JP2020194741A - All-solid-state lithium secondary battery and manufacturing method of all-solid-state lithium secondary battery - Google Patents

All-solid-state lithium secondary battery and manufacturing method of all-solid-state lithium secondary battery Download PDF

Info

Publication number
JP2020194741A
JP2020194741A JP2019100678A JP2019100678A JP2020194741A JP 2020194741 A JP2020194741 A JP 2020194741A JP 2019100678 A JP2019100678 A JP 2019100678A JP 2019100678 A JP2019100678 A JP 2019100678A JP 2020194741 A JP2020194741 A JP 2020194741A
Authority
JP
Japan
Prior art keywords
current collector
electrode current
collector layer
negative electrode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019100678A
Other languages
Japanese (ja)
Other versions
JP7285696B2 (en
Inventor
佐々木 俊介
Shunsuke Sasaki
俊介 佐々木
亮由 鈴木
Akiyoshi Suzuki
亮由 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019100678A priority Critical patent/JP7285696B2/en
Publication of JP2020194741A publication Critical patent/JP2020194741A/en
Application granted granted Critical
Publication of JP7285696B2 publication Critical patent/JP7285696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To more easily manufacture an all-solid-state lithium secondary battery in which a solid electrolyte layer is interposed between a positive electrode and a lithium negative electrode.SOLUTION: A manufacturing method of an all-solid-state lithium secondary battery includes the steps of: a protective layer forming step S7 of laminating a protective layer on a lithium negative electrode except for a first connection portion of a positive electrode current collector layer and a second connection portion of a negative electrode current collector layer in a normal cell determined to be normal without a short circuit in a cell determination step S6 of an all-solid-state lithium secondary battery cell in which the positive electrode current collector layer, the negative electrode current collector layer, a positive electrode, a solid electrolyte layer, and the lithium negative electrode are laminated on a substrate; an insulation processing step S8 of insulating an abnormal cell determined to be abnormal due to a short circuit in the cell determination step S6 to form an insulated cell; and a cell parallel connection step S9 of connecting all normal cells and insulating cells in parallel by laminating a conductor layer on each of the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer of each of the cells.SELECTED DRAWING: Figure 3

Description

本発明は、正極とリチウム負極との間に固体電解質層が介設された全固体リチウム二次電池及びこの全固体リチウム二次電池を製造する全固体リチウム二次電池の製造方法に関する。 The present invention relates to an all-solid-state lithium secondary battery in which a solid electrolyte layer is interposed between a positive electrode and a lithium negative electrode, and a method for manufacturing an all-solid-state lithium secondary battery for producing the all-solid-state lithium secondary battery.

従来、この種の全固体リチウム二次電池として、基板上に離間して正極集電体層と負極集電体層とが並設され、並設方向一方側に位置する第1接続部を除く正極集電体層の部分に積層された正極上に固体電解質層が積層され、並設方向他方側に位置する第2接続部を除く負極集電体層の部分と固体電解質層とを覆うようにリチウム負極が積層された全固体リチウム二次電池セルを複数備えたものが知られている(例えば、特許文献1参照)。 Conventionally, as an all-solid-state lithium secondary battery of this type, a positive electrode current collector layer and a negative electrode current collector layer are arranged side by side on a substrate, except for a first connection portion located on one side in the parallel arrangement direction. A solid electrolyte layer is laminated on the positive electrode laminated on the positive electrode current collector layer so as to cover the negative electrode current collector layer and the solid electrolyte layer except for the second connection portion located on the other side in the parallel arrangement direction. It is known that a plurality of all-solid-state lithium secondary battery cells in which a lithium negative electrode is laminated are provided (see, for example, Patent Document 1).

上記全固体リチウム二次電池では、各層内又は層間に少なからずパーティクルが存し、このパーティクル付近の層にはピンホールや微小クラック等の欠陥が形成される。この欠陥を介して正極集電体層と負極集電体層が導通して短絡するという異常が発生するため、全固体リチウム二次電池の製造の歩留りが低下するという問題がある。そこで、特許文献1記載の全固体リチウム二次電池の製造方法では、短絡を修復する修復工程を設けている。 In the above-mentioned all-solid-state lithium secondary battery, not a few particles are present in each layer or between layers, and defects such as pinholes and microcracks are formed in the layer near the particles. Through this defect, an abnormality occurs in which the positive electrode current collector layer and the negative electrode current collector layer are conductive and short-circuited, so that there is a problem that the production yield of the all-solid-state lithium secondary battery is lowered. Therefore, in the method for manufacturing an all-solid-state lithium secondary battery described in Patent Document 1, a repair step for repairing a short circuit is provided.

然し、修復工程を設ける分、特許文献1記載の全固体リチウム二次電池の製造方法は手間のかかるものとなっており、全固体リチウム二次電池のコストに反映されるため、より簡便に製造できる全固体リチウム二次電池とその製造方法の実現が望まれる。 However, since the repair step is provided, the method for manufacturing the all-solid-state lithium secondary battery described in Patent Document 1 is time-consuming and is reflected in the cost of the all-solid-state lithium secondary battery, so that it can be manufactured more easily. It is desired to realize an all-solid-state lithium secondary battery and a manufacturing method thereof.

特開2012−138299号公報Japanese Unexamined Patent Publication No. 2012-138299

本発明は、以上の点に鑑み、より簡便に製造できる全固体リチウム二次電池及び全固体リチウム二次電池の製造方法を提供することをその課題としている。 In view of the above points, it is an object of the present invention to provide a method for manufacturing an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that can be manufactured more easily.

上記課題を解決するために、基板上に離間して正極集電体層と負極集電体層とが並設され、並設方向一方側に位置する第1接続部を除く正極集電体層の部分に積層された正極上に固体電解質層が積層され、並設方向他方側に位置する第2接続部を除く負極集電体層の部分と固体電解質層とを覆うようにリチウム負極が積層された全固体リチウム二次電池セルを複数備えた本発明の全固体リチウム二次電池は、各全固体リチウム二次電池セルが、正極集電体層の第1接続部及び負極集電体層の第2接続部の夫々に形成される導体層により並列接続され、全固体リチウム二次電池セルの一部は、電池として機能しない絶縁セルであり、残りの電池として機能する全固体リチウム二次電池セルには、正極集電体層の第1接続部及び負極集電体層の第2接続部を除いてリチウム負極を覆うように保護層が積層されていることを特徴とする。 In order to solve the above problems, the positive electrode current collector layer and the negative electrode current collector layer are arranged side by side on the substrate, and the positive electrode current collector layer excluding the first connection portion located on one side in the parallel arrangement direction. A solid electrolyte layer is laminated on the positive electrode laminated in the above portion, and a lithium negative electrode is laminated so as to cover a portion of the negative electrode current collector layer excluding the second connection portion located on the other side in the parallel arrangement direction and the solid electrolyte layer. In the all-solid-state lithium secondary battery of the present invention provided with a plurality of all-solid-state lithium secondary battery cells, each all-solid-state lithium secondary battery cell is a first connection portion of a positive electrode current collector layer and a negative electrode current collector layer. Some of the all-solid-state lithium secondary battery cells are isolated cells that do not function as batteries and are connected in parallel by the conductor layers formed in each of the second connection portions of the above, and all-solid-state lithium secondary batteries that function as the remaining batteries. The battery cell is characterized in that a protective layer is laminated so as to cover the lithium negative electrode except for the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer.

本発明の全固体リチウム二次電池によれば、電池として機能する全固体リチウム二次電池セル及び電池として機能しない絶縁セルの全てが、各セルの正極集電体層の第1接続部及び負極集電体層の第2接続部の夫々の上に積層される導体層により並列接続されるため、絶縁セルが一部存しても、正極集電体層及び負極集電体層を介して通電可能であり、全固体リチウム二次電池は電池として正常に機能する。従って、短絡した異常な全固体リチウム二次電池セルを正常なセルに修復する必要がなく、より簡便に全固体リチウム二次電池を製造できる。 According to the all-solid-state lithium secondary battery of the present invention, all of the all-solid-state lithium secondary battery cell that functions as a battery and the insulating cell that does not function as a battery are the first connection portion and the negative electrode of the positive electrode current collector layer of each cell. Since they are connected in parallel by conductor layers laminated on each of the second connection portions of the current collector layer, even if some insulating cells are present, they are connected via the positive electrode current collector layer and the negative electrode current collector layer. It can be energized and the all-solid lithium secondary battery functions normally as a battery. Therefore, it is not necessary to repair the short-circuited abnormal all-solid-state lithium secondary battery cell to a normal cell, and the all-solid-state lithium secondary battery can be manufactured more easily.

また、上記の課題を解決するために、基板上に正極集電体層を形成する正極集電体層形成工程と、負極集電体層が形成される側と反対側に位置する第1接続部を除く正極集電体層の部分に正極を積層する正極形成工程と、正極上に固体電解質層を積層する固体電解質層形成工程と、固体電解質層から離間して正極集電体層と並置されるように基板上に負極集電体層を形成する負極集電体層形成工程と、負極集電体層の正極集電体層と反対側に位置する第2接続部と正極集電体層の第1接続部との両方を除いて、正極集電体層及び負極集電体層を接続するようにリチウム負極を積層するリチウム負極形成工程と、リチウム負極が積層された全固体リチウム二次電池セルの正常・異常を短絡の有無により判定するセル判定工程とを含む本発明の全固体リチウム二次電池の製造方法は、セル判定工程で、短絡無しで正常と判定された正常セルに、正極集電体層の第1接続部及び負極集電体層の第2接続部を除いてリチウム負極を覆うように保護層を積層する保護層形成工程と、セル判定工程で、短絡有りで異常と判定された異常セルを絶縁化して絶縁セルにする絶縁化処理工程と、正常セル及び絶縁セルの全てを、各セルの正極集電体層の第1接続部及び負極集電体層の第2接続部の夫々の上に導体層を積層して並列接続するセル並列接続工程とを更に含むことを特徴とする。 Further, in order to solve the above problems, the positive electrode current collector layer forming step of forming the positive electrode current collector layer on the substrate and the first connection located on the side opposite to the side where the negative electrode current collector layer is formed are formed. A positive electrode forming step of laminating a positive electrode on a portion of the positive electrode current collector layer excluding a portion, a solid electrolyte layer forming step of laminating a solid electrolyte layer on the positive electrode, and a juxtaposition with the positive electrode current collector layer separated from the solid electrolyte layer. The negative electrode current collector layer forming step of forming the negative electrode current collector layer on the substrate, and the second connection portion and the positive electrode current collector located on the opposite side of the negative electrode current collector layer from the positive electrode current collector layer. A lithium negative electrode forming step in which a lithium negative electrode is laminated so as to connect a positive electrode current collector layer and a negative electrode current collector layer except for both the first connection portion of the layer, and an all-solid-state lithium two in which the lithium negative electrode is laminated. The method for manufacturing an all-solid-state lithium secondary battery of the present invention, which includes a cell determination step of determining the normality / abnormality of the next battery cell based on the presence or absence of a short circuit, is a normal cell determined to be normal without a short circuit in the cell determination step. In the protective layer forming step of laminating the protective layer so as to cover the lithium negative electrode and the cell determination step except for the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer, there is a short circuit. The insulation treatment step of insulating the abnormal cell determined to be abnormal to make it an insulating cell, and all of the normal cell and the insulating cell are connected to the first connection portion of the positive electrode current collector layer and the negative electrode current collector layer of each cell. It is characterized by further including a cell parallel connection step of laminating a conductor layer on each of the second connection portions and connecting them in parallel.

本発明の全固体リチウム二次電池の製造方法によれば、正常セル及び絶縁セルの全てを、各セルの正極集電体層の第1接続部及び負極集電体層の第2接続部の夫々の上に導体層を積層して並列接続するため、絶縁セルが一部存しても、正極集電体層及び負極集電体層を介して通電可能であり、全固体リチウム二次電池は電池として正常に機能する。従って、異常セルを正常なセルに修復する必要がなく、より簡便に全固体リチウム二次電池を製造できる。 According to the method for manufacturing an all-solid-state lithium secondary battery of the present invention, all of the normal cells and the insulating cells are connected to the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer of each cell. Since the conductor layers are laminated on each and connected in parallel, even if some insulating cells exist, they can be energized via the positive electrode current collector layer and the negative electrode current collector layer, and are all-solid-state lithium secondary batteries. Functions normally as a battery. Therefore, it is not necessary to repair the abnormal cell to a normal cell, and the all-solid-state lithium secondary battery can be manufactured more easily.

また、本発明の全固体リチウム二次電池の製造方法において、前記絶縁化処理工程が、異常セルをそのまま放置してリチウム負極を形成するリチウムを正極に移動させ、リチウム負極を消失させて絶縁セルにする工程であることが望ましい。これによれば、放置により短絡が進行してリチウム負極が消失するため、絶縁化のために特別な手段を講ずる必要がなく、全固体リチウム二次電池の製造が一層簡便になる。 Further, in the method for manufacturing an all-solid-state lithium secondary battery of the present invention, the insulation treatment step moves the lithium forming the lithium negative electrode to the positive electrode while leaving the abnormal cell as it is, and eliminates the lithium negative electrode to eliminate the insulating cell. It is desirable that this is the process of According to this, since the short circuit progresses and the lithium negative electrode disappears when left unattended, it is not necessary to take special measures for insulation, and the production of the all-solid-state lithium secondary battery becomes easier.

また、本発明の全固体リチウム二次電池の製造方法において、前記絶縁化処理工程が、異常セルのリチウム負極を大気と反応させて不導体にして絶縁セルにする工程であることが望ましい。これによれば、異常セルは、リチウム負極を大気に晒すだけで酸化、炭酸化等によりリチウム負極が不導体となって絶縁セルとなるため、絶縁化のために特別な手段を講ずる必要がない。このため、全固体リチウム二次電池の製造が一層簡便になる。 Further, in the method for manufacturing an all-solid-state lithium secondary battery of the present invention, it is desirable that the insulation treatment step is a step of reacting the lithium negative electrode of the abnormal cell with the atmosphere to make it non-conductor and make it an insulating cell. According to this, in the abnormal cell, the lithium negative electrode becomes a non-conductor due to oxidation, carbonation, etc. just by exposing the lithium negative electrode to the atmosphere, and becomes an insulating cell. Therefore, it is not necessary to take special measures for insulation. .. Therefore, the production of the all-solid-state lithium secondary battery becomes easier.

本発明の全固体リチウム二次電池の一実施形態を構成する、電池として機能する正常な全固体リチウム二次電池セルの一例を示す要部断面図。FIG. 5 is a cross-sectional view of a main part showing an example of a normal all-solid-state lithium secondary battery cell that functions as a battery and constitutes an embodiment of the all-solid-state lithium secondary battery of the present invention. 図1に示す正常な全固体リチウムイオン二次電池セルと絶縁セルとから構成される本発明の全固体リチウム二次電池の一実施形態を示す要部平面図。FIG. 3 is a plan view of a main part showing an embodiment of the all-solid-state lithium secondary battery of the present invention composed of a normal all-solid-state lithium ion secondary battery cell and an insulating cell shown in FIG. 本発明の全固体リチウム二次電池の製造方法の一実施形態を示す工程図。The process drawing which shows one Embodiment of the manufacturing method of the all-solid-state lithium secondary battery of this invention.

図1を参照して、電池として機能する正常な全固体リチウム二次電池セルLBC1(以下、正常セルLBC1と記すことがある)には、基板1上に離間して正極集電体層2と負極集電体層3とが並設されている。正極集電体層2は、並設方向一方側に位置する端部に接続部21を有し、負極集電体層3は、並設方向他方側に位置する端部に接続部31を有している。基板1の形状は特に限定されず、板状、シート状、フィルム状等が例示される。また、材料についても特に限定されず、ガラス、マイカ、アルミナ等が例示される。更に、基板1の厚さについても特に限定されず、1μm〜50μmの範囲が例示される。正極集電体層2及び負極集電体層3は、導電性を有し、集電体として広く用いられる材料から形成でき、モリブデン、ニッケル、クロム、アルミニウム、銅、金、チタン、バナジウム等の単体又は2種以上の合金が例示される。正極集電体層2及び負極集電体層3の厚さについても特に限定されず、1μm〜15μmの範囲が例示される。 With reference to FIG. 1, a normal all-solid-state lithium secondary battery cell LBC1 (hereinafter, may be referred to as a normal cell LBC1) that functions as a battery is separated from the substrate 1 with a positive electrode current collector layer 2. The negative electrode current collector layer 3 is arranged side by side. The positive electrode current collector layer 2 has a connecting portion 21 at an end located on one side in the parallel arrangement direction, and the negative electrode current collector layer 3 has a connecting portion 31 at an end located on the other side in the parallel arrangement direction. doing. The shape of the substrate 1 is not particularly limited, and examples thereof include a plate shape, a sheet shape, and a film shape. Further, the material is not particularly limited, and examples thereof include glass, mica, and alumina. Further, the thickness of the substrate 1 is not particularly limited, and a range of 1 μm to 50 μm is exemplified. The positive electrode current collector layer 2 and the negative electrode current collector layer 3 have conductivity and can be formed from a material widely used as a current collector, and can be made of molybdenum, nickel, chromium, aluminum, copper, gold, titanium, vanadium, etc. A simple substance or two or more kinds of alloys are exemplified. The thickness of the positive electrode current collector layer 2 and the negative electrode current collector layer 3 is also not particularly limited, and the range of 1 μm to 15 μm is exemplified.

また、正常な全固体リチウム二次電池セルLBC1には、接続部21を除く正極集電体層2の部分に正極4が積層され、正極4上に固体電解質層5が積層されている。正極4の材料は、リチウムイオンの吸蔵及び放出が可能である限り特に限定されない。例えば、LiCoO,LiNiO,LiMn,LiMn,LiFePO,TiS,LiM1M2(M1,M2は遷移金属、x,y,zは任意の実数)等を採用できる。固体電解質層5を形成する固体電解質については特に限定されず、LiPO,LiS,LiPO,LiPON等の無機固定電解質が例示される。正極4及び固体電解質層5の厚さについても特に限定されず、1μm〜3μmの範囲が例示される。 Further, in the normal all-solid-state lithium secondary battery cell LBC1, the positive electrode 4 is laminated on the portion of the positive electrode current collector layer 2 excluding the connection portion 21, and the solid electrolyte layer 5 is laminated on the positive electrode 4. The material of the positive electrode 4 is not particularly limited as long as it can occlude and release lithium ions. For example, can be employed LiCoO 2, LiNiO 2, LiMn 2 , LiMn 2 O 4, LiFePO 4, TiS 2, LiM1 x M2 y O z (M1, M2 is a transition metal, x, y, z are arbitrary real number) such as .. The solid electrolyte forming the solid electrolyte layer 5 is not particularly limited, and inorganic fixed electrolytes such as Li 3 PO 4 , Li 2 S, Li 3 PO 4 , and LiPON are exemplified. The thickness of the positive electrode 4 and the solid electrolyte layer 5 is also not particularly limited, and the range of 1 μm to 3 μm is exemplified.

更に、正常な全固体リチウム二次電池セルLBC1には、接続部31を除く負極集電体層3の部分と固体電解質層5とを覆うようにリチウム負極6が積層されると共に、正極集電体層2の第1接続部21及び負極集電体層3の第2接続部31を除いてリチウム負極6を覆うように保護層7が積層されている。リチウム負極6の厚さについては特に限定されず、1μm〜3μm程度が例示される。保護層7を形成する材料についても特に限定されず、ポリテトラフルオロエチレン、シリカ等が例示される。基板1の表面から保護層7の表面までの厚さとしては、15μm程度が例示される。 Further, in the normal all-solid-state lithium secondary battery cell LBC1, the lithium negative electrode 6 is laminated so as to cover the portion of the negative electrode current collector layer 3 excluding the connection portion 31 and the solid electrolyte layer 5, and the positive electrode current is collected. The protective layer 7 is laminated so as to cover the lithium negative electrode 6 except for the first connection portion 21 of the body layer 2 and the second connection portion 31 of the negative electrode current collector layer 3. The thickness of the lithium negative electrode 6 is not particularly limited, and is exemplified by about 1 μm to 3 μm. The material forming the protective layer 7 is not particularly limited, and examples thereof include polytetrafluoroethylene and silica. The thickness from the surface of the substrate 1 to the surface of the protective layer 7 is exemplified by about 15 μm.

各層2,3,4,5,6,7は、材料によって異なるが、スパッタリング法等のPVDの他、CVD等のドライコーティングによって形成可能である。また、各層2,3,4,5,6,7は、スクリーン印刷、オフセット印刷、インクジェット印刷等の後、乾燥するウェットコーティングによっても形成可能である。この場合、固体電解質層5を形成する固体電解質として、上記の他に、ポリエチレンオキシド、ポリプロピレンオキシド、ポリプロピレンオキシド誘導体等の高分子材料中にLiPE,LiClO等のリチウム塩からなる溶質を含有させた混合物や、上記溶質を有機溶媒に溶解させた非水電解質を含浸させたゲル状のもの等も採用可能である。また、各層2,3,4,5,6,7の形成に際し、マスキング及びその除去を適宜行う。 Each layer 2, 3, 4, 5, 6, 7 can be formed by PVD such as a sputtering method or dry coating such as CVD, although it differs depending on the material. Further, each layer 2, 3, 4, 5, 6, 7 can also be formed by a wet coating that is dried after screen printing, offset printing, inkjet printing, or the like. In this case, as the solid electrolyte forming the solid electrolyte layer 5, in addition to the above, a solute composed of lithium salts such as LiPE 6 and LiClO 4 is contained in a polymer material such as polyethylene oxide, polypropylene oxide and polypropylene oxide derivative. A mixture obtained from the above, a gel-like product impregnated with a non-aqueous electrolyte obtained by dissolving the above solute in an organic solvent, or the like can also be adopted. Further, when forming each of the layers 2, 3, 4, 5, 6 and 7, masking and removal thereof are appropriately performed.

また、全固体リチウム二次電池セルの正常・異常は、短絡の有無によって判定でき、短絡の有無は、正極集電体層2と負極集電体層3との間の電圧測定によって行える。正常な全固体リチウム二次電池セルの場合、測定される電圧は、通常、2〜3V程度である。この電圧範囲が測定された場合、短絡無しの正常セルLBC1であると判定し、上記電圧範囲を下回る場合、短絡有りの異常セルであると判定する。尚、上記電圧範囲は、特に限定的ではなく、固体電解質層5を形成する固体電解質や、正極4を形成する材料等によって異なる。 Further, the normality / abnormality of the all-solid-state lithium secondary battery cell can be determined by the presence or absence of a short circuit, and the presence or absence of a short circuit can be determined by measuring the voltage between the positive electrode current collector layer 2 and the negative electrode current collector layer 3. In the case of a normal all-solid-state lithium secondary battery cell, the measured voltage is usually about 2 to 3 V. When this voltage range is measured, it is determined that the cell is a normal cell LBC1 without a short circuit, and when it is below the voltage range, it is determined that the cell is an abnormal cell with a short circuit. The voltage range is not particularly limited, and varies depending on the solid electrolyte forming the solid electrolyte layer 5, the material forming the positive electrode 4, and the like.

図2を参照して、図1に示す正常な全固体リチウム二次電池セルLBC1を含む、本発明の全固体リチウム二次電池の一実施形態を説明する。上記の如く、各層2,3,4,5,6内又は層2,3,4,5,6間にパーティクルが存することに起因する短絡が発生して異常セルが製造される場合がある。そこで、本実施形態の全固体リチウム二次電池LBでは、異常セルを正常セルLBC1に修復することなく絶縁させて電池として機能しない絶縁セルLBC2として、正常な全固体リチウム二次電池セルLBC1と共に組み込む。即ち、正常な全固体リチウム二次電池セルLBC1及び絶縁セルLBC2の全てが、各セルLBC1,LBC2の正極集電体層2及び負極集電体層3の、図1に示す第1接続部21及び第2接続部31の夫々の上に積層される導体層8,9によって並列接続される。導体層8,9を形成する材料については、導電性を有する限り特に限定されず、銅、ニッケル等の単体又は合金等が例示される。 An embodiment of the all-solid-state lithium secondary battery of the present invention including the normal all-solid-state lithium secondary battery cell LBC1 shown in FIG. 1 will be described with reference to FIG. As described above, an abnormal cell may be manufactured due to a short circuit caused by the presence of particles in each of the layers 2, 3, 4, 5, 6 or between the layers 2, 3, 4, 5, 6. Therefore, in the all-solid-state lithium secondary battery LB of the present embodiment, the abnormal cell is insulated into the normal cell LBC1 without being repaired and incorporated as an insulating cell LBC2 that does not function as a battery together with the normal all-solid-state lithium secondary battery cell LBC1. .. That is, all of the normal all-solid-state lithium secondary battery cell LBC1 and the insulating cell LBC2 are the first connection portions 21 shown in FIG. 1 of the positive electrode current collector layer 2 and the negative electrode current collector layer 3 of the cells LBC1 and LBC2. And the conductor layers 8 and 9 laminated on each of the second connecting portions 31 are connected in parallel. The material forming the conductor layers 8 and 9 is not particularly limited as long as it has conductivity, and examples thereof include simple substances such as copper and nickel, or alloys.

また、全固体リチウム二次電池LBでは、絶縁セルLBC2は、短絡の発生により絶縁して電池として機能しないセルであるため、絶縁セルLBC2には保護層7は設けず、正常セルLBC1のみに保護層7を積層することができる。上記の如く、本実施形態の全固体リチウム二次電池LBでは、正常な全固体リチウム二次電池セルLBC1及び絶縁セルLBC2の全てが、各セルLBC1,LBC2の正極集電体層2の第1接続部21及び負極集電体層3の第2接続部31の夫々の上に積層される導体層8,9によって並列接続されるため、絶縁セルLBC2が一部存しても、正極集電体層2及び負極集電体層3を介して通電可能であり、全固体リチウム二次電池LBは電池として正常に機能する。従って、異常セルを正常セルLBC1に修復する必要がなく、全固体リチウム二次電池LBは、要求される電力を供給することができ、しかも製造がより簡便なものである。 Further, in the all-solid-state lithium secondary battery LB, since the insulating cell LBC2 is a cell that is insulated due to the occurrence of a short circuit and does not function as a battery, the insulating cell LBC2 is not provided with the protective layer 7 and is protected only by the normal cell LBC1. Layers 7 can be laminated. As described above, in the all-solid-state lithium secondary battery LB of the present embodiment, all of the normal all-solid-state lithium secondary battery cell LBC1 and the insulating cell LBC2 are the first of the positive electrode current collector layer 2 of each cell LBC1 and LBC2. Since the conductor layers 8 and 9 are laminated in parallel on the connection portion 21 and the second connection portion 31 of the negative electrode current collector layer 3, even if a part of the insulating cell LBC2 exists, the positive electrode current collection It can be energized through the body layer 2 and the negative electrode current collector layer 3, and the all-solid-state lithium secondary battery LB functions normally as a battery. Therefore, it is not necessary to repair the abnormal cell to the normal cell LBC1, and the all-solid-state lithium secondary battery LB can supply the required power and is simpler to manufacture.

次に、図1〜3を参照して、本発明の全固体リチウム二次電池の製造方法の一実施形態を説明する。本実施形態では、まず、正極集電体層形成工程S1で、基板1上に正極集電体層2を形成し、次いで、正極形成工程S2で、負極集電体層3が形成される側と反対側に位置する第1接続部21を除く正極集電体層2の部分に正極4を積層する。この後、固体電解質層形成工程S3で、正極4上に固体電解質層5を積層し、次いで、負極集電体層形成工程S4で、固体電解質層5から離間して正極集電体層2と並置されるように基板1上に負極集電体層3を形成する。この後、リチウム負極形成工程S5で、負極集電体層3の正極集電体層2と反対側に位置する第2接続部31と正極集電体層2の第1接続部21との両方を除いて、正極集電体層2及び負極集電体層3を接続するようにリチウム負極6を積層する。次いで、セル判定工程S6で、リチウム負極6が積層された全固体リチウム二次電池セルの正常・異常を判定する。セル判定工程S6での全固体リチウム二次電池セルの正常・異常の判定は、上記の如く、短絡の有無により行う。 Next, an embodiment of the method for manufacturing an all-solid-state lithium secondary battery of the present invention will be described with reference to FIGS. In the present embodiment, first, the positive electrode current collector layer 2 is formed on the substrate 1 in the positive electrode current collector layer forming step S1, and then the negative electrode current collector layer 3 is formed in the positive electrode forming step S2. The positive electrode 4 is laminated on the portion of the positive electrode current collector layer 2 excluding the first connection portion 21 located on the opposite side to the above. After that, in the solid electrolyte layer forming step S3, the solid electrolyte layer 5 is laminated on the positive electrode 4, and then in the negative electrode current collector layer forming step S4, it is separated from the solid electrolyte layer 5 and becomes the positive electrode current collector layer 2. The negative electrode current collector layer 3 is formed on the substrate 1 so as to be juxtaposed. After that, in the lithium negative electrode forming step S5, both the second connection portion 31 located on the opposite side of the negative electrode current collector layer 3 from the positive electrode current collector layer 2 and the first connection portion 21 of the positive electrode current collector layer 2 The lithium negative electrode 6 is laminated so as to connect the positive electrode current collector layer 2 and the negative electrode current collector layer 3. Next, in the cell determination step S6, the normality / abnormality of the all-solid-state lithium secondary battery cell on which the lithium negative electrode 6 is laminated is determined. The normal / abnormal determination of the all-solid-state lithium secondary battery cell in the cell determination step S6 is performed based on the presence or absence of a short circuit as described above.

本実施形態では、セル判定工程S6で、短絡無しで正常と判定された正常セルLBC1に対しては、保護層形成工程S7で、正極集電体層2の第1接続部21及び負極集電体層3の第2接続部31を除いてリチウム負極6を覆うように保護層7を積層する。一方、セル判定工程S6で、短絡有りで異常と判定された異常セルに対しては、絶縁化処理工程S8で、絶縁化する処理を行い、絶縁セルLBC2にする。上記の如く、正極集電体層2と負極集電体層3との間の電圧測定によって所定の電圧範囲(通常、2〜3V程度)を下回る場合、短絡が発生していると考えられるため、絶縁化処理としては、異常セルをそのままで放置してリチウム負極6を形成するリチウムを正極4に移動させ、リチウム負極6を消失させて絶縁セルLBC2にする処理が例示される。放置時間は、セルの大きさ、固体電解質の材質等によって異なるが、24時間程度が例示される。この場合、放置により短絡が進行してリチウム負極6が消失するため、絶縁化のために特別な手段を講ずる必要がない。 In the present embodiment, for the normal cell LBC1 which is determined to be normal without a short circuit in the cell determination step S6, the first connection portion 21 of the positive electrode current collector layer 2 and the negative electrode current collector are collected in the protective layer forming step S7. The protective layer 7 is laminated so as to cover the lithium negative electrode 6 except for the second connection portion 31 of the body layer 3. On the other hand, an abnormal cell determined to be abnormal due to a short circuit in the cell determination step S6 is subjected to an insulation treatment in the insulation treatment step S8 to obtain an insulating cell LBC2. As described above, when the voltage measurement between the positive electrode current collector layer 2 and the negative electrode current collector layer 3 falls below a predetermined voltage range (usually about 2 to 3 V), it is considered that a short circuit has occurred. As the insulation treatment, a treatment in which the abnormal cell is left as it is to move the lithium forming the lithium negative electrode 6 to the positive electrode 4 and the lithium negative electrode 6 disappears to form the insulating cell LBC2 is exemplified. The leaving time varies depending on the size of the cell, the material of the solid electrolyte, and the like, but is exemplified by about 24 hours. In this case, since the short circuit proceeds and the lithium negative electrode 6 disappears when left unattended, it is not necessary to take special measures for insulation.

また、絶縁化処理としては、異常セルを大気に晒し、リチウム負極6を形成するリチウムを大気中の酸素や二酸化炭素と反応させて酸化リチウムや炭酸リチウムにして不導体にして絶縁セルLBC2にする処理も例示される。この場合、異常セルは、リチウム負極6を大気に晒すだけで酸化、炭酸化等によりリチウム負極6が不導体となって絶縁セルLBC2となるため、絶縁化のために特別な手段を講ずる必要がない。 Further, as an insulation treatment, the abnormal cell is exposed to the atmosphere, and the lithium forming the lithium negative electrode 6 is reacted with oxygen and carbon dioxide in the atmosphere to form lithium oxide and lithium carbonate, which are made non-conductors and become an insulating cell LBC2. Processing is also exemplified. In this case, the abnormal cell becomes an insulating cell LBC2 because the lithium negative electrode 6 becomes a non-conductor due to oxidation, carbonation, etc. just by exposing the lithium negative electrode 6 to the atmosphere. Therefore, it is necessary to take special measures for insulation. Absent.

そして、本実施形態では、セル並列接続工程S9で、正常セルLBC1と絶縁セルLBC2の全てを、各セルLBC1,LBC2の正極集電体層2の第1接続部21及び負極集電体層3の第2接続部31の夫々の上に導体層8,9を積層して並列接続し、全固体リチウム二次電池LBを製造する。 Then, in the present embodiment, in the cell parallel connection step S9, all of the normal cell LBC1 and the insulating cell LBC2 are connected to the first connection portion 21 of the positive electrode current collector layer 2 and the negative electrode current collector layer 3 of each cell LBC1 and LBC2. Conductor layers 8 and 9 are laminated on each of the second connection portions 31 and connected in parallel to manufacture an all-solid-state lithium secondary battery LB.

上記の如く、本実施形態では、正常セルLBC1及び絶縁セルLBC2の全てを、各セルLBC1,LBC2の正極集電体層2の第1接続部21及び負極集電体層3の第2接続部31の夫々の上に導体層8,9を積層して並列接続するため、絶縁セルLBC2が一部存しても、正極集電体層2及び負極集電体層3を介して通電可能であり、全固体リチウム二次電池LBは電池として正常に機能する。従って、絶縁セルLBC2を正常セルLBC1に修復する必要がなく、より簡便に全固体リチウム二次電池LBを製造できる。そして、異常セルの放置又はリチウム負極6を大気に晒すかのいずれの絶縁化処理も、絶縁化のために特別な手段を講ずる必要がないため、全固体リチウム二次電池LBの製造が一層簡便になる。 As described above, in the present embodiment, all of the normal cell LBC1 and the insulating cell LBC2 are connected to the first connection portion 21 of the positive electrode current collector layer 2 and the second connection portion of the negative electrode current collector layer 3 of each cell LBC1 and LBC2. Since the conductor layers 8 and 9 are laminated on each of the 31 and connected in parallel, even if a part of the insulating cell LBC2 exists, it can be energized via the positive electrode current collector layer 2 and the negative electrode current collector layer 3. Yes, the all-solid-state lithium secondary battery LB functions normally as a battery. Therefore, it is not necessary to repair the insulating cell LBC2 to the normal cell LBC1, and the all-solid-state lithium secondary battery LB can be manufactured more easily. Further, since it is not necessary to take any special measures for insulation in either the insulation treatment of leaving the abnormal cell or exposing the lithium negative electrode 6 to the atmosphere, the production of the all-solid-state lithium secondary battery LB is more convenient. become.

尚、各層2,3,4,5,6,7は、材料によって異なるが、スパッタリング法等のPVDの他、CVD等のドライコーティングによって形成可能である。また、各層2,3,4,5,6,7の形成に際してマスキングやその除去を適宜行う。尚、各層2,3,4,5,6,7は、スクリーン印刷、オフセット印刷、インクジェット印刷等の後、乾燥するウェットコーティングによっても形成可能である。 Although the layers 2, 3, 4, 5, 6 and 7 differ depending on the material, they can be formed by PVD such as a sputtering method or dry coating such as CVD. In addition, masking and removal thereof are appropriately performed when forming each of the layers 2, 3, 4, 5, 6 and 7. Each layer 2, 3, 4, 5, 6, 7 can also be formed by a wet coating that dries after screen printing, offset printing, inkjet printing, or the like.

以上、本発明を一実施形態に関して説明したが、本発明は上記実施形態に限定されない。例えば、全固体リチウム二次電池セルの大きさや形状等は、設置される部位によって適宜なものとすることができる。また、異常セルに対する絶縁化処理の処理条件もセルの大きさや短絡の程度等に応じて適宜変更することができ、更に、処理方法は上記実施形態に限定されることはなく、電池として機能しなくなる処理であれば他の処理方法も採用可能である。 Although the present invention has been described above with respect to one embodiment, the present invention is not limited to the above embodiment. For example, the size and shape of the all-solid-state lithium secondary battery cell can be appropriately adjusted depending on the installation site. Further, the processing conditions for the insulation treatment for the abnormal cell can be appropriately changed according to the size of the cell, the degree of short circuit, and the like, and the treatment method is not limited to the above embodiment and functions as a battery. Other processing methods can be adopted as long as the processing disappears.

LB…全固体リチウム二次電池、LBC1…正常な全固体リチウム二次電池セル(正常セル)、LBC2…絶縁セル、1…基板、2…正極集電体層、21…第1接続部、3…負極集電体層、31…第2接続部、4…正極、5…固体電解質層、6…リチウム負極、7…保護層、8,9…導体層、S1…正極集電体層形成工程、S2…正極形成工程、S3…固体電解質層形成工程、S4…負極集電体層形成工程、S5…リチウム負極形成工程、S6…セル判定工程、S7…保護層形成工程、S8…絶縁化処理工程、S9…セル並列接続工程。 LB ... All-solid-state lithium secondary battery, LBC1 ... Normal all-solid-state lithium secondary battery cell (normal cell), LBC2 ... Insulation cell, 1 ... Substrate, 2 ... Positive electrode current collector layer, 21 ... First connection, 3 ... Negative electrode current collector layer, 31 ... Second connection, 4 ... Positive electrode, 5 ... Solid electrolyte layer, 6 ... Lithium negative electrode, 7 ... Protective layer, 8, 9 ... Conductor layer, S1 ... Positive electrode current collector layer forming step , S2 ... Positive electrode forming step, S3 ... Solid electrolyte layer forming step, S4 ... Negative electrode current collector layer forming step, S5 ... Lithium negative electrode forming step, S6 ... Cell determination step, S7 ... Protective layer forming step, S8 ... Insulation treatment Step, S9 ... Cell parallel connection step.

Claims (4)

基板上に離間して正極集電体層と負極集電体層とが並設され、並設方向一方側に位置する第1接続部を除く正極集電体層の部分に積層された正極上に固体電解質層が積層され、並設方向他方側に位置する第2接続部を除く負極集電体層の部分と固体電解質層とを覆うようにリチウム負極が積層された全固体リチウム二次電池セルを複数備えた全固体リチウム二次電池において、
各全固体リチウム二次電池セルが、正極集電体層の第1接続部及び負極集電体層の第2接続部の夫々に形成される導体層により並列接続され、
全固体リチウム二次電池セルの一部は、電池として機能しない絶縁セルであり、
残りの電池として機能する全固体リチウム二次電池セルには、正極集電体層の第1接続部及び負極集電体層の第2接続部を除いてリチウム負極を覆うように保護層が積層されていることを特徴とする全固体リチウム二次電池。
The positive electrode current collector layer and the negative electrode current collector layer are arranged side by side on the substrate, and are laminated on the positive electrode current collector layer portion excluding the first connection portion located on one side in the parallel arrangement direction. An all-solid lithium secondary battery in which a solid electrolyte layer is laminated and a lithium negative electrode is laminated so as to cover a portion of the negative electrode current collector layer excluding the second connection portion located on the other side in the parallel arrangement direction and the solid electrolyte layer. In an all-solid-state lithium secondary battery equipped with multiple cells,
Each all-solid-state lithium secondary battery cell is connected in parallel by a conductor layer formed in each of the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer.
Some of the all-solid-state lithium secondary battery cells are insulated cells that do not function as batteries.
In the all-solid-state lithium secondary battery cell that functions as the remaining battery, a protective layer is laminated so as to cover the lithium negative electrode except for the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer. An all-solid-state lithium secondary battery characterized by being used.
基板上に正極集電体層を形成する正極集電体層形成工程と、負極集電体層が形成される側と反対側に位置する第1接続部を除く正極集電体層の部分に正極を積層する正極形成工程と、正極上に固体電解質層を積層する固体電解質層形成工程と、固体電解質層から離間して正極集電体層と並置されるように基板上に負極集電体層を形成する負極集電体層形成工程と、負極集電体層の正極集電体層と反対側に位置する第2接続部と正極集電体層の第1接続部との両方を除いて、正極集電体層及び負極集電体層を接続するようにリチウム負極を積層するリチウム負極形成工程と、リチウム負極が積層された全固体リチウム二次電池セルの正常・異常を短絡の有無により判定するセル判定工程とを含む全固体リチウム二次電池の製造方法において、
セル判定工程で、短絡無しで正常と判定された正常セルに、正極集電体層の第1接続部及び負極集電体層の第2接続部を除いてリチウム負極を覆うように保護層を積層する保護層形成工程と、
セル判定工程で、短絡有りで異常と判定された異常セルを絶縁化して絶縁セルにする絶縁化処理工程と、
正常セル及び絶縁セルの全てを、各セルの正極集電体層の第1接続部及び負極集電体層の第2接続部の夫々の上に導体層を積層して並列接続するセル並列接続工程とを更に含むことを特徴とする全固体リチウム二次電池の製造方法。
In the positive electrode current collector layer forming step of forming the positive electrode current collector layer on the substrate and the portion of the positive electrode current collector layer excluding the first connection portion located on the side opposite to the side where the negative electrode current collector layer is formed. A positive electrode forming step of laminating the positive electrode, a solid electrolyte layer forming step of laminating a solid electrolyte layer on the positive electrode, and a negative electrode current collector on the substrate so as to be separated from the solid electrolyte layer and juxtaposed with the positive electrode current collector layer. Except for both the negative electrode current collector layer forming step of forming the layer and both the second connection portion of the negative electrode current collector layer located on the opposite side of the positive electrode current collector layer and the first connection portion of the positive electrode current collector layer. The presence or absence of a short circuit between the lithium negative electrode forming step in which the lithium negative electrode is laminated so as to connect the positive electrode current collector layer and the negative electrode current collector layer and the normality / abnormality of the all-solid-state lithium secondary battery cell in which the lithium negative electrode is laminated. In the method for manufacturing an all-solid-state lithium secondary battery, which includes a cell determination step of determining by
In the cell determination step, a protective layer is applied to a normal cell determined to be normal without a short circuit so as to cover the lithium negative electrode except for the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer. Protective layer forming process to be laminated and
In the cell determination process, an insulation treatment process that insulates an abnormal cell that is determined to be abnormal due to a short circuit into an insulated cell,
Cell parallel connection in which all normal cells and insulating cells are connected in parallel by laminating a conductor layer on each of the first connection portion of the positive electrode current collector layer and the second connection portion of the negative electrode current collector layer of each cell. A method for manufacturing an all-solid-state lithium secondary battery, which further comprises a step.
前記絶縁化処理工程が、異常セルをそのまま放置してリチウム負極を形成するリチウムを正極に移動させ、リチウム負極を消失させて絶縁セルにする工程であることを特徴とする請求項2記載の全固体リチウム二次電池の製造方法。 The whole according to claim 2, wherein the insulation treatment step is a step of leaving the abnormal cell as it is, moving lithium forming a lithium negative electrode to the positive electrode, and eliminating the lithium negative electrode to form an insulated cell. A method for manufacturing a solid-state lithium secondary battery. 前記絶縁化処理工程が、異常セルのリチウム負極を大気と反応させて不導体にして絶縁セルにする工程であることを特徴とする請求項2記載の全固体リチウム二次電池の製造方法。 The method for manufacturing an all-solid-state lithium secondary battery according to claim 2, wherein the insulation treatment step is a step of reacting the lithium negative electrode of the abnormal cell with the atmosphere to make it non-conductor and form an insulating cell.
JP2019100678A 2019-05-29 2019-05-29 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery Active JP7285696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019100678A JP7285696B2 (en) 2019-05-29 2019-05-29 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019100678A JP7285696B2 (en) 2019-05-29 2019-05-29 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2020194741A true JP2020194741A (en) 2020-12-03
JP7285696B2 JP7285696B2 (en) 2023-06-02

Family

ID=73546515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019100678A Active JP7285696B2 (en) 2019-05-29 2019-05-29 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP7285696B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022250A (en) * 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd All solid battery
JP2012138299A (en) * 2010-12-27 2012-07-19 Ulvac Japan Ltd Method for manufacturing all-solid lithium secondary battery, and method for inspecting all-solid lithium secondary battery
JP2012138298A (en) * 2010-12-27 2012-07-19 Ulvac Japan Ltd Method for manufacturing thin film lithium secondary battery, and thin film lithium secondary battery
JP2017027770A (en) * 2015-07-22 2017-02-02 トヨタ自動車株式会社 Inspection method for all-solid secondary battery and method of manufacturing all-solid secondary battery using the inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022250A (en) * 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd All solid battery
JP2012138299A (en) * 2010-12-27 2012-07-19 Ulvac Japan Ltd Method for manufacturing all-solid lithium secondary battery, and method for inspecting all-solid lithium secondary battery
JP2012138298A (en) * 2010-12-27 2012-07-19 Ulvac Japan Ltd Method for manufacturing thin film lithium secondary battery, and thin film lithium secondary battery
JP2017027770A (en) * 2015-07-22 2017-02-02 トヨタ自動車株式会社 Inspection method for all-solid secondary battery and method of manufacturing all-solid secondary battery using the inspection method

Also Published As

Publication number Publication date
JP7285696B2 (en) 2023-06-02

Similar Documents

Publication Publication Date Title
JP6608862B2 (en) Lithium battery using nanoporous separator layer
KR101750145B1 (en) Method for producing all-solid-state battery, and all-solid-state battery
US9083057B2 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
KR20140096332A (en) Method for manufacturing all-solid-state thin-film batteries
TW201603359A (en) Forming an interconnection for solid-state batteries
KR101558250B1 (en) Fixation Device for Checking Defect of Electrode Assembly and Method of Checking the Same
US9755271B2 (en) Cell and preparation method thereof
US9318774B2 (en) Substrate for solid-state battery
KR20170015322A (en) Electrical energy storage element, method and appratus for producing electrical energy storage element
JP6638692B2 (en) Stacked battery
KR20170140440A (en) Thermography and Thin Film Battery Manufacturing
JP2016072026A (en) Machine for manufacturing power storage device and method for manufacturing power storage device
CN112186197A (en) Positive current collector, positive pole piece and electrochemical device
CN112186196A (en) Positive current collector, positive pole piece and electrochemical device
KR20200059563A (en) Method for testing pressure short defect by jig pressing
CN112186194B (en) Positive electrode current collector, positive electrode sheet and electrochemical device
JP2019153431A (en) Laminate and secondary battery
US20240106018A1 (en) Battery cell including electrolyte ion concentration measurement unit and method for measuring electrolyte concentration using same
CN112186192A (en) Negative current collector, negative pole piece and electrochemical device
US20160028048A1 (en) Lithium battery and method of manufacturing the same
US11137450B2 (en) Method of determining a state or a state change of an electrochemical energy storage device and energy storage device prepared therefor
JP2012160301A (en) Measuring method and measuring apparatus of electrode sheet for battery
JP7285696B2 (en) All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery
KR101846748B1 (en) Method for continuous preparation of positive electrode for all solid battery
CN115443565A (en) Method, test bench and production line for detecting soft short circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230523

R150 Certificate of patent or registration of utility model

Ref document number: 7285696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150