JP2020194337A - Detector and machine tool - Google Patents

Detector and machine tool Download PDF

Info

Publication number
JP2020194337A
JP2020194337A JP2019099422A JP2019099422A JP2020194337A JP 2020194337 A JP2020194337 A JP 2020194337A JP 2019099422 A JP2019099422 A JP 2019099422A JP 2019099422 A JP2019099422 A JP 2019099422A JP 2020194337 A JP2020194337 A JP 2020194337A
Authority
JP
Japan
Prior art keywords
tubular body
detector
detection unit
opening
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019099422A
Other languages
Japanese (ja)
Other versions
JP6686213B1 (en
Inventor
真也 森嶋
Shinya Morishima
真也 森嶋
岡田 学
Manabu Okada
学 岡田
正彦 一宇
Masahiko Ichiu
正彦 一宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hatsuta Seisakusho Co Ltd
Original Assignee
Hatsuta Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hatsuta Seisakusho Co Ltd filed Critical Hatsuta Seisakusho Co Ltd
Priority to JP2019099422A priority Critical patent/JP6686213B1/en
Application granted granted Critical
Publication of JP6686213B1 publication Critical patent/JP6686213B1/en
Publication of JP2020194337A publication Critical patent/JP2020194337A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

To provide a detector exhibiting an excellent liquid-tightness property, and a machine tool provided with the detector.SOLUTION: One detector 100 according to the present invention, that has a bottom part whose part comprises an opening 12. The detector comprises a liquid-tightness cylindrical body 10 made of metal to store a detection part 90 for detecting at least one wavelength of an electromagnetic wave by using the opening 12, a window part 30 for passing the foregoing wavelength, that liquid-tightly seals the opening 12 via a seal material 72, and an insulation material 40 arranged between the cylindrical body 10 and the detection part 90 in such a manner that the detection part 90 is not electrically connected to the cylindrical body 10.SELECTED DRAWING: Figure 3A

Description

本発明は、検出器及び工作機械に関するものである。 The present invention relates to a detector and a machine tool.

従来から、赤外線(IR)、可視光線、及び紫外線(UV)を含む各波長の電磁波を検出する検出器(「検知器」又は「感知器」とも呼ばれる)が様々な産業分野のみならず、日常生活にも広く利用されている。例えば、建物への不審者の侵入監視するシステムや、各種の工作機械を含む産業機器、あるいは、日常生活には欠かせないモバイル機器や電子機器にも、上述の検知器が活躍している。 Conventionally, detectors (also called "detectors" or "sensors") that detect electromagnetic waves of each wavelength including infrared rays (IR), visible rays, and ultraviolet rays (UV) have been used not only in various industrial fields but also in daily life. It is also widely used in daily life. For example, the above-mentioned detectors are also used in systems for monitoring the intrusion of suspicious persons into buildings, industrial equipment including various machine tools, and mobile equipment and electronic equipment indispensable for daily life.

本願出願人が製造・販売する消火機器及び消火設備の分野においては、火災による炎を、赤外線センサーを用いて検知する火災検出器(「炎感知器」とも呼ばれる)が、検出器の代表例の一つである。この火災検出器の利用に当たっては、設置される環境によっても異なるが、周囲に存在する水(水分を含む)、ガス、塵、埃等の、火災感知器の内部へ侵入し得る物質から影響を受けない、又はできる限り軽減することが求められる。 In the field of fire extinguishing equipment and fire extinguishing equipment manufactured and sold by the applicant of the present application, a fire detector (also called a "flame detector") that detects a flame caused by a fire using an infrared sensor is a typical example of the detector. It is one. When using this fire detector, it depends on the environment in which it is installed, but it is affected by substances that can enter the inside of the fire detector, such as water (including water), gas, dust, and dust that exist in the surrounding area. It is required not to receive it or to reduce it as much as possible.

これまでに、水、ゴミ、又は腐食性ガス等が端子部から火災感知器の内部に侵入することを防ぐための火災感知器の密閉構造が開示されている(特許文献1)。 So far, a sealed structure of a fire detector for preventing water, dust, corrosive gas, etc. from entering the inside of the fire detector from a terminal portion has been disclosed (Patent Document 1).

特開2002−123875号公報JP-A-2002-123875

上述のとおり、産業機器又は日常生活で用いる様々な機器において利用される各種の検出器は、特に、水に接触又は浸漬することによって機能低下等の影響を受ける事態に対する配慮が求められる。そして、産業機器の中でも、多量のオイルミスト及び/又は水が存在する処理室を有する工作機械は、その過酷とも言える雰囲気に曝されても各波長の電磁波を正確に検出することができる検出器を設置することが強く求められる。 As described above, various detectors used in industrial equipment or various equipment used in daily life are particularly required to be considered in a situation where they are affected by functional deterioration or the like due to contact with or immersion in water. Among industrial equipment, a machine tool having a processing chamber in which a large amount of oil mist and / or water exists is a detector capable of accurately detecting electromagnetic waves of each wavelength even when exposed to the harsh atmosphere. Is strongly required to install.

特許文献1が開示する密閉構造においては、火災感知器が収容される本体ケースにおける、該感知器(受光素子)の受光側とは反対側の気密性又は液密性を高めるための工夫が施されている。しかしながら、火災を検出する検出器の受光側を含めて、検出器の外周全体について確度高く液密性を特に高めた密閉構造の実現に向けては、未だ研究、開発の余地が多く残されている。 In the sealed structure disclosed in Patent Document 1, in the main body case in which the fire detector is housed, a device is provided to improve the airtightness or liquidtightness of the sensor (light receiving element) on the side opposite to the light receiving side. Has been done. However, there is still much room for research and development toward the realization of a sealed structure with high accuracy and particularly high liquidtightness over the entire outer circumference of the detector, including the light receiving side of the detector that detects fire. There is.

本発明は、上述の課題を解消することにより、検出器の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る検出器、及び該検出器を備える工作機械の実現に大きく貢献するものである。 The present invention greatly contributes to the realization of a detector capable of realizing a sealed structure having high accuracy and particularly high liquidtightness over the entire outer circumference of the detector by solving the above-mentioned problems, and a machine tool equipped with the detector. Is what you do.

本発明者らは、検出器の外周全体について確度高く液密性を特に高めた密閉構造の実現に向けて鋭意研究と分析を行った。さらに、本発明者らは、工作機械のように、多量のオイルミスト及び/又は水が存在する処理室内の過酷な雰囲気に曝されても、電磁波の正確な検出を実現するための試行錯誤を繰り返した。 The present inventors have conducted intensive research and analysis toward the realization of a closed structure having high accuracy and particularly high liquidtightness over the entire outer circumference of the detector. Furthermore, the present inventors have conducted trial and error to realize accurate detection of electromagnetic waves even when exposed to a harsh atmosphere in a treatment room where a large amount of oil mist and / or water is present, such as a machine tool. Repeated.

その結果、本発明者らは、一部に開口を有する底部を備えた筒状体の内部空間内に検出部を収容する構造を採用した上で、高い液密性の実現を担う金属製の部材と、該金属製の部材と該検出部の外周とが互いに電気的に接続しないための部材と、を併用することによって、上述の課題を解消し得ることを知得した。本発明は、上述の視点及び着想に基づいて創出された。 As a result, the present inventors have adopted a structure in which the detection unit is housed in the internal space of a tubular body having a bottom having an opening in part, and are made of metal, which is responsible for achieving high liquidtightness. It has been found that the above-mentioned problems can be solved by using the member, the metal member, and the member for preventing the outer periphery of the detection unit from being electrically connected to each other. The present invention was created based on the above-mentioned viewpoints and ideas.

本発明の1つの検出器は、一部に開口を有する底部を備え、該開口を利用して電磁波の少なくとも1つの波長を検出する検出部を収容する金属からなる液密の筒状体と、シール材を介して前述の開口を液密に塞ぐ、前述の波長を通過させる窓部と、前述の検出部が前述の筒状体に電気的に接続しないように、該筒状体の少なくとも外周に配置される絶縁材、又は該筒状体と前記検出部との間に配置される絶縁材と、を備える。 One detector of the present invention comprises a liquid-tight tubular body made of a metal having a bottom having an opening in a part and accommodating a detection unit that detects at least one wavelength of an electromagnetic wave by using the opening. At least the outer periphery of the tubular body so that the window portion that allows the above-mentioned wavelength to pass through the above-mentioned opening through the sealing material and the said-mentioned detection portion are not electrically connected to the above-mentioned tubular body. The insulating material is arranged in the above, or the insulating material is arranged between the tubular body and the detection unit.

この検出器によれば、一部に開口を有する底部を備えた筒状体内に検出部を収容する構造を採用した上で、高い液密性の実現を担う金属からなる筒状体と、該筒状体の少なくとも外周に配置される絶縁材、又は該筒状体と該検出部とが互いに電気的に接続しないための絶縁材と、が採用されている。その結果、該検出部とその周囲との絶縁性を保持した上で、該検出器の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 According to this detector, after adopting a structure in which the detection part is housed in a tubular body having a bottom having an opening in a part, a tubular body made of metal that realizes high liquidtightness and the tubular body. An insulating material arranged at least on the outer periphery of the tubular body, or an insulating material for preventing the tubular body and the detection unit from being electrically connected to each other is adopted. As a result, it is possible to realize a sealed structure in which the entire outer circumference of the detector is highly accurate and the liquidtightness is particularly improved, while maintaining the insulating property between the detection unit and its surroundings.

また、本発明のもう1つの検出器は、一部に開口を有する底部を備え、該開口を利用して電磁波の少なくとも1つの波長を検出する検出部を収容する、ABS樹脂、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリスルホン(PS)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリメチルメタアクリレート(PMMA)、変性ポリフェニレンエーテル(m−PPE)、超高分子量ポリエチレン(U−PE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリフェニルスルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)及び前述の各樹脂とガラス繊維(GF)とを混合した混合物の群から選択される少なくとも一種からなる筒状体と、シール材を介して前述の開口を液密に塞ぐ、前述の波長を通過させる窓部と、を備える。 Further, another detector of the present invention is made of ABS resin, polypropylene (PP), which comprises a bottom having an opening in a part and accommodates a detection unit that detects at least one wavelength of electromagnetic waves using the opening. , Polysulfone (PC), Polysulfone (PE), Polysulfone (PS), Polybutylene terephthalate (PBT), Polyethylene terephthalate (PET), Polyacetal (POM), Polymethylmethacrylate (PMMA), Modified polyphenylene ether (m-PPE) , Ultrahigh molecular weight polyethylene (U-PE), polyetheretherketone (PEEK), polyphenylene terephthale (PPS), polyphenylsulfone (PPSU), polysulfone (PSU), polyethersulfone (PESU) and the above-mentioned resins and glasses. It comprises a tubular body consisting of at least one selected from a group of mixtures mixed with fibers (GF), and a window portion that tightly closes the above-mentioned opening via a sealing material and allows the above-mentioned wavelength to pass through. ..

この検出器は、一部に開口を有する底部を備えた筒状体内に検出部を収容する構造を採用した上で、仮に該検出部の外周を構成する部材として導電性のある材料が採用されていたとしても、該検出部とその周囲との絶縁性と、高い液密性とを発揮し得る上述の特定の樹脂からなる筒状体を備えている。その結果、該検出部とその周囲との絶縁性を保持した上で、該検出器の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 This detector adopts a structure in which the detection unit is housed in a tubular body having a bottom having an opening in a part, and then a conductive material is temporarily adopted as a member constituting the outer circumference of the detection unit. Even if it is provided, it is provided with a tubular body made of the above-mentioned specific resin capable of exhibiting insulation between the detection unit and its surroundings and high liquidtightness. As a result, it is possible to realize a sealed structure in which the entire outer circumference of the detector is highly accurate and the liquidtightness is particularly improved, while maintaining the insulating property between the detection unit and its surroundings.

また、本発明のもう1つの検出器は、一部に開口を有する底部を備え、該開口を利用して電磁波の少なくとも1つの波長を検出する検出部を収容する樹脂からなる筒状体と、シール材を介して前述の開口を液密に塞ぐ、前述の波長を通過させる窓部と、前述の筒状体の外周面に沿って設けられる、液密の金属層又は金属筒と、を備える。加えて、この検出器は、前述の検出部が前述の金属層又は前述の金属筒に電気的に接続しないよう配置される。 Further, the other detector of the present invention includes a tubular body made of a resin having a bottom portion having an opening in a part and accommodating a detection unit that detects at least one wavelength of an electromagnetic wave by using the opening. It is provided with a window portion for passing the above-mentioned wavelength, which closes the above-mentioned opening in a liquid-tight manner through a sealing material, and a liquid-tight metal layer or a metal cylinder provided along the outer peripheral surface of the above-mentioned tubular body. .. In addition, the detector is arranged so that the detector is not electrically connected to the metal layer or the metal cylinder.

この検出器によれば、一部に開口を有する底部を備えた筒状体内に検出部を収容する構造を採用した上で、高い液密性の実現を担う金属層又は金属筒と、該金属層又は金属筒と該検出部とが互いに電気的に接続しないための樹脂からなる筒状体と、が採用されている。その結果、該検出部とその周囲との絶縁性を保持した上で、該検出器の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 According to this detector, a metal layer or a metal cylinder responsible for achieving high liquidtightness and the metal are adopted after adopting a structure in which the detection portion is housed in a tubular body having a bottom having an opening in a part. A tubular body made of resin for preventing the layer or metal cylinder and the detection unit from being electrically connected to each other is adopted. As a result, it is possible to realize a sealed structure in which the entire outer circumference of the detector is highly accurate and the liquidtightness is particularly improved, while maintaining the insulating property between the detection unit and its surroundings.

ところで、上述の各発明においては、筒状体内に検出部を着脱可能に収容する構成を採用することは、該検出部の修理又は取替えを容易にする観点から、好適な一態様である。また、上述の各発明における検出部は、代表的には、赤外線(IR)、可視光線、及び/又は紫外線(UV)の波長の電磁波の少なくとも1つを検出する受光素子を備えた検出部である。 By the way, in each of the above-described inventions, adopting a configuration in which the detection unit is detachably housed in the tubular body is a preferable aspect from the viewpoint of facilitating repair or replacement of the detection unit. Further, the detection unit in each of the above-described inventions is typically a detection unit including a light receiving element that detects at least one electromagnetic wave having a wavelength of infrared rays (IR), visible light, and / or ultraviolet rays (UV). is there.

本発明の1つの検出器によれば、筒状体が収容する検出部とその周囲との絶縁性を保持した上で、該検出器の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 According to one detector of the present invention, a hermetically sealed structure with high accuracy and particularly improved liquidtightness over the entire outer circumference of the detector while maintaining insulation between the detector housed in the tubular body and its surroundings. Can be realized.

第1の実施形態における検出器を示す全体外観図である。It is an overall external view which shows the detector in 1st Embodiment. 第1の実施形態における検出部が収容される筒状体及び絶縁材、並びに蓋体のA−A方向の一部側面断面図である。It is a partial side sectional view of the tubular body and the insulating material which accommodates the detection part in 1st Embodiment, and the lid body in the AA direction. 第1の実施形態における検出器のA−A方向の一部側面断面図である。It is a partial side sectional view of the detector in the AA direction in the 1st embodiment. 第1の実施形態における検出器の組立分解図である。It is an assembly exploded view of the detector in 1st Embodiment. 第1の実施形態における検出器の一例としての使用状態図である。It is a usage state diagram as an example of a detector in 1st Embodiment. 第1の実施形態における検出器の一例としての使用状態図である。It is a usage state diagram as an example of a detector in 1st Embodiment. 第1の実施形態における検出器を備えた工作機械の概要図である。It is a schematic diagram of the machine tool provided with the detector in 1st Embodiment. 第2の実施形態における検出器の、図3Aに対応する一部側面断面図である。It is a partial side sectional view corresponding to FIG. 3A of the detector in the second embodiment. 第3の実施形態における検出器の、図3Aに対応する一部側面断面図である。It is a partial side sectional view corresponding to FIG. 3A of the detector in the third embodiment. 第4の実施形態における検出器の、図3Aに対応する一部側面断面図である。It is a partial side sectional view corresponding to FIG. 3A of the detector in 4th Embodiment. 第5の実施形態における検出器の、図3Aに対応する一部側面断面図である。FIG. 5 is a partial side sectional view corresponding to FIG. 3A of the detector according to the fifth embodiment. 第6の実施形態における検出器の、図3Aに対応する一部側面断面図である。It is a partial side sectional view corresponding to FIG. 3A of the detector in the sixth embodiment. 第7の実施形態における検出器の、図3Aに対応する一部側面断面図である。FIG. 3 is a partial side sectional view of the detector according to the seventh embodiment, corresponding to FIG. 3A.

本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケール通りに示されていない。また、各図面を見やすくするために、一部の符号が省略され得る。 Embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this description, common reference numerals are given to common parts throughout the drawings unless otherwise specified. Further, in the figure, the elements of the present embodiment are not necessarily shown according to the scale. In addition, some reference numerals may be omitted in order to make each drawing easier to see.

<第1の実施形態>
図1は、本実施形態の検出器100を示す全体外観図である。また、図2は、本実施形態における検出器100が収容される筒状体10及び絶縁材40、並びに蓋体20を示す、A−A方向の一部側面断面図である。また、図3Aは、本実施形態における検出器100のA−A方向の一部側面断面図である。また、図3Bは、本実施形態における検出器の組立分解図である。なお、図面を分かりやすくするために、検出部90から引き出される電気ケーブルは図示されていない。
<First Embodiment>
FIG. 1 is an overall external view showing the detector 100 of the present embodiment. Further, FIG. 2 is a partial side sectional view in the AA direction showing the tubular body 10 and the insulating material 40 in which the detector 100 in the present embodiment is housed, and the lid body 20. Further, FIG. 3A is a partial side sectional view of the detector 100 in the AA direction in the present embodiment. Further, FIG. 3B is an assembled exploded view of the detector according to the present embodiment. The electric cable drawn from the detection unit 90 is not shown in order to make the drawing easy to understand.

本実施形態の検出器100は、主として下記の(1)〜(5)の部材によって構成されている。
(1)外部から赤外線(IR)、可視光線、及び/又は紫外線(UV)の波長の電磁波の少なくとも1つを受けるために一部が開口(図示しない)する容器(シールドケース)内に公知の受光素子を収容した検出部90
(2)検出部90をさらに収容し、一部に開口12を有する底部を備える金属からなる液密の筒状体10
(3)筒状体10と公知のシール材(本実施形態では公知のOリング)74を用いて液密に覆う蓋体20
(4)公知のシール材(本実施形態では公知のOリング)72を介して開口12を液密に塞ぐ、上述の各波長を通過させる窓部30
(5)検出部90が筒状体10に接触しないように筒状体10と検出部90との間に配置される絶縁材40
The detector 100 of the present embodiment is mainly composed of the following members (1) to (5).
(1) Known in a container (shield case) that is partially opened (not shown) to receive at least one of infrared (IR), visible light, and / or ultraviolet (UV) wavelength electromagnetic waves from the outside. Detection unit 90 containing a light receiving element
(2) A liquid-tight tubular body 10 made of metal that further accommodates the detection unit 90 and has a bottom having an opening 12 in a part thereof.
(3) A lid 20 that is liquid-tightly covered with a tubular body 10 and a known sealing material (known O-ring in this embodiment) 74.
(4) A window portion 30 that tightly closes the opening 12 via a known sealing material (known O-ring in this embodiment) 72 and allows each of the above wavelengths to pass through.
(5) Insulating material 40 arranged between the tubular body 10 and the detection unit 90 so that the detection unit 90 does not come into contact with the tubular body 10.

より詳細に説明すると、本実施形態の検出部90は、何らかの光源(例えば、炎、あるいは天然又は人工の発光体など)から発せられる、赤外線(IR)、可視光線、及び/又は紫外線(UV)の波長の電磁波の少なくとも1つを受光する受光素子と、該受光素子を動作させ、制御する回路基板を備えている。例えば、炎から放射される特有な電磁波(例えば、赤外線)の波長の少なくとも1つ(より好適には、3つ)を検出することができる受光素子を備えた検出部90が採用され得る。本願出願人が販売する、本実施形態に採用し得る検出部90の一例は、3波長赤外線式炎センサーを受光素子として備えた検出装置(型式:SX−7000又はSX−3024III)である。また、検出部90を上部に設けられた端子98は、前述の回路基板と電気ケーブルとを電気的に接続する役割を担う。 More specifically, the detector 90 of the present embodiment emits infrared (IR), visible light, and / or ultraviolet light (UV) emitted from some light source (eg, a flame, or a natural or artificial illuminant). It includes a light receiving element that receives at least one of electromagnetic waves having a wavelength of the above, and a circuit board that operates and controls the light receiving element. For example, a detection unit 90 having a light receiving element capable of detecting at least one (more preferably three) wavelengths of a unique electromagnetic wave (for example, infrared rays) emitted from a flame can be adopted. An example of the detection unit 90 that can be adopted in the present embodiment, which is sold by the applicant of the present application, is a detection device (model: SX-7000 or SX-3024III) provided with a three-wavelength infrared flame sensor as a light receiving element. Further, the terminal 98 provided on the upper portion of the detection unit 90 plays a role of electrically connecting the above-mentioned circuit board and the electric cable.

また、本実施形態の筒状体10は、一部に開口12を有する底部を備え、上述の検出部90を内部空間16内に備えている。また、筒状体10は、電磁波の少なくとも1つの波長を検出部90が検出できるように開口12を備えている。 Further, the tubular body 10 of the present embodiment includes a bottom portion having an opening 12 in a part thereof, and the above-mentioned detection unit 90 is provided in the internal space 16. Further, the tubular body 10 is provided with an opening 12 so that the detection unit 90 can detect at least one wavelength of the electromagnetic wave.

また、本実施形態の筒状体10の材質は、液密性を有する金属である。なお、筒状体10を製造するための材料は、液密性を有し得る金属であれば特に限定されない。代表的な該材料は、アルミニウム、真鍮、鉄、又は各種のステンレス素材(例えば、マルテンサイト系、フェライト系、オーステナイト系、2相系、析出硬化系)である。なお、液密性を有する金属として、特に、水及び/又は油(油ミストを含む)に対して高い密閉性を有し得る材料は、C3604、A2017、A5052、A5056、A6061、A6063、SUS304、SUS304L、SUS316、SUS316L、ADC10、ADC12、AC4系、P系、FDC系、及び、塗装又はめっき処理に代表される公知の液密処理が施された材料であるため、それらの材料を採用することは好適な一態様である。 Further, the material of the tubular body 10 of the present embodiment is a metal having liquidtightness. The material for producing the tubular body 10 is not particularly limited as long as it is a metal capable of having liquidtightness. Typical such materials are aluminum, brass, iron, or various stainless steel materials (eg, martensitic, ferrite, austenitic, two-phase, precipitation hardening). As the liquid-tight metal, materials capable of having high airtightness to water and / or oil (including oil mist) are C3604, A2017, A5052, A5056, A6061, A6063, SUS304, and the like. Since SUS304L, SUS316, SUS316L, ADC10, ADC12, AC4 series, P series, FDC series, and known liquid-tightening treatment typified by coating or plating treatment are applied, those materials should be adopted. Is a preferred embodiment.

ところで、本実施形態における「液密の」又は「液密性を有する」とは、IEC(国際電気標準会議)規格(IEC144、IEC529及びDIN40
05)に基づく「水の浸入に対する保護」の等級における、少なくともIPX7を満たす状態をいう。なお、本実施形態の検出器100においては、採用する材料の条件によってはIPX7を超える液密性を発揮し得る。
By the way, "liquid-tight" or "liquid-tight" in this embodiment means IEC (International Electrotechnical Commission) standards (IEC144, IEC529 and DIN40).
A state that satisfies at least IPX7 in the grade of "protection against ingress of water" based on 05). The detector 100 of the present embodiment can exhibit liquidtightness exceeding IPX7 depending on the conditions of the material to be used.

また、本実施形態の蓋体20は、シール材74を用いて液密に覆うことができる材料によって成形されている。蓋体20を製造するための材料は、液密性を有している金属又は樹脂であれば、特に限定されない。代表的な蓋体20の材料のうち、金属材料は、筒状体10のそれらと同様である。また、蓋体20の材料のうち、樹脂材料は、切削加工が容易であり、剛性を有する材料が選定される。例えば、ポリエーテルエーテルケトン(PEEK)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリフェニルスルホン(PPSU)、ポリフェニルスルホン(PPSU)、ポリブチレンテレフタレート(PBT)、ポリエーテルスルホン(PESU)、及び/又は、グラファイト又はカーボンを用いて前述の各樹脂材料の剛性を高めた材料である。前述の金属及び樹脂は、いずれも、水及び/又は油(油ミストを含む)に対して高い密閉性を発揮し得る材料であることが好ましい。 Further, the lid 20 of the present embodiment is formed of a material that can be covered liquid-tightly by using the sealing material 74. The material for producing the lid 20 is not particularly limited as long as it is a liquid-tight metal or resin. Among the materials of the typical lid 20, the metal material is the same as that of the tubular body 10. Further, among the materials of the lid 20, the resin material is selected because it is easy to cut and has rigidity. For example, polyetheretherketone (PEEK), polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyphenylsulfone (PPSU), polyphenylsulfone (PPSU), polybutylene terephthalate (PBT), polyethersulfone (PBT) PESU) and / or a material in which the rigidity of each of the above-mentioned resin materials is increased by using graphite or carbon. The above-mentioned metals and resins are all preferably materials that can exhibit high airtightness to water and / or oil (including oil mist).

なお、本実施形態の蓋体20は、検出部90からの電気ケーブルを取り出すための貫通孔22が設けられている。電気ケーブルは、この貫通孔22に接続するコネクタ80を通過させることによって接続される。 The lid 20 of the present embodiment is provided with a through hole 22 for taking out an electric cable from the detection unit 90. The electric cable is connected by passing a connector 80 connected to the through hole 22.

また、本実施形態の窓部30は、赤外線(IR)、可視光線、及び/又は紫外線(UV)の波長の電磁波の少なくとも1つの波長を通過させる材料から成形されている。前述の3波長赤外線式炎センサーを受光素子として採用した場合は、窓部30は、赤外線を通過させる特性(「赤外線透過性」ともいう)のガラス(代表的には、サファイアガラス)を用いて成形された略板状の部材である。また、窓部30は、シール材72を介して開口12を液密に塞いでいる。 Further, the window portion 30 of the present embodiment is formed from a material that allows at least one wavelength of an electromagnetic wave having a wavelength of infrared rays (IR), visible light, and / or ultraviolet rays (UV) to pass through. When the above-mentioned three-wavelength infrared flame sensor is adopted as a light receiving element, the window portion 30 uses glass (typically, sapphire glass) having a characteristic of passing infrared rays (also referred to as “infrared transmissive”). It is a molded substantially plate-shaped member. Further, the window portion 30 tightly closes the opening 12 via the sealing material 72.

本実施形態においては、筒状体10の底部が有する非貫通孔18と、絶縁材40が有する貫通孔48とを利用して、固定具(本実施形態においてはボルト)52が、絶縁材40と筒状体10とを固定する。さらに、検出部90の底部94が有する貫通孔と、絶縁材40が有する非貫通孔46とを利用して、固定具(本実施形態においてはボルト)54が検出部90と絶縁材40とを固定する。その結果、検出部90は、本実施形態の絶縁材40を介して、筒状体10に電気的に接触しないように筒状体10に固定される。なお、図面を見やすくするために、図3Aにおける検出部90の紙面左下側の一部は、容器(シールドケース)を取り除いた状態を示している。また、他の実施形態においても同様に描かれている。 In the present embodiment, the fixture (bolt in the present embodiment) 52 uses the non-through hole 18 of the bottom of the tubular body 10 and the through hole 48 of the insulating material 40 to form the insulating material 40. And the tubular body 10 are fixed. Further, the fixture (bolt in this embodiment) 54 uses the through hole of the bottom 94 of the detection unit 90 and the non-through hole 46 of the insulating material 40 to connect the detection unit 90 and the insulating material 40. Fix. As a result, the detection unit 90 is fixed to the tubular body 10 via the insulating material 40 of the present embodiment so as not to come into electrical contact with the tubular body 10. In order to make the drawing easier to see, a part of the lower left side of the paper surface of the detection unit 90 in FIG. 3A shows a state in which the container (shield case) is removed. It is also drawn in the same way in other embodiments.

なお、図2、図3A、及び図3Bに示すように、本実施形態においては、絶縁材40の底面が窓部30の端部を押圧しているため、より確度高く、シール材72を用いた開口12に対する高度の液密性が維持され得る。仮に、窓部30の外側に存在するガス、水、及び/又は油(油ミストを含む)などの圧力が高くなり、シール材72と窓部30とを引き離すような力が印加されたとしても、絶縁材40の底面による窓部30の端部の押圧が、液密性の維持に貢献し得る。 As shown in FIGS. 2, 3A, and 3B, in the present embodiment, since the bottom surface of the insulating material 40 presses the end portion of the window portion 30, the sealing material 72 is used with higher accuracy. A high degree of liquidtightness with respect to the existing opening 12 can be maintained. Even if the pressure of gas, water, and / or oil (including oil mist) existing on the outside of the window portion 30 becomes high and a force is applied to separate the sealing material 72 and the window portion 30. The pressing of the end portion of the window portion 30 by the bottom surface of the insulating material 40 can contribute to the maintenance of liquidtightness.

加えて、図3A及び図3Bに示すように、本実施形態のシール材72は、筒状体10の底部の内周面側に形成された溝14内に、窓部30の外側に存在するガス、水、及び/又は油(油ミストを含む)などに直接接触しないように配置されている。そのため、窓部30の外側に存在するガス、水、及び/又は油(油ミストを含む)などの影響をシール材72が受けにくくなるため、シール材72の信頼性及び安定性の向上、ひいては、筒状体10の液密性の向上に寄与し得る。 In addition, as shown in FIGS. 3A and 3B, the sealing material 72 of the present embodiment exists outside the window portion 30 in the groove 14 formed on the inner peripheral surface side of the bottom portion of the tubular body 10. It is arranged so as not to come into direct contact with gas, water, and / or oil (including oil mist). Therefore, the sealing material 72 is less susceptible to the influence of gas, water, and / or oil (including oil mist) existing on the outside of the window portion 30, so that the reliability and stability of the sealing material 72 are improved, and by extension, the sealing material 72 is improved. , Can contribute to the improvement of the liquidtightness of the tubular body 10.

また、本実施形態においては、図2、図3A、及び図3Bに示すように、絶縁材40が備える凹部44に、検出部90が備える凸部92が嵌入された状態で、検出部90が、絶縁材40ひいては筒状体10に対して固定される。なお、凹部44と凸部92は、検出部90の受光素子が電磁波を適切に受けることができる位置にそれぞれ設けられる。その結果、検出部90が、筒状体10内に対して固定された絶縁材40の凹部44によって嵌入された状態で確度高く支持されるため、検出部90が筒状体10に電気的に接続しないように配置された状態で電磁波を適切に受けることが可能となり、検出部90による検出の安定性及び信頼性を高めることができる。 Further, in the present embodiment, as shown in FIGS. 2, 3A, and 3B, the detection unit 90 has the convex portion 92 included in the detection unit 90 fitted into the concave portion 44 provided in the insulating material 40. , It is fixed to the insulating material 40 and thus the tubular body 10. The concave portion 44 and the convex portion 92 are provided at positions where the light receiving element of the detection unit 90 can appropriately receive electromagnetic waves. As a result, since the detection unit 90 is supported with high accuracy in a state of being fitted by the recess 44 of the insulating material 40 fixed to the inside of the tubular body 10, the detection unit 90 is electrically attached to the tubular body 10. It is possible to appropriately receive electromagnetic waves in a state where they are arranged so as not to be connected, and the stability and reliability of detection by the detection unit 90 can be improved.

ところで、本実施形態においては、筒状体10における検出部90の受光側の面(底面)に加えて、筒状体10の側面側においても、検出部90と筒状体10とが電気的に接続しないように、筒状の絶縁材40aが、筒状体10の内周面に沿って配置されている。筒状の絶縁材40aが筒状体10の内周面に対して相対的に離隔又は接近等の動きを生じさせないことは、検出器100の安定性又は信頼性を高める観点から好適な一態様である。なお、上述のとおり、本実施形態においては、筒状体10に対して検出部90が確度高く固定されているため、筒状の絶縁材40aは必ずしも配置されなくとも、本実施形態の効果が奏され得る。 By the way, in the present embodiment, in addition to the light receiving side surface (bottom surface) of the detection unit 90 in the tubular body 10, the detection unit 90 and the tubular body 10 are electrically connected to the side surface side of the tubular body 10. A tubular insulating material 40a is arranged along the inner peripheral surface of the tubular body 10 so as not to be connected to the tubular body 10. It is a preferable aspect that the tubular insulating material 40a does not cause movements such as separation or approach to the inner peripheral surface of the tubular body 10 from the viewpoint of enhancing the stability or reliability of the detector 100. Is. As described above, in the present embodiment, since the detection unit 90 is fixed to the tubular body 10 with high accuracy, the effect of the present embodiment can be obtained even if the tubular insulating material 40a is not necessarily arranged. Can be played.

絶縁材40,40aの材料は、圧縮成形法又は射出成形法の適用が比較的容易であり、剛性を有する材料が選定される。例えば、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBC)、ポリアミド(PA)、ポリエチレン(PE),ポリエチレンテレフタレート(PET)、ABS樹脂、ポリアセタール(POM)、ポリフェニルスルホン(PPSU)、ポリスルホン(PS),ポリエーテルスルホン(PESU)、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフェニレンサルファイド(PPS)、及び/又は、グラファイト又はカーボンを用いて前述の各樹脂材料の剛性を高めた材料が、絶縁材40,40aの材料として採用され得る。 As the material of the insulating materials 40 and 40a, a material having rigidity is selected because it is relatively easy to apply the compression molding method or the injection molding method. For example, polyetheretherketone (PEEK), polypropylene (PP), polycarbonate (PC), polybutylene terephthalate (PBC), polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), ABS resin, polyacetylate (POM). , Polyphenylsulfone (PPSU), polysulfone (PS), polyethersulfone (PESU), polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyphenylene sulfide (PPS), and / or graphite or carbon. The above-mentioned material whose rigidity of each resin material is increased by using the above-mentioned material can be adopted as the material of the insulating materials 40 and 40a.

なお、本実施形態において採用されるシール材72,74は、いずれも、水及び/又は油ミストに対して高い密閉性を実現し得る材料を用いて成形される。代表的なシール材72,74を製造するための材料は、ニトリルゴム(NBR)、フッ化ビニリデン系(FKM)、テトラフルオロエチレン−パープルオロビニルエーテル系(FFKM)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)、ウレタンゴム(PUR、U)、エピクロルヒドリンゴム(ECO)、多流化ゴム(T)である。 The sealing materials 72 and 74 used in the present embodiment are all molded using a material capable of achieving high airtightness against water and / or oil mist. Materials for producing typical sealing materials 72 and 74 are nitrile rubber (NBR), vinylidene fluoride (FKM), tetrafluoroethylene-purple orovinyl ether (FFKM), chloroprene rubber (CR), and acrylic rubber. (ACM, ANM), urethane rubber (PUR, U), epichlorohydrin rubber (ECO), multi-flow rubber (T).

続いて、本実施形態の検出器100の製造方法を説明する。 Subsequently, a method of manufacturing the detector 100 of the present embodiment will be described.

本実施形態においては、筒状体10、蓋体20、及び絶縁材40,40aは、いずれも生材からの切削加工法、ダイカスト法、射出成形法、又は圧縮成形法によって加工され、成形される。また、窓部30は、赤外線(IR)、可視光線、及び/又は紫外線(UV)の波長の電磁波の少なくとも1つを通過させるように公知の方法を用いて製造される。例えば、上述の赤外線透過性のサファイアガラスを採用する場合は、公知のEFG(Edge-defined Film-fed Growth Method)法によって窓部30が製造される。 In the present embodiment, the tubular body 10, the lid 20, and the insulating materials 40, 40a are all processed and molded by a cutting method from a raw material, a die casting method, an injection molding method, or a compression molding method. To. Further, the window portion 30 is manufactured by using a known method so as to allow at least one of electromagnetic waves having wavelengths of infrared (IR), visible light, and / or ultraviolet (UV) to pass through. For example, when the above-mentioned infrared-transmissive sapphire glass is adopted, the window portion 30 is manufactured by a known EFG (Edge-defined Film-fed Growth Method) method.

次に、本実施形態の検出器100の使用態様について説明する。図4及び図5は、本実施形態における検出器100の一例としての使用状態図である。 Next, the usage mode of the detector 100 of this embodiment will be described. 4 and 5 are usage phase diagrams as an example of the detector 100 in this embodiment.

図4及び図5に示すように、検出器100がその機能を発揮させるために設置される各種の装置又は機器、あるいは、区画又は隔離された空間(部屋など)において、窓部30の向き、換言すれば、受光素子によって確度高く検出し得る向きを自在に変更し得るように構成されている。 As shown in FIGS. 4 and 5, the orientation of the window 30 in various devices or devices, or compartments or isolated spaces (rooms, etc.) in which the detector 100 is installed to exert its function. In other words, it is configured so that the light receiving element can freely change the direction in which it can be detected with high accuracy.

具体的には、筒状体10の外周面に沿って設けられた帯状の支持部材84が備える貫通穴を有する凸部84aを、スペーサ85を介して板材86に対して回動自在に支持する第1枢支具88が、検出器100に取り付けられる。また、この例においては、板材86が、枢支具88による回動軸と直交する回転軸に対して回動可能にする、図示しない第2枢支具に組込みネジ87を用いて取り付けられる。 Specifically, the convex portion 84a having a through hole provided in the band-shaped support member 84 provided along the outer peripheral surface of the tubular body 10 is rotatably supported with respect to the plate member 86 via the spacer 85. The first pivot tool 88 is attached to the detector 100. Further, in this example, the plate member 86 is attached to a second pivot tool (not shown) that is rotatable with respect to a rotation axis orthogonal to the rotation axis by the pivot support 88 using the built-in screw 87.

さらに、本実施形態の検出器100の他の使用態様について説明する。図6は、検出器100を備えた工作機械900の概要図である。 Further, other usage modes of the detector 100 of this embodiment will be described. FIG. 6 is a schematic view of a machine tool 900 provided with a detector 100.

図6に示すように、工作機械900は、火災や何らかの事情で処理室910内に発光源が生じた場合に、赤外線(IR)、可視光線、及び/又は紫外線(UV)の波長の電磁波の少なくとも1つを検出する、本実施形態の検出器100を備えている。また、この例においては、温度を感知する温度センサー920が処理室910内に設置されている。工作機械900は、前述の複数の手段による発火や急な温度上昇を感知すると、消火又は事前の予防のため、図示しない制御部が、消火剤貯蔵容器930からノズル940を介して、処理室910内に消火剤を放出するように構成されている。また、この例においては、処理室910内に発火や急な温度上昇を感知すると、ガスの流入を遮断するとともに、仮に火災が生じた場合は、その延焼の拡大を防止するためのダンパー950が設けられている。加えて、この例においては、ガスを排気する際の油ミスト収集器960が配置されている。 As shown in FIG. 6, the machine tool 900 has an electromagnetic wave having a wavelength of infrared (IR), visible light, and / or ultraviolet (UV) when a light emitting source is generated in the processing chamber 910 due to a fire or some other reason. The detector 100 of the present embodiment is provided to detect at least one. Further, in this example, a temperature sensor 920 for detecting the temperature is installed in the processing chamber 910. When the machine tool 900 senses ignition or sudden temperature rise by the above-mentioned plurality of means, a control unit (not shown) is used to extinguish the fire or prevent it in advance through a processing chamber 910 from the fire extinguishing agent storage container 930 via the nozzle 940. It is configured to release a fire extinguishing agent inside. Further, in this example, when a fire or a sudden temperature rise is detected in the processing chamber 910, the inflow of gas is blocked, and if a fire occurs, a damper 950 for preventing the spread of the fire is provided. It is provided. In addition, in this example, an oil mist collector 960 for exhausting gas is arranged.

ここで、少なくとも筒状体10(及び窓部30)が油ミストを含む気体又は液体に曝露される処理室910を備えた、工作機械900の代表的な一例において、本実施形態の検出器100の液密性が特に発揮され得る。なお、本実施形態における「油ミストを含む気体」とは、処理室910内の空間中の油ミストの密度が、0g/cm超(より狭義には0.5g/cm以上)であることを意味する。 Here, in a typical example of the machine tool 900 provided with a processing chamber 910 in which at least the tubular body 10 (and the window portion 30) is exposed to a gas or liquid containing oil mist, the detector 100 of the present embodiment. Liquid tightness can be particularly exhibited. The "gas containing oil mist" in the present embodiment means that the density of the oil mist in the space in the treatment chamber 910 is more than 0 g / cm 3 (more narrowly, 0.5 g / cm 3 or more). Means that.

<第2の実施形態>
図7は、本実施形態における検出器200の、図3Aに対応する一部側面断面図である。
<Second embodiment>
FIG. 7 is a partial side sectional view of the detector 200 in the present embodiment corresponding to FIG. 3A.

本実施形態の検出器200は、以下の(2a)〜(2b)を除いて、第1の実施形態の検出器100と同じ構成を備えている。従って、第1又は第2の実施形態と重複する説明は省略される。
(2a)第1の実施形態の検出器100の筒状の絶縁材40aの代わりに、筒状体10内の空隙を充填する樹脂材料60が導入された点
(2b)第1の実施形態における、絶縁材40と筒状体10とを固定する固定具52と、検出部90と絶縁材40とを固定する固定具54とを有してない点
The detector 200 of the present embodiment has the same configuration as the detector 100 of the first embodiment except for the following (2a) to (2b). Therefore, the description overlapping with the first or second embodiment is omitted.
(2a) Instead of the tubular insulating material 40a of the detector 100 of the first embodiment, a resin material 60 that fills the voids in the tubular body 10 is introduced. (2b) In the first embodiment The point that the fixing tool 52 for fixing the insulating material 40 and the tubular body 10 and the fixing tool 54 for fixing the detection unit 90 and the insulating material 40 are not provided.

図7に示すように、検出器200においては、検出部90が周囲の樹脂材料60によって筒状体10内に固定されている。本実施形態においては、上述の各固定具が用いられていないため、絶縁材40及び検出部の底部94は、貫通孔又は非貫通孔が形成されていない。 As shown in FIG. 7, in the detector 200, the detection unit 90 is fixed in the tubular body 10 by the surrounding resin material 60. In the present embodiment, since the above-mentioned fixtures are not used, the insulating material 40 and the bottom portion 94 of the detection portion are not formed with through holes or non-through holes.

なお、本実施形態の樹脂材料60の種類は、検出部90とその周囲(代表的には、筒状体10)との絶縁性を保持した上で、筒状体10内の検出部90の自由な動き(揺れ等)を制限することが可能な状態にすることができる材料であれば、限定されない。例えば、筒状体10内にシール材72、窓部30、絶縁材40、検出部90、及び樹脂材料60の例としての公知の光硬化性樹脂(代表的には、紫外線硬化性樹脂)を配置した後に、紫外線を照射することによって樹脂材料(例えば、エポキシ樹脂)60を硬化させることは、好適な一態様である。 The type of resin material 60 of the present embodiment is such that the detection unit 90 in the tubular body 10 maintains the insulating property between the detection unit 90 and its surroundings (typically, the tubular body 10). The material is not limited as long as it can be made into a state in which free movement (swaying, etc.) can be restricted. For example, a known photocurable resin (typically, an ultraviolet curable resin) as an example of a sealing material 72, a window portion 30, an insulating material 40, a detection portion 90, and a resin material 60 is placed in a tubular body 10. It is a preferred embodiment to cure the resin material (for example, epoxy resin) 60 by irradiating the resin material (for example, epoxy resin) 60 after the arrangement.

上述のとおり、本実施形態の各構成が採用された場合であっても、第1の実施形態の効果と同様の効果が奏され得る。 As described above, even when each configuration of the present embodiment is adopted, the same effect as that of the first embodiment can be achieved.

<第3の実施形態>
図8は、本実施形態における検出器300の、図3Aに対応する一部側面断面図である。
<Third embodiment>
FIG. 8 is a partial side sectional view of the detector 300 in the present embodiment corresponding to FIG. 3A.

本実施形態の検出器300は、以下の(3a)〜(3c)を除いて、第1の実施形態の検出器100と同じ構成を備えている。従って、第1又は第2の実施形態と重複する説明は省略される。
(3a)第1の実施形態の検出器100の筒状の絶縁材40aの代わりに、筒状体10の内周面に沿って形成された樹脂材料260の膜又は層(以下、総称して「膜」という)が導入された点
(3b)第1の実施形態の絶縁材40の代わりにリング状の絶縁材40bが導入された点
(3c)第1の実施形態の固定具52及び固定具54の代わりに、検出部90の底部94及び樹脂材料260の膜を貫通し、筒状体10の非貫通孔18を利用して検出部90と筒状体10とを固定する樹脂性且つ絶縁性の固定具354が導入された点
The detector 300 of the present embodiment has the same configuration as the detector 100 of the first embodiment except for the following (3a) to (3c). Therefore, the description overlapping with the first or second embodiment is omitted.
(3a) Instead of the tubular insulating material 40a of the detector 100 of the first embodiment, a film or layer of a resin material 260 formed along the inner peripheral surface of the tubular body 10 (hereinafter collectively referred to as). The point where (referred to as "membrane") was introduced (3b) The point where a ring-shaped insulating material 40b was introduced instead of the insulating material 40 of the first embodiment (3c) The fixture 52 and fixing of the first embodiment Instead of the tool 54, it is made of resin and penetrates the bottom 94 of the detection unit 90 and the film of the resin material 260, and fixes the detection unit 90 and the tubular body 10 by using the non-penetrating hole 18 of the tubular body 10. The point where the insulating fixture 354 was introduced

図8に示すように、検出器300は、筒状体10の内周面に沿って形成された樹脂材料260の膜を備えている。また、リング状の絶縁材40b及び固定具354がいずれも絶縁性であるため、本実施形態の検出部90とその周囲(代表的には、筒状体10)との絶縁性が保持される。また、樹脂材料260の材料は、筒状体10の内周面に固定されるように固化し得る絶縁性の材料であれば、限定されない。樹脂材料260の材料の例は、公知の光硬化性樹脂(代表的には、紫外線硬化性樹脂)である。加えて、絶縁性の固定具354の材料は、固定具として機能し得る剛性と絶縁性とを備える材料であれば、限定されない。固定具354の材料の例は、絶縁材40,40aの材料と同じである。 As shown in FIG. 8, the detector 300 includes a film of resin material 260 formed along the inner peripheral surface of the tubular body 10. Further, since the ring-shaped insulating material 40b and the fixture 354 are both insulating, the insulating property between the detection unit 90 of the present embodiment and its surroundings (typically, the tubular body 10) is maintained. .. Further, the material of the resin material 260 is not limited as long as it is an insulating material that can be solidified so as to be fixed to the inner peripheral surface of the tubular body 10. An example of the material of the resin material 260 is a known photocurable resin (typically, an ultraviolet curable resin). In addition, the material of the insulating fixture 354 is not limited as long as it has rigidity and insulating properties that can function as a fixture. Examples of the material of the fixture 354 are the same as the materials of the insulating materials 40 and 40a.

また、本実施形態においては、検出部90と窓部30の端部との間の空間を埋めるようにリング状の絶縁材40bが配置され、絶縁材40bの底面が窓部30の端部を押圧しているため、より確度高く、シール材72を用いた開口12に対する高度の液密性が維持され得る。仮に、窓部30の外側に存在するガス、水、及び/又は油(油ミストを含む)などの圧力が高くなり、シール材72と窓部30とを引き離すような力が印加されたとしても、リング状の絶縁材40bの底面による窓部30の端部の押圧が、液密性の維持に貢献し得る。 Further, in the present embodiment, the ring-shaped insulating material 40b is arranged so as to fill the space between the detection unit 90 and the end portion of the window portion 30, and the bottom surface of the insulating material 40b forms the end portion of the window portion 30. Since it is pressed, it is more accurate and can maintain a high degree of liquidtightness with respect to the opening 12 using the sealing material 72. Even if the pressure of gas, water, and / or oil (including oil mist) existing on the outside of the window portion 30 becomes high and a force is applied to separate the sealing material 72 and the window portion 30. The pressing of the end portion of the window portion 30 by the bottom surface of the ring-shaped insulating material 40b can contribute to the maintenance of liquidtightness.

なお、本実施形態のリング状の絶縁材40b及び固定具354の材料は、第1の実施形態の絶縁材40,40aの材料と同じ材料を採用することができる。 As the material of the ring-shaped insulating material 40b and the fixture 354 of the present embodiment, the same material as the material of the insulating materials 40 and 40a of the first embodiment can be adopted.

上述のとおり、本実施形態の各構成が採用された場合であっても、第1の実施形態の効果と同様の効果が奏され得る。 As described above, even when each configuration of the present embodiment is adopted, the same effect as that of the first embodiment can be achieved.

<第4の実施形態>
図9は、本実施形態における検出器400の、図3Aに対応する一部側面断面図である。
<Fourth Embodiment>
FIG. 9 is a partial side sectional view of the detector 400 in the present embodiment corresponding to FIG. 3A.

本実施形態の検出器400は、以下の(4a)〜(4c)を除いて、第1の実施形態の検出器100と同じ構成を備えている。従って、第1乃至第3の実施形態と重複する説明は省略される。
(4a)第1の実施形態の検出器100の筒状の絶縁材40aの代わりに、検出部90の外周面に沿って形成された絶縁性の樹脂材料360の膜又は層(以下、総称して「膜」という)が導入された点
(4b)第1の実施形態の絶縁材40の代わりにリング状の絶縁材40bが導入された点
(4c)第1の実施形態の固定具52及び固定具54の代わりに、検出部90の底部94及び樹脂材料360の膜を貫通し、筒状体10の非貫通孔18を利用して検出部90と筒状体10とを固定する樹脂性且つ絶縁性の固定具354が導入された点
The detector 400 of the present embodiment has the same configuration as the detector 100 of the first embodiment except for the following (4a) to (4c). Therefore, the description overlapping with the first to third embodiments is omitted.
(4a) Instead of the tubular insulating material 40a of the detector 100 of the first embodiment, a film or layer of an insulating resin material 360 formed along the outer peripheral surface of the detection unit 90 (hereinafter collectively referred to as). (4b) A ring-shaped insulating material 40b was introduced instead of the insulating material 40 of the first embodiment. (4c) The fixture 52 and the fixture 52 of the first embodiment were introduced. Instead of the fixture 54, it is made of resin that penetrates the bottom 94 of the detection unit 90 and the film of the resin material 360 and fixes the detection unit 90 and the tubular body 10 by using the non-penetrating hole 18 of the tubular body 10. And the point that the insulating fixture 354 was introduced

図9に示すように、検出器400は、検出部90の外周面に沿って形成された絶縁性の樹脂材料360の膜を備えている。また、リング状の絶縁材40b及び固定具354がいずれも絶縁性であるため、本実施形態の検出部90とその周囲(代表的には、筒状体10)との絶縁性が保持される。 As shown in FIG. 9, the detector 400 includes a film of an insulating resin material 360 formed along the outer peripheral surface of the detection unit 90. Further, since the ring-shaped insulating material 40b and the fixture 354 are both insulating, the insulating property between the detection unit 90 of the present embodiment and its surroundings (typically, the tubular body 10) is maintained. ..

また、本実施形態においては、検出部90と窓部30の端部との間の空間を埋めるようにリング状の絶縁材40bが配置され、絶縁材40bの底面が窓部30の端部を押圧しているため、より確度高く、シール材72を用いた開口12に対する高度の液密性が維持され得る。仮に、窓部30の外側に存在するガス、水、及び/又は油(油ミストを含む)などの圧力が高くなり、シール材72と窓部30とを引き離すような力が印加されたとしても、リング状の絶縁材40bの底面による窓部30の端部の押圧が、液密性の維持に貢献し得る。 Further, in the present embodiment, the ring-shaped insulating material 40b is arranged so as to fill the space between the detection unit 90 and the end portion of the window portion 30, and the bottom surface of the insulating material 40b forms the end portion of the window portion 30. Since it is pressed, it is more accurate and can maintain a high degree of liquidtightness with respect to the opening 12 using the sealing material 72. Even if the pressure of gas, water, and / or oil (including oil mist) existing on the outside of the window portion 30 becomes high and a force is applied to separate the sealing material 72 and the window portion 30. The pressing of the end portion of the window portion 30 by the bottom surface of the ring-shaped insulating material 40b can contribute to the maintenance of liquidtightness.

なお、本実施形態の樹脂材料360の材料は、第3の実施形態の樹脂材料260と同じ材料を採用することができる。 As the material of the resin material 360 of the present embodiment, the same material as the resin material 260 of the third embodiment can be adopted.

上述のとおり、本実施形態の各構成が採用された場合であっても、第1の実施形態の効果と同様の効果が奏され得る。なお、本実施形態の変形例の一つとして、絶縁性の樹脂材料360の膜が導入される代わりに、検出部90の外周を担う容器(シールドケース)のうち、導電体部分を剥離することによって、検出部90の内部の非導電体層が最表面に現れる構造が採用された場合であっても、第1の実施形態の効果と同様の効果が奏され得る。 As described above, even when each configuration of the present embodiment is adopted, the same effect as that of the first embodiment can be achieved. As one of the modifications of the present embodiment, instead of introducing the film of the insulating resin material 360, the conductor portion of the container (shield case) that bears the outer circumference of the detection unit 90 is peeled off. Therefore, even when the structure in which the non-conductor layer inside the detection unit 90 appears on the outermost surface is adopted, the same effect as that of the first embodiment can be obtained.

<第5の実施形態>
図10は、本実施形態における検出器500の、図3Aに対応する一部側面断面図である。
<Fifth Embodiment>
FIG. 10 is a partial side sectional view of the detector 500 according to the present embodiment corresponding to FIG. 3A.

本実施形態の検出器500は、以下の(5a)〜(5d)を除いて、第1の実施形態の検出器100と同じ構成を備えている。従って、第1乃至第4の実施形態と重複する説明は省略される。
(5a)第1の実施形態の検出器100の筒状体10の代わりに、筒状体10と同じ形状を有し、外周表面上に金属層(めっき層を含む。以下、総称して「金属層」という)550を備えた、樹脂からなる筒状体510が導入された点
(5b)第1の実施形態の絶縁材40,40aが用いられていない点。
(5c)窓部30の端部を押圧して開口512に対する高度の液密性を実現し得る凸部596を備えた、検出部590が導入された点
(5d)第1の実施形態の固定具52及び固定具54の代わりに、検出部590の底部594及び筒状体510の非貫通孔518を利用して検出部590と筒状体510とを固定する固定具54が導入された点
The detector 500 of the present embodiment has the same configuration as the detector 100 of the first embodiment except for the following (5a) to (5d). Therefore, the description overlapping with the first to fourth embodiments is omitted.
(5a) Instead of the tubular body 10 of the detector 100 of the first embodiment, it has the same shape as the tubular body 10, and has a metal layer (including a plating layer) on the outer peripheral surface. A point in which a tubular body 510 made of resin having 550 (referred to as "metal layer") was introduced. (5b) A point in which the insulating materials 40 and 40a of the first embodiment were not used.
(5c) A point at which the detection unit 590 having a convex portion 596 capable of pressing the end portion of the window portion 30 to realize a high degree of liquidtightness with respect to the opening 512 was introduced. (5d) Fixation of the first embodiment Instead of the tool 52 and the fixture 54, a fixture 54 for fixing the detection unit 590 and the tubular body 510 by using the bottom 594 of the detection unit 590 and the non-through hole 518 of the tubular body 510 was introduced.

図10に示すように、検出器500は、筒状体510の内部空間516内に、検出部590を備えている。検出部590は、第1の実施形態の凸部92の代わりに凸部596が設けられた点を除いて、検出部90と同じである。また、筒状体510は、第1の実施形態の筒状体10と同様に、電磁波の少なくとも1つの波長を検出部590が検出できるように開口512を備えている。また、窓部30により、筒状体510が備える溝514内のシール材72を介して開口512が液密に塞がれている。 As shown in FIG. 10, the detector 500 includes a detection unit 590 in the internal space 516 of the tubular body 510. The detection unit 590 is the same as the detection unit 90 except that the convex portion 596 is provided instead of the convex portion 92 of the first embodiment. Further, the tubular body 510 is provided with an opening 512 so that the detection unit 590 can detect at least one wavelength of the electromagnetic wave, similarly to the tubular body 10 of the first embodiment. Further, the window portion 30 closes the opening 512 in a liquid-tight manner through the sealing material 72 in the groove 514 provided in the tubular body 510.

なお、本実施形態の筒状体510の材質は、圧縮成形法又は射出成形法の適用が比較的容易であり、絶縁性及び剛性を有する材料が選定される。代表的な筒状体510の材質は、第1の実施形態の絶縁材40,40aの材料と同じである。 As the material of the tubular body 510 of the present embodiment, a material having insulating properties and rigidity is selected because it is relatively easy to apply the compression molding method or the injection molding method. The material of the typical tubular body 510 is the same as that of the insulating materials 40, 40a of the first embodiment.

また、本実施形態においては、筒状体510の外周面に沿って金属層550が設けられる。筒状体510の外周表面上の金属層550は、公知の方法(蒸着法、めっき法など)を用いて形成され得る。 Further, in the present embodiment, the metal layer 550 is provided along the outer peripheral surface of the tubular body 510. The metal layer 550 on the outer peripheral surface of the tubular body 510 can be formed by using a known method (evaporation method, plating method, etc.).

金属層550の材料は、液密性を有する金属材料である。なお、金属層550の材料の例は、アルミニウム、鉄、鋼、真鍮、及び/又はチタンである。また、金属層550の構成する金属材料は、1種類の金属に限定されず、複数種類の金属材料が採用され得る。例えば、めっき層を形成する際には、筒状体510の表面上にパラジウムを吸着させた後に無電解めっき法を用いて金属層550を形成することができる。 The material of the metal layer 550 is a liquid-tight metal material. Examples of the material of the metal layer 550 are aluminum, iron, steel, brass, and / or titanium. Further, the metal material constituting the metal layer 550 is not limited to one type of metal, and a plurality of types of metal materials may be adopted. For example, when forming the plating layer, the metal layer 550 can be formed by adsorbing palladium on the surface of the tubular body 510 and then using an electroless plating method.

加えて、検出部590の底部594及び筒状体510の非貫通孔518を利用して、検出部590と筒状体510とが、固定具54によって固定される。本実施形態においては、筒状体510の材質が絶縁性を有する樹脂であるため、固定具54を製造するための材料は、導電性と絶縁性のいずれであっても固定具54に適用することができる。その結果、検出部590とその周囲との絶縁性を保持した上で、検出器500の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 In addition, the detection unit 590 and the tubular body 510 are fixed by the fixture 54 by utilizing the bottom portion 594 of the detection unit 590 and the non-through hole 518 of the tubular body 510. In the present embodiment, since the material of the tubular body 510 is a resin having an insulating property, the material for manufacturing the fixture 54 is applied to the fixture 54 regardless of whether it is conductive or insulating. be able to. As a result, it is possible to realize a sealed structure in which the entire outer circumference of the detector 500 is highly accurate and the liquidtightness is particularly improved, while maintaining the insulation between the detection unit 590 and its surroundings.

なお、本実施形態においても、第1の実施形態と同様に、検出器500は、IEC(国際電気標準会議)規格(IEC144、IEC529及びDIN40
05)に基づく「水の浸入に対する保護」の等級における、少なくともIPX7を満たす、液密性を発揮し得る。なお、本実施形態の検出器500においても、第1の実施形態と同様に、採用する材料の条件によってはIPX7を超える液密性を発揮し得る。
In this embodiment as well, as in the first embodiment, the detector 500 uses the IEC (International Electrotechnical Commission) standards (IEC144, IEC529 and DIN40).
It can exhibit liquidtightness that satisfies at least IPX7 in the grade of "protection against water ingress" based on 05). Similarly to the first embodiment, the detector 500 of the present embodiment can exhibit a liquidtightness exceeding IPX7 depending on the conditions of the material to be used.

また、本実施形態においては、図10に示すように、窓部30の端部を押圧して開口12に対する高度の液密性を実現し得る検出部90の凸部596の外形に合わせた凹部を、筒状体510が備えている。その結果、検出部590が、筒状体510の凹部によって嵌入された状態で確度高く固定されるため、検出部590が金属層550に電気的に接続しないように配置された状態で電磁波を適切に受けることが可能となり、検出部590による検出の安定性及び信頼性を高めることができる。 Further, in the present embodiment, as shown in FIG. 10, a concave portion matching the outer shape of the convex portion 596 of the detection portion 90 that can realize a high degree of liquidtightness with respect to the opening 12 by pressing the end portion of the window portion 30. Is provided in the tubular body 510. As a result, since the detection unit 590 is fixed with high accuracy in a state of being fitted by the concave portion of the tubular body 510, the electromagnetic wave is appropriately applied in a state where the detection unit 590 is arranged so as not to be electrically connected to the metal layer 550. The stability and reliability of detection by the detection unit 590 can be improved.

上述のとおり、本実施形態の各構成が採用された場合であっても、第1の実施形態の効果と同様の効果が奏され得る。 As described above, even when each configuration of the present embodiment is adopted, the same effect as that of the first embodiment can be achieved.

<第6の実施形態>
図11は、本実施形態における検出器600の、図3Aに対応する一部側面断面図である。
<Sixth Embodiment>
FIG. 11 is a partial side sectional view of the detector 600 in the present embodiment corresponding to FIG. 3A.

本実施形態の検出器600は、以下の(6a)〜(6d)を除いて、第1の実施形態の検出器100と同じ構成を備えている。従って、第1乃至第5の実施形態と重複する説明は省略される。
(6a)第1の実施形態の検出器100の筒状体10の代わりに、筒状体10と同じ形状を有する、ABS樹脂、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリスルホン(PS)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリメチルメタアクリレート(PMMA)、変性ポリフェニレンエーテル(m−PPE)、超高分子量ポリエチレン(U−PE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリフェニルスルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)及び前述の各樹脂とガラス繊維(GF)とを混合した混合物の群から選択される少なくとも一種からなる筒状体610が導入された点
(6b)第1の実施形態の絶縁材40,40aが用いられていない点。
(6c)窓部30の端部を押圧して開口612に対する高度の液密性を実現し得る凸部596を備えた、検出部590が導入された点
(6d)第1の実施形態の固定具52及び固定具54の代わりに、検出部590の底部594及び筒状体610の非貫通孔618を利用して検出部590と筒状体610とを固定する固定具54が導入された点
The detector 600 of the present embodiment has the same configuration as the detector 100 of the first embodiment except for the following (6a) to (6d). Therefore, the description overlapping with the first to fifth embodiments is omitted.
(6a) Instead of the tubular body 10 of the detector 100 of the first embodiment, ABS resin, polypropylene (PP), polycarbonate (PC), polyethylene (PE), polysulfone having the same shape as the tubular body 10 (PS), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyacetylate (POM), polymethylmethacrylate (PMMA), modified polyphenylene ether (m-PPE), ultrahigh molecular weight polyethylene (U-PE), poly From a group of ether etherketone (PEEK), polyphenylene sulfide (PPS), polyphenylsulfone (PPSU), polysulfone (PSU), polyethersulfone (PESU) and a mixture of the above resins and glass fiber (GF). The point where the tubular body 610 composed of at least one selected is introduced (6b) The point where the insulating materials 40 and 40a of the first embodiment are not used.
(6c) A point at which the detection unit 590 having a convex portion 596 capable of pressing the end portion of the window portion 30 to realize a high degree of liquidtightness with respect to the opening 612 was introduced. (6d) Fixing of the first embodiment Instead of the tool 52 and the fixture 54, a fixture 54 for fixing the detection unit 590 and the tubular body 610 by using the bottom 594 of the detection unit 590 and the non-through hole 618 of the tubular body 610 was introduced.

図11に示すように、検出器600は、筒状体610の内部空間616内に、検出部590を備えている。検出部590は、第1の実施形態の凸部92の代わりに凸部596が設けられた点を除いて、検出部90と同じである。また、筒状体610は、第1の実施形態の筒状体10と同様に、電磁波の少なくとも1つの波長を検出部590が検出できるように開口612を備えている。また、窓部30により、筒状体610が備える溝614内のシール材72を介して開口612が液密に塞がれている。 As shown in FIG. 11, the detector 600 includes a detection unit 590 in the internal space 616 of the tubular body 610. The detection unit 590 is the same as the detection unit 90 except that the convex portion 596 is provided instead of the convex portion 92 of the first embodiment. Further, the tubular body 610 is provided with an opening 612 so that the detection unit 590 can detect at least one wavelength of the electromagnetic wave, similarly to the tubular body 10 of the first embodiment. Further, the opening 612 is liquid-tightly closed by the window portion 30 via the sealing material 72 in the groove 614 provided in the tubular body 610.

なお、本実施形態の筒状体610の材質は、圧縮成形法又は射出成形法の適用が比較的容易であり、絶縁性及び剛性を有する材料が選定される。ここで、本実施形態においては、絶縁性及び剛性に特に優れた、ABS樹脂、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリスルホン(PS)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリメチルメタアクリレート(PMMA)、変性ポリフェニレンエーテル(m−PPE)、超高分子量ポリエチレン(U−PE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリフェニルスルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)及び前述の各樹脂とガラス繊維(GF)とを混合した混合物の群から選択される少なくとも一種からなる筒状体510が採用されている。そのため、第5の実施形態の検出器500とは異なり、筒状体510の外周面に沿って設けられる金属層550がなくても、検出部590とその周囲との絶縁性を保持した上で、検出器600の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 As the material of the tubular body 610 of the present embodiment, a material having insulating properties and rigidity is selected because it is relatively easy to apply the compression molding method or the injection molding method. Here, in the present embodiment, ABS resin, polypropylene (PP), polycarbonate (PC), polyethylene (PE), polysulfone (PS), polybutylene terephthalate (PBT), polyethylene terephthalate, which are particularly excellent in insulating properties and rigidity. (PET), polyacetal (POM), polymethylmethacrylate (PMMA), modified polyphenylene ether (m-PPE), ultrahigh molecular weight polyethylene (U-PE), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), Employs a tubular body 510 consisting of at least one selected from the group of polyphenylsulfone (PPSU), polysulfone (PSU), polyethersulfone (PESU) and a mixture of the above resins and glass fiber (GF). Has been done. Therefore, unlike the detector 500 of the fifth embodiment, even if there is no metal layer 550 provided along the outer peripheral surface of the tubular body 510, the insulation between the detection unit 590 and its surroundings is maintained. , It is possible to realize a sealed structure with high accuracy and particularly high liquidtightness over the entire outer circumference of the detector 600.

なお、本実施形態においても、第1の実施形態と同様に、検出器600は、IEC(国際電気標準会議)規格(IEC144、IEC529及びDIN40
05)に基づく「水の浸入に対する保護」の等級における、少なくともIPX7を満たす、液密性を発揮し得る。なお、本実施形態の検出器500においても、第1の実施形態と同様に、採用する材料の条件によってはIPX7を超える液密性を発揮し得る。
In this embodiment as well, as in the first embodiment, the detector 600 uses the IEC (International Electrotechnical Commission) standards (IEC144, IEC529 and DIN40).
It can exhibit liquidtightness that satisfies at least IPX7 in the grade of "protection against water ingress" based on 05). Similarly to the first embodiment, the detector 500 of the present embodiment can exhibit a liquidtightness exceeding IPX7 depending on the conditions of the material to be used.

<第7の実施形態>
図12は、本実施形態における検出器700の、図3Aに対応する一部側面断面図である。
<7th Embodiment>
FIG. 12 is a partial side sectional view of the detector 700 according to the present embodiment corresponding to FIG. 3A.

本実施形態の検出器700は、以下の(7a)〜(7c)を除いて、第1の実施形態の検出器100と同じ構成を備えている。従って、第1乃至第6の実施形態と重複する説明は省略される。
(7a)第1の実施形態の検出器100の筒状の絶縁材40aの代わりに、少なくとも外周面が絶縁性を有している材料から形成された容器(シールドケース)内に公知の受光素子を収容した検出部790が導入された点
(7b)第1の実施形態の絶縁材40の代わりに、リング状の絶縁材40bと同じ材料から成形されたリング状の絶縁材740bが導入された点
(7c)第1の実施形態の固定具52及び固定具54の代わりに、検出部790の底部94を貫通し、筒状体10の非貫通孔18を利用して検出部790と筒状体10とを固定する樹脂性且つ絶縁性の固定具754が導入された点
The detector 700 of the present embodiment has the same configuration as the detector 100 of the first embodiment except for the following (7a) to (7c). Therefore, the description overlapping with the first to sixth embodiments is omitted.
(7a) Instead of the tubular insulating material 40a of the detector 100 of the first embodiment, a known light receiving element is contained in a container (shield case) formed of a material having at least an insulating outer peripheral surface. (7b) Instead of the insulating material 40 of the first embodiment, a ring-shaped insulating material 740b formed from the same material as the ring-shaped insulating material 40b was introduced. Point (7c) Instead of the fixture 52 and the fixture 54 of the first embodiment, the detection portion 790 and the tubular shape are penetrated through the bottom portion 94 of the detection unit 790 and the non-penetrating hole 18 of the tubular body 10 is used. Introduced a resinous and insulating fixture 754 that fixes the body 10

図12に示すように、検出器700は、少なくとも外周面が絶縁性及び剛性を有する、ABS樹脂、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリスルホン(PS)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリメチルメタアクリレート(PMMA)、変性ポリフェニレンエーテル(m−PPE)、超高分子量ポリエチレン(U−PE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリフェニルスルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)及び前述の各樹脂とガラス繊維(GF)とを混合した混合物の群から選択される少なくとも一種からなる容器内に公知の受光素子を収容した検出部790を備えている。また、リング状の絶縁材740bと、検出部790の底部794を貫通する固定具754とがいずれも絶縁性であるため、本実施形態の検出部790とその周囲(代表的には、筒状体10)との絶縁性が保持される。 As shown in FIG. 12, the detector 700 includes ABS resin, polypropylene (PP), polycarbonate (PC), polyethylene (PE), polysulfone (PS), polybutylene terephthalate (polysulfone terephthalate) having at least an outer peripheral surface insulating and rigid. PBT), polyethylene terephthalate (PET), polyacetylate (POM), polymethylmethacrylate (PMMA), modified polyphenylene ether (m-PPE), ultrahigh molecular weight polyethylene (U-PE), polyetheretherketone (PEEK), polyphenylene. A container consisting of at least one selected from the group consisting of sulfide (PPS), polyphenylsulfone (PPSU), polysulfone (PSU), polyethersulfone (PESU) and a mixture of each of the above resins and glass fiber (GF). A detection unit 790 containing a known light receiving element is provided therein. Further, since the ring-shaped insulating material 740b and the fixture 754 penetrating the bottom 794 of the detection unit 790 are both insulating, the detection unit 790 of the present embodiment and its surroundings (typically, tubular) Insulation with the body 10) is maintained.

また、本実施形態においては、検出部790と窓部30の端部との間の空間を埋めるようにリング状の絶縁材740bが配置され、絶縁材740bの底面が窓部30の端部を押圧しているため、より確度高く、シール材72を用いた開口12に対する高度の液密性が維持され得る。仮に、窓部30の外側に存在するガス、水、及び/又は油(油ミストを含む)などの圧力が高くなり、シール材72と窓部30とを引き離すような力が印加されたとしても、リング状の絶縁材740bの底面による窓部30の端部の押圧が、液密性の維持に貢献し得る。 Further, in the present embodiment, the ring-shaped insulating material 740b is arranged so as to fill the space between the detection unit 790 and the end portion of the window portion 30, and the bottom surface of the insulating material 740b forms the end portion of the window portion 30. Since it is pressed, it is more accurate and can maintain a high degree of liquidtightness with respect to the opening 12 using the sealing material 72. Even if the pressure of gas, water, and / or oil (including oil mist) existing on the outside of the window portion 30 becomes high and a force is applied to separate the sealing material 72 and the window portion 30. The pressing of the end portion of the window portion 30 by the bottom surface of the ring-shaped insulating material 740b can contribute to the maintenance of liquidtightness.

本実施形態においても、第1の実施形態と同様に、検出器600は、IEC(国際電気標準会議)規格(IEC144、IEC529及びDIN40
05)に基づく「水の浸入に対する保護」の等級における、少なくともIPX7を満たす、液密性を発揮し得る。なお、本実施形態の検出器500においても、第1の実施形態と同様に、採用する材料の条件によってはIPX7を超える液密性を発揮し得る。
In the present embodiment as well, as in the first embodiment, the detector 600 uses the IEC (International Electrotechnical Commission) standards (IEC144, IEC529 and DIN40).
It can exhibit liquidtightness that satisfies at least IPX7 in the grade of "protection against water ingress" based on 05). Similarly to the first embodiment, the detector 500 of the present embodiment can exhibit a liquidtightness exceeding IPX7 depending on the conditions of the material to be used.

<その他の実施形態>
ところで、第5及び第6の実施形態においてはリング状の絶縁材40bが採用されていないが、第5又は第6の実施形態において検出部590が凸部596を備える代わりに、窓部30の端部を押圧して開口512,612の高度の液密性を実現し得るリング状の絶縁材40bが導入されることも、採用し得る一態様である。また、第3、第4、又は第7の実施形態において採用されているリング状の絶縁材40bの代わりに、検出部90が第5又は第6の実施形態の凸部596の役割を果たし得る凸部を備えることも、採用し得る一態様である。
<Other Embodiments>
By the way, although the ring-shaped insulating material 40b is not adopted in the fifth and sixth embodiments, in the fifth or sixth embodiment, instead of the detection unit 590 including the convex portion 596, the window portion 30 It is also an aspect that can be adopted by introducing a ring-shaped insulating material 40b that can realize a high degree of liquidtightness of the openings 512 and 612 by pressing the end portion. Further, instead of the ring-shaped insulating material 40b adopted in the third, fourth, or seventh embodiment, the detection unit 90 may play the role of the convex portion 596 of the fifth or sixth embodiment. Providing a convex portion is also an aspect that can be adopted.

また、第5の実施形態においては外周表面上に金属層(めっき層を含む)550を備えた樹脂製の筒状体510が採用されているが、第5の実施形態はそのような態様に限定されない。例えば、金属層550及び筒状体510の代わりに、内周面上に液密性を有する金属層(めっき層を含む)を備えた樹脂性の筒状体が採用された態様、あるいは、筒状体510の内周面又は外周面に沿って、液密性を有する金属からなる筒(金属筒)が設けられた態様であっても、第1又は第5の実施形態の効果と同様の効果が奏され得る。なお、液密性を有する金属の材料は、第5の実施形態の金属層550の材料と同じである。 Further, in the fifth embodiment, a resin tubular body 510 having a metal layer (including a plating layer) 550 on the outer peripheral surface is adopted, but the fifth embodiment has such an embodiment. Not limited. For example, instead of the metal layer 550 and the tubular body 510, a resin tubular body having a liquid-tight metal layer (including a plating layer) on the inner peripheral surface is adopted, or a cylinder. Even in the embodiment in which a cylinder (metal cylinder) made of a liquid-tight metal is provided along the inner peripheral surface or the outer peripheral surface of the body 510, the effect of the first or fifth embodiment is the same. The effect can be achieved. The material of the metal having liquidtightness is the same as the material of the metal layer 550 of the fifth embodiment.

以上述べたとおり、上述の各実施形態の開示は、それらの実施形態の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。 As described above, the disclosure of each of the above-described embodiments is described for the purpose of explaining those embodiments, and is not described for the purpose of limiting the present invention. In addition, modifications that exist within the scope of the invention, including other combinations of each embodiment, are also within the scope of the claims.

本発明は、液密性に優れた検出器として広く利用され得る。 The present invention can be widely used as a detector having excellent liquidtightness.

10,510,610 筒状体
12,512,512 開口
14,514,514 溝
16,516,516 筒状体の内部空間
18,518,518 非貫通孔
20 蓋体
22 貫通孔
30 窓部
40,40a,40b,740b 絶縁材
42 凸部
44 凹部
46 非貫通孔
48 貫通孔
52,54,354,754 固定具
60,260,360 樹脂材料
72,74 シール材
80 コネクタ
84 支持部材
84a 凸部
85 スペーサ
87 ネジ
86 板材
88 枢支具
90,590,790 検出部
92,596 凸部
94,594,794 底部
98 端子
100,200,300,400,500,600,700 検出器
550 金属層(金属膜)
900 工作機械
910 処理室
920 温度センサー
930 消火剤貯蔵容器
940 ノズル
950 ダンパー
960 音声付回転灯
10,510,610 Cylindrical body 12,512,512 Opening 14,514,514 Groove 16,516,516 Cylindrical body internal space 18,518,518 Non-through hole 20 Lid 22 Through hole 30 Window 40, 40a, 40b, 740b Insulation material 42 Convex part 44 Concave part 46 Non-through hole 48 Through hole 52, 54, 354, 754 Fixture 60, 260, 360 Resin material 72, 74 Sealing material 80 Connector 84 Support member 84a Convex part 85 Spacer 87 Screw 86 Plate material 88 Pivot support 90,590,790 Detection part 92,596 Convex part 94,594,794 Bottom 98 terminal 100,200,300,400,500,600,700 Detector 550 Metal layer (metal film)
900 Machine tool 910 Processing room 920 Temperature sensor 930 Fire extinguishing agent storage container 940 Nozzle 950 Damper 960 Revolving light with sound

なお、本実施形態の筒状体610の材質は、圧縮成形法又は射出成形法の適用が比較的容易であり、絶縁性及び剛性を有する材料が選定される。ここで、本実施形態においては、絶縁性及び剛性に特に優れた、ABS樹脂、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリスルホン(PS)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリメチルメタアクリレート(PMMA)、変性ポリフェニレンエーテル(m−PPE)、超高分子量ポリエチレン(U−PE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリフェニルスルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)及び前述の各樹脂とガラス繊維(GF)とを混合した混合物の群から選択される少なくとも一種からなる筒状体610が採用されている。そのため、第5の実施形態の検出器500とは異なり、筒状体510の外周面に沿って設けられる金属層550がなくても、検出部590とその周囲との絶縁性を保持した上で、検出器600の外周全体について確度高く液密性を特に高めた密閉構造を実現し得る。 As the material of the tubular body 610 of the present embodiment, a material having insulating properties and rigidity is selected because it is relatively easy to apply the compression molding method or the injection molding method. Here, in the present embodiment, ABS resin, polypropylene (PP), polycarbonate (PC), polyethylene (PE), polysulfone (PS), polybutylene terephthalate (PBT), polyethylene terephthalate, which are particularly excellent in insulating properties and rigidity. (PET), polyacetal (POM), polymethylmethacrylate (PMMA), modified polyphenylene ether (m-PPE), ultrahigh molecular weight polyethylene (U-PE), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), A tubular body 610 consisting of at least one selected from the group of polyphenylsulfone (PPSU), polysulfone (PSU), polyethersulfone (PESU) and a mixture of each of the above resins and glass fiber (GF) is adopted. Has been done. Therefore, unlike the detector 500 of the fifth embodiment, even if there is no metal layer 550 provided along the outer peripheral surface of the tubular body 510, the insulation between the detection unit 590 and its surroundings is maintained. , It is possible to realize a sealed structure with high accuracy and particularly high liquidtightness over the entire outer circumference of the detector 600.

Claims (9)

一部に開口を有する底部を備え、前記開口を利用して電磁波の少なくとも1つの波長を検出する検出部を収容する金属からなる液密の筒状体と、
シール材を介して前記開口を液密に塞ぐ、前記波長を通過させる窓部と、
前記検出部が前記筒状体に電気的に接続しないように、前記筒状体の少なくとも外周に配置される絶縁材、又は前記筒状体と前記検出部との間に配置される絶縁材と、を備えた、
検出器。
A liquid-tight tubular body made of metal having a bottom having an opening in part and accommodating a detection unit that detects at least one wavelength of an electromagnetic wave using the opening.
A window portion that allows the wavelength to pass through, which closes the opening liquid-tightly via a sealing material,
An insulating material arranged at least on the outer periphery of the tubular body or an insulating material arranged between the tubular body and the detection unit so that the detection unit is not electrically connected to the tubular body. With,
Detector.
一部に開口を有する底部を備え、前記開口を利用して電磁波の少なくとも1つの波長を検出する検出部を収容する、ABS樹脂、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリスルホン(PS)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)、ポリメチルメタアクリレート(PMMA)、変性ポリフェニレンエーテル(m−PPE)、超高分子量ポリエチレン(U−PE)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリフェニルスルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルスルホン(PESU)及び前述の各樹脂とガラス繊維(GF)とを混合した混合物の群から選択される少なくとも一種からなる筒状体と、
シール材を介して前記開口を液密に塞ぐ、前記波長を通過させる窓部と、を備える、
検出器。
ABS resin, polypropylene (PP), polypropylene (PC), polyethylene (PE), polysulfone, which has a bottom with a partial opening and houses a detector that uses the opening to detect at least one wavelength of electromagnetic waves. (PS), polybutylene terephthalate (PBT), polyacetal (POM), polymethylmethacrylate (PMMA), modified polyphenylene ether (m-PPE), ultrahigh molecular weight polyethylene (U-PE), polyetheretherketone (PEEK). , Polyphenylene terephide (PPS), polyphenylsulfone (PPSU), polysulfone (PSU), polyethersulfone (PESU) and at least one selected from the group of mixtures of the above resins and glass fiber (GF). Cylindrical body and
A window portion for passing the wavelength, which closes the opening liquid-tightly through a sealing material, is provided.
Detector.
一部に開口を有する底部を備え、前記開口を利用して電磁波の少なくとも1つの波長を検出する検出部を収容する樹脂からなる筒状体と、
シール材を介して前記開口を液密に塞ぐ、前記波長を通過させる窓部と、
前記筒状体の外周面に沿って設けられる、液密の金属層又は金属筒と、を備え、
前記検出部が前記金属層又は前記金属筒に電気的に接続しないよう配置される、
検出器。
A tubular body made of a resin having a bottom portion having an opening and accommodating a detection unit that detects at least one wavelength of an electromagnetic wave using the opening.
A window portion that allows the wavelength to pass through, which closes the opening liquid-tightly via a sealing material,
A liquid-tight metal layer or a metal cylinder provided along the outer peripheral surface of the tubular body is provided.
The detection unit is arranged so as not to be electrically connected to the metal layer or the metal cylinder.
Detector.
前記検出部が前記筒状体に電気的に接続しないように前記筒状体に対して前記検出部を固定する固定具と、を備えた、
請求項1に記載の検出器。
A fixture for fixing the detection unit to the tubular body so that the detection unit is not electrically connected to the tubular body is provided.
The detector according to claim 1.
前記波長が、炎から放射される前記電磁波の波長の少なくとも1つである、
請求項1乃至請求項4のいずれか1項に記載の検出器。
The wavelength is at least one of the wavelengths of the electromagnetic wave emitted from the flame.
The detector according to any one of claims 1 to 4.
前記筒状体が、水及び/又は油ミストに対して密閉性を有する、
請求項1乃至請求項5のいずれか1項に記載の検出器。
The tubular body is hermetically sealed to water and / or oil mist.
The detector according to any one of claims 1 to 5.
前記シール材が、前記筒状体の底部の内周面側に形成された溝内に、配置される、
請求項1乃至請求項6のいずれか1項に記載の検出器。
The sealing material is arranged in a groove formed on the inner peripheral surface side of the bottom of the tubular body.
The detector according to any one of claims 1 to 6.
請求項1乃至請求項7のいずれか1項に記載の検出器を備えた、
工作機械。
The detector according to any one of claims 1 to 7.
Machine Tools.
請求項1乃至請求項7のいずれか1項に記載の前記検出器の、少なくとも前記筒状体が、油ミストを含む気体又は液体に曝露される処理室を備えた、
工作機械。
A processing chamber in which at least the tubular body of the detector according to any one of claims 1 to 7 is exposed to a gas or liquid containing an oil mist.
Machine Tools.
JP2019099422A 2019-05-28 2019-05-28 Detector and machine tool Active JP6686213B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019099422A JP6686213B1 (en) 2019-05-28 2019-05-28 Detector and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019099422A JP6686213B1 (en) 2019-05-28 2019-05-28 Detector and machine tool

Publications (2)

Publication Number Publication Date
JP6686213B1 JP6686213B1 (en) 2020-04-22
JP2020194337A true JP2020194337A (en) 2020-12-03

Family

ID=70286738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019099422A Active JP6686213B1 (en) 2019-05-28 2019-05-28 Detector and machine tool

Country Status (1)

Country Link
JP (1) JP6686213B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530857U (en) * 1978-08-18 1980-02-28
JPS6059936U (en) * 1983-09-30 1985-04-25 呉羽化学工業株式会社 infrared sensor
JPS6130721A (en) * 1984-07-24 1986-02-13 Matsushita Electric Ind Co Ltd Fire detector
JP2006064519A (en) * 2004-08-26 2006-03-09 Hochiki Corp Photodetector
JP2010273925A (en) * 2009-05-29 2010-12-09 Nippon Koki Co Ltd Fire extinguishing system
JP2016071775A (en) * 2014-10-01 2016-05-09 ニッタン株式会社 Fire sensor
JP2019012325A (en) * 2017-06-29 2019-01-24 能美防災株式会社 Flame sensor
JP2019045277A (en) * 2017-08-31 2019-03-22 パナソニックIpマネジメント株式会社 Infrared ray detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530857U (en) * 1978-08-18 1980-02-28
JPS6059936U (en) * 1983-09-30 1985-04-25 呉羽化学工業株式会社 infrared sensor
JPS6130721A (en) * 1984-07-24 1986-02-13 Matsushita Electric Ind Co Ltd Fire detector
JP2006064519A (en) * 2004-08-26 2006-03-09 Hochiki Corp Photodetector
JP2010273925A (en) * 2009-05-29 2010-12-09 Nippon Koki Co Ltd Fire extinguishing system
JP2016071775A (en) * 2014-10-01 2016-05-09 ニッタン株式会社 Fire sensor
JP2019012325A (en) * 2017-06-29 2019-01-24 能美防災株式会社 Flame sensor
JP2019045277A (en) * 2017-08-31 2019-03-22 パナソニックIpマネジメント株式会社 Infrared ray detection device

Also Published As

Publication number Publication date
JP6686213B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
US20200032924A1 (en) Vent with relief valve
US7541587B2 (en) Gas sensor
US7267847B2 (en) Hydrophobic coating of individual components of hearing aid devices
CN1044282C (en) Linear displacement measuring apparatus
RU2008147812A (en) SLIDING BEARING
JP5710358B2 (en) Enclosure with ventilation member
WO2015000487A1 (en) Flow meter with unbroken liner
JP5593519B2 (en) Piping connection mechanism for seal device and mechanical seal device
JP6686213B1 (en) Detector and machine tool
JP6404988B1 (en) Encoder
JPWO2016181582A1 (en) Electronic device and method for manufacturing electronic device
CN203036605U (en) Breathable component
CA2407483A1 (en) Gas sensor assembly and method
TWM434361U (en) Waterproof air-permissible plug
JP5710359B2 (en) Ventilation member
EP1887599B1 (en) Pressure switch
CN209927376U (en) Sealed casing and gas detection device
CN210983693U (en) Environmental protection is with revealing alarm device
KR101346443B1 (en) Vent filter
JP2009224389A (en) Housing for use of outdoor instrument, waterproof ventilation unit, and method of bringing air permeability
CN214374576U (en) Gas detection device based on pipeline periscope
JP2002357725A (en) Seal structure for closure
US11344835B2 (en) Filter assembly for an enclosure
CN211531500U (en) Outdoor transparent protective cover and air-bleeding indicator lamp with same
CN219476554U (en) Explosion-proof lighting switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190603

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6686213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250