JP2020196355A - Pilotless aircraft and pilotless aerial system - Google Patents

Pilotless aircraft and pilotless aerial system Download PDF

Info

Publication number
JP2020196355A
JP2020196355A JP2019104027A JP2019104027A JP2020196355A JP 2020196355 A JP2020196355 A JP 2020196355A JP 2019104027 A JP2019104027 A JP 2019104027A JP 2019104027 A JP2019104027 A JP 2019104027A JP 2020196355 A JP2020196355 A JP 2020196355A
Authority
JP
Japan
Prior art keywords
unmanned aerial
aerial vehicle
antenna
wireless communication
ground station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019104027A
Other languages
Japanese (ja)
Inventor
智 大塚
Satoshi Otsuka
智 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2019104027A priority Critical patent/JP2020196355A/en
Publication of JP2020196355A publication Critical patent/JP2020196355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

To provide "a pilotless aircraft and a pilotless aerial system" capable of achieving stable radio communication with a ground station.SOLUTION: A multi-copter 1 comprises four rotors 13 at each tip of four arms 12 extending in four directions at an interval of 90 degrees from a body 11. Each of antennas 101 is provided under each arm 12, for selective use for radio communication with a base station 2. The multi-copter 1 determines an antenna 101 closest to the base station 2 on the basis of a current position of the multi-copter 1 determined by a GNSS receiver 113, a current orientation of the multi-copter 1, and coordinates of the base station 2 preset in a memory 108, to be an antenna 101 that exists at a position which is not blocked by the multi-copter 1 itself with respect to the base station 2 at a current time point, and if the determined antenna 101 is not the antenna 101 that is currently being used for radio communication with the base station 2, sets the determined antenna 101 to an antenna 101 to be used for radio communication with the base station 2.SELECTED DRAWING: Figure 2

Description

本発明は、無人航空機が行う無線通信の通信不良の発生を抑制する技術に関するものである。 The present invention relates to a technique for suppressing the occurrence of communication failure in wireless communication performed by an unmanned aerial vehicle.

無人航空機に関する技術としては、複数の測位衛星から受信した電波に基づいて現在位置を測位するGNSS受信機を無人航空機に搭載し、無人航空機が、GNSS受信機で現在位置を測位しながら、予め設定された経路に沿って自動航行する技術が知られている(たとえば、特許文献1)。 As a technology related to unmanned aerial vehicles, a GNSS receiver that positions the current position based on radio waves received from multiple positioning satellites is mounted on the unmanned aerial vehicle, and the unmanned aerial vehicle sets the current position while positioning the current position with the GNSS receiver. A technique for automatically navigating along a route is known (for example, Patent Document 1).

また、無人航空機に関する技術としては、無人航空機が予め設定された経路に沿って自動航行しながら、無人航空機に搭載したカメラを用いて、高所の架線を上方から撮影すると共に、撮影した映像を、地上局に無線通信で転送し、地上局において映像を解析して架線の異常を検出する技術が知られている(たとえば、特許文献2)。 In addition, as a technology related to unmanned aerial vehicles, while the unmanned aerial vehicle automatically navigates along a preset route, the camera mounted on the unmanned aerial vehicle is used to shoot the overhead wire at a high place from above and the shot video. , A technique of transferring to a ground station by wireless communication and analyzing an image at the ground station to detect an abnormality of an overhead wire is known (for example, Patent Document 2).

特開2018-077626号公報Japanese Unexamined Patent Publication No. 2018-0772626 特開2005-253189号公報Japanese Unexamined Patent Publication No. 2005-253189

たとえば、無人航空機を用いて架線を撮影した映像を無人航空機から地上局に無線通信で転送して検査を行う場合、無人航空機の向きをカメラで架線を撮影できる向きとすると、無線通信用のアンテナと地上局との間に、無人航空機の構成物が位置してしまい、無人航空機と地上局との間の無線通信に障害が発生することがある。 For example, when an image of an overhead wire taken with an unmanned aerial vehicle is transferred from the unmanned aerial vehicle to a ground station by wireless communication for inspection, assuming that the direction of the unmanned aerial vehicle is such that the overhead wire can be taken with the camera, an antenna for wireless communication. An unmanned aerial vehicle component may be located between the unmanned aerial vehicle and the ground station, causing a failure in wireless communication between the unmanned aerial vehicle and the ground station.

そこで、本発明は、向きが制限される態様で利用される無人航空機と、地上局との間の安定した無線通信を実現することを課題とする Therefore, it is an object of the present invention to realize stable wireless communication between an unmanned aerial vehicle used in a mode in which the orientation is restricted and a ground station.

前記課題達成のために、本発明は、地上局と無線通信を行う無人航空機に、当該無人航空機上の異なる位置に配置された複数のアンテナと、前記複数のアンテナのうちの、現時点において前記地上局に対して当該無人航空機自身によって遮られない位置にあるアンテナを現用アンテナとして設定するアンテナ設定手段と、前記現用アンテナとして設定されたアンテナを用いて前記地上局と無線通信を行う無線通信手段とを備えたものである。 In order to achieve the above object, the present invention presents an unmanned aircraft that wirelessly communicates with a ground station, a plurality of antennas arranged at different positions on the unmanned aircraft, and the above-mentioned ground among the plurality of antennas at present. An antenna setting means for setting an antenna at a position not blocked by the unmanned aircraft itself with respect to the station as a working antenna, and a wireless communication means for wirelessly communicating with the ground station using the antenna set as the working antenna. It is equipped with.

ここで、前記複数のアンテナは、当該無人航空機を上下方向にみたときに、当該無人航空機のボディを間に挟むように配置された2つのアンテナを少なくとも含むものとしてよい。 Here, the plurality of antennas may include at least two antennas arranged so as to sandwich the body of the unmanned aerial vehicle when the unmanned aerial vehicle is viewed in the vertical direction.

または、当該無人航空機を、ボディと、当該無人航空機を上下方向に見て前記ボディから外側に伸びる複数のアームと、各アームの先端に配置された回転翼とを備えたマルチコプタとし、前記複数のアンテナをそれぞれ異なるアームに配置してもよい。 Alternatively, the unmanned aerial vehicle may be a multicopter including a body, a plurality of arms extending outward from the body when the unmanned aerial vehicle is viewed in the vertical direction, and a rotary wing arranged at the tip of each arm. The antennas may be placed on different arms.

また、以上のように、ボディを間に挟むように配置された2つのアンテナを少なくとも含む複数のアンテナを設けたり、マルチコプタの異なるアームにアンテナを設けた場合には、当該、無人航空機に、当該無人航空機の現在位置を算出する現在位置算出手段と、当該無人航空機の向きを検出する姿勢検出手段を設け、前記アンテナ設定手段において、前記地上局の位置と、当該無人航空機の現在位置と、当該無人航空機の向きより、前記複数のアンテナのうちで、前記地上局に最も近い位置にあるアンテナを算定し、算定したアンテナを前記現用アンテナとして設定するようにしてもよい。
または、マルチコプタの異なるアームにアンテナを設けた場合には、無人航空機に、当該無人航空機に対する前記地上局の方向を算定する地上局方向算出手段を設け、前記アンテナ設定手段は、前記複数のアンテナのうちの、当該無人航空機のボディから地上局方向算出手段が算定した地上局の方向に最も近い方向に伸びるアームに配置されたアンテナを前記現用アンテナとして設定するようにしてもよい。
Further, as described above, when a plurality of antennas including at least two antennas arranged so as to sandwich the body are provided, or when antennas are provided on different arms of the multicopter, the unmanned aerial vehicle is concerned with the above. A current position calculating means for calculating the current position of the unmanned aerial vehicle and an attitude detecting means for detecting the direction of the unmanned aerial vehicle are provided, and in the antenna setting means, the position of the ground station, the current position of the unmanned aerial vehicle, and the said From the orientation of the unmanned aerial vehicle, the antenna closest to the ground station may be calculated from the plurality of antennas, and the calculated antenna may be set as the working antenna.
Alternatively, when antennas are provided on different arms of the multicopter, the unmanned aerial vehicle is provided with a ground station direction calculation means for calculating the direction of the ground station with respect to the unmanned aerial vehicle, and the antenna setting means is of the plurality of antennas. The antenna arranged on the arm extending from the body of the unmanned aerial vehicle in the direction closest to the direction of the ground station calculated by the ground station direction calculation means may be set as the working antenna.

また、以上のように、ボディを間に挟むように配置された2つのアンテナを少なくとも含む複数のアンテナを設けたり、マルチコプタの異なるアームにアンテナを設けた場合には、当該無人航空機の現在位置を算出する現在位置算出手段と、当該無人航空機を、予め設定された飛行計画に従った経路に沿って当該飛行計画に従った向きで自動航行させる制御装置とを備え、前記アンテナ設定手段において、前記現在位置算出手段が算出した無人航空機の現在位置と、前記飛行計画とより、現時点において前記地上局に最も近い位置にあるアンテナとして算定されるアンテナを前記現用アンテナとして設定するようにしてもよい。 Further, as described above, when a plurality of antennas including at least two antennas arranged so as to sandwich the body are provided, or when antennas are provided on different arms of the multicopter, the current position of the unmanned aircraft is determined. The antenna setting means includes a means for calculating the current position to be calculated and a control device for automatically navigating the unmanned aircraft in a direction according to the flight plan along a route according to a preset flight plan. Based on the current position of the unmanned aircraft calculated by the current position calculating means and the flight plan, the antenna calculated as the antenna closest to the ground station at the present time may be set as the working antenna.

また、以上の無人航空機において、予め設定された飛行計画に従った経路上を当該無人航空機を自動航行させる制御装置において、前記飛行計画に従った経路上の各区間と当該区間で無線通信を行う地上局との予め設定された対応に従って、前記無線通信手段で無線通信を行う地上局を、前記区間毎に切り替えるようにしてもよい。 Further, in the above unmanned aerial vehicle, the control device for automatically navigating the unmanned aerial vehicle on the route according to the preset flight plan performs wireless communication with each section on the route according to the flight plan. The ground station that performs wireless communication by the wireless communication means may be switched for each section according to a preset correspondence with the ground station.

また、以上の無人航空機にカメラを搭載し、無人航空機が備える予め設定された飛行計画に従った経路上を当該無人航空機を自動航行させる制御装置において、前記飛行計画に従って当該無人航空機を検査対象の架線に沿って当該無人航空機を自動航行させながら、前記カメラに前記検査対象の架線を撮影させ、撮影された映像を無線通信手段を介して前記地上局に無線通信で送信するようにしてもよい。
また、併せて、本発明は、前記課題達成のために、地上局と、当該地上局と無線通信を行う無人航空機とを備えた無人航空機システムを提供する。ここで、前記無人航空機は、当該無人航空機上の異なる位置に配置された複数のアンテナと、当該無人航空機の現在位置を算出する現在位置算出手段と、当該無人航空機を、予め設定された飛行計画に従った経路に沿って当該飛行計画に従った向きで自動航行させる制御装置と、前記複数のアンテナのうちの一つのアンテナを現用アンテナとして設定するアンテナ設定手段と、前記現用アンテナとして設定されたアンテナを用いて前記地上局と無線通信を行う無線通信手段とを備える。また、前記地上局は、前記無線通信を介して前記無人航空機から当該無人航空機の現在位置を取得し、取得した現在位置と前記飛行計画とが示す、前記飛行計画に従って前記無人航空機が直後に飛行することとなる区間において、前記地上局に対して当該無人航空機自身によって遮られない位置となるアンテナが、現在、前記無人航空機において現用アンテナとして設定されているアンテナと異なるアンテナであるときに、当該直後の区間において前記地上局に対して前記無人航空機自身によって遮られない位置となるアンテナの使用を前記無線通信を介して前記無人航空機に指示する遠隔指示手段を備える。そして、前記無人航空機のアンテナ設定手段は、前記地上局から前記無線通信を介して使用を指示されたアンテナに、現用アンテナとして設定するアンテナを切り替える。
In addition, in the control device that mounts the camera on the above unmanned aerial vehicle and automatically navigates the unmanned aerial vehicle on the route according to the preset flight plan provided by the unmanned aerial vehicle, the unmanned aerial vehicle is inspected according to the flight plan. While the unmanned aerial vehicle is automatically navigated along the overhead wire, the camera may photograph the overhead wire to be inspected, and the captured image may be transmitted to the ground station by wireless communication via wireless communication means. ..
In addition, the present invention also provides an unmanned aerial vehicle system including a ground station and an unmanned aerial vehicle that performs wireless communication with the ground station in order to achieve the above-mentioned problems. Here, the unmanned aerial vehicle includes a plurality of antennas arranged at different positions on the unmanned aerial vehicle, a current position calculating means for calculating the current position of the unmanned aerial vehicle, and a flight plan in which the unmanned aerial vehicle is set in advance. A control device for automatically navigating in a direction according to the flight plan along a route according to the flight plan, an antenna setting means for setting one of the plurality of antennas as a working antenna, and a setting as the working antenna. It is provided with a wireless communication means for wirelessly communicating with the ground station using an antenna. Further, the ground station acquires the current position of the unmanned aerial vehicle from the unmanned aerial vehicle via the wireless communication, and the unmanned aerial vehicle immediately flies according to the flight plan indicated by the acquired current position and the flight plan. When the antenna at a position that is not blocked by the unmanned aerial vehicle itself with respect to the ground station is different from the antenna currently set as the active antenna in the unmanned aerial vehicle. A remote instruction means for instructing the unmanned aerial vehicle to use an antenna that is not blocked by the unmanned aerial vehicle itself in the section immediately after the ground station is provided via the wireless communication. Then, the antenna setting means of the unmanned aerial vehicle switches the antenna to be set as the working antenna to the antenna instructed to be used by the ground station via the wireless communication.

以上のような無人航空機や無人航空機システムによれば、無人航空機と地上局との間の無線通信は、無人航空機が備える複数のアンテナのうちの、現時点において前記地上局に対して当該無人航空機自身によって遮られない位置にあるアンテナを用いて行われるので、無人航空機の向きに関わらずに、常に、無人航空機と地上局との間で安定した無線通信を行うことができるようになる。 According to the unmanned aerial vehicle and the unmanned aerial vehicle system as described above, the wireless communication between the unmanned aerial vehicle and the ground station is performed by the unmanned aerial vehicle itself with respect to the ground station at present among the plurality of antennas of the unmanned aerial vehicle. Since it is performed using an antenna that is not blocked by the unmanned aerial vehicle, stable wireless communication can always be performed between the unmanned aerial vehicle and the ground station regardless of the orientation of the unmanned aerial vehicle.

以上のように、本発明によれば、向きが制限される態様で利用される無人航空機と、地上局との間の安定した無線通信を実現することができる。 As described above, according to the present invention, stable wireless communication between an unmanned aerial vehicle used in a direction-restricted manner and a ground station can be realized.

本発明の実施形態に係る架線検査システムの構成を示す図である。It is a figure which shows the structure of the overhead wire inspection system which concerns on embodiment of this invention. 本発明の実施形態に係るマルチコプタを示す図である。It is a figure which shows the multicopter which concerns on embodiment of this invention. 本発明の実施形態に係るマルチコプタの機能構成を示す図である。It is a figure which shows the functional structure of the multicopter which concerns on embodiment of this invention. 本発明の実施形態に係るアンテナ切替処理を示すフローチャートである。It is a flowchart which shows the antenna switching process which concerns on embodiment of this invention. 本発明の実施形態に係るアンテナの切替動作を示す図である。It is a figure which shows the switching operation of the antenna which concerns on embodiment of this invention. 本発明の実施形態に係るアンテナの他の切替動作を示す図である。It is a figure which shows the other switching operation of the antenna which concerns on embodiment of this invention. 本発明の実施形態に係るアンテナの他の切替動作を示す図である。It is a figure which shows the other switching operation of the antenna which concerns on embodiment of this invention. 本発明の実施形態に係るマルチコプタの他の構成例を示す図である。It is a figure which shows the other structural example of the multicopter which concerns on embodiment of this invention.

以下、本発明の実施形態について高所の架線を検査する架線検査システムへの適用を例にとり説明する。
図1に、本実施形態に係る架線検査システムの構成を示す。
図示するように架線システムは、マルチコプタ1と、基地局2と、プロポやGCS(Ground Control Station)などと呼称される、マルチコプタ1の無線遠隔操操作を行う遠隔操作装置3とを備えている。
Hereinafter, an embodiment of the present invention will be described by taking as an example an application to an overhead wire inspection system for inspecting an overhead wire at a high place.
FIG. 1 shows the configuration of the overhead wire inspection system according to the present embodiment.
As shown in the figure, the overhead wire system includes a multicopter 1, a base station 2, and a remote control device 3 called a radio or a GCS (Ground Control Station) that performs wireless remote control of the multicopter 1.

マルチコプタ1と基地局2とは、無線通信を行うことができ、マルチコプタ1は予め設定された検査対象の架線に沿った経路を飛行し、架線を撮影した映像や、マルチコプタ1に搭載した各種センサで検出したデータであるセンサデータを基地局2に無線通信を介して送信する。 Wireless communication can be performed between the multicopter 1 and the base station 2, and the multicopter 1 flies along a preset overhead line to be inspected, and images of the overhead line and various sensors mounted on the multicopter 1 are used. The sensor data, which is the data detected in the above, is transmitted to the base station 2 via wireless communication.

基地局2は、マルチコプタ1から送信された映像やセンサデータからマルチコプタ1の状態を監視すると共に、オペレータの操作等に応じて、マルチコプタ1の各種動作を無線通信を介して制御する。また、基地局2は、マルチコプタ1から送信された映像やセンサデータから、架線の正常性を解析する処理を行う。 The base station 2 monitors the state of the multicopter 1 from the video and sensor data transmitted from the multicopter 1, and controls various operations of the multicopter 1 via wireless communication in response to an operator's operation or the like. Further, the base station 2 performs a process of analyzing the normality of the overhead wire from the video and the sensor data transmitted from the multicopter 1.

次に、遠隔操作装置3は、マルチコプタ1と基地局2との間の無線通信とは異なる周波数帯の無線通信をマルチコプタ1と行い、遠隔操作装置3のオペレータは遠隔操作装置3を用いてマルチコプタ1を遠隔操作することができる。 Next, the remote control device 3 performs wireless communication in a frequency band different from the wireless communication between the multicopter 1 and the base station 2 with the multicopter 1, and the operator of the remote control device 3 uses the remote control device 3 to perform wireless communication with the multicopter 1. 1 can be operated remotely.

マルチコプタ1は、図2aの斜視図、図2bの上面図に示すように、中央のボディ11と、ボディ11の周りに上下方向から見て90度の角度間隔で配置された四方に伸びるアーム12と、各アーム12先端に配置された4つの回転翼13を備えた無人運転型の飛行装置であり、ボディ11の下部には、ジンバル14が連結されており、このジンバル14によってカメラ15が向きを可変に支持されている。 As shown in the perspective view of FIG. 2a and the top view of FIG. 2b, the multicopter 1 includes a central body 11 and arms 12 extending in all directions arranged around the body 11 at an angular interval of 90 degrees when viewed from above and below. It is an unmanned flight device equipped with four rotors 13 arranged at the tip of each arm 12, and a gimbal 14 is connected to the lower part of the body 11, and the camera 15 is directed by the gimbal 14. Is variably supported.

次に、図3に、マルチコプタ1の機能構成を示す。
図示するように、マルチコプタ1は、基地局2との無線通信に選択的に用いられる4本のアンテナ101、基地局2と無線通信を行う無線通信部102、無線通信部102が基地局2と無線通信に用いるアンテナ101を切り替えるアンテナセレクタ103、遠隔操作装置3との無線通信に用いられる遠隔操作用アンテナ104、遠隔操作用アンテナ104を用いて遠隔操作装置3と遠隔操作用の無線通信を行う遠隔操作用無線通信部105を備えている。
Next, FIG. 3 shows the functional configuration of the multicopter 1.
As shown in the figure, the multicopter 1 includes four antennas 101 selectively used for wireless communication with the base station 2, a wireless communication unit 102 that wirelessly communicates with the base station 2, and a wireless communication unit 102 with the base station 2. Wireless communication for remote operation with the remote control device 3 is performed using the antenna selector 103 for switching the antenna 101 used for wireless communication, the remote control antenna 104 used for wireless communication with the remote control device 3, and the remote control antenna 104. A wireless communication unit 105 for remote operation is provided.

また、マルチコプタ1は、ジンバル14を駆動しカメラ15の向きを設定するジンバル駆動部106、回転翼13を回転駆動するロータ駆動部107、メモリ108を備えている。 Further, the multicopter 1 includes a gimbal drive unit 106 that drives the gimbal 14 and sets the direction of the camera 15, a rotor drive unit 107 that rotationally drives the rotor blades 13, and a memory 108.

また、マルチコプタ1は、上述したセンサとして、マルチコプタ1の外部を撮影し撮影した画像から外部の物体に対するマルチコプタ1の動きを検出するオプティカルフロー装置109、マルチコプタ1の角速度を検出するジャイロセンサ110、気圧を検出する気圧センサ111、方位を検出する方位センサ112、測位衛星を用いた衛星測位によって現在位置を算出するGNSS受信機113、レーザーをマルチコプタ1の下方に反射しマルチコプタ1の下方にある物体の三次元位置を計測するLIDER114(Light Detection And Ranging)、レーザーをマルチコプタ1の下方に反射しマルチコプタ1の下方にある物体までの距離を計測するLRF115(Laser Range Finder115)を備えている。 Further, as the above-mentioned sensors, the multicopter 1 includes an optical flow device 109 that detects the movement of the multicopter 1 with respect to an external object from an image taken by photographing the outside of the multicopter 1, a gyro sensor 110 that detects the angular velocity of the multicopter 1, and an atmospheric pressure. The pressure sensor 111 that detects the direction, the orientation sensor 112 that detects the orientation, the GNSS receiver 113 that calculates the current position by satellite positioning using a positioning satellite, and the object that reflects the laser below the multicopter 1 and is below the multicopter 1. It is equipped with a LIDER 114 (Light Detection And Ranging) that measures a three-dimensional position, and an LRF 115 (Laser Range Finder 115) that reflects a laser below the multicopter 1 and measures the distance to an object below the multicopter 1.

また、マルチコプタ1は、マルチコプタ1の以上の各部を制御する制御装置116を備えている。
このようなマルチコプタ1の構成において、制御装置116は、メモリ108に予め設定されている飛行の経路、速度、姿勢(向き)を規定するフライトデータと、GNSS受信機113で算出されるマルチコプタ1の現在位置と、オプティカルフロー装置109、ジャイロセンサ110、気圧センサ111、方位センサ112の検出結果を用いて、マルチコプタ1がフライトデータで規定された経路を、フライトデータで規定された姿勢(向き)、速度で飛行するようにロータ駆動部107に回転翼13を回転駆動させる。
ここで、フライトデータが規定する経路には、検査対象の架線に沿って飛行する経路部分が含まれる。また、フライトデータが規定する、検査対象の架線に沿って飛行する期間中のマルチコプタ1の姿勢(向き)は、カメラ15で架線を撮影できる姿勢、すなわち、たとえば、経緯度方向についてのカメラ15の撮影可能な範囲の中心が架線方向を向いた姿勢となる。
Further, the multicopter 1 includes a control device 116 that controls each of the above parts of the multicopter 1.
In such a configuration of the multicopter 1, the control device 116 includes flight data that defines a flight path, speed, and attitude (direction) preset in the memory 108, and the multicopter 1 calculated by the GNSS receiver 113. Using the current position and the detection results of the optical flow device 109, the gyro sensor 110, the pressure sensor 111, and the orientation sensor 112, the multicopter 1 uses the route defined by the flight data, and the posture (direction) defined by the flight data. The rotary blade 13 is rotationally driven by the rotor drive unit 107 so as to fly at a speed.
Here, the route defined by the flight data includes a route portion that flies along the overhead wire to be inspected. Further, the attitude (orientation) of the multicopter 1 during the period of flying along the overhead wire to be inspected, which is defined by the flight data, is the attitude in which the overhead wire can be photographed by the camera 15, that is, for example, the attitude of the camera 15 in the latitude and longitude direction. The center of the photographable range is oriented toward the overhead line.

また、制御装置116は、メモリ108に予め撮影データとして設定されている撮影計画と、LIDER114やLRF115を用いて検出した架線の位置とを用いて、ジンバル駆動部106やカメラ15を制御して、検査対象の架線の撮影を行う。 Further, the control device 116 controls the gimbal drive unit 106 and the camera 15 by using the shooting plan set in the memory 108 as shooting data in advance and the position of the overhead wire detected by using the LIDER 114 and the LRF 115. Take a picture of the overhead wire to be inspected.

そして、制御装置116は、無線通信部102を介して、カメラ15で撮影した映像や各センサで検出したセンサデータを基地局2に送信する処理を行う。
また、制御装置116は、無線通信部102や遠隔操作用無線通信部105が、基地局2から遠隔操作装置3から受信した遠隔操作指示に応じた動作をマルチコプタ1が行うように、ロータ駆動部107の回転翼13の回転駆動を制御する。
Then, the control device 116 performs a process of transmitting the image captured by the camera 15 and the sensor data detected by each sensor to the base station 2 via the wireless communication unit 102.
Further, the control device 116 is a rotor drive unit so that the wireless communication unit 102 and the remote control wireless communication unit 105 operate according to the remote control instruction received from the remote control device 3 from the base station 2 so that the multicopter 1 performs an operation. It controls the rotational drive of the rotary blade 13 of 107.

次に、図2a、bに示すように、基地局2と無線通信に選択的に用いられる4本のアンテナ101は、4本のアーム12の各々に対応し、各アンテナ101は対応するアーム12の下部に下方に伸びるように配置されている。 Next, as shown in FIGS. 2a and 2b, the four antennas 101 selectively used for wireless communication with the base station 2 correspond to each of the four arms 12, and each antenna 101 corresponds to the corresponding arm 12. It is arranged so as to extend downward at the bottom of the.

さて、制御装置116は、無線通信部102が基地局2と無線通信に用いるアンテナ101の切り替えのために、アンテナ切替処理を実行する。
図4に、アンテナ切替処理の手順を示す。
図示するように、制御装置116は、アンテナ切替処理において、GNSS受信機113で算出されるマルチコプタ1の現在位置と、GNSS受信機113や方位センサ112で検出されたマルチコプタ1の現在の姿勢(向き)と、メモリ108に予め設定されている基地局2の座標とを取得する(ステップ402)。
By the way, the control device 116 executes the antenna switching process for switching the antenna 101 used for wireless communication between the base station 2 and the wireless communication unit 102.
FIG. 4 shows the procedure of the antenna switching process.
As shown in the figure, the control device 116 has the current position of the multicopter 1 calculated by the GNSS receiver 113 and the current posture (direction) of the multicopter 1 detected by the GNSS receiver 113 and the orientation sensor 112 in the antenna switching process. ) And the coordinates of the base station 2 preset in the memory 108 (step 402).

また、マルチコプタ1の現在位置と、マルチコプタ1の現在の姿勢(向き)と、基地局2の座標とから、基地局2に最も近い位置にあるアンテナ101を算定する(ステップ404)。 Further, the antenna 101 closest to the base station 2 is calculated from the current position of the multicopter 1, the current posture (orientation) of the multicopter 1, and the coordinates of the base station 2 (step 404).

そして、算定したアンテナ101が、無線通信部102が基地局2と無線通信に現在用いているアンテナ101と同じアンテナ101であるかどうかを調べ(ステップ406)、同じアンテナ101であればステップ402からの処理に戻る。 Then, it is checked whether the calculated antenna 101 is the same antenna 101 as the antenna 101 currently used for wireless communication with the base station 2 by the wireless communication unit 102 (step 406), and if it is the same antenna 101, from step 402. Return to the processing of.

一方、算定したアンテナ101が、無線通信部102が基地局2と無線通信に現在用いているアンテナ101と異なるアンテナ101であれば(ステップ406)、アンテナセレクタ103に、算定したアンテナ101に無線通信部102が基地局2と無線通信に用いるアンテナ101を切り替えさせ(ステップ408)、ステップ402からの処理に戻る。 On the other hand, if the calculated antenna 101 is an antenna 101 different from the antenna 101 currently used for wireless communication with the base station 2 by the wireless communication unit 102 (step 406), the antenna selector 103 is used for wireless communication with the calculated antenna 101. The unit 102 switches between the base station 2 and the antenna 101 used for wireless communication (step 408), and returns to the process from step 402.

このようなアンテナ切替処理によれば、図5a1、a2、a3、a4に模式的に示すように、各時点のマルチコプタ1の向きとマルチコプタ1と基地局2の相対的な位置関係に応じて、4本のアンテナ101のうちの、その時点において、基地局2に最も近い位置にあるアンテナ101を用いて、マルチコプタ1と基地局2との無線通信が行われる。 According to such an antenna switching process, as schematically shown in FIGS. 5a1, a2, a3, and a4, depending on the orientation of the multicopter 1 at each time point and the relative positional relationship between the multicopter 1 and the base station 2. Of the four antennas 101, the antenna 101 closest to the base station 2 at that time is used to perform wireless communication between the multicopter 1 and the base station 2.

そして、図2に示した4本のアンテナ101の配置において、基地局2に最も近い位置にあるアンテナ101は、基地局2との間にマルチコプタ1のボディ11やカメラ15などのマルチコプタ1の構成物が位置することはないアンテナ101となるので、マルチコプタ1の構成物に遮られることなく、マルチコプタ1と基地局2との無線通信が安定的に行われることとなる。 Then, in the arrangement of the four antennas 101 shown in FIG. 2, the antenna 101 located at the position closest to the base station 2 has a configuration of the multicopter 1 such as the body 11 of the multicopter 1 and the camera 15 between the antenna 101 and the base station 2. Since the antenna 101 is located on which no object is located, wireless communication between the multicopter 1 and the base station 2 can be stably performed without being obstructed by the components of the multicopter 1.

なお、無線通信部102が基地局2と無線通信に用いるアンテナ101の切替は、次のように行うようにしても等価である。
すなわち、制御装置116において、メモリ108に予め設定されている基地局2の座標と、GNSS受信機113で算出されるマルチコプタ1の現在位置と、マルチコプタ1の現在の姿勢(向き)とから、基地局2がマルチコプタ1に対して、どの方向にあるかを算定すると共に、マルチコプタ1の中心から見て基地局2の方向に最も近い方向にあるアンテナ101を算定し、算定したアンテナ101が現在、無線通信部102が基地局2と無線通信に用いているアンテナ101と異なるアンテナ101であれば、アンテナセレクタ103に、算定したアンテナ101に無線通信部102が基地局2と無線通信に用いるアンテナ101を切り替えさせる処理を繰り返し行う。
The switching between the base station 2 and the antenna 101 used by the wireless communication unit 102 for wireless communication is equivalent even if it is performed as follows.
That is, in the control device 116, the base is based on the coordinates of the base station 2 preset in the memory 108, the current position of the multicopter 1 calculated by the GNSS receiver 113, and the current posture (direction) of the multicopter 1. The direction of the station 2 with respect to the multicopter 1 is calculated, and the antenna 101 closest to the direction of the base station 2 when viewed from the center of the multicopter 1 is calculated, and the calculated antenna 101 is currently used. If the wireless communication unit 102 has an antenna 101 different from the antenna 101 used for wireless communication with the base station 2, the antenna selector 103 uses the calculated antenna 101, and the wireless communication unit 102 uses the antenna 101 for wireless communication with the base station 2. The process of switching is repeated.

この結果、図5bに示すように、経緯度方向のみを考えた場合に、マルチコプタ1の中心から見てアンテナ101_1を中心とする90度の角度範囲B1の範囲内に、マルチコプタ1から見た基地局2の方向があれば、アンテナ101_1が無線通信部102が基地局2と無線通信に用いるアンテナとなり、マルチコプタ1の中心から見てアンテナ101_2を中心とする90度の角度範囲B2の範囲内に、マルチコプタ1から見た基地局2の方向があれば、アンテナ101_2が無線通信部102が基地局2と無線通信に用いるアンテナとなり、マルチコプタ1の中心から見てアンテナ101_3を中心とする90度の角度範囲B3の範囲内に、マルチコプタ1から見た基地局2の方向があれば、アンテナ101_3が無線通信部102が基地局2と無線通信に用いるアンテナとなり、マルチコプタ1の中心から見てアンテナ101_4を中心とする90度の角度範囲B4の範囲内に、マルチコプタ1から見た基地局2の方向があれば、アンテナ101_4が無線通信部102が基地局2と無線通信に用いるアンテナとなる。 As a result, as shown in FIG. 5b, when considering only the longitude-latitude direction, the base seen from the multicopter 1 is within the range of the 90-degree angle range B1 centered on the antenna 101_1 when viewed from the center of the multicopter 1. If there is a direction of the station 2, the antenna 101_1 becomes an antenna used by the wireless communication unit 102 for wireless communication with the base station 2, and is within a 90-degree angle range B2 centered on the antenna 101_2 when viewed from the center of the multicopter 1. If there is a direction of the base station 2 as seen from the multicopter 1, the antenna 101_2 becomes an antenna used by the wireless communication unit 102 for wireless communication with the base station 2, and the antenna 101_3 is 90 degrees as viewed from the center of the multicopter 1. If the direction of the base station 2 as seen from the multicopter 1 is within the range of the angle range B3, the antenna 101_3 becomes the antenna used by the wireless communication unit 102 for wireless communication with the base station 2, and the antenna 101_4 is viewed from the center of the multicopter 1. If the direction of the base station 2 as seen from the multicopter 1 is within the range of the 90-degree angle range B4 centered on the above, the antenna 101_4 becomes the antenna used by the wireless communication unit 102 for wireless communication with the base station 2.

以上、本発明の実施形態について説明した。
ここで、以上の実施形態におけるアンテナ切替処理に代えて、以下のアンテナ遠隔切替動作を行うようにしてもよい。
すなわち、このアンテナ遠隔切替動作においては、基地局2はマルチコプタ1に設定したフライトデータを解析し、フライトデータに従ってマルチコプタ1が飛行した場合に、基地局2に最も近くなるアンテナ101が変化しないフライトデータが規定する経路中の区間毎に、当該区間で基地局2に最も近くなるアンテナ101を算定する。そして、基地局2は、マルチコプタ1から無線通信を介して、マルチコプタ1の現在位置を取得しながら、マルチコプタ1が基地局2に最も近くなるアンテナ101が変化しない区間の終点に近づいたならば、次に飛行する区間において基地局2に最も近くなるアンテナ101の使用を無線通信を介してマルチコプタ1に指示する。そして、マルチコプタ1の制御装置116は、アンテナセレクタ103に、基地局2から使用を指示されたアンテナ101に無線通信部102が基地局2と無線通信に用いるアンテナ101を切り替えさせる。
The embodiment of the present invention has been described above.
Here, instead of the antenna switching process in the above embodiment, the following antenna remote switching operation may be performed.
That is, in this antenna remote switching operation, the base station 2 analyzes the flight data set in the multicopter 1, and when the multicopter 1 flies according to the flight data, the flight data in which the antenna 101 closest to the base station 2 does not change. For each section in the route defined by, the antenna 101 closest to the base station 2 in the section is calculated. Then, if the base station 2 acquires the current position of the multicopter 1 from the multicopter 1 via wireless communication, and the multicopter 1 approaches the end point of the section in which the antenna 101 closest to the base station 2 does not change, Instruct the multicopter 1 to use the antenna 101, which is closest to the base station 2 in the next flight section, via wireless communication. Then, the control device 116 of the multicopter 1 causes the antenna selector 103 to switch between the base station 2 and the antenna 101 used for wireless communication by the antenna 101 instructed to use by the base station 2.

または、以上の実施形態におけるアンテナ切替処理に代えて、以下のアンテナ切替動作を行うようにしてもよい。
すなわち、このアンテナ切替動作においては、基地局2は、マルチコプタ1の飛行開始に先立って、マルチコプタ1に設定したフライトデータを解析し、フライトデータに従ってマルチコプタ1が飛行した場合に、フライトデータが規定する経路中の基地局2に最も近くなるアンテナ101が変化しない区間毎に、当該区間で基地局2に最も近くなるアンテナ101を算定し、マルチコプタ1のメモリ108にアンテナ切替データとして設定する。そして、マルチコプタ1の制御装置116は、マルチコプタ1の現在位置を取得しながら、アンテナセレクタ103を制御して、アンテナ切替データが示す、現在飛行中の区間において基地局2に最も近くなるアンテナ101に無線通信部102が基地局2と無線通信に用いるアンテナ101を切り替えさせる。
Alternatively, the following antenna switching operation may be performed instead of the antenna switching process in the above embodiment.
That is, in this antenna switching operation, the base station 2 analyzes the flight data set in the multicopter 1 prior to the start of the flight of the multicopter 1, and when the multicopter 1 flies according to the flight data, the flight data is defined. For each section in which the antenna 101 closest to the base station 2 in the route does not change, the antenna 101 closest to the base station 2 in the section is calculated and set as antenna switching data in the memory 108 of the multicopter 1. Then, the control device 116 of the multicopter 1 controls the antenna selector 103 while acquiring the current position of the multicopter 1, and becomes the antenna 101 closest to the base station 2 in the currently in-flight section indicated by the antenna switching data. The wireless communication unit 102 switches between the base station 2 and the antenna 101 used for wireless communication.

また、以上の実施形態では、マルチコプタ1の無線通信部102が基地局2とのみ無線通信を行う場合について示したが、これは、マルチコプタ1の無線通信部102が無線通信を行う相手を飛行中に切り替えるようにしてもよい。 Further, in the above embodiment, the case where the wireless communication unit 102 of the multicopter 1 performs wireless communication only with the base station 2 has been shown, but this is a case where the wireless communication unit 102 of the multicopter 1 is flying a partner with which wireless communication is performed. You may switch to.

すなわち、たとえば、図6に示すようにマルチコプタ1が位置P1から離陸し、位置P2を経由して、検査対象の架線の始点P3まで飛行し、検査対象の架線に沿って、P3からP4、P5と移動しながら架線を撮影し、検査対象の架線の終点P5から位置P6を経由して位置P1に帰着して着陸する場合には、検査対象の架線を撮影する位置P3から終点P5の間の区間を飛行中は、マルチコプタ1の無線通信部102は、基地局2に最も近いアンテナ101を用いて基地局2に映像やセンサデータを送信し、検査対象の架線に向かって位置P1からP3の区間を飛行中の期間と、検査対象の架線の終点P5から位置P1の区間を帰着のために飛行中の期間は、マルチコプタ1の無線通信部102は、遠隔操作装置3に最も近いアンテナ101を用いて遠隔操作装置3に映像やセンサデータを送信して、遠隔操作装置3のオペレータのマルチコプタ1の遠隔操作の用に供するようにしてもよい。 That is, for example, as shown in FIG. 6, the multicopter 1 takes off from the position P1, flies to the starting point P3 of the overhead wire to be inspected via the position P2, and runs from P3 to P4 and P5 along the overhead wire to be inspected. When taking a picture of the overhead wire while moving and returning to the position P1 from the end point P5 of the overhead line to be inspected via the position P6 and landing, the distance between the position P3 and the end point P5 where the overhead wire to be inspected is photographed. While flying in the section, the radio communication unit 102 of the multicopter 1 transmits video and sensor data to the base station 2 using the antenna 101 closest to the base station 2, and the positions P1 to P3 are directed toward the overhead line to be inspected. During the period of flight in the section and the period of flight to return the section from the end point P5 of the overhead wire to be inspected to the position P1, the radio communication unit 102 of the multicopter 1 uses the antenna 101 closest to the remote control device 3. It may be used to transmit video or sensor data to the remote control device 3 for remote control of the multicopter 1 of the operator of the remote control device 3.

ここで、どの区間で、基地局2と遠隔操作装置3のいずれを無線通信の相手としてマルチコプタ1の無線通信部102が無線通信を行うかは、予めマルチコプタ1のメモリ108に区間と無線通信の相手との対応を設定しておき、制御装置116において、飛行中の区間に応じて、無線通信を行う相手を切り替えるようにする。 Here, in which section the base station 2 or the remote control device 3 is used as the wireless communication partner for the wireless communication unit 102 of the multicopter 1 to perform wireless communication, the section and the wireless communication are determined in advance in the memory 108 of the multicopter 1. Correspondence with the other party is set, and the control device 116 switches the other party to perform wireless communication according to the section during flight.

または、たとえば、図7に示すように、二つの基地局2_1、基地局2_2を設け、マルチコプタ1が位置P1から離陸し、検査対象の架線の始点P2まで飛行し、検査対象の架線に沿って、P2からP3、P4、P5と移動しながら架線を撮影し、検査対象の架線の終点P5から山Mを迂回し経路で位置P6、P7を経由して位置P1に帰着して着陸する場合において、位置P4-P7の区間において、基地局2_1から見てマルチコプタ1が山Mの陰となって基地局2_1とマルチコプタ1との無線通信が不能となる一方で、位置P4-P7の区間において、基地局2_2とマルチコプタ1との無線通信が可能であるときには、位置P1から位置P4の間の区間及び位置P7からP1の区間を飛行中は、マルチコプタ1の無線通信部102は、基地局2_1に最も近いアンテナ101を用いて基地局2_1に映像やセンサデータを送信し、位置P4-P7の区間を飛行中は、マルチコプタ1の無線通信部102は、基地局2_2に最も近いアンテナ101を用いて基地局2_2に映像やセンサデータを送信するようにしてもよい。 Alternatively, for example, as shown in FIG. 7, two base stations 2_1 and base station 2_2 are provided, and the multicopter 1 takes off from the position P1, flies to the starting point P2 of the overhead wire to be inspected, and runs along the overhead wire to be inspected. , P2 to P3, P4, P5, take a picture of the overhead line, bypass the mountain M from the end point P5 of the overhead line to be inspected, and return to position P1 via positions P6 and P7 and land. , In the section of positions P4-P7, the multicopter 1 is behind the mountain M when viewed from the base station 2_1, and wireless communication between the base station 2_1 and the multicopter 1 becomes impossible, while in the section of positions P4-P7, When wireless communication between the base station 2_2 and the multicopter 1 is possible, the wireless communication unit 102 of the multicopter 1 is connected to the base station 2_1 while flying in the section between the positions P1 and P4 and the section between the positions P7 and P1. Video and sensor data are transmitted to base station 2_1 using the closest antenna 101, and while flying in the section of positions P4-P7, the radio communication unit 102 of multicopter 1 uses the antenna 101 closest to base station 2_2. Video and sensor data may be transmitted to the base station 2_2.

なお、この場合も、どの区間で、どの基地局2とマルチコプタ1の無線通信部102が無線通信を行うかは、予めマルチコプタ1のメモリ108に区間と無線通信の相手となる基地局2との対応を設定しておき、制御装置116において、飛行中の区間に応じて、無線通信を行う基地局2を切り替えるようにする。 In this case as well, which base station 2 and the wireless communication unit 102 of the multicopter 1 perform wireless communication in which section is determined in advance in the memory 108 of the multicopter 1 by the section and the base station 2 which is the partner of the wireless communication. Correspondence is set, and the control device 116 switches the base station 2 that performs wireless communication according to the section during flight.

また、以上の実施形態では、無線通信部102が基地局2と無線通信に用いるアンテナ101のみを4本設けて、これを切り替えて使用するようにしたが、以上の実施形態は、図8に示すように、遠隔操作用無線通信部105が遠隔操作装置3との無線通信に用いる遠隔操作用アンテナ104についても、これを4本設けて、マルチコプタ1と遠隔操作装置3との位置関係に応じて、遠隔操作装置3に最も近い位置にある遠隔操作用アンテナ104が遠隔操作装置3との無線通信に用いられるように切り替えて使用してもよい。 Further, in the above embodiment, the wireless communication unit 102 provides only four antennas 101 used for wireless communication with the base station 2, and switches between them for use. However, the above embodiment is shown in FIG. As shown, the remote control antenna 104 used by the remote control wireless communication unit 105 for wireless communication with the remote control device 3 is also provided with four antennas according to the positional relationship between the multicopter 1 and the remote control device 3. Therefore, the remote control antenna 104 located closest to the remote control device 3 may be switched and used so as to be used for wireless communication with the remote control device 3.

なお、以上の実施形態では、無人航空機が4つのアーム12と4つの回転翼13を備えたマルチコプターである場合について示したが、本実施形態は、本実施形態と異なる配置や数のアーム12と回転翼13を備えたマルチコプターである無人航空機や、無人ヘリコプターや無人固定翼機などのマルチコプター以外の他のタイプの無人航空機についても、無人航空機の中心の左右側や前後左右側に各々アンテナを設けること等により、同様に適用することができる。 In the above embodiment, the case where the unmanned aerial vehicle is a multicopter provided with four arms 12 and four rotary wings 13 has been shown, but this embodiment has a different arrangement and number of arms 12 from the present embodiment. For unmanned aerial vehicles, which are multicopters equipped with a rotating wing 13 and other types of unmanned aerial vehicles other than multicopters, such as unmanned helicopters and unmanned fixed wing aircraft, It can be applied in the same manner by providing an antenna or the like.

ただし、この場合には、以上の実施形態のように、基地局2や遠隔操作装置3等の無線通信の相手に最も近い位置にあるアンテナ101が、無線通信の相手に対して無人航空機自身によって遮られることのないアンテナ101とならない場合には、以上の実施形態における相手に最も近い位置にあるアンテナ101を無線通信の相手に対して無人航空機自身によって遮られることのないアンテナ101として算定して無線通信に用いる処理に代えて、無人航空機と無線通信の相手との位置関係や無人航空機の向きから、その無人航空機の形状や、その無人航空機における複数のアンテナ101の配置に応じて、無線通信の相手との間に無人航空機の構成物が位置することのないアンテナ101を、無線通信の相手に対して無人航空機自身によって遮られることのないアンテナ101として算定して無線通信に用いる処理を行うようにする。
また、以上では、高所の架線を検査する架線検査システムへの適用を例にとり説明したが、本実施形態の複数のアンテナを切り替えながら無人航空機が無線通信を行う技術は、無線通信を行わせながら無人航空機を運用する任意のシステムに同様に適用することができる。
However, in this case, as in the above embodiment, the antenna 101 located closest to the wireless communication partner such as the base station 2 or the remote control device 3 is operated by the unmanned aircraft itself with respect to the wireless communication partner. If the antenna 101 is not blocked, the antenna 101 closest to the other party in the above embodiment is calculated as the antenna 101 that is not blocked by the unmanned aircraft itself with respect to the wireless communication partner. Instead of the processing used for wireless communication, wireless communication is performed according to the shape of the unmanned aircraft and the arrangement of a plurality of antennas 101 in the unmanned aircraft, depending on the positional relationship between the unmanned aircraft and the wireless communication partner and the orientation of the unmanned aircraft. An antenna 101 in which a component of an unmanned aircraft is not located between the other party and the other party is calculated as an antenna 101 that is not blocked by the unmanned aircraft itself with respect to the other party of wireless communication, and is used for wireless communication. To do so.
Further, in the above, the application to the overhead wire inspection system for inspecting the overhead wire in a high place has been described as an example, but the technique of performing wireless communication by an unmanned aerial vehicle while switching a plurality of antennas of the present embodiment is to perform wireless communication. However, it can be similarly applied to any system operating an unmanned aerial vehicle.

1…マルチコプタ、2…基地局、3…遠隔操作装置、11…ボディ、12…アーム、13…回転翼、14…ジンバル、15…カメラ、101…アンテナ、102…無線通信部、103…アンテナセレクタ、104…遠隔操作用アンテナ、105…遠隔操作用無線通信部、106…ジンバル駆動部、107…ロータ駆動部、108…メモリ、109…オプティカルフロー装置、110…ジャイロセンサ、111…気圧センサ、112…方位センサ、113…GNSS受信機、114…LIDER、115…LRF、116…制御装置。 1 ... Multicopter, 2 ... Base station, 3 ... Remote control device, 11 ... Body, 12 ... Arm, 13 ... Rotating wing, 14 ... Gimbal, 15 ... Camera, 101 ... Antenna, 102 ... Wireless communication unit, 103 ... Antenna selector , 104 ... Remote control antenna, 105 ... Remote control wireless communication unit, 106 ... Gimbal drive unit, 107 ... Rotor drive unit, 108 ... Memory, 109 ... Optical flow device, 110 ... Gyro sensor, 111 ... Pressure sensor, 112 ... Orientation sensor, 113 ... GNSS receiver, 114 ... LIDER, 115 ... LRF, 116 ... control device.

Claims (11)

地上局と無線通信を行う無人航空機であって、
当該無人航空機上の異なる位置に配置された複数のアンテナと、
前記複数のアンテナのうちの、現時点において前記地上局に対して当該無人航空機自身によって遮られない位置にあるアンテナを現用アンテナとして設定するアンテナ設定手段と、
前記現用アンテナとして設定されたアンテナを用いて前記地上局と無線通信を行う無線通信手段とを有することを特徴とする無人航空機。
An unmanned aerial vehicle that communicates wirelessly with a ground station
With multiple antennas located at different locations on the drone,
Among the plurality of antennas, an antenna setting means for setting an antenna at a position that is not blocked by the unmanned aerial vehicle itself with respect to the ground station as a working antenna at present,
An unmanned aerial vehicle characterized by having a wireless communication means for wirelessly communicating with the ground station using an antenna set as the working antenna.
請求項1記載の無人航空機であって、
前記複数のアンテナは、当該無人航空機を上下方向にみたときに、当該無人航空機のボディを間に挟むように配置された2つのアンテナを少なくとも含むことを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 1.
The plurality of antennas include at least two antennas arranged so as to sandwich the body of the unmanned aerial vehicle when the unmanned aerial vehicle is viewed in the vertical direction.
請求項1記載の無人航空機であって、
当該無人航空機は、ボディと、当該無人航空機を上下方向に見て前記ボディから外側に伸びる複数のアームと、各アームの先端に配置された回転翼とを備えたマルチコプタであり、
前記複数のアンテナはそれぞれ異なるアームに配置されていることを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 1.
The unmanned aerial vehicle is a multicopter having a body, a plurality of arms extending outward from the body when the unmanned aerial vehicle is viewed in the vertical direction, and a rotary wing arranged at the tip of each arm.
An unmanned aerial vehicle characterized in that the plurality of antennas are arranged on different arms.
請求項2または3記載の無人航空機であって、
当該無人航空機の現在位置を算出する現在位置算出手段と、
当該無人航空機の向きを検出する姿勢検出手段とを有し、
前記アンテナ設定手段は、前記地上局の位置と、当該無人航空機の現在位置と、当該無人航空機の向きより、前記複数のアンテナのうちで、前記地上局に最も近い位置にあるアンテナを算定し、算定したアンテナを前記現用アンテナとして設定することを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 2 or 3,
The current position calculation means for calculating the current position of the unmanned aerial vehicle and
It has an attitude detecting means for detecting the direction of the unmanned aerial vehicle.
The antenna setting means calculates the antenna closest to the ground station among the plurality of antennas based on the position of the ground station, the current position of the unmanned aerial vehicle, and the orientation of the unmanned aerial vehicle. An unmanned aerial vehicle characterized in that the calculated antenna is set as the working antenna.
請求項3記載の無人航空機であって、
当該無人航空機に対する前記地上局の方向を算定する地上局方向算出手段を有し、
前記アンテナ設定手段は、前記複数のアンテナのうちの、当該無人航空機のボディから地上局方向算出手段が算定した地上局の方向に最も近い方向に伸びるアームに配置されたアンテナを前記現用アンテナとして設定することを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 3,
It has a ground station direction calculation means for calculating the direction of the ground station with respect to the unmanned aerial vehicle.
The antenna setting means sets the antenna arranged on the arm extending from the body of the unmanned aerial vehicle in the direction closest to the direction of the ground station calculated by the ground station direction calculation means as the working antenna among the plurality of antennas. An unmanned aerial vehicle characterized by
請求項2または3記載の無人航空機であって、
当該無人航空機の現在位置を算出する現在位置算出手段と、
当該無人航空機を、予め設定された飛行計画に従った経路に沿って当該飛行計画に従った向きで自動航行させる制御装置とを備え、
前記アンテナ設定手段は、前記現在位置算出手段が算出した無人航空機の現在位置と、前記飛行計画とより、現時点において前記地上局に最も近い位置にあるアンテナとして算定されるアンテナを前記現用アンテナとして設定することを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 2 or 3,
The current position calculation means for calculating the current position of the unmanned aerial vehicle and
It is equipped with a control device that automatically navigates the unmanned aerial vehicle in a direction according to the flight plan along a route according to a preset flight plan.
The antenna setting means sets as the working antenna an antenna calculated as the antenna closest to the ground station at the present time based on the current position of the unmanned aerial vehicle calculated by the current position calculation means and the flight plan. An unmanned aerial vehicle characterized by
請求項1、2、3、4または5記載の無人航空機であって、
予め設定された飛行計画に従った経路上を当該無人航空機を自動航行させる制御装置を備え、
当該制御装置は、前記飛行計画に従った経路上の各区間と当該区間で無線通信を行う地上局との予め設定された対応に従って、前記無線通信手段で無線通信を行う地上局を、前記区間毎に切り替えることを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 1, 2, 3, 4 or 5.
Equipped with a control device that automatically navigates the unmanned aerial vehicle on a route according to a preset flight plan.
The control device sets the ground station that performs wireless communication by the wireless communication means according to a preset correspondence between each section on the route according to the flight plan and the ground station that performs wireless communication in the section. An unmanned aerial vehicle characterized by switching every time.
請求項6記載の無人航空機であって、
前記制御装置は、前記飛行計画に従った経路上の各区間と当該区間で無線通信を行う地上局との予め設定された対応に従って、前記無線通信手段で無線通信を行う地上局を、前記区間毎に切り替えることを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 6.
The control device sets the ground station that performs wireless communication by the wireless communication means according to a preset correspondence between each section on the route according to the flight plan and the ground station that performs wireless communication in the section. An unmanned aerial vehicle characterized by switching every time.
請求項1、2、3、4または5記載の無人航空機であって、
当該無人航空機に搭載されたカメラと、
予め設定された飛行計画に従った経路上を当該無人航空機を自動航行させる制御装置を備え、
前記飛行計画に従った経路は検査対象の架線に沿った経路部分を含み、
前記制御装置は、前記飛行計画に従って当該無人航空機を検査対象の架線に沿って当該無人航空機を自動航行させながら、前記カメラに前記検査対象の架線を撮影させ、撮影された映像を無線通信手段を介して前記地上局に無線通信で送信することを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 1, 2, 3, 4 or 5.
The camera mounted on the unmanned aerial vehicle and
Equipped with a control device that automatically navigates the unmanned aerial vehicle on a route according to a preset flight plan.
The route according to the flight plan includes the route portion along the overhead line to be inspected.
The control device causes the camera to shoot the overhead wire to be inspected while automatically navigating the unmanned aerial vehicle along the overhead wire to be inspected according to the flight plan, and uses the photographed image as a wireless communication means. An unmanned aerial vehicle characterized by wirelessly transmitting to the ground station via.
請求項6、7または8記載の無人航空機であって、
当該無人航空機に搭載されたカメラを備え、
前記飛行計画に従った経路は検査対象の架線に沿った経路部分を含み、
前記制御装置は、前記飛行計画に従って当該無人航空機を検査対象の架線に沿って当該無人航空機を自動航行させながら、前記カメラに前記検査対象の架線を撮影させ、撮影された映像を無線通信手段を介して前記地上局に無線通信で送信することを特徴とする無人航空機。
The unmanned aerial vehicle according to claim 6, 7 or 8.
Equipped with a camera mounted on the unmanned aerial vehicle
The route according to the flight plan includes the route portion along the overhead line to be inspected.
The control device causes the camera to shoot the overhead wire to be inspected while automatically navigating the unmanned aerial vehicle along the overhead wire to be inspected according to the flight plan, and uses the photographed image as a wireless communication means. An unmanned aerial vehicle characterized by wirelessly transmitting to the ground station via.
地上局と、当該地上局と無線通信を行う無人航空機とを備えた無人航空機システムであって、
前記無人航空機は、
当該無人航空機上の異なる位置に配置された複数のアンテナと、
当該無人航空機の現在位置を算出する現在位置算出手段と、
当該無人航空機を、予め設定された飛行計画に従った経路に沿って当該飛行計画に従った向きで自動航行させる制御装置と、
前記複数のアンテナのうちの一つのアンテナを現用アンテナとして設定するアンテナ設定手段と、
前記現用アンテナとして設定されたアンテナを用いて前記地上局と無線通信を行う無線通信手段とを有し、
前記地上局は、
前記無線通信を介して前記無人航空機から当該無人航空機の現在位置を取得し、取得した現在位置と前記飛行計画とが示す、前記飛行計画に従って前記無人航空機が直後に飛行することとなる区間において、前記地上局に対して当該無人航空機自身によって遮られない位置となるアンテナが、現在、前記無人航空機において現用アンテナとして設定されているアンテナと異なるアンテナであるときに、当該直後の区間において前記地上局に対して前記無人航空機自身によって遮られない位置となるアンテナの使用を前記無線通信を介して前記無人航空機に指示する遠隔指示手段を有し、
前記無人航空機のアンテナ設定手段は、前記地上局から前記無線通信を介して使用を指示されたアンテナに、現用アンテナとして設定するアンテナを切り替えることを特徴とする無人航空機システム。
An unmanned aerial vehicle system equipped with a ground station and an unmanned aerial vehicle that performs wireless communication with the ground station.
The unmanned aerial vehicle
With multiple antennas located at different locations on the drone,
The current position calculation means for calculating the current position of the unmanned aerial vehicle and
A control device that automatically navigates the unmanned aerial vehicle in a direction according to the flight plan along a route according to a preset flight plan.
An antenna setting means for setting one of the plurality of antennas as an active antenna, and
It has a wireless communication means that performs wireless communication with the ground station using an antenna set as the working antenna.
The ground station
The current position of the unmanned aerial vehicle is acquired from the unmanned aerial vehicle via the wireless communication, and in the section indicated by the acquired current position and the flight plan, the unmanned aerial vehicle will immediately fly according to the flight plan. When the antenna that is not blocked by the unmanned aerial vehicle itself with respect to the ground station is an antenna different from the antenna currently set as the active antenna in the unmanned aerial vehicle, the ground station immediately after the ground station It has a remote instruction means for instructing the unmanned aerial vehicle to use an antenna that is not blocked by the unmanned aerial vehicle itself via the wireless communication.
The unmanned aerial vehicle antenna setting means is an unmanned aerial vehicle system characterized in that the antenna to be set as a working antenna is switched to an antenna instructed to be used by the ground station via the wireless communication.
JP2019104027A 2019-06-03 2019-06-03 Pilotless aircraft and pilotless aerial system Pending JP2020196355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104027A JP2020196355A (en) 2019-06-03 2019-06-03 Pilotless aircraft and pilotless aerial system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104027A JP2020196355A (en) 2019-06-03 2019-06-03 Pilotless aircraft and pilotless aerial system

Publications (1)

Publication Number Publication Date
JP2020196355A true JP2020196355A (en) 2020-12-10

Family

ID=73647617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104027A Pending JP2020196355A (en) 2019-06-03 2019-06-03 Pilotless aircraft and pilotless aerial system

Country Status (1)

Country Link
JP (1) JP2020196355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977796A (en) * 2021-05-07 2021-06-18 北京三快在线科技有限公司 Unmanned plane
JP2022148953A (en) * 2021-03-24 2022-10-06 Jsc株式会社 Control method, program, and control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240745A (en) * 2010-05-14 2011-12-01 Chugoku Electric Power Co Inc:The Method for supporting landing of unmanned flying object and unmanned flying object
JP2018507589A (en) * 2014-12-31 2018-03-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Moving object and antenna automatic alignment method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240745A (en) * 2010-05-14 2011-12-01 Chugoku Electric Power Co Inc:The Method for supporting landing of unmanned flying object and unmanned flying object
JP2018507589A (en) * 2014-12-31 2018-03-15 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Moving object and antenna automatic alignment method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022148953A (en) * 2021-03-24 2022-10-06 Jsc株式会社 Control method, program, and control device
JP7231259B2 (en) 2021-03-24 2023-03-01 Jsc株式会社 Control method, program and control device
CN112977796A (en) * 2021-05-07 2021-06-18 北京三快在线科技有限公司 Unmanned plane

Similar Documents

Publication Publication Date Title
JP6100868B1 (en) Unmanned moving object control method and unmanned moving object monitoring device
US10669024B2 (en) Unmanned aerial vehicle, control system and method thereof, and unmanned aerial vehicle landing control method
JP6379575B2 (en) Unmanned aircraft, unmanned aircraft control method, and control system
JP6671375B2 (en) How to fly a drone
KR20200024763A (en) Systems and Methods for Interception and Countering Unmanned Aerial Vehicles (UAVs)
US8515596B2 (en) Incremental position-based guidance for a UAV
JP6055274B2 (en) Aerial photograph measuring method and aerial photograph measuring system
US11401045B2 (en) Camera ball turret having high bandwidth data transmission to external image processor
JP2018005914A (en) Autonomous movement control system, traveling unit, unmanned aircraft, and autonomous movement control method
WO2006104158A1 (en) Unmanned helicopter
EP3335204B1 (en) Portable aerial reconnaissance targeting intelligence device
JP6767802B2 (en) Unmanned aerial vehicle and its flight control method
US11287261B2 (en) Method and apparatus for controlling unmanned aerial vehicle
JP7185026B2 (en) Shock-resistant autonomous helicopter platform
US20220262263A1 (en) Unmanned aerial vehicle search and rescue systems and methods
JP2020196355A (en) Pilotless aircraft and pilotless aerial system
CN109665099A (en) Stringing camera chain and stringing method for imaging
CN109032184B (en) Flight control method and device of aircraft, terminal equipment and flight control system
JP2013107496A (en) Information collection system
JP2020071802A (en) Unmanned aircraft control system
JP6393157B2 (en) Spacecraft search and recovery system
JP2006213302A (en) Wide area/high-accuracy control system for mobile object through cellular phone network
JP7288947B1 (en) Flight control system, flight control method, and unmanned air vehicle
CN205563980U (en) Remote controller is felt to body
JP7176068B1 (en) Flight control system, flight control method, and unmanned air vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711