JP2020197570A - Method for manufacturing resist pattern and resist film - Google Patents

Method for manufacturing resist pattern and resist film Download PDF

Info

Publication number
JP2020197570A
JP2020197570A JP2019102201A JP2019102201A JP2020197570A JP 2020197570 A JP2020197570 A JP 2020197570A JP 2019102201 A JP2019102201 A JP 2019102201A JP 2019102201 A JP2019102201 A JP 2019102201A JP 2020197570 A JP2020197570 A JP 2020197570A
Authority
JP
Japan
Prior art keywords
resist
light
resist film
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019102201A
Other languages
Japanese (ja)
Other versions
JP7256689B2 (en
Inventor
大地 鈴木
Daichi Suzuki
大地 鈴木
前平 謙
Ken Maehira
謙 前平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019102201A priority Critical patent/JP7256689B2/en
Publication of JP2020197570A publication Critical patent/JP2020197570A/en
Application granted granted Critical
Publication of JP7256689B2 publication Critical patent/JP7256689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

To provide a method for manufacturing a resist pattern, by which a resist pattern can be formed that is suitable for patterning a metal film formed by a PVD process by use of a lift-off method without roughening a substrate surface.SOLUTION: A method for manufacturing a resist pattern of the present invention includes: a step of forming a photosensitive resist film 1 on a surface of a substrate Sw; a step of exposing the resist film with light 3 at a predetermined wavelength in a direction orthogonal to the substrate surface; and a step of developing the exposed resist film to form a resist pattern 14 having a resist opening 15 where the substrate surface is exposed in a predetermined pattern. The substrate surface is configured to reflect light passing through the resist film; and when minimum light quantity of light, which irradiates the resist film in such a manner that a wall surface of the resist opening forming an interface between an exposed region 11 to the light and an unexposed region 12 to the light extends in an orthogonal direction with respect to the substrate surface, is defined as reference light quantity, the light quantity during exposure of the resist film is set to be within a range from 50 to 70% of the reference light quantity.SELECTED DRAWING: Figure 1

Description

本発明は、レジストパターンの製造方法及びレジスト膜に関し、より詳しくは、リフトオフ法を用いて基板の表面に金属パターンを形成するのに適したものに関する。 The present invention relates to a method for producing a resist pattern and a resist film, and more particularly to a method suitable for forming a metal pattern on the surface of a substrate by using a lift-off method.

例えば、半導体デバイスの製造工程には、シリコンウエハ(以下「基板」という)の表面に引出配線としての金属パターンを形成する工程があり、このような金属パターンの形成に、所謂リフトオフ法が従来から利用されている。このものでは、基板表面に例えばポジ型のレジストを塗布して感光性のレジスト膜を形成し、レジスト膜の上方に配置されたフォトマスク越しに、基板表面に対して直交する方向から光(例えば紫外光)を照射してレジスト膜を露光する。これにより、レジスト膜の感光した部分が感光領域となり、フォトマスクで遮蔽されて光が照射されないレジスト膜の部分が非感光領域となる。 For example, in the manufacturing process of a semiconductor device, there is a step of forming a metal pattern as a lead wiring on the surface of a silicon wafer (hereinafter referred to as “board”), and the so-called lift-off method has been conventionally used for forming such a metal pattern. It's being used. In this case, for example, a positive resist is applied to the surface of the substrate to form a photosensitive resist film, and light is emitted from a direction orthogonal to the surface of the substrate through a photomask arranged above the resist film (for example). The resist film is exposed by irradiating with ultraviolet light). As a result, the exposed portion of the resist film becomes the photosensitive region, and the portion of the resist film shielded by the photomask and not irradiated with light becomes the non-photosensitive region.

次に、露光されたレジスト膜を現像すると、感光領域が除去されて、フォトマスクに対応するパターンで基板表面が露出したレジスト開口部を持つレジストパターンが形成される。その後、レジストパターンを含む基板表面全体に金属膜を成膜し、薬液によりレジストパターンをその上面に成膜された金属膜と共に除去することで、基板表面に所定の金属パターンが形成される。 Next, when the exposed resist film is developed, the photosensitive region is removed, and a resist pattern having a resist opening in which the substrate surface is exposed is formed in a pattern corresponding to the photomask. After that, a metal film is formed on the entire surface of the substrate including the resist pattern, and the resist pattern is removed together with the metal film formed on the upper surface of the resist pattern with a chemical solution to form a predetermined metal pattern on the surface of the substrate.

ここで、上記金属膜の成膜には、通常、スパッタリング法や蒸着法等のPVD法(物理蒸着法)が用いられるが、レジスト開口部の壁面にも金属膜が成膜され、これが基板表面に成膜されるものとつながっていると、レジストパターンに薬液を接触させることができないという問題が生じる。このような問題の解決法の一つとして、レジスト開口部の壁面を基板表面に向けて末広がりなテーパ状とすることが提案されている(例えば特許文献1参照)。 Here, a PVD method (physical vapor deposition) such as a sputtering method or a vapor deposition method is usually used for film formation of the metal film, but a metal film is also formed on the wall surface of the resist opening, and this is the substrate surface. If it is connected to a film formed on the resist pattern, there arises a problem that the chemical solution cannot be brought into contact with the resist pattern. As one of the solutions to such a problem, it has been proposed to make the wall surface of the resist opening tapered toward the surface of the substrate (see, for example, Patent Document 1).

上記従来例では、基板としてシリコンウエハのような不透明基板を用いる場合、基板表面を粗化し、レジスト膜の露光時に光を基板表面で乱反射させている。然し、これでは、基板表面に対する前処理が必要になって、製造工程が増えるばかりか、シリコンウエハに対する粗化により、半導体デバイスの性能低下を招来する虞がある。 In the above-mentioned conventional example, when an opaque substrate such as a silicon wafer is used as the substrate, the surface of the substrate is roughened and light is diffusely reflected on the surface of the substrate when the resist film is exposed. However, this requires pretreatment on the surface of the substrate, which not only increases the number of manufacturing processes, but also causes deterioration of the performance of the semiconductor device due to roughening of the silicon wafer.

特開平9−185174号公報Japanese Unexamined Patent Publication No. 9-185174

そこで、本発明は、以上の点に鑑み、基板表面を粗化することなく、PVD法で成膜する金属膜をリフトオフ法を用いてパターニングするのに適したレジストパターンを形成できるレジストパターン製造方法及びレジスト膜を提供することをその課題とするものである。 Therefore, in view of the above points, the present invention is a resist pattern manufacturing method capable of forming a resist pattern suitable for patterning a metal film formed by the PVD method by the lift-off method without roughening the substrate surface. The subject is to provide a resist film and a resist film.

上記課題を解決するために、基板表面に感光性のレジスト膜を形成する工程と、基板表面に対して直交する方向から所定波長の光を照射してレジスト膜を露光する工程と、露光されたレジスト膜を現像して所定のパターンで基板表面が露出したレジスト開口部を持つレジストパターンを形成する工程とを含む本発明のレジストパターンの製造方法は、基板表面がレジスト膜を通過した光を反射するように構成され、感光領域と非感光領域との界面を成すレジスト開口部の壁面が基板表面に対して直交方向に延びるように光を照射するときの最低限の光量を基準光量とし、レジスト膜の露光時の光量を、基準光量の50〜70%の範囲内に設定することを特徴とする。 In order to solve the above problems, a step of forming a photosensitive resist film on the surface of the substrate, a step of irradiating light of a predetermined wavelength from a direction orthogonal to the surface of the substrate to expose the resist film, and exposure were performed. The method for producing a resist pattern of the present invention, which includes a step of developing a resist film to form a resist pattern having a resist opening whose substrate surface is exposed in a predetermined pattern, reflects light that has passed through the resist film on the substrate surface. The minimum amount of light when irradiating light so that the wall surface of the resist opening forming the interface between the photosensitive region and the non-photosensitive region extends in the direction orthogonal to the substrate surface is used as the reference light amount, and the resist is used. The light amount at the time of exposure of the film is set within the range of 50 to 70% of the reference light amount.

ここで、発明者らが鋭意研究を重ねたところ、一般にこの種の用途で利用される感光性のレジスト膜に所定波長の光(例えば、波長365nmの紫外光)を照射した場合、その光量がある閾値を超えると、この閾値を超えたレジスト膜の部分が感光されて感光領域となる一方で、光が照射されるが、その光量がある閾値に達しないレジスト膜の部分は、不完全感光領域となり、この不完全感光領域は、露光時、例えばフォトマスクで遮蔽されて光が照射されないレジスト膜の非感光領域と同様、その後の現像においても除去されないことを知見するのに至った。 Here, as a result of diligent research by the inventors, when a photosensitive resist film generally used for this kind of application is irradiated with light having a predetermined wavelength (for example, ultraviolet light having a wavelength of 365 nm), the amount of light is increased. When a certain threshold is exceeded, the part of the resist film that exceeds this threshold is exposed to light and becomes a photosensitive area, while the part of the resist film that is irradiated with light but the amount of light does not reach a certain threshold is incompletely exposed. It has become a region, and it has been found that this incompletely photosensitive region is not removed in the subsequent development as well as the non-photosensitive region of the resist film which is shielded by a photomask and is not irradiated with light at the time of exposure.

以上の知見を基に、本発明では、露光時の光量を基準光量の50〜70%の範囲内に設定する構成を採用することとした。これによれば、基板表面に対して直交する方向から、例えばフォトマスク越しに所定波長の光を照射すると、フォトマスクで光が遮蔽されないレジスト膜の部分において、レジスト膜の表面から第1深さまでの間は、その光量がある閾値を超えることで、フォトマスクの開口幅と同等の幅を持つ感光領域となる(言い換えると、感光領域と非感光領域との間の界面が、基板表面に対して直交する方向で下方に向けてのびる)。 Based on the above findings, in the present invention, it was decided to adopt a configuration in which the amount of light at the time of exposure is set within the range of 50 to 70% of the reference amount of light. According to this, when light of a predetermined wavelength is irradiated through a photomask from a direction orthogonal to the substrate surface, for example, in the portion of the resist film where the light is not shielded by the photomask, from the surface of the resist film to the first depth. In the meantime, when the amount of light exceeds a certain threshold, it becomes a photosensitive region having a width equivalent to the opening width of the photomask (in other words, the interface between the photosensitive region and the non-photosensitive region is relative to the substrate surface. Extends downward in the direction orthogonal to each other).

そして、第1深さを超えると、フォトマスクの開口内縁直下の位置に不完全感光領域が形成されるようになり、この不完全感光領域は、レジスト膜の表面から深さが増加するのに従い、その内方に向けて拡がるように大きくなる(言い換えると、感光領域と不完全感光領域との界面が、紡錘状に縮みながらのびる)。これは、露光時の光量を基準光量より少なく設定していることで、レジスト膜内に進入した光が第1深さを超えると減衰し、散乱することに起因するものと考えられる。 Then, when the depth exceeds the first depth, an incompletely photosensitive region is formed at a position immediately below the inner edge of the opening of the photomask, and this incompletely photosensitive region increases in depth from the surface of the resist film. , It becomes larger so as to expand inward (in other words, the interface between the photosensitive region and the incompletely photosensitive region expands while shrinking like a spindle). It is considered that this is because the amount of light at the time of exposure is set to be less than the reference amount of light, and the light that has entered the resist film is attenuated and scattered when it exceeds the first depth.

さらに、第1深さより深い第2深さを超えると、不完全感光領域は、上記とは逆に、その外方に向けて縮むように小さくなり、基板表面に達する(言い換えると、感光領域と不完全感光領域との界面が、紡錘状に膨らみながらのびる)。これは、レジスト膜内を通過した光が基板表面で反射し、この反射した光が加わって光量が増加することに起因して、不完全感光領域が小さくなると考えられる。 Further, when the depth exceeds the second depth, which is deeper than the first depth, the incomplete photosensitive region becomes smaller so as to shrink outward, and reaches the substrate surface (in other words, is not the photosensitive region). The interface with the completely photosensitive area extends while swelling like a spindle). It is considered that this is because the light that has passed through the resist film is reflected on the surface of the substrate, and the reflected light is added to increase the amount of light, so that the incompletely photosensitive region becomes smaller.

以上のようにして露光されたレジスト膜を現像すると、レジスト開口部の壁面の断面形状は、レジスト膜の表面から第1深さまでの間の垂直面と、第1深さから第2深さまでの間の次第に幅狭の第1湾曲面と、第2深さから基板表面までの間の次第に幅広の第2湾曲面とが連続したものとなる。これにより、リフトオフ法により金属パターンを形成する際に、上記レジストパターンを適用すると、PVD法により基板表面に金属膜を成膜する際、第1湾曲面と第2湾曲面との境界部により、基板表面に成膜される金属膜と、レジスト開口部の壁面に成膜される金属膜とを縁切りすることができ、レジストパターンに薬液を接触させることが可能になる。なお、露光時の光量が基準光量の70%より多いと、所望の不完全感光領域を形成できない場合がある一方で、露光時の光量が基準光量の50%より少ないと、基板表面まで光を透過させることができなくなる場合がある。 When the resist film exposed as described above is developed, the cross-sectional shape of the wall surface of the resist opening is a vertical plane between the surface of the resist film and the first depth, and the first depth to the second depth. The gradually narrowing first curved surface between them and the gradually wider second curved surface between the second depth and the surface of the substrate are continuous. As a result, when the resist pattern is applied when forming a metal pattern by the lift-off method, when a metal film is formed on the substrate surface by the PVD method, the boundary between the first curved surface and the second curved surface causes The metal film formed on the surface of the substrate and the metal film formed on the wall surface of the resist opening can be trimmed, and the chemical solution can be brought into contact with the resist pattern. If the amount of light during exposure is more than 70% of the reference amount of light, the desired incomplete photosensitive region may not be formed, while if the amount of light during exposure is less than 50% of the reference amount of light, light is emitted to the substrate surface. It may not be possible to make it transparent.

本発明においては、前記光の波長が200nm〜400nmの範囲である場合には、前記レジスト膜の厚みを前記光の波長の50倍以上に設定することが好ましい。50倍未満では、所望の不完全感光領域を形成できない場合がある。 In the present invention, when the wavelength of the light is in the range of 200 nm to 400 nm, it is preferable to set the thickness of the resist film to 50 times or more the wavelength of the light. If it is less than 50 times, the desired incomplete photosensitive region may not be formed.

また、本発明においては、前記レジストパターンのアスペクト比を1以上に設定することが好ましい。アスペクト比が1未満だと、所望の不完全感光領域を形成できない場合がある。 Further, in the present invention, it is preferable to set the aspect ratio of the resist pattern to 1 or more. If the aspect ratio is less than 1, the desired incompletely photosensitive region may not be formed.

また、上記課題を解決するために、基板の一方の面に所定のパターンでレジスト開口部が形成された本発明のレジスト膜は、レジスト開口部の断面形状が、レジスト膜の表面から第1深さまでの間の垂直面と、第1深さから第2深さまでの間の次第に幅狭の第1湾曲面と、第2深さから基板表面までの間の次第に幅広の第2湾曲面とが連続したものであることを特徴とする。 Further, in order to solve the above problems, in the resist film of the present invention in which a resist opening is formed on one surface of the substrate in a predetermined pattern, the cross-sectional shape of the resist opening is the first depth from the surface of the resist film. The vertical plane between the two, the gradually narrower first curved surface between the first depth and the second depth, and the gradually wider second curved surface between the second depth and the substrate surface. It is characterized by being continuous.

本発明の実施形態のレジストパターン製造方法を示す模式断面図。The schematic cross-sectional view which shows the resist pattern manufacturing method of embodiment of this invention. 本発明の実施形態のレジストパターン製造方法を示す模式断面図。The schematic cross-sectional view which shows the resist pattern manufacturing method of embodiment of this invention. (a)及び(b)は、図2に示すレジストパターンを用いた金属パターン形成方法を示す模式断面図。(A) and (b) are schematic cross-sectional views showing a metal pattern forming method using the resist pattern shown in FIG.

以下、図面を参照して、基板をシリコンウエハ(以下「基板Sw」という)とし、基板Sw表面にレジストパターンを形成(製造)し、このレジストパターンを用いたリフト法により基板Sw表面に金属パターンを形成する場合を例に本発明のレジストパターン製造方法の実施形態を説明する。 Hereinafter, referring to the drawings, the substrate is a silicon wafer (hereinafter referred to as “substrate Sw”), a resist pattern is formed (manufactured) on the surface of the substrate Sw, and a metal pattern is formed on the surface of the substrate Sw by a lift method using this resist pattern. The embodiment of the resist pattern manufacturing method of the present invention will be described by taking the case of forming the above.

図1を参照して、基板Swの表面にポジ型レジストを塗布して、所定の厚みdで感光性のレジスト膜1を形成する。レジスト膜1の厚みdは、後述する光の波長の50倍以上に設定される。50倍未満だと、本発明者らは回折の問題であると推測するが、後述するような不完全感光領域13を形成できないという不具合がある。以下においては、基板Swの表面側を上として説明する。 With reference to FIG. 1, a positive resist is applied to the surface of the substrate Sw to form a photosensitive resist film 1 having a predetermined thickness d. The thickness d of the resist film 1 is set to be 50 times or more the wavelength of light described later. If it is less than 50 times, the present inventors presume that it is a problem of diffraction, but there is a problem that the incompletely photosensitive region 13 as described later cannot be formed. In the following, the surface side of the substrate Sw will be described as the top.

次に、レジスト膜1の上方にフォトマスク2を配置する。フォトマスク2としては、例えば、ガラス基板や石英基板等の透明基板21の下面に遮光膜としてのクロム膜22をパターン形成した公知のものを用いることができる。そして、レジスト膜1の上面にフォトマスク2越しに所定波長の光3を照射して露光する。このとき、基板Sw表面に対して直交する方向から光3が照射され(光線平行度は、コリメーション半角≦1.5°、デクリネーション角≦1.0°とすることが好ましい)、レジスト膜1に感光領域11と非感光領域12とが形成される。露光時に照射する光3としては、波長が200nm〜400nmの範囲のUV光を用いることができ、具体的には波長365nmのi線を例示できる。 Next, the photomask 2 is placed above the resist film 1. As the photomask 2, for example, a known photomask in which a chromium film 22 as a light-shielding film is patterned on the lower surface of a transparent substrate 21 such as a glass substrate or a quartz substrate can be used. Then, the upper surface of the resist film 1 is exposed by irradiating the light 3 having a predetermined wavelength through the photomask 2. At this time, light 3 is irradiated from a direction orthogonal to the surface of the substrate Sw (the light parallelism is preferably collimation half-width ≤ 1.5 ° and declination angle ≤ 1.0 °), and the resist film. A photosensitive region 11 and a non-photosensitive region 12 are formed in 1. As the light 3 to be irradiated at the time of exposure, UV light having a wavelength in the range of 200 nm to 400 nm can be used, and specifically, i-line having a wavelength of 365 nm can be exemplified.

ここで、上記従来例では、露光時に、感光領域11と非感光領域12との界面(後述のレジスト開口部15の壁面)が基板Sw表面に対して直交方向に延びるように光3が照射される。このように光3を照射するときの最低限の光量を基準光量とすると、本発明者らは鋭意研究により、次のことを知見するのに至った。即ち、レジスト膜1に照射される光量がある閾値を超えると、このレジスト膜1の部分が感光領域11となる一方で、光3が照射されるが、その光量がある閾値に達しないレジスト膜1の部分は不完全感光領域13となる。この不完全感光領域13は、露光時に、例えばフォトマスク2で遮蔽されて光が照射されないレジスト膜1の非感光領域12と同様、その後の現像にて現像液で除去されない。尚、最低限の光量、すなわち基準光量については、例えば光3の照射により垂直面15aが基板Swの表面まで達するか否か(または不完全感光領域13が形成されるか否か)を指標として、実験的に最低限の光量を確定させることが良いが、レジストの標準露光量と膜厚を用いて照射するエネルギーを算出することで導いても良い。 Here, in the above-mentioned conventional example, light 3 is irradiated so that the interface between the photosensitive region 11 and the non-photosensitive region 12 (the wall surface of the resist opening 15 described later) extends in the direction orthogonal to the surface of the substrate Sw during exposure. Orthogonal. Assuming that the minimum amount of light when irradiating light 3 is used as the reference light amount, the present inventors have come to find out the following through diligent research. That is, when the amount of light applied to the resist film 1 exceeds a certain threshold value, the portion of the resist film 1 becomes the photosensitive region 11, while the light 3 is irradiated, but the amount of light does not reach a certain threshold value. The portion 1 is the incompletely photosensitive region 13. The incompletely photosensitive region 13 is not removed by the developing solution in the subsequent development, like the non-photosensitive region 12 of the resist film 1 which is shielded by the photomask 2 and is not irradiated with light during exposure. Regarding the minimum amount of light, that is, the reference amount of light, for example, whether or not the vertical surface 15a reaches the surface of the substrate Sw by irradiation with light 3 (or whether or not the incompletely exposed region 13 is formed) is used as an index. It is good to experimentally determine the minimum amount of light, but it may be derived by calculating the irradiation energy using the standard exposure amount and film thickness of the resist.

以上の知見を基に、本実施形態では、露光時の光量を基準光量の50〜70%の範囲内に設定する構成を採用することとした。これにより、フォトマスク2(の遮光膜22)で遮蔽されないレジスト膜1の部分において、レジスト膜1の表面から第1深さh1までの間r1は、その光量がある閾値を超えることで、フォトマスク2の開口幅w1と同等の幅w2を持つ感光領域11となる。言い換えると、感光領域11と非感光領域12との間の界面が、基板Sw表面に対して直交する方向で下方に向けてのびる。そして、第1深さh1を超えると、フォトマスク2の開口内縁22a直下の位置に不完全感光領域13が形成されるようになり、この不完全感光領域13は、レジスト膜1の表面からの深さが増加するのに従い、その内方に向けて拡がるように大きくなる。言い換えると、感光領域11と不完全感光領域13との界面が、紡錘状に縮みながらのびる。これは、露光時の光量を基準光量より少なく設定していることで、レジスト膜1内に進入した光が第1深さh1を超えると減衰し、散乱することに起因するものと考えられる。そして、第1深さh1より深い第2深さh2を超えると(即ち、図中にr3で示す部分)、不完全感光領域13は、上記とは逆に、その外方に向けて縮むように小さくなり、基板Sw表面に達する。言い換えると、感光領域11と不完全感光領域13との界面が、紡錘状に膨らみながらのびる。これは、レジスト膜1内を通過した光が基板Sw表面で反射し、この反射した光が加わって光量が増加することに起因して、不完全感光領域13が小さくなると考えられる。 Based on the above findings, in the present embodiment, it is decided to adopt a configuration in which the amount of light at the time of exposure is set within the range of 50 to 70% of the reference amount of light. As a result, in the portion of the resist film 1 that is not shielded by the photomask 2 (the light-shielding film 22), r1 from the surface of the resist film 1 to the first depth h1 exceeds a certain threshold value, so that the photo The photosensitive region 11 has a width w2 equivalent to the opening width w1 of the mask 2. In other words, the interface between the photosensitive region 11 and the non-photosensitive region 12 extends downward in a direction orthogonal to the surface of the substrate Sw. When the first depth h1 is exceeded, an incompletely photosensitive region 13 is formed at a position directly below the inner edge 22a of the opening of the photomask 2, and the incompletely photosensitive region 13 is formed from the surface of the resist film 1. As the depth increases, it grows inwardly. In other words, the interface between the photosensitive region 11 and the incomplete photosensitive region 13 expands while shrinking like a spindle. It is considered that this is because the light amount at the time of exposure is set to be smaller than the reference light amount, and the light that has entered the resist film 1 is attenuated and scattered when it exceeds the first depth h1. Then, when the second depth h2, which is deeper than the first depth h1, is exceeded (that is, the portion indicated by r3 in the figure), the incompletely photosensitive region 13 contracts outward, contrary to the above. It becomes smaller and reaches the surface of the substrate Sw. In other words, the interface between the photosensitive region 11 and the incomplete photosensitive region 13 extends while expanding like a spindle. It is considered that this is because the light that has passed through the resist film 1 is reflected on the surface of the substrate Sw, and the reflected light is added to increase the amount of light, so that the incompletely photosensitive region 13 becomes smaller.

このように露光されたレジスト膜1を現像すると、感光領域11が現像液に溶解して除去される一方で、不完全感光領域13は非感光領域12と共に現像液に溶解されずに残るため、図2に示すレジストパターン14(パターン状のレジスト開口部15を持つレジスト膜1)が形成(製造)される。このレジスト開口部15の壁面の断面形状は、レジスト膜1表面から第1深さh1までの間r1の垂直面15aと、第1深さh1から第2深さh2までの間r2の次第に幅狭の第1湾曲面15bと、第2深さh2から基板Sw表面までの間r3の次第に幅広の第2湾曲面15cとが連続したものとなり、第1湾曲面15bと第2湾曲面15cとの間に鋭角の境界部15dが形成される。ここで、レジストパターン14のアスペクト比(=レジスト開口部15の高さd/幅w2)は1以上に設定することが好ましい。アスペクト比が1未満であると、境界部15dを持つ不完全感光領域13を形成できないという不具合が生じる虞がある。尚、レジスト開口部15の幅w2は、例えば、50〜500μmの範囲に設定することで、リフトオフ効果が高い不完全感光領域13を形成できる。 When the resist film 1 exposed in this way is developed, the photosensitive region 11 is dissolved in the developing solution and removed, while the incompletely photosensitive region 13 remains undissolved in the developing solution together with the non-sensitive region 12. The resist pattern 14 (resist film 1 having a patterned resist opening 15) shown in FIG. 2 is formed (manufactured). The cross-sectional shape of the wall surface of the resist opening 15 has a gradual width of the vertical surface 15a of r1 from the surface of the resist film 1 to the first depth h1 and r2 from the first depth h1 to the second depth h2. The narrow first curved surface 15b and the gradually wider second curved surface 15c of r3 from the second depth h2 to the surface of the substrate Sw are continuous, and the first curved surface 15b and the second curved surface 15c are formed. A sharp boundary portion 15d is formed between the two. Here, the aspect ratio of the resist pattern 14 (= height d / width w2 of the resist opening 15) is preferably set to 1 or more. If the aspect ratio is less than 1, there is a possibility that the incompletely photosensitive region 13 having the boundary portion 15d cannot be formed. By setting the width w2 of the resist opening 15 to, for example, the range of 50 to 500 μm, an incompletely photosensitive region 13 having a high lift-off effect can be formed.

次に、レジストパターン14の表面を含む基板Sw表面にPVD法により金属膜16を成膜する。PVD法としては、公知のスパッタリング法を用いることができるため、成膜条件を含めてこれ以上の説明を省略する。スパッタリング法により金属膜16を成膜する場合、図示省略の金属製のターゲットをスパッタリングし、ターゲットから飛散したスパッタ粒子を付着、堆積させることにより成膜する。図3(a)に示すように、スパッタ粒子Psの中には、基板Sw表面に対して斜めに入射するものを含まれるが、第1湾曲面15bと第2湾曲面15cとの境界部15dにより、基板Sw表面に成膜される金属膜16aとレジスト開口部15の壁面に成膜される金属膜16bとが縁切りされる(つまり、第2湾曲面15cの表面には金属膜が成膜されない)。このため、レジスト剥離用の薬液をレジストパターン14に接触させることが可能となり、薬液によりレジストパターン14を除去することにより、このレジストパターン14表面に成膜された金属膜16bが除去(リフトオフ)され、基板Sw表面に金属膜16aが金属パターンとして残る(図3(b)参照)。 Next, a metal film 16 is formed on the surface of the substrate Sw including the surface of the resist pattern 14 by the PVD method. Since a known sputtering method can be used as the PVD method, further description including film forming conditions will be omitted. When the metal film 16 is formed by the sputtering method, a metal target (not shown) is sputtered, and sputtered particles scattered from the target are attached and deposited to form a film. As shown in FIG. 3A, the sputtered particles Ps include those that are obliquely incident on the surface of the substrate Sw, but the boundary portion 15d between the first curved surface 15b and the second curved surface 15c. As a result, the metal film 16a formed on the surface of the substrate Sw and the metal film 16b formed on the wall surface of the resist opening 15 are edge-cut (that is, a metal film is formed on the surface of the second curved surface 15c). Not done). Therefore, the chemical solution for stripping the resist can be brought into contact with the resist pattern 14, and by removing the resist pattern 14 with the chemical solution, the metal film 16b formed on the surface of the resist pattern 14 is removed (lifted off). , A metal film 16a remains as a metal pattern on the surface of the substrate Sw (see FIG. 3B).

以上によれば、PVD法で成膜する金属膜16をリフトオフ法を用いてパターニングするのに適したレジストパターン14を基板Sw表面に形成することができる。しかも、上記従来例のように基板Sw表面を粗化しないため、基板Sw表面に対する前処理が不要であり、半導体デバイスの性能低下を招来することもない。 According to the above, a resist pattern 14 suitable for patterning the metal film 16 formed by the PVD method by the lift-off method can be formed on the surface of the substrate Sw. Moreover, since the surface of the substrate Sw is not roughened as in the conventional example, pretreatment on the surface of the substrate Sw is unnecessary, and the performance of the semiconductor device is not deteriorated.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しないものであれば、種々の変形が可能である。上記実施形態では、ポジ型レジストを塗布してレジスト膜1を形成しているが、ネガ型レジストを塗布してレジスト膜を形成する場合にも本発明を適用することができる。 Although the embodiments of the present invention have been described above, various modifications can be made as long as they do not deviate from the scope of the technical idea of the present invention. In the above embodiment, the resist film 1 is formed by applying a positive resist, but the present invention can also be applied when a negative resist is applied to form a resist film.

上記実施形態では、スパッタリング法により金属膜16を成膜する場合を例に説明したが、金属膜16の成膜方法としては、蒸着法のような他のPVD法を用いることができる。この場合も、レジスト開口部15の壁面にも金属膜16bが成膜されるため、本発明で形成されたレジストパターン14を適用することができる。 In the above embodiment, the case where the metal film 16 is formed by the sputtering method has been described as an example, but as the film forming method of the metal film 16, another PVD method such as the vapor deposition method can be used. Also in this case, since the metal film 16b is also formed on the wall surface of the resist opening 15, the resist pattern 14 formed in the present invention can be applied.

Sw…基板、1…レジスト膜、11…感光領域、12…非感光領域、13…不完全感光領域、14…レジストパターン、15…レジスト開口部、3…光。 Sw ... substrate, 1 ... resist film, 11 ... photosensitive region, 12 ... non-photosensitive region, 13 ... incompletely photosensitive region, 14 ... resist pattern, 15 ... resist opening, 3 ... light.

Claims (4)

基板表面に感光性のレジスト膜を形成する工程と、
基板表面に対して直交する方向から所定波長の光を照射してレジスト膜を露光する工程と、
露光されたレジスト膜を現像して所定のパターンで基板表面が露出したレジスト開口部を持つレジストパターンを形成する工程とを含むレジストパターンの製造方法において、
基板表面がレジスト膜を透過した光を反射するように構成され、
感光領域と非感光領域との界面を成すレジスト開口部の壁面が基板表面に対して直交方向に延びるように光を照射するときの最低限の光量を基準光量とし、レジスト膜の露光時の光量を、基準光量の50〜70%の範囲内に設定することを特徴とするレジストパターンの製造方法。
The process of forming a photosensitive resist film on the substrate surface and
The process of exposing the resist film by irradiating light of a predetermined wavelength from a direction orthogonal to the substrate surface, and
In a method for manufacturing a resist pattern, which comprises a step of developing an exposed resist film to form a resist pattern having a resist opening whose substrate surface is exposed in a predetermined pattern.
The surface of the substrate is configured to reflect the light that has passed through the resist film.
The minimum amount of light when irradiating light so that the wall surface of the resist opening forming the interface between the photosensitive area and the non-photosensitive area extends in the direction orthogonal to the substrate surface is used as the reference light amount, and the amount of light when the resist film is exposed. Is set within the range of 50 to 70% of the reference light amount, which is a method for producing a resist pattern.
請求項1記載のレジストパターンの製造方法であって、前記光の波長が200nm〜400nmの範囲であるものにおいて、
前記レジスト膜の厚みを前記光の波長の50倍以上に設定することを特徴とするレジストパターンの製造方法。
The method for producing a resist pattern according to claim 1, wherein the wavelength of the light is in the range of 200 nm to 400 nm.
A method for producing a resist pattern, which comprises setting the thickness of the resist film to 50 times or more the wavelength of the light.
前記レジストパターンのアスペクト比を1以上に設定することを特徴とする請求項1または請求項2記載のレジストパターンの製造方法。 The method for producing a resist pattern according to claim 1 or 2, wherein the aspect ratio of the resist pattern is set to 1 or more. 基板の一方の面に所定のパターンでレジスト開口部が形成されたレジスト膜において、
レジスト開口部の断面形状は、レジスト膜の表面から第1深さまでの間の垂直面と、第1深さから第2深さまでの間の次第に幅狭の第1湾曲面と、第2深さから基板表面までの間の次第に幅広の第2湾曲面とが連続したものであることを特徴とするレジスト膜。
In a resist film in which resist openings are formed in a predetermined pattern on one surface of a substrate.
The cross-sectional shape of the resist opening has a vertical plane between the surface of the resist film and the first depth, a gradually narrowing first curved plane between the first depth and the second depth, and a second depth. A resist film characterized in that a gradually wide second curved surface is continuous from the surface to the surface of the substrate.
JP2019102201A 2019-05-31 2019-05-31 Method for manufacturing resist pattern and resist film Active JP7256689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102201A JP7256689B2 (en) 2019-05-31 2019-05-31 Method for manufacturing resist pattern and resist film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102201A JP7256689B2 (en) 2019-05-31 2019-05-31 Method for manufacturing resist pattern and resist film

Publications (2)

Publication Number Publication Date
JP2020197570A true JP2020197570A (en) 2020-12-10
JP7256689B2 JP7256689B2 (en) 2023-04-12

Family

ID=73647931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102201A Active JP7256689B2 (en) 2019-05-31 2019-05-31 Method for manufacturing resist pattern and resist film

Country Status (1)

Country Link
JP (1) JP7256689B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297113A (en) * 1994-04-28 1995-11-10 Sharp Corp Formation of resist pattern
JPH0963935A (en) * 1995-08-28 1997-03-07 Sharp Corp Method of forming resist pattern
JP2009128409A (en) * 2007-11-20 2009-06-11 Fujitsu Ltd Material for controlling resist pattern profile, method for manufacturing semiconductor device and method for manufacturing magnetic head
JP2010021428A (en) * 2008-07-11 2010-01-28 Toshiba Corp Evaluation method of latent image intensity distribution and evaluation program of latent image intensity distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297113A (en) * 1994-04-28 1995-11-10 Sharp Corp Formation of resist pattern
JPH0963935A (en) * 1995-08-28 1997-03-07 Sharp Corp Method of forming resist pattern
JP2009128409A (en) * 2007-11-20 2009-06-11 Fujitsu Ltd Material for controlling resist pattern profile, method for manufacturing semiconductor device and method for manufacturing magnetic head
JP2010021428A (en) * 2008-07-11 2010-01-28 Toshiba Corp Evaluation method of latent image intensity distribution and evaluation program of latent image intensity distribution

Also Published As

Publication number Publication date
JP7256689B2 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP4912293B2 (en) Contact hole manufacturing system and method
JP4499616B2 (en) Exposure mask, method of manufacturing the same, and method of manufacturing semiconductor device
JPH06318541A (en) Forming method for pattern
JP2007535694A (en) Embedded attenuation phase shift mask with adjustable transmittance
TW201723669A (en) Method for patterning a substrate using extreme ultraviolet lithography
EP1520208A2 (en) Mask and manufacturing method using mask
JP4352498B2 (en) Pattern exposure method and processing apparatus used therefor
US5338626A (en) Fabrication of phase-shifting lithographic masks
JP3288884B2 (en) Method of forming resist pattern
GB2135793A (en) Bilevel ultraviolet resist system for patterning substrates of high reflectivity
TW202240282A (en) Patterning process
KR100907898B1 (en) Semiconductor device manufacturing method
US20050048377A1 (en) Mask for improving lithography performance by using multi-transmittance photomask
JP2020197570A (en) Method for manufacturing resist pattern and resist film
JP2000156377A (en) Resist pattern, its forming method and forming method of wiring pattern
KR20070000534A (en) Method for fabricating exposure mask
JPH10333318A (en) Phase shift photomask and its production
KR100827482B1 (en) Method for manufacturing a mask for producing a semiconductor device
JP2003167351A (en) Resist pattern forming method
KR100505421B1 (en) method for forming pattern of semiconductor device
TWI269934B (en) Mask for improving lithography performance by using multi-transmittance photomask
KR100219399B1 (en) A manufacturing method photomask of semiconductor
KR100720536B1 (en) Method for Forming Dense Hole Photoresist Pattern and Hole Photo Mask used therefor
KR100393202B1 (en) Mask used for forming pattern and manufacturing method thereof
JP3913528B2 (en) Method for designing film structure and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230331

R150 Certificate of patent or registration of utility model

Ref document number: 7256689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150