside of the plurality of linear members 223 arranged on the insulating member 213. In order to communicate the first relay portion 213b and the pipeline 202 by inserting and connecting the pipeline 202 to the one where the end portion of the linear member 223 is exposed in the axial direction of the first relay portion 213b. A plurality of connection holes 202a are provided along the first relay portion 213b. Similarly, the third relay portion 213d is provided along the inside of the plurality of linear members 223 arranged on the insulating member 213 at a position opposite to the first relay portion 213b by only half a circumference around the axis. In order to communicate the third relay portion 213d and the pipeline 202 by inserting and connecting the pipeline 202 to the one where the end portion of the linear member 223 is exposed in the axial direction of the third relay portion 213d. A plurality of connection holes 202a are provided along the third relay portion 213d.

また、図8及び図10に示すように、第二モールド部204Aの絶縁部材214は、第一モールド部203Aから第一管路群の管路202を介して供給される冷媒を第二管路群の管路202を介して第三中継部213dに導く第二中継部214cを有している。第二中継部214cは、絶縁部材214に配置された複数の線状部材224の内側に沿って環状に設けられている。第二中継部214cの軸方向であって線状部材224の端部が露出する一方には、管路202を挿入して接続することで第二中継部214cと管路202とを連通させるための複数の接続穴202bが第二中継部214cに沿って設けられている。 Further, as shown in FIGS. 8 and 10, the insulating member 214 of the second mold portion 204A supplies the refrigerant supplied from the first mold portion 203A through the pipeline 202 of the first pipeline group to the second pipeline. It has a second relay section 214c that leads to a third relay section 213d via the group pipeline 202. The second relay portion 214c is provided in an annular shape along the inside of the plurality of linear members 224 arranged on the insulating member 214. In order to communicate the second relay portion 214c and the pipeline 202 by inserting and connecting the pipeline 202 to one side where the end portion of the linear member 224 is exposed in the axial direction of the second relay portion 214c. A plurality of connection holes 202b are provided along the second relay portion 214c.

図8に示すように、モータ筐体205の開口部205aを介して入口部213aに供給された冷媒は、第一中継部213bを介して第一管路群の管路202に導かれ、管路202を通った冷媒は、第二中継部214cを介して第二管路群の管路202に導かれ、第二管路群の管路202を介して第三中継部213dに導かれた冷媒は出口部213cを通って、モータ筐体205の開口部205bを介して排出される。 As shown in FIG. 8, the refrigerant supplied to the inlet 213a through the opening 205a of the motor housing 205 is guided to the pipeline 202 of the first pipeline group via the first relay portion 213b and is piped. The refrigerant passing through the path 202 was guided to the pipeline 202 of the second pipeline group via the second relay portion 214c, and to the third relay portion 213d via the pipeline 202 of the second pipeline group. The refrigerant is discharged through the outlet portion 213c and through the opening 205b of the motor housing 205.

その他の構成は第1の実施の形態と同様である。 Other configurations are the same as in the first embodiment.

以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。 Also in the present embodiment configured as described above, the same effect as that of the first embodiment can be obtained.

<第3の実施の形態>
本発明の第3の実施の形態を図11を参照しつつ説明する。
<Third embodiment>
A third embodiment of the present invention will be described with reference to FIG.

本実施の形態では、第2の実施の形態との相違点についてのみ説明するものとし、本実施の形態で用いる図面において第2の実施の形態と同様の部材には同じ符号を付し、説明を省略する。 In the present embodiment, only the differences from the second embodiment will be described, and in the drawings used in the present embodiment, the same members as those in the second embodiment are designated by the same reference numerals and described. Is omitted.

本実施の形態は、冷媒として絶縁が担保されているATF(Automatic Transmission Fluid)等を用い、中継部において線状部材が冷媒中に露出して浸漬するように構成したものである。 In the present embodiment, ATF (Automatic Transmission Fluid) or the like whose insulation is guaranteed is used as the refrigerant, and the linear member is exposed and immersed in the refrigerant at the relay portion.

図11は、本実施の形態の第二モールド部を抜き出して回転軸に垂直な平面での断面を示す図である。 FIG. 11 is a diagram showing a cross section of the second mold portion of the present embodiment in a plane perpendicular to the rotation axis by extracting the second mold portion.

図11に示すように、第二中継部214cにおいて線状部材224が冷媒中に露出して浸漬するように構成することにより、冷媒がコイルを構成する線状部材に接触する範囲が大きくなるので、冷却効果をさらに高めることができる。 As shown in FIG. 11, by configuring the second relay portion 214c so that the linear member 224 is exposed and immersed in the refrigerant, the range in which the refrigerant comes into contact with the linear member constituting the coil is increased. , The cooling effect can be further enhanced.

<変形例>
第1〜第3の実施形態では、モールド部はコイル(線状部材)を整列した状態で作成していたが、コイルを組んだ後に冷却パイプ(管路202)を各スロットに挿入し、ポッティングによって固定することもできる。この場合には、管路202の挿入作業がコイルの挿入作業と別に発生してしまうが、線状部材を成形するためのコイル整列作業と固定作業をモータ組み立て作業の中で実施するため、組み立て性が向上する。
<Modification example>
In the first to third embodiments, the mold portion is created in a state where the coils (linear members) are aligned, but after the coils are assembled, the cooling pipe (pipeline 202) is inserted into each slot and potted. It can also be fixed by. In this case, the insertion work of the pipeline 202 occurs separately from the coil insertion work, but the coil alignment work and the fixing work for forming the linear member are performed in the motor assembly work, so that the assembly is performed. Sex improves.

また、管路202の配置をスロット201aの最内周側ではなく、コイルとの間に配置してもよい。管路202をコイル間に挿入することで、管路202の2方向から熱交換をすることができる。また、コイルエンドにおいても冷媒の流路がコイル間を通るため、熱交換可能な面積を増大することができる。 Further, the pipeline 202 may be arranged between the coil and the innermost peripheral side of the slot 201a. By inserting the pipeline 202 between the coils, heat exchange can be performed from two directions of the pipeline 202. Further, also at the coil end, since the flow path of the refrigerant passes between the coils, the area where heat can be exchanged can be increased.

<付記>
なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
<Additional notes>
The present invention is not limited to the above-described embodiment, and includes various modifications and combinations within a range that does not deviate from the gist thereof. Further, the present invention is not limited to the one including all the configurations described in the above-described embodiment, and includes the one in which a part of the configurations is deleted.

100…回転電機、200…固定子、201…固定子コア、201a…スロット、202…管路、202a,202b…接続穴、203,203A…第一モールド部、204,204A…第二モールド部、205…モータ筐体、205a,205b…開口部、206,207…ブラケット、213…絶縁部材、213a…入口部、213b…第一中継部、213c…出口部、213d…第三中継部、214…絶縁部材、214a…出口部、214b…第二中継部、214c…第二中継部、223…線状部材、223a…嵌合構造部、224…線状部材、224a…嵌合構造部、300…回転子、400…回転軸 100 ... Rotor, 200 ... Stator, 201 ... Stator core, 201a ... Slot, 202 ... Pipeline, 202a, 202b ... Connection holes, 203, 203A ... First mold part, 204, 204A ... Second mold part, 205 ... motor housing, 205a, 205b ... opening, 206,207 ... bracket, 213 ... insulating member, 213a ... inlet, 213b ... first relay, 213c ... outlet, 213d ... third relay, 214 ... Insulating member, 214a ... outlet, 214b ... second relay, 214c ... second relay, 223 ... linear member, 223a ... fitting structure, 224 ... linear member, 224a ... fitting structure, 300 ... Stator, 400 ... Rotating axis

Claims (7)

両方の端部が同じ方向に向くようにそれぞれ形成された複数の線状部材を前記端部が同じ方向を向くように配置し、かつ、前記端部を露出させて絶縁部材によりモールドしてそれぞれ一体的に形成した第一モールド部および第二モールド部の2つのモールド部を、前記線状部材の端部が対向するように配置して前記端部を接合することで形成された複数のコイルと、
前記第一モールド部と前記第二モールド部とを両端に配置することで前記複数のコイルの前記絶縁部材から露出した部分を収納する固定子コアと、
前記固定子コアの内部であって前記第一モールド部と前記第二モールド部との間に冷媒の流路を形成する複数の管路と
を備えたことを特徴とする固定子。
A plurality of linear members formed so that both ends face in the same direction are arranged so that the ends face in the same direction, and the ends are exposed and molded by an insulating member. A plurality of coils formed by arranging two integrally formed mold portions, a first mold portion and a second mold portion, so that the ends of the linear members face each other and joining the ends. When,
A stator core for accommodating a portion of the plurality of coils exposed from the insulating member by arranging the first mold portion and the second mold portion at both ends.
A stator comprising a plurality of pipelines inside the stator core and forming a flow path of a refrigerant between the first mold portion and the second mold portion.
請求項1記載の固定子において、
前記第一モールド部は、
前記冷媒が供給される入口部と、
前記入口部から供給された前記冷媒を前記管路に導く第一中継部とを有し、
前記第二モールド部は、
前記冷媒が排出される出口部と
前記第一モールド部から前記管路を介して供給される前記冷媒を前記出口部に導く第二中継部とを有することを特徴とする固定子。
In the stator according to claim 1,
The first mold portion
The inlet to which the refrigerant is supplied and
It has a first relay portion that guides the refrigerant supplied from the inlet portion to the pipeline.
The second mold portion
A stator characterized by having an outlet portion from which the refrigerant is discharged and a second relay portion that guides the refrigerant supplied from the first mold portion through the pipeline to the outlet portion.
請求項1記載の固定子において、
前記第一モールド部は、
前記冷媒が供給される入口部と、
前記冷媒が排出される出口部と、
前記入口部から供給された前記冷媒を前記複数の管路の一部で構成される第一管路群に導く第一中継部と、
前記複数の管路の前記第一管路群と異なる管路で構成される第二管路群を介して供給された前記冷媒を前記出口部に導く第三中継部とを有し、
前記第二モールド部は、
前記第一モールド部から第一管路群の管路を介して供給される前記冷媒を前記第二管路群の管路を介して前記第三中継部に導く第二中継部を有することを特徴とする固定子。
In the stator according to claim 1,
The first mold portion
The inlet to which the refrigerant is supplied and
The outlet where the refrigerant is discharged and
A first relay unit that guides the refrigerant supplied from the inlet unit to a first pipeline group composed of a part of the plurality of pipelines, and a first relay unit.
It has a third relay portion that guides the refrigerant supplied through the second pipeline group composed of a pipeline different from the first pipeline group of the plurality of pipelines to the outlet portion.
The second mold portion
Having a second relay portion that guides the refrigerant supplied from the first mold portion via the pipeline of the first pipeline group to the third relay portion via the pipeline of the second pipeline group. Characteristic stator.
請求項3記載の固定子において、
前記複数のコイルは、前記第二モールド部の内部において前記冷媒中に露出していることを特徴とする固定子。
In the stator according to claim 3,
The stator, wherein the plurality of coils are exposed to the refrigerant inside the second mold portion.
請求項1記載の固定子において、
前記複数の管路は、前記固定子コアの内部であって前記複数のコイルの内周側に配置されたことを特徴とする固定子。
In the stator according to claim 1,
A stator characterized in that the plurality of pipelines are arranged inside the stator core and on the inner peripheral side of the plurality of coils.
請求項1に記載の固定子と、
前記固定子の内部に前記固定子と同軸状に配置された回転子と
を備えたことを特徴とする回転電機。
The stator according to claim 1 and
A rotary electric machine characterized in that a rotor arranged coaxially with the stator is provided inside the stator.
両方の端部が同じ方向に向くようにそれぞれ形成された複数の線状部材を前記端部が同じ方向を向くように配置し、かつ、前記端部を露出させて絶縁部材によりモールドして第一モールド部および第二モールド部の2つのモールド部を形成する手順と、
前記第一モールド部および第二モールド部の前記線状部材の端部が対向するように前記線状部材の前記絶縁部材から露出した部分を固定子コアに挿入して前記線状部材の端部を嵌合することで複数のコイルを形成するのと同時に、前記固定子コアの内部に前記第一モールド部と前記第二モールド部との間に冷媒の流路を形成する複数の管路を挿入する手順と、
を有することを特徴とする回転電機の製造方法。
A plurality of linear members formed so that both ends face in the same direction are arranged so that the ends face in the same direction, and the ends are exposed and molded by an insulating member. The procedure for forming two mold parts, one mold part and the second mold part,
The portion of the linear member exposed from the insulating member is inserted into the stator core so that the ends of the linear member of the first mold portion and the second mold portion face each other, and the end portion of the linear member is inserted. At the same time, a plurality of coils are formed by fitting the two coils, and at the same time, a plurality of pipelines forming a flow path of the refrigerant between the first mold portion and the second mold portion are formed inside the stator core. The procedure to insert and
A method for manufacturing a rotary electric machine, which comprises.
JP2019104232A 2019-06-04 2019-06-04 Stator, rotating electrical machine, and method for manufacturing rotating electrical machine Active JP7289223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104232A JP7289223B2 (en) 2019-06-04 2019-06-04 Stator, rotating electrical machine, and method for manufacturing rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104232A JP7289223B2 (en) 2019-06-04 2019-06-04 Stator, rotating electrical machine, and method for manufacturing rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2020198718A true JP2020198718A (en) 2020-12-10
JP7289223B2 JP7289223B2 (en) 2023-06-09

Family

ID=73648514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104232A Active JP7289223B2 (en) 2019-06-04 2019-06-04 Stator, rotating electrical machine, and method for manufacturing rotating electrical machine

Country Status (1)

Country Link
JP (1) JP7289223B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993869A (en) * 1995-09-28 1997-04-04 Mitsubishi Electric Corp Rotating machine having liquid-cooled structure
JP2001025211A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Motor and manufacture thereof
JP2005168265A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Cooling structure for rotary electric machine
JP2005218207A (en) * 2004-01-29 2005-08-11 Nissan Motor Co Ltd Stator structure of pluriaxial multilayer motor
JP2006158044A (en) * 2004-11-26 2006-06-15 Toyota Motor Corp Stator structure
JP2015023771A (en) * 2013-07-23 2015-02-02 トヨタ自動車株式会社 Rotary electric machine stator and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993869A (en) * 1995-09-28 1997-04-04 Mitsubishi Electric Corp Rotating machine having liquid-cooled structure
JP2001025211A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Motor and manufacture thereof
JP2005168265A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Cooling structure for rotary electric machine
JP2005218207A (en) * 2004-01-29 2005-08-11 Nissan Motor Co Ltd Stator structure of pluriaxial multilayer motor
JP2006158044A (en) * 2004-11-26 2006-06-15 Toyota Motor Corp Stator structure
JP2015023771A (en) * 2013-07-23 2015-02-02 トヨタ自動車株式会社 Rotary electric machine stator and manufacturing method thereof

Also Published As

Publication number Publication date
JP7289223B2 (en) 2023-06-09

Similar Documents

Publication Publication Date Title
JP7344807B2 (en) Coil bobbin, stator core of distributed winding radial gap type rotating electrical machine, and distributed winding radial gap type rotating electrical machine
CN108028561B (en) Electric machine with coupling in cooling system
US10361597B2 (en) Electric machine for a motor vehicle, coil carrier for an electric machine, and motor vehicle
EP3848591B1 (en) Electric blower
WO2012086228A1 (en) Rotary machine
US8004144B2 (en) Rotor for automotive alternator having mechanism for positioning magnetic pole cores
JP5769871B2 (en) Rotating electrical machine rotor
CN105896765B (en) The stator module for accommodating shell and using the shell of stator for motor
JP2017192201A (en) Stator of rotary electric machine
JP2020198718A (en) Stator, rotary electric machine, and manufacturing method of rotary electric machine
US20200280232A1 (en) Transducer for converting between electrical energy and mechanical energy
WO2018159477A1 (en) Pump device
US10122246B2 (en) Multi-gap rotating electric machine with cooling oil guide channels for side stator coil
JP2018117469A (en) Stator of rotary electric machine
JP6916791B2 (en) Slip ring device for electromechanical
CN211598834U (en) Rotor system and micro gas turbine generator set
JP2019060322A (en) Axial fan
JP7072427B2 (en) motor
JP2020137289A (en) Rotary electric machine
JPWO2006025105A1 (en) Electric motor and electric blower provided with the same
JP6246416B2 (en) Rotating electric machine
WO2024080143A1 (en) Core unit and rotor
WO2024070367A1 (en) Supercharger
CN217216118U (en) Linear motor stator structure
JP5799827B2 (en) Method for manufacturing rotor of permanent magnet type rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230530

R150 Certificate of patent or registration of utility model

Ref document number: 7289223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150