JP2020194088A - Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus - Google Patents

Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus Download PDF

Info

Publication number
JP2020194088A
JP2020194088A JP2019099593A JP2019099593A JP2020194088A JP 2020194088 A JP2020194088 A JP 2020194088A JP 2019099593 A JP2019099593 A JP 2019099593A JP 2019099593 A JP2019099593 A JP 2019099593A JP 2020194088 A JP2020194088 A JP 2020194088A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
region
chargeability
arithmetic mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019099593A
Other languages
Japanese (ja)
Inventor
白砂 寿康
Toshiyasu Shirasago
寿康 白砂
康夫 小島
Yasuo Kojima
康夫 小島
基也 山田
Motoya Yamada
基也 山田
阿部 幸裕
Yukihiro Abe
幸裕 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019099593A priority Critical patent/JP2020194088A/en
Publication of JP2020194088A publication Critical patent/JP2020194088A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

To provide an electrophotographic photoreceptor that prevents the occurrence of image deletion even after a long-term use.SOLUTION: An electrophotographic photoreceptor has a photoreceptor film including at least a photoconductive layer and a surface layer formed on a cylindrical conductive substrate. When the surface potential of the electrophotographic photoreceptor when a certain electric charge is given to the electrophotographic photoreceptor is regarded as a charging ability, in the axial direction of the electrophotographic photoreceptor at a portion where the photoreceptor film is formed, the arithmetic average roughness of an outer surface of the electrophotographic photoreceptor in an area with a high charging ability is larger than the arithmetic average roughness of the outer surface of the electrophotographic photoreceptor in an area with a low charging ability.SELECTED DRAWING: Figure 1

Description

本発明は、電子写真感光体および電子写真感光体の製造方法ならびに画像形成装置に関する。 The present invention relates to an electrophotographic photosensitive member, a method for producing an electrophotographic photosensitive member, and an image forming apparatus.

電子写真方式の画像形成装置はデジタル化、カラー化へのシフトが進み、出力画像の高画質化(高解像であること、高精細であること、濃度ムラがないこと、画像欠陥(白抜けや黒点など)がない等)の要求が高まっている。 The shift to digitization and colorization of electrophotographic image forming devices is progressing, and the quality of output images is improved (high resolution, high definition, no density unevenness, image defects (white spots). There is an increasing demand for (such as no black spots).

高画質化の要因である高解像度の一例としては、繰り返し画像形成を行うことで発生する、画像流れを低減することが挙げられる。画像流れが発生すると、細線の再現性等が低下するため、人の目で見ても判別が容易となるため、画像流れの低減に対する要求は極めて高いものとなっている。 An example of high resolution, which is a factor for improving image quality, is to reduce image flow generated by repeated image formation. When an image flow occurs, the reproducibility of fine lines and the like deteriorates, so that it is easy for the human eye to discriminate, and therefore, the demand for reducing the image flow is extremely high.

画像流れの原因は様々であるが、電子写真形成装置内に発生するオゾンや印加される電流電圧に起因して、電子写真感光体表面の表面層が酸化することにより放電生成物が形成され、表面の抵抗が低下することが発生要因として知られている。 Although there are various causes of image flow, discharge products are formed by oxidizing the surface layer on the surface of the electrophotographic photosensitive member due to ozone generated in the electrophotographic forming apparatus and the applied current voltage. It is known that a decrease in surface resistance is a cause of occurrence.

そこで、クリーニングブレードやクリーニングローラーなどのクリーニング手段を感光体表面に押し当てることで、感光体表面の廃トナーを除去すると同時に、クリーニング手段によって感光体の表面を研磨することで、表面の放電生成物を低減または除去し、画像流れの発生を抑制している。 Therefore, by pressing a cleaning means such as a cleaning blade or a cleaning roller against the surface of the photoconductor, waste toner on the surface of the photoconductor is removed, and at the same time, the surface of the photoconductor is polished by the cleaning means to produce a discharge product on the surface. Is reduced or eliminated to suppress the occurrence of image flow.

一方、クリーニング手段の押し圧を上昇させる等で表面の放電生成物の除去効率を向上させると、感光体表面とクリーニング手段との間の摩擦抵抗が上昇する。 On the other hand, if the efficiency of removing the discharge products on the surface is improved by increasing the pressing pressure of the cleaning means, the frictional resistance between the surface of the photoconductor and the cleaning means increases.

その結果、表面摩擦が大きくなり、感光体表面およびブレードの消耗が著しくなる場合が存在した。さらに、感光体ドラムの回転トルクが上昇し、クリーニング手段への負荷増大により、例えばクリーニングブレードのめくれ等が発生し、トナー外添剤のすり抜け、感光体ドラムに接触する帯電ローラの汚染や、これに起因する帯電不良が発生する場合が有った。 As a result, the surface friction becomes large, and the surface of the photoconductor and the blade may be significantly worn. Further, the rotational torque of the photoconductor drum increases, and the load on the cleaning means increases, for example, the cleaning blade is turned over, the toner external additive slips through, and the charging roller in contact with the photoconductor drum is contaminated. In some cases, charging defects caused by the above may occur.

そこで、特許文献1に示すように、感光体ドラムとクリーニングブレードやトナーとの接触面積を小さくするために感光体ドラム表面を粗面化する方法が提案されている。 Therefore, as shown in Patent Document 1, a method of roughening the surface of the photoconductor drum in order to reduce the contact area between the photoconductor drum and the cleaning blade or toner has been proposed.

これらの技術により、感光体の表面を研磨することで画像流れの発生を抑制しつつ、感光体表面とクリーニング手段との間の摩擦抵抗を低減させることで、感光体表面およびブレードの消耗ならびにクリーニング不良の発生抑制可能としている。 With these technologies, the surface of the photoconductor is polished to suppress the occurrence of image flow, and the frictional resistance between the surface of the photoconductor and the cleaning means is reduced to wear and clean the surface of the photoconductor and the blade. It is possible to suppress the occurrence of defects.

特開平11−143099号公報JP-A-11-143099

しかし近年、例えば、オフィスのネットワーク化が進み、デジタル化された情報を大量に出力する場合が生じている。また、電子写真方式の画像形成装置は印刷分野でも利用されるようになり、前述のように高画質化が求められると同時に、安定して繰り返し画像形成する高安定化も求められている。 However, in recent years, for example, the networking of offices has progressed, and there have been cases where a large amount of digitized information is output. Further, electrophotographic image forming apparatus has come to be used in the printing field as well, and as described above, high image quality is required, and at the same time, high stability for stable and repetitive image formation is also required.

前述の技術により、ある程度安定して画像形成を行えることが可能となった。しかし、長期間使用した場合に、画像流れが発生する場合が存在するため、いまだ改善の余地を有しているのが現状である。 The above-mentioned technique has made it possible to form an image with some stability. However, since there are cases where image flow occurs when used for a long period of time, there is still room for improvement.

本発明は上記に鑑みて提案されたものであり、感光体表面およびブレードの消耗ならびに、クリーニング不良の発生を抑制すると同時に、長期間使用しても画像流れの発生を抑制する電子写真感光体を提供することにある。また、本発明の電子写真感光体を用い、従来よりも高画質、高安定な画像形成装置を提供することにある。 The present invention has been proposed in view of the above, and provides an electrophotographic photosensitive member that suppresses wear on the surface and blade of the photoconductor and the occurrence of cleaning defects, and at the same time suppresses the occurrence of image flow even after long-term use. To provide. Another object of the present invention is to provide an image forming apparatus having higher image quality and higher stability than the conventional one by using the electrophotographic photosensitive member of the present invention.

すなわち、上述した目的を達成するため、本発明は、円筒状の導電性基体上に少なくとも光導電層と表面層とを含む感光体膜が形成された電子写真感光体であって、前記電子写真感光体に一定の電荷を付与したときの前記電子写真感光体の表面電位を帯電能とした場合、前記感光体膜が形成された部分の前記電子写真感光体の軸方向において、前記帯電能の高い領域の前記電子写真感光体の外表面の算術平均粗さが、前記帯電能の低い領域よりも大きいことを特徴とする。 That is, in order to achieve the above-mentioned object, the present invention is an electrophotographic photosensitive member in which a photoconductor film containing at least a photoconducting layer and a surface layer is formed on a cylindrical conductive substrate. When the surface potential of the electrophotographic photosensitive member when a constant charge is applied to the photoconductor is defined as the charging ability, the charging ability of the electrophotographic photosensitive member in the axial direction of the portion where the photoconductor film is formed. It is characterized in that the arithmetic average roughness of the outer surface of the electrophotographic photosensitive member in a high region is larger than that in the region having low chargeability.

また、上述した目的を達成するため、本発明に係る画像形成装置は、前記電子写真感光体を用い、前記電子写真感光体に接触または近接配置され、電圧を印加して前記電子写真感光体を帯電させる帯電部材を備えることを特徴とする。 Further, in order to achieve the above-mentioned object, the image forming apparatus according to the present invention uses the electrophotographic photosensitive member, is placed in contact with or close to the electrophotographic photosensitive member, and applies a voltage to the electrophotographic photosensitive member. It is characterized by including a charging member for charging.

本発明によれば、長期間使用しても画像流れの発生を抑制する電子写真感光体を提供することが可能となる。また、本発明の電子写真感光体を用い、従来よりも高画質、高安定な画像形成装置を提供することが可能となる。 According to the present invention, it is possible to provide an electrophotographic photosensitive member that suppresses the occurrence of image flow even when used for a long period of time. Further, by using the electrophotographic photosensitive member of the present invention, it is possible to provide an image forming apparatus having higher image quality and higher stability than before.

本発明の電子写真感光体の構成を示す模式的な構成図である。(a)は、電子写真感光体の一例を示す図である。(b)は、電子写真感光体の帯電能の軸方向の分布の一例を示す図である。(c)は、電子写真感光体の算術平均粗さの軸方向の分布の一例を示す図である。It is a schematic block diagram which shows the structure of the electrophotographic photosensitive member of this invention. (A) is a figure which shows an example of an electrophotographic photosensitive member. FIG. (B) is a diagram showing an example of the axial distribution of the chargeability of the electrophotographic photosensitive member. FIG. (C) is a diagram showing an example of the axial distribution of the arithmetic mean roughness of the electrophotographic photosensitive member. 本発明の電子写真感光体の構成の一例を示す模式的な構成図である。It is a schematic block diagram which shows an example of the structure of the electrophotographic photosensitive member of this invention. 本発明の他の電子写真感光体の構成の一例を示す模式的な構成図である。It is a schematic block diagram which shows an example of the structure of another electrophotographic photosensitive member of this invention. アモルファスシリコン感光体の堆積膜形成装置の一例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows an example of the deposition film forming apparatus of an amorphous silicon photoconductor. 本発明の電子写真装置の一例を示す模式図である。It is a schematic diagram which shows an example of the electrophotographic apparatus of this invention. 本発明の他の電子写真装置の一例を示す模式図である。It is a schematic diagram which shows an example of another electrophotographic apparatus of this invention.

以下、本発明の具体的な実施形態について、図面を参照して説明する。
(電子写真感光体)
図1は、本発明の電子写真感光体を説明するための模式的構成図である。図1(a)は、本発明の電子写真感光体の模式的断面図を示す。ここで、電子写真感光体100は、円筒状の導電性基体101の上に、例えば下部電荷注入阻止層、光導電層、および表面層から構成される、感光体膜110が積層されている。電子写真感光体100は、外表面111を有する。電子写真感光体100は、中央で2等分して図中向かって左側を第1の領域、向かって右側を第2の領域に分けている。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
(Electrophotophotoreceptor)
FIG. 1 is a schematic configuration diagram for explaining the electrophotographic photosensitive member of the present invention. FIG. 1A shows a schematic cross-sectional view of the electrophotographic photosensitive member of the present invention. Here, in the electrophotographic photosensitive member 100, a photosensitive member film 110 composed of, for example, a lower charge injection blocking layer, a photoconducting layer, and a surface layer is laminated on a cylindrical conductive substrate 101. The electrophotographic photosensitive member 100 has an outer surface 111. The electrophotographic photosensitive member 100 is divided into two equal parts at the center, and the left side in the drawing is divided into a first region and the right side is divided into a second region.

図1(b)は、本発明の電子写真感光体100の帯電能の軸方向の分布を示すグラフである。横軸は電子写真感光体100の軸方向の位置を示し、縦軸は帯電能を示す。図中実線は各軸位置における帯電能を示したグラフである。 FIG. 1B is a graph showing the axial distribution of the chargeability of the electrophotographic photosensitive member 100 of the present invention. The horizontal axis indicates the position of the electrophotographic photosensitive member 100 in the axial direction, and the vertical axis indicates the charging ability. The solid line in the figure is a graph showing the charging ability at each axial position.

図中Vaは、軸方向において帯電能の高い領域の表面電位を示し、Vbは、帯電能の低い領域の表面電位を示している。また、図中V1およびV2は、電子写真感光体100を中央で2等分して、向かって左側を第1の領域とし、向かって右側を第2の領域として分けた時の各領域での平均値であり、第1の領域の平均値をV1、第2の領域の平均値をV2で示す。 In the figure, Va indicates the surface potential of the region having high chargeability in the axial direction, and Vb indicates the surface potential of the region having low chargeability. Further, V1 and V2 in the figure are the respective regions when the electrophotographic photosensitive member 100 is divided into two equal parts at the center, and the left side thereof is divided into the first region and the right side thereof is divided into the second region. It is an average value, and the average value of the first region is indicated by V1 and the average value of the second region is indicated by V2.

本発明における帯電能とは、電子写真感光体100の表面に一定の電荷を付与した場合の電子写真感光体100の表面電位を示す。 The charging ability in the present invention indicates the surface potential of the electrophotographic photosensitive member 100 when a constant charge is applied to the surface of the electrophotographic photosensitive member 100.

次に、電子写真感光体100の図1(b)に示した帯電能の軸方向の分布をもとに、電子写真感光体100の外表面111の表面粗さを制御した状態を図1(c)に示す。 Next, FIG. 1 (FIG. 1) shows a state in which the surface roughness of the outer surface 111 of the electrophotographic photosensitive member 100 is controlled based on the axial distribution of the chargeability shown in FIG. 1 (b) of the electrophotographic photosensitive member 100. Shown in c).

図1(c)は、本発明の電子写真感光体100の算術平均粗さの軸方向の分布を示すグラフである。横軸は電子写真感光体100の軸方向の位置を示し、縦軸は算術平均粗さを示す。 FIG. 1C is a graph showing the axial distribution of the arithmetic mean roughness of the electrophotographic photosensitive member 100 of the present invention. The horizontal axis indicates the position of the electrophotographic photosensitive member 100 in the axial direction, and the vertical axis indicates the arithmetic mean roughness.

図中実線は各軸位置における算術平均粗さを示したグラフである。図中Raaは、前述の軸方向において帯電能の高い領域の表面電位Vaに対応する部分の算術平均粗さを示し、Rabは、前述の軸方向において帯電能の低い領域の表面電位Vbに対応する部分の算術平均粗さを示している。また、図中Ra1およびRa2は、電子写真感光体100を中央で2等分して、向かって左側を第1の領域とし、向かって右側を第2の領域として分けた時の各領域での算術平均粗さの平均値であり、第1の領域の平均値をRa1、第2の領域の平均値をRa2で示す。 The solid line in the figure is a graph showing the arithmetic mean roughness at each axis position. In the figure, Ra indicates the arithmetic mean roughness of the portion corresponding to the surface potential Va of the region having high chargeability in the above-mentioned axial direction, and Rab corresponds to the surface potential Vb of the region having low chargeability in the above-mentioned axial direction. It shows the arithmetic mean roughness of the part to be used. Further, Ra1 and Ra2 in the figure are obtained in each region when the electrophotographic photosensitive member 100 is divided into two equal parts at the center, the left side thereof is defined as the first region, and the right side thereof is divided into the second region. It is the average value of the arithmetic mean roughness, and the average value of the first region is indicated by Ra1 and the average value of the second region is indicated by Ra2.

電子写真感光体100の外表面111は、図1(b)に示した帯電能の軸方向の分布に基づいて、帯電能の低い領域(Vbの位置)に対して帯電能の高い領域(Vaの位置)の算術平均粗さを大きくしている(Raa>Rab)。
本発明における算術平均粗さとは、JIS B 0601で規定されている表面粗さに基づいている。
The outer surface 111 of the electrophotographic photosensitive member 100 has a region with high chargeability (Va) with respect to a region with low chargeability (position of Vb) based on the axial distribution of chargeability shown in FIG. 1 (b). The arithmetic mean roughness of (position) is increased (Raa> Rab).
The arithmetic mean roughness in the present invention is based on the surface roughness defined in JIS B 0601.

上記構成によって長期間使用しても画像流れの発生を抑制することができる理由について、本発明者らは以下のように考えている。 The present inventors consider the reason why the occurrence of image flow can be suppressed even after long-term use by the above configuration as follows.

図1に示すように、帯電能に軸方向ムラが有る電子写真感光体100を用いて電子写真装置により画像を出力する場合、軸方向の画像の濃度のムラを低減させるために、電子写真感光体100の表面電位のムラを低減することが一般に行われる。 As shown in FIG. 1, when an image is output by an electrophotographic apparatus using an electrophotographic photosensitive member 100 having axial unevenness in chargeability, electrophotographic photosensitive is used in order to reduce unevenness in the density of the image in the axial direction. It is common practice to reduce the unevenness of the surface potential of the body 100.

例えば、電子写真感光体100を帯電させる手段としてコロナ帯電器を用いるコロトロン帯電方式を利用する場合は、帯電器内の両端部で帯電ワイヤーと電子写真感光体100の表面との距離を変化させることで、画像形成時の電子写真感光体100の表面電位の軸方向ムラを低減するように調整が行われる。 For example, when a corotron charging method using a corona charger is used as a means for charging the electrophotographic photosensitive member 100, the distance between the charging wire and the surface of the electrophotographic photosensitive member 100 is changed at both ends in the charger. Therefore, adjustments are made so as to reduce the axial unevenness of the surface potential of the electrophotographic photosensitive member 100 at the time of image formation.

また、電子写真感光体100を帯電させる手段として接触帯電方式を利用する場合は、帯電部材に直流(DC)電圧のみを印加するのではなく、交流(AC)電圧を重畳してすることで、帯電と除電とを繰り返すことにより、画像形成時の電子写真感光体100の表面電位の軸方向ムラを低減するように調整が行われる。 Further, when the contact charging method is used as a means for charging the electrophotographic photosensitive member 100, not only a direct current (DC) voltage is applied to the charging member, but an alternating current (AC) voltage is superimposed. By repeating charging and static elimination, adjustment is performed so as to reduce axial unevenness of the surface potential of the electrophotographic photosensitive member 100 at the time of image formation.

いずれの場合においても、電子写真感光体100の表面電位は軸方向で均一化の方向に調整されるが、そのために、電子写真感光体100の表面に付与される電荷量は軸方向で不均一となってしまう。例えば、帯電能の低い部分は、表面の電位を帯電能の高い部分に近づけるために、帯電能の高い部分に比べ、表面の電荷量を多くする必要がある。そのために、帯電手段から電子写真感光体100の表面方向に流れる電流が増加させることになる。 In either case, the surface potential of the electrophotographic photosensitive member 100 is adjusted in the axially uniform direction, and therefore, the amount of charge applied to the surface of the electrophotographic photosensitive member 100 is non-uniform in the axial direction. Will be. For example, in order to bring the potential of the surface of the portion having a low chargeability closer to the portion having a high chargeability, it is necessary to increase the amount of charge on the surface as compared with the portion having a high chargeability. Therefore, the current flowing from the charging means toward the surface of the electrophotographic photosensitive member 100 increases.

その結果、帯電能の高い領域に比べ、帯電能の低い領域で生成されるオゾン量は増加することになる。 As a result, the amount of ozone generated in the region with low chargeability increases as compared with the region with high chargeability.

このように、電子写真感光体100の帯電能にムラが有る場合、画像の均一性を目的として、画像形成時の電子写真感光体100の表面電位の均一化を行うために、電子写真感光体100に流れる電流や、オゾンの発生量に軸方向のムラが発生する。その結果、電子写真感光体100の表面での放電生成物に軸方向のムラが発生してしまう。 As described above, when the charging ability of the electrophotographic photosensitive member 100 is uneven, the electrophotographic photosensitive member 100 is used to homogenize the surface potential of the electrophotographic photosensitive member 100 at the time of image formation for the purpose of image uniformity. Axial unevenness occurs in the current flowing through 100 and the amount of ozone generated. As a result, axial unevenness occurs in the discharge products on the surface of the electrophotographic photosensitive member 100.

つまり、帯電能の低い領域は、帯電能の高い領域に比べて、電子写真感光体100の表面での放電生成物が相対的に増加した状況で、連続して画像形成が実施されることになる。 That is, in the region with low chargeability, image formation is continuously performed in a situation where the discharge products on the surface of the electrophotographic photosensitive member 100 are relatively increased as compared with the region with high chargeability. Become.

一般に、放電生成物は水分等が吸着することで表面抵抗を低下させることが知られている。よって、放電生成物が多い領域は、抵抗の低下が大きくなり、その結果、電子写真感光体100に流れる電流が増加し、それにより、放電生成物が増えてしまうという現象が生じてしまう。 In general, it is known that the discharge product reduces the surface resistance by adsorbing water or the like. Therefore, in the region where there are many discharge products, the decrease in resistance becomes large, and as a result, the current flowing through the electrophotographic photosensitive member 100 increases, which causes a phenomenon that the discharge products increase.

つまり、放電生成物にムラが生じると、長期間使用した場合、放電生成物の多い領域はさらに、放電生成物が増加するので、放電生成物のムラが増大してくる。 That is, when the discharge product becomes uneven, when used for a long period of time, the discharge product increases further in the region where the discharge product is abundant, so that the unevenness of the discharge product increases.

その結果、クリーニング手段による放電生成物の除去が不充分となり、画像ながれが発生してしまう場合が有ると推測される。 As a result, it is presumed that the removal of the discharge product by the cleaning means is insufficient, and image flow may occur.

本発明は、帯電能の低い領域の算術平均粗さを、帯電能の高い領域の算術平均粗さに比べて小さくしている。それにより、帯電能の低い領域は、クリーニング手段との摩擦係数が帯電能の高い領域に比べて高くなるため、帯電能の高い領域に比べて放電生成物の除去効率が良化する。 In the present invention, the arithmetic mean roughness of the region with low chargeability is made smaller than the arithmetic mean roughness of the region with high chargeability. As a result, the coefficient of friction with the cleaning means is higher in the region having a low charging capacity than in the region having a high charging capacity, so that the removal efficiency of the discharge product is improved as compared with the region having a high charging capacity.

その結果、電子写真感光体100の表面での放電生成物のムラが大幅に低減し、放電生成物のムラが有ることにより生じていた、放電生成物のムラが増大してくることが抑制されるので、長期間使用しても画像流れの発生が抑制されると推測される。 As a result, the unevenness of the discharge product on the surface of the electrophotographic photosensitive member 100 is significantly reduced, and the increase in the unevenness of the discharge product caused by the unevenness of the discharge product is suppressed. Therefore, it is presumed that the occurrence of image flow is suppressed even after long-term use.

本発明において、電子写真感光体100の外表面111の算術平均粗さRaは、0.04μm以上0.2μm以下であると、ブレードの消耗および、クリーニング不良の発生を抑制すると同時に、長期間使用しても画像流れの発生を抑制するのに好ましい。
算術平均粗さRaが0.04μmより小さいと、感光体ドラムとクリーニング手段との動摩擦係数が増加するので、クリーニング手段の耐久性が低下する場合が有る。さらに、クリーニング手段としてクリーニングブレードを用いた場合には、ブレードのめくれが発生し、クリーニング不良が発生する場合が有る。
算術平均粗さRaが0.2μmより大きいと、感光体ドラムとクリーニング手段との接触面積が低下するので、効率的に電子写真感光体100の表面の放電生成物を除去できなくなり、使用中に画像流れが発生する場合が有る。
In the present invention, when the arithmetic average roughness Ra of the outer surface 111 of the electrophotographic photosensitive member 100 is 0.04 μm or more and 0.2 μm or less, wear of the blade and occurrence of cleaning defects are suppressed, and at the same time, it is used for a long period of time. Even so, it is preferable to suppress the occurrence of image flow.
If the arithmetic mean roughness Ra is smaller than 0.04 μm, the coefficient of dynamic friction between the photoconductor drum and the cleaning means increases, so that the durability of the cleaning means may decrease. Further, when a cleaning blade is used as the cleaning means, the blade may be turned over and a cleaning defect may occur.
If the arithmetic mean roughness Ra is larger than 0.2 μm, the contact area between the photoconductor drum and the cleaning means decreases, so that the discharge products on the surface of the electrophotographic photosensitive member 100 cannot be efficiently removed, and during use. Image flow may occur.

図1(b)に示すように、電子写真感光体100の軸方向の帯電能の形状は、多少の変曲点は有するが、軸方向の全般に渡って概ねなだらかに変化している。 As shown in FIG. 1 (b), the shape of the chargeability in the axial direction of the electrophotographic photosensitive member 100 has some inflection points, but changes generally gently over the entire axial direction.

例えば、後述するように、アモルファスシリコン電子写真感光体や、有機電子写真感光体においては、製造方法の性質上、軸方向の帯電能の変化は図1(b)に示すようになだらかに変化するのが一般的であり、局所的に大きく変化するようなことはない。 For example, as will be described later, in the amorphous silicon electrophotographic photosensitive member and the organic electrophotographic photosensitive member, the change in the chargeability in the axial direction changes gently as shown in FIG. 1B due to the nature of the manufacturing method. Is common, and does not change significantly locally.

従って、図1(b)に示すように、電子写真感光体を軸方向に2等分して2つの領域(第1の領域と第2の領域)に分け、第1の領域と第2の領域のそれぞれの範囲で電子写真感光体100の帯電能を平均化し、帯電能の平均値の絶対値をもって、電子写真感光体100の帯電能の絶対値の大小関係を決定することができる。 Therefore, as shown in FIG. 1B, the electrophotographic photosensitive member is divided into two regions (first region and second region) in the axial direction, and the first region and the second region are divided. The chargeability of the electrophotographic photosensitive member 100 can be averaged in each range of the region, and the magnitude relationship of the absolute value of the chargeability of the electrophotographic photosensitive member 100 can be determined by the absolute value of the average value of the chargeability.

電子写真感光体100の外表面111は、図1(b)に示した帯電能の軸方向の分布に基づいて、帯電能の低い第2の領域に対して、帯電能の高い第1の領域の算術平均粗さの平均値を大きくしている(Ra1>Ra2)。 The outer surface 111 of the electrophotographic photosensitive member 100 has a first region having a high chargeability with respect to a second region having a low chargeability, based on the axial distribution of the chargeability shown in FIG. 1 (b). The average value of the arithmetic mean roughness of is increased (Ra1> Ra2).

本発明において、前述のように第1の領域の帯電能の平均値をV1、第2の領域の帯電能の平均値をV2、第1の領域の算術平均粗さの平均値をRa1、第2の領域の算術平均粗さの平均値をRa2としたとき、下記式(1)および下記式(2)を満たすことが好ましい。

Figure 2020194088
Figure 2020194088
In the present invention, as described above, the average value of the chargeability of the first region is V1, the average value of the chargeability of the second region is V2, the average value of the arithmetic mean roughness of the first region is Ra1, and so on. When the average value of the arithmetic mean roughness of the region 2 is Ra2, it is preferable to satisfy the following equations (1) and (2).
Figure 2020194088
Figure 2020194088

第1の領域と第2の領域の帯電能の差|V1−V2|の、電子写真感光体100の全体(第1の領域+第2の領域)の帯電能の平均値(V1+V2)/2に対する割合が、10%より大きくなると、軸方向の帯電能のムラが大きくなり画像の均一性が不充分になる場合が有る。 The average value (V1 + V2) / 2 of the chargeability of the entire electrophotographic photosensitive member 100 (first region + second region) of the difference in chargeability between the first region and the second region | V1-V2 | When the ratio to 10% is larger than 10%, the unevenness of the charging ability in the axial direction becomes large, and the uniformity of the image may become insufficient.

さらに、算術平均粗さの軸方向のムラの大きさΔRaを、第1の領域と第2の領域の算術平均粗さの差|Ra1−Ra2|の、電子写真感光体100の全体(第1の領域+第2の領域)の算術平均粗さの平均値(V1+V2)/2に対する割合とする。帯電能の軸方向のムラの大きさΔVを、第1の領域と第2の領域の帯電能の差|V1−V2|の、電子写真感光体100の全体(第1の領域+第2の領域)の帯電能の平均値(V1+V2)/2に対する割合とする。 Further, the magnitude ΔRa of the axial unevenness of the arithmetic mean roughness is set to the difference between the arithmetic mean roughness of the first region and the second region | Ra1-Ra2 |, and the entire electrophotographic photosensitive member 100 (first). Area + 2nd area) is the ratio of the arithmetic mean roughness to the average value (V1 + V2) / 2. The magnitude ΔV of the axial unevenness of the chargeability is the difference in chargeability between the first region and the second region | V1-V2 |, and the entire electrophotographic photosensitive member 100 (first region + second region). The ratio of the chargeability of the region) to the average value (V1 + V2) / 2.

ここで、ΔRaがΔVより5%を超えて小さい、つまり算術平均粗さの軸方向の差が足りない場合は、本発明の骨子であるところの放電生成物のムラの低減が充分に実施されない場合が有り好ましくない。また、ΔRaがΔVより5%を超えて大きい、つまり算術平均粗さの軸方向の差が大き過ぎる場合は、クリーニングブレードのビビり等が発生する場合が有り好ましくない。 Here, if ΔRa is smaller than ΔV by more than 5%, that is, if the axial difference in the arithmetic mean roughness is insufficient, the unevenness of the discharge product, which is the gist of the present invention, is not sufficiently reduced. In some cases, it is not preferable. Further, when ΔRa is larger than ΔV by more than 5%, that is, when the difference in the arithmetic mean roughness in the axial direction is too large, chattering of the cleaning blade may occur, which is not preferable.

(感光体の製造方法)
次に、本発明の電子写真感光体100の製造方法について、図面を用いて説明する。図2および図3は、図1において示した電子写真感光体100の断面の一部を示した模式図である。
(Manufacturing method of photoconductor)
Next, the method for producing the electrophotographic photosensitive member 100 of the present invention will be described with reference to the drawings. 2 and 3 are schematic views showing a part of a cross section of the electrophotographic photosensitive member 100 shown in FIG.

図2において、電子写真感光体200は、一例として、アモルファスシリコン感光体を示す。円筒状の導電性基体201の上に、下部電荷注入阻止層202、光導電層203、および表面層204から構成される、感光体膜210が積層されている。電子写真感光体200は、外表面211を有する。導電性基体201は、外表面212を有する。 In FIG. 2, the electrophotographic photosensitive member 200 shows an amorphous silicon photosensitive member as an example. A photoconductor film 210 composed of a lower charge injection blocking layer 202, a photoconducting layer 203, and a surface layer 204 is laminated on a cylindrical conductive substrate 201. The electrophotographic photosensitive member 200 has an outer surface 211. The conductive substrate 201 has an outer surface 212.

図3において、電子写真感光体300は、一例として、有機感光体を示す。円筒状の導電性基体301の上に、下引き層302、電荷発生層303、電荷輸送層304、および保護層305から構成される、感光体膜310が積層されている。電子写真感光体300は、外表面311を有する。導電性基体301は、外表面312を有する。 In FIG. 3, the electrophotographic photosensitive member 300 shows an organic photosensitive member as an example. A photoconductor film 310 composed of an undercoat layer 302, a charge generation layer 303, a charge transport layer 304, and a protective layer 305 is laminated on a cylindrical conductive substrate 301. The electrophotographic photosensitive member 300 has an outer surface 311. The conductive substrate 301 has an outer surface 312.

図2においては、導電性基体201の外表面212が粗面化されており、その結果、導電性基体201上に堆積した感光体膜210の外表面211が粗面化されることになる。 In FIG. 2, the outer surface 212 of the conductive substrate 201 is roughened, and as a result, the outer surface 211 of the photoconductor film 210 deposited on the conductive substrate 201 is roughened.

粗面化の方法としては、特に制限はなく、例えばウエットブラスト、ドライブラスト、ウエットエッチング、ドライエッチング、研磨、切削加工などで、導電性基体201の外表面212を粗面化すればよい。 The roughening method is not particularly limited, and the outer surface 212 of the conductive substrate 201 may be roughened by, for example, wet blasting, dry lasting, wet etching, dry etching, polishing, or cutting.

そして、帯電能の高い領域と帯電能の低い領域、同じく第1の領域と第2の領域で粗面化の条件を変更することにより、それぞれ異なるように粗面化すればよい。 Then, the roughening may be performed differently by changing the roughening conditions in the region having a high charging ability and the region having a low charging ability, and also in the first region and the second region.

また、帯電能の高い領域と低い領域の間もまた、第1の領域と第2の領域の境界においては、境界で処理条件を急峻に変更させてもよく、ある程度の範囲内で徐々に処理条件を変更させてもよい。 Further, between the region with high chargeability and the region with low chargeability, and at the boundary between the first region and the second region, the treatment conditions may be changed sharply at the boundary, and the treatment is gradually performed within a certain range. The conditions may be changed.

次に、このように外表面212が粗面化された導電性基体201を後述の堆積膜形成装置に投入して、導電性基体201上に感光体膜210を堆積する。この時、導電性基体201の算術平均粗さの大きい側と、算術平均粗さの小さい側との位置関係を所定の位置関係になるように投入する必要がある。 Next, the conductive substrate 201 whose outer surface 212 is roughened in this way is put into a deposition film forming apparatus described later, and the photoconductor film 210 is deposited on the conductive substrate 201. At this time, it is necessary to input the positional relationship between the side having the large arithmetic mean roughness and the side having the small arithmetic mean roughness of the conductive substrate 201 so as to have a predetermined positional relationship.

具体的には、前もって堆積膜形成装置で作成された電子写真感光体200の帯電能の軸方向の分布を測定しておく。そして、帯電能が高い部分と帯電能が低い部分が決定される。これにより、帯電能が高い部分と堆積膜形成装置の位置関係が決定される。その後は、前述のように作成された電子写真感光体200の外表面211の、算術平均粗さの大きい側が、堆積膜形成装置の位置関係で帯電能が高い部分と同じになるように堆積膜形成装置に投入する。 Specifically, the axial distribution of the chargeability of the electrophotographic photosensitive member 200 created by the deposit film forming apparatus in advance is measured. Then, a portion having a high charging ability and a portion having a low charging ability are determined. As a result, the positional relationship between the highly chargeable portion and the sedimentary film forming apparatus is determined. After that, the sedimentary film so that the side of the outer surface 211 of the electrophotographic photosensitive member 200 created as described above, which has a large arithmetic mean roughness, is the same as the portion having a high chargeability due to the positional relationship of the deposit film forming apparatus. Put into the forming device.

図4に示す堆積膜形成装置400を用いて説明する。図4は、アモルファスシリコン感光体200を作製するための、高周波電源を用いたRFプラズマCVD法による電子写真感光体の堆積膜形成装置400の一例を模式的に示した図である。この装置は大別すると、反応容器401を有する堆積装置480、原料ガス供給装置490、および、反応容器401内を減圧する為の排気装置(図示せず)から構成されている。 This will be described using the deposit film forming apparatus 400 shown in FIG. FIG. 4 is a diagram schematically showing an example of a deposition film forming apparatus 400 for an electrophotographic photosensitive member by an RF plasma CVD method using a high frequency power source for producing an amorphous silicon photosensitive member 200. This device is roughly classified into a deposition device 480 having a reaction vessel 401, a raw material gas supply device 490, and an exhaust device (not shown) for reducing the pressure inside the reaction vessel 401.

堆積装置480中の反応容器401内には、アースに接続された導電性基体101、基体加熱用ヒータ402、および、原料ガス導入管403が設置されている。さらに、カソード電極404には、高周波マッチングボックス405を介して高周波電源406が接続されている。 In the reaction vessel 401 in the deposition apparatus 480, a conductive substrate 101 connected to the ground, a heater 402 for heating the substrate, and a raw material gas introduction pipe 403 are installed. Further, a high frequency power supply 406 is connected to the cathode electrode 404 via a high frequency matching box 405.

原料ガス供給装置490は、SiH、H、CH、NO、Bなどの原料ガスボンベ(図示せず)が設けられている。各原料ガスを封入したガスのボンベは、補助バルブ407を介して反応容器401内の原料ガス導入管403に接続されている。 The raw material gas supply device 490 is provided with a raw material gas cylinder (not shown) such as SiH 4 , H 2 , CH 4 , NO, B 2 H 6 . The gas cylinder filled with each raw material gas is connected to the raw material gas introduction pipe 403 in the reaction vessel 401 via an auxiliary valve 407.

次にこの装置を使った堆積膜の形成方法について説明する。前述のように、あらかじめ外表面212が粗面化された導電性基体201を、外表面212の算術平均粗さの大きい領域が、堆積膜形成装置400内の位置関係で帯電能が高い領域と同じになるように、反応容器401に受け台408を介して設置する。 Next, a method of forming a sedimentary film using this device will be described. As described above, the conductive substrate 201 having the outer surface 212 roughened in advance has a region having a large arithmetic mean roughness of the outer surface 212 as a region having a high chargeability due to the positional relationship in the deposition film forming apparatus 400. It is installed in the reaction vessel 401 via the cradle 408 so as to be the same.

例えば、図4の堆積膜形成装置400を用いて、アモルファスシリコン感光体を作成した場合、受け台408側に帯電能が低い領域が形成され、受け台408と反対側に帯電能の高い領域が形成される。よって、導電性基体201上で外表面212の算術平均粗さの大きい領域が受け台408と反対側になるように、反応容器401内に設置する。 For example, when an amorphous silicon photoconductor is produced using the deposition film forming apparatus 400 of FIG. 4, a region having a low charging ability is formed on the pedestal 408 side, and a region having a high charging ability is formed on the side opposite to the pedestal 408. It is formed. Therefore, it is installed in the reaction vessel 401 so that the region of the outer surface 212 having a large arithmetic mean roughness on the conductive substrate 201 is on the opposite side to the cradle 408.

次に、排気装置(図示せず)を運転し、反応容器401内を排気する。真空計409の表示を見ながら、反応容器401内の圧力が例えば1Pa以下の所定の圧力になった領域で、基体加熱用ヒータ402に電力を供給し、導電性基体201を例えば50℃から350℃の所望の温度に加熱する。このとき、原料ガス供給装置490より、Ar、Heなどの不活性ガスを反応容器401に供給して、不活性ガス雰囲気中で加熱を行うこともできる。 Next, the exhaust device (not shown) is operated to exhaust the inside of the reaction vessel 401. While observing the display of the vacuum gauge 409, power is supplied to the substrate heating heater 402 in the region where the pressure in the reaction vessel 401 becomes a predetermined pressure of, for example, 1 Pa or less, and the conductive substrate 201 is, for example, from 50 ° C. to 350 ° C. Heat to the desired temperature of ° C. At this time, an inert gas such as Ar or He can be supplied to the reaction vessel 401 from the raw material gas supply device 490 to perform heating in the inert gas atmosphere.

次に、原料ガス供給装置490より堆積膜形成に用いるガスを反応容器401に供給する。すなわち、必要に応じマスフローコントローラ(図示せず)を用いて流量設定を行う。各マスフローコントローラ(図示せず)の流量が安定した領域で、真空計409の表示を見ながらメインバルブ410を操作し、反応容器401内の圧力が所望の圧力になるように調整する。所望の圧力が得られた領域で高周波電源406より高周波電力を印加すると同時に高周波マッチングボックス405を操作し、反応容器401内にプラズマ放電を生起する。その後、速やかに高周波電力を所望の電力に調整し、堆積膜の形成を行う。 Next, the gas used for forming the sedimentary film is supplied to the reaction vessel 401 from the raw material gas supply device 490. That is, the flow rate is set by using a mass flow controller (not shown) as needed. In the region where the flow rate of each mass flow controller (not shown) is stable, the main valve 410 is operated while observing the display of the vacuum gauge 409 to adjust the pressure in the reaction vessel 401 to a desired pressure. At the same time as applying high frequency power from the high frequency power supply 406 in the region where the desired pressure is obtained, the high frequency matching box 405 is operated to generate plasma discharge in the reaction vessel 401. After that, the high frequency power is promptly adjusted to a desired power to form a sedimentary film.

所定の堆積膜の形成が終わった領域で、高周波電力406の印加を停止し、補助バルブ407を閉じ、原料ガスの供給を終える。同時に、メインバルブ410を全開にし、反応容器401内を1Pa以下の圧力まで排気する。 At the region where the formation of the predetermined deposit film is completed, the application of the high frequency power 406 is stopped, the auxiliary valve 407 is closed, and the supply of the raw material gas is finished. At the same time, the main valve 410 is fully opened, and the inside of the reaction vessel 401 is exhausted to a pressure of 1 Pa or less.

以上で、堆積膜の形成を終えるが、複数の堆積膜を形成する場合、再び上記の手順を繰り返してそれぞれの層を形成すればよい。原料ガス流量や、圧力などを感光体膜形成用の条件に一定の時間で変化させて、接合領域の形成を行うこともできる。 This completes the formation of the deposit film, but when forming a plurality of deposit films, the above procedure may be repeated again to form each layer. It is also possible to form the junction region by changing the flow rate of the raw material gas, the pressure, and the like to the conditions for forming the photoconductor film in a certain time.

すべての堆積膜形成が終わったのち、メインバルブ410を閉じ、反応容器401内に不活性ガスを導入し大気圧に戻した後、導電性基体101を取り出す。 After all the deposition film formation is completed, the main valve 410 is closed, an inert gas is introduced into the reaction vessel 401, the pressure is returned to atmospheric pressure, and then the conductive substrate 101 is taken out.

次に別の製造方法に関して、図3を用いて説明する。
まず、導電性基体301上に、感光体膜310を形成する。そして、作成された電子写真感光体300の帯電能の軸方向の分布を測定する。これにより、帯電能の高い領域あるいは高い第1の領域と、帯電能の低い領域あるいは低い第2の領域が決定される。その結果、電子写真感光体300の外表面311の算術平均粗さが、帯電能の高い第1の領域が、帯電能の低い領域より大きくなるように粗面化される。同じく帯電能の高い第1の領域が、帯電能の低い第2の領域より大きくなるように粗面化される。
Next, another manufacturing method will be described with reference to FIG.
First, the photoconductor film 310 is formed on the conductive substrate 301. Then, the axial distribution of the chargeability of the created electrophotographic photosensitive member 300 is measured. As a result, a region having a high chargeability or a first region having a high chargeability and a region having a low chargeability or a second region having a low chargeability are determined. As a result, the arithmetic mean roughness of the outer surface 311 of the electrophotographic photosensitive member 300 is roughened so that the first region having high chargeability is larger than the region having low chargeability. Similarly, the first region with high chargeability is roughened so as to be larger than the second region with low chargeability.

この場合、電子写真感光体300の外表面311の粗面化の方法としては、特に制限はない。例えば、ドライブラスト、研磨や、微細な凹凸形状を有するモールドに電子写真感光体300を加圧接触させて、微細な凹凸形状を外表面311に転写することで、外表面311で粗面化すればよい。 In this case, the method for roughening the outer surface 311 of the electrophotographic photosensitive member 300 is not particularly limited. For example, the electrophotographic photosensitive member 300 is brought into pressure contact with a mold having a drive last, polishing, or a fine uneven shape, and the fine uneven shape is transferred to the outer surface 311 to roughen the outer surface 311. Just do it.

そして、帯電能の高い領域と帯電能の低い領域、同じく第1の領域と第2の領域で粗面化の条件を変更することにより、それぞれ異なるように粗面化すればよい。 Then, the roughening may be performed differently by changing the roughening conditions in the region having a high charging ability and the region having a low charging ability, and also in the first region and the second region.

また、帯電能の高い領域と低い領域の間もまた、第1の領域と第2の領域の境界においては、境界で処理条件を急峻に変更させてもよく、ある程度の範囲内で徐々に処理条件を変更させてもよい。さらに、上記の方法を組み合わせて、電子写真感光体100を作成してもよい。 Further, between the region with high chargeability and the region with low chargeability, and at the boundary between the first region and the second region, the treatment conditions may be changed sharply at the boundary, and the treatment is gradually performed within a certain range. The conditions may be changed. Further, the electrophotographic photosensitive member 100 may be prepared by combining the above methods.

図2を用いて説明する。まず、外表面212が粗面化されている導電性基体201上に感光体膜210を形成する。この時、粗面化は導電性基体201全域で算術平均粗さがほぼ等しくなるように加工する。作成された電子写真感光体200の帯電能の軸方向の分布を測定する。これにより、帯電能の高い領域と帯電能の低い領域が決定される。その結果、電子写真感光体200の外表面211を、算術平均粗さが、帯電能の高い領域が、帯電能の低い領域より大きくなるように粗面化される。 This will be described with reference to FIG. First, the photoconductor film 210 is formed on the conductive substrate 201 whose outer surface 212 is roughened. At this time, the roughening is performed so that the arithmetic mean roughness is substantially equal over the entire conductive substrate 201. The axial distribution of the chargeability of the created electrophotographic photosensitive member 200 is measured. As a result, a region having a high chargeability and a region having a low chargeability are determined. As a result, the outer surface 211 of the electrophotographic photosensitive member 200 is roughened so that the arithmetic mean roughness of the region with high chargeability is larger than that of the region with low chargeability.

この時の粗面化は、帯電能の高い領域のみを行って、帯電能の高い領域の算術平均粗さが、帯電能の低い領域より大きくなるようにしてもよい。さらに帯電能の低い領域のみを行って、帯電能の低い領域の算術平均粗さが、帯電能の高い領域より小さくなるようにしてもよい。 At this time, the roughening may be performed only in the region with high chargeability so that the arithmetic mean roughness of the region with high chargeability is larger than that in the region with low chargeability. Further, only the region with low chargeability may be performed so that the arithmetic mean roughness of the region with low chargeability is smaller than that in the region with high chargeability.

また、電子写真感光体100の帯電能の測定は、電子写真感光体100を形成する毎に実施してもよいが、同一条件で電子写真感光体100を作成する場合には、一度測定をしたら、その後は同一条件で電子写真感光体100の粗面化を実施してもよい。 Further, the chargeability of the electrophotographic photosensitive member 100 may be measured every time the electrophotographic photosensitive member 100 is formed, but when the electrophotographic photosensitive member 100 is produced under the same conditions, the measurement is performed once. After that, the electrophotographic photosensitive member 100 may be roughened under the same conditions.

(電子写真装置)
次に、本発明の電子写真感光体100を用いた電子写真装置に関して、図面を用いて説明する。
(Electrographer)
Next, the electrophotographic apparatus using the electrophotographic photosensitive member 100 of the present invention will be described with reference to the drawings.

図5は本発明の電子写真感光体100を用いた電子写真装置500の一例を示す図である。図5に示す電子写真装置500による電子写真画像の形成は以下のように行われる。図5において、矢印の方向に回転駆動される電子写真感光体100の表面は、帯電装置501によって帯電される。電子写真感光体100の表面の帯電電位は、帯電装置501内の帯電ワイヤー502に流す電流値によって調整される。この時、電子写真感光体100の表面の帯電電位が均一に近づくように、帯電ワイヤー502と電子写真感光体100の表面との距離が予め調整されている。 FIG. 5 is a diagram showing an example of an electrophotographic apparatus 500 using the electrophotographic photosensitive member 100 of the present invention. The formation of the electrophotographic image by the electrophotographic apparatus 500 shown in FIG. 5 is performed as follows. In FIG. 5, the surface of the electrophotographic photosensitive member 100, which is rotationally driven in the direction of the arrow, is charged by the charging device 501. The charging potential on the surface of the electrophotographic photosensitive member 100 is adjusted by the value of the current flowing through the charging wire 502 in the charging device 501. At this time, the distance between the charging wire 502 and the surface of the electrophotographic photosensitive member 100 is adjusted in advance so that the charging potential on the surface of the electrophotographic photosensitive member 100 approaches uniformly.

次いで、電子写真感光体100の表面には、画像露光装置(不図示)から画像露光光503が照射され、電子写真感光体100の表面に静電潜像が形成される。その後、電子写真感光体100の表面に形成された静電潜像は、現像装置504から供給されるトナーによって現像され、電子写真感光体100の表面にトナー像が形成される。その後、電子写真感光体100の表面に形成されたトナー像は、転写装置505によって転写材506に転写される。次いで、電子写真感光体100の表面から転写材506が分離され、その後、転写材506に転写されたトナー像は、定着装置(不図示)によって転写材506に定着される。 Next, the surface of the electrophotographic photosensitive member 100 is irradiated with image exposure light 503 from an image exposure apparatus (not shown), and an electrostatic latent image is formed on the surface of the electrophotographic photosensitive member 100. After that, the electrostatic latent image formed on the surface of the electrophotographic photosensitive member 100 is developed by the toner supplied from the developing device 504, and the toner image is formed on the surface of the electrophotographic photosensitive member 100. After that, the toner image formed on the surface of the electrophotographic photosensitive member 100 is transferred to the transfer material 506 by the transfer device 505. Next, the transfer material 506 is separated from the surface of the electrophotographic photosensitive member 100, and then the toner image transferred to the transfer material 506 is fixed to the transfer material 506 by a fixing device (not shown).

一方、転写材506に転写されずに電子写真感光体100の表面に残留したトナーは、クリーニング装置507内のクリーニングブレード508によって除去される。その後、電子写真感光体100の表面には、前露光装置(不図示)から前露光光509が照射され、電子写真感光体200の表面は除電される。この一連のプロセスを繰り返すことで、連続的に画像形成(画像出力)が行われる。 On the other hand, the toner remaining on the surface of the electrophotographic photosensitive member 100 without being transferred to the transfer material 506 is removed by the cleaning blade 508 in the cleaning device 507. After that, the surface of the electrophotographic photosensitive member 100 is irradiated with pre-exposure light 509 from a pre-exposure apparatus (not shown), and the surface of the electrophotographic photosensitive member 200 is statically eliminated. By repeating this series of processes, image formation (image output) is continuously performed.

さらに、本発明の電子写真感光体100を用いた別の電子写真装置に関して図面を用いて説明する。 Further, another electrophotographic apparatus using the electrophotographic photosensitive member 100 of the present invention will be described with reference to the drawings.

図6は本発明の電子写真感光体用100を用いた電子写真装置600の一例を示す図である。図6に示す電子写真装置600による電子写真画像の形成は以下のように行われる。図6において、矢印の方向に回転駆動される電子写真感光体100の表面は、帯電ローラ601によって帯電される。 FIG. 6 is a diagram showing an example of an electrophotographic apparatus 600 using the electrophotographic photosensitive member 100 of the present invention. The electrophotographic image is formed by the electrophotographic apparatus 600 shown in FIG. 6 as follows. In FIG. 6, the surface of the electrophotographic photosensitive member 100, which is rotationally driven in the direction of the arrow, is charged by the charging roller 601.

帯電ローラ601は、電子写真感光体100と平行に配置されて電子写真感光体100と逆方向に回転(同図中では反時計回り)し、電子写真感光体100の外表面111に接触または近接配置される。そして、電源610に接続されて電圧が印加され、帯電ローラ601から電子写真感光体100への放電によって、前露光光609で除電された電子写真感光体100の表面が、所定の極性・電位になるように帯電される。電子写真感光体100の表面の帯電電位は、帯電ローラ601に印加するDC電圧およびAC電圧によって、調整される。 The charging roller 601 is arranged parallel to the electrophotographic photosensitive member 100 and rotates in the direction opposite to that of the electrophotographic photosensitive member 100 (counterclockwise in the drawing) to come into contact with or approach the outer surface 111 of the electrophotographic photosensitive member 100. Be placed. Then, a voltage is applied by being connected to the power supply 610, and the surface of the electrophotographic photosensitive member 100 whose charge is eliminated by the pre-exposure light 609 by discharging from the charging roller 601 to the electrophotographic photosensitive member 100 has a predetermined polarity and potential. It is charged so as to become. The charging potential on the surface of the electrophotographic photosensitive member 100 is adjusted by the DC voltage and AC voltage applied to the charging roller 601.

次いで、電子写真感光体100の表面には、画像露光装置(不図示)から画像露光光603が照射され、電子写真感光体100の表面に静電潜像が形成される。その後、電子写真感光体100の表面に形成された静電潜像は、現像装置604から供給されるトナーによって現像され、電子写真感光体100の表面にトナー像が形成される。その後、電子写真感光体100の表面に形成されたトナー像は、転写装置605によって転写材606に転写される。次いで、電子写真感光体100の表面から転写材606が分離され、その後、転写材606に転写されたトナー像は、定着装置(不図示)によって転写材606に定着される。 Next, the surface of the electrophotographic photosensitive member 100 is irradiated with image exposure light 603 from an image exposure apparatus (not shown), and an electrostatic latent image is formed on the surface of the electrophotographic photosensitive member 100. After that, the electrostatic latent image formed on the surface of the electrophotographic photosensitive member 100 is developed by the toner supplied from the developing device 604, and the toner image is formed on the surface of the electrophotographic photosensitive member 100. After that, the toner image formed on the surface of the electrophotographic photosensitive member 100 is transferred to the transfer material 606 by the transfer device 605. Next, the transfer material 606 is separated from the surface of the electrophotographic photosensitive member 100, and then the toner image transferred to the transfer material 606 is fixed to the transfer material 606 by a fixing device (not shown).

一方、転写材606に転写されずに電子写真感光体100の表面に残留したトナーは、クリーニング装置607内のクリーニングブレード608によって除去される。その後、電子写真感光体100の表面には、前露光光609が照射され、電子写真感光体100の表面は除電される。この一連のプロセスを繰り返すことで、連続的に画像形成(画像出力)が行われる。 On the other hand, the toner remaining on the surface of the electrophotographic photosensitive member 100 without being transferred to the transfer material 606 is removed by the cleaning blade 608 in the cleaning device 607. After that, the surface of the electrophotographic photosensitive member 100 is irradiated with preexposure light 609, and the surface of the electrophotographic photosensitive member 100 is statically eliminated. By repeating this series of processes, image formation (image output) is continuously performed.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、以下の説明では上述した実施形態において示したものと同じ部分に対しては同じ符号を用いて説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In the following description, the same reference numerals will be used for the same parts as those shown in the above-described embodiment.

<実施例1>
図2に示す円筒状の導電性基体201として、アルミニウムよりなる直径84mm、長さ381mm、肉厚3mmのものを用い、アモルファスシリコン電子写真感光体200を以下のように作成した。
<Example 1>
As the cylindrical conductive substrate 201 shown in FIG. 2, an amorphous silicon electrophotographic photosensitive member 200 having a diameter of 84 mm, a length of 381 mm, and a wall thickness of 3 mm made of aluminum was prepared as follows.

導電性基体201の外表面212には、鏡面切削加工、ウエットブラスト加工を行い、さらにそれぞれの加工終了時には、導電性基体201の洗浄を行った。 The outer surface 212 of the conductive substrate 201 was subjected to mirror cutting and wet blasting, and at the end of each processing, the conductive substrate 201 was washed.

まず、鏡面切削加工として、円筒状の導電性基体201の振動防止のため、内部にウレタンゴム製の円筒を、導電性基体201の内側に密着させるように挿入し、導電性基体201の内周を主軸ヤトイと芯押しヤトイのテーパー面で左右から挟持して切削装置に設置した。 First, as a mirror cutting process, in order to prevent vibration of the cylindrical conductive base 201, a urethane rubber cylinder is inserted inside the conductive base 201 so as to be in close contact with the inside of the conductive base 201, and the inner circumference of the conductive base 201 is formed. Was sandwiched from the left and right by the tapered surface of the spindle yatoi and the tailstock yatoi and installed in the cutting device.

その後、導電性基体201を1000〜8000rpmにて高速回転させ、導電性基体201への1回転あたりの送りピッチを0.05〜0.3mmとして、荒切削用のダイヤモンドバイトの切込み量、仕上げ切削用ダイヤモンドバイトの切込み量を設定し、切削終了後の導電性基体201の外径が、所定の外径になるようにダイヤモンドバイトを押し当てて切削した。切削が終了したら、導電性基体201を切削装置から外し、洗浄機に移動させ、脱脂洗浄を行った。 After that, the conductive substrate 201 is rotated at a high speed of 1000 to 8000 rpm, the feed pitch per rotation to the conductive substrate 201 is set to 0.05 to 0.3 mm, the depth of cut of the diamond bite for rough cutting, and finish cutting. The depth of cut of the diamond cutting tool for cutting was set, and the diamond cutting tool was pressed against the conductive substrate 201 so that the outer diameter of the conductive substrate 201 after cutting was set to a predetermined outer diameter. When the cutting was completed, the conductive substrate 201 was removed from the cutting device, moved to a washing machine, and degreased and washed.

次に、導電性基体201をウエットブラスト加工装置に、導電性基体201の内面の両端を保持させて設置する。その後導電性基体201を10〜100rpmで回転させ、その表面に、投射ノズルから研磨剤の濃度が5〜20Vol%になるように、アルミナからなる研磨剤と水とが混合した溶液を、圧縮空気と混合させて、導電性基体201の外表面212に投射した。この時の投射時のエアーの圧力は0.10〜0.30MPaとし、投射ノズルの移動速度を10〜0.1mm/secとした。
そして、導電性基体201のウエットブラスト加工開始端部から、導電性基体201の中央に達するまでの投射時のエアーの圧力に対して、中央から残りの導電性基体201の端部までのエアーの圧力を低下させて、導電性基体201の外表面212の算術平均粗さを変化させた。加工処理が終了したら、導電性基体201をウエットブラスト加工装置から外し、洗浄機に移動させ純水と超音波を用いた洗浄を行った。
Next, the conductive substrate 201 is installed in a wet blasting apparatus while holding both ends of the inner surface of the conductive substrate 201. After that, the conductive substrate 201 is rotated at 10 to 100 rpm, and a solution of a mixture of an abrasive made of alumina and water is applied to the surface of the conductive substrate 201 so that the concentration of the abrasive is 5 to 20 Vol% from the projection nozzle. Was mixed with and projected onto the outer surface 212 of the conductive substrate 201. The air pressure at the time of projection at this time was 0.10 to 0.30 MPa, and the moving speed of the projection nozzle was 10 to 0.1 mm / sec.
Then, with respect to the pressure of the air at the time of projection from the wet blasting start end of the conductive base 201 to the center of the conductive base 201, the air from the center to the end of the remaining conductive base 201 The pressure was reduced to change the arithmetic mean roughness of the outer surface 212 of the conductive substrate 201. When the processing was completed, the conductive substrate 201 was removed from the wet blasting apparatus, moved to a washing machine, and washed using pure water and ultrasonic waves.

その後、前述のウエットブラスト加工開始端部が、受け台408と反対側になるように、反応容器401に導電性基体201を設置した。そして、前述の様に堆積膜形成装置400を用いて、表1に示した条件で図2に示したように、円筒状の導電性基体201の上に、下部電荷注入阻止層202、光導電層203、および表面層204から構成される、感光体膜210を形成して、アモルファスシリコン感光体200を作成した。 After that, the conductive substrate 201 was installed in the reaction vessel 401 so that the above-mentioned wet blasting start end was on the opposite side to the cradle 408. Then, using the deposition film forming apparatus 400 as described above, as shown in FIG. 2 under the conditions shown in Table 1, the lower charge injection blocking layer 202 and the photoconductivity are placed on the cylindrical conductive substrate 201. An amorphous silicon photoconductor 200 was formed by forming a photoconductor film 210 composed of a layer 203 and a surface layer 204.

Figure 2020194088
Figure 2020194088

作製されたアモルファスシリコン感光体200に関して、「帯電能」、「感光体膜の膜厚」、「算術平均粗さ」、「画像流れ」、「クリーニング性」の評価を以下のように実施した。 With respect to the produced amorphous silicon photoconductor 200, "chargeability", "film thickness of photoconductor film", "arithmetic mean roughness", "image flow", and "cleanability" were evaluated as follows.

「帯電能」
作成した電子写真感光体を、キヤノン社製iRC6800をマイナス帯電方式に改造した改造機に設置し感光体の帯電能について評価を行った。プロセススピード265mm/sec、前露光(波長660nmのLED)光量を4μJ/cmとし、主帯電器の電流値を1000μAの条件にして電子写真感光体を帯電した。この時、表面電位計(TREK社製Model555P−4)により電子写真感光体の暗部表面電位を測定した。暗部表面電位は周方向の平均値とし、この暗部表面電位の平均値をもって帯電能とする。測定位置は電子写真感光体の軸方向については、中央を0mmとして、±50mm、±100mm、±150mmの7点を行った。そして、軸方向において、最も帯電能の高い領域と、最も低い領域を抽出した。
"Charging ability"
The prepared electrophotographic photosensitive member was installed in a modified machine obtained by modifying Canon's iRC6800 to a negative charging method, and the charging ability of the photosensitive member was evaluated. The electrophotographic photosensitive member was charged under the conditions of a process speed of 265 mm / sec, a pre-exposure (LED having a wavelength of 660 nm) of 4 μJ / cm 2, and a current value of the main charger of 1000 μA. At this time, the dark surface potential of the electrophotographic photosensitive member was measured with a surface electrometer (Model 555P-4 manufactured by TREK). The dark area surface potential is the average value in the circumferential direction, and the average value of the dark area surface potential is used as the charging ability. Regarding the axial direction of the electrophotographic photosensitive member, 7 points of ± 50 mm, ± 100 mm, and ± 150 mm were measured with the center as 0 mm. Then, in the axial direction, the region having the highest charging ability and the region having the lowest charging ability were extracted.

「感光体膜の膜厚」
本発明において感光体膜の膜厚の測定は、膜厚計(フィッシャーインストルメンツ社FISCHER SCOPE MMS)を用いて測定した。測定位置は感光体の軸方向については、中央を0mmとして、±50mm、±100mm、±150mmの7点と、周方向については、上述した各軸方向位置において周方向に90度間隔の4点とした。計測箇所は合計28点である。各軸位置の感光体膜の膜厚は、周方向の平均値とした。そして、軸方向において、感光体膜の膜厚の厚い領域と、最も薄い領域を抽出した。
"Film thickness of photoconductor film"
In the present invention, the film thickness of the photoconductor film was measured using a film thickness meter (FISCHER SCOPE MMS manufactured by Fisher Instruments). The measurement positions are 7 points of ± 50 mm, ± 100 mm, and ± 150 mm with the center as 0 mm in the axial direction of the photoconductor, and 4 points in the circumferential direction at 90 degree intervals in the circumferential direction at each axial position described above. And said. There are a total of 28 measurement points. The film thickness of the photoconductor film at each axial position was taken as an average value in the circumferential direction. Then, in the axial direction, a region having a thick film thickness and a region having the thinnest film thickness were extracted.

「算術平均粗さ」
本発明において算術平均粗さRaの測定は、JIS B0651:2001に準拠したフォームトレーサー SV−C4000S4(株式会社ミツトヨ)を用いて測定した。用いた触針の形状はJIS B0651:2001に従った。すなわち、先端形状は球状の先端をもつ円錐とし、先端半径2μm、円錐のテーパー角度60゜、測定力は0.75mNとした。
また、基準長さ、評価長さ、λs輪郭曲線フィルタ(粗さ成分とそれより短い波長成分との境界を定義するフィルタ)、λc輪郭曲線フィルタ(粗さ成分とうねり成分との境界を定義するフィルタ)の設定はJIS B0633:2001、及びJIS B0651:2001に従った。
なお、スキャン速度は0.1mm/sec、測定環境は気温25℃、湿度65%とした。その他、特に記載していない条件に関しては、全てJIS B0601:2001、JIS B0633:2001、及びJIS B0651:2001に基づいて行った。また、具体的なフォームトレーサー SV−C4000S4による測定手順は、全て装置付属の取扱説明書に従って行った。
感光体の軸方向における測定位置は、中央を0mmとして、±50mm、±100mm、±150mmの7点と、周方向における測定位置は、上述した各軸方向位置において周方向に90度間隔の4点とした。計測箇所は合計28点であった。そして、各軸位置の算術平均粗さは、周方向の平均値とした。そして、軸方向において、帯電能の最も高い所の算術平均粗さと、帯電能の最も低い領域の算術平均粗さを抽出した。
"Arithmetic mean roughness"
In the present invention, the arithmetic mean roughness Ra was measured using a foam tracer SV-C4000S4 (Mitutoyo Co., Ltd.) based on JIS B0651: 2001. The shape of the stylus used was in accordance with JIS B0651: 2001. That is, the tip shape was a cone having a spherical tip, the tip radius was 2 μm, the taper angle of the cone was 60 °, and the measuring force was 0.75 mN.
In addition, the reference length, evaluation length, λs contour curve filter (filter that defines the boundary between the roughness component and the shorter wavelength component), and λc contour curve filter (define the boundary between the roughness component and the waviness component). The settings of the filter) were in accordance with JIS B0633: 2001 and JIS B0651: 2001.
The scanning speed was 0.1 mm / sec, and the measurement environment was an air temperature of 25 ° C. and a humidity of 65%. Other conditions not specifically described were all based on JIS B0601: 2001, JIS B0633: 2001, and JIS B0651: 2001. Further, all the measurement procedures by the specific foam tracer SV-C4000S4 were performed according to the instruction manual attached to the device.
The measurement positions of the photoconductor in the axial direction are 7 points of ± 50 mm, ± 100 mm, and ± 150 mm with the center as 0 mm, and the measurement positions in the circumferential direction are 4 at 90 degree intervals in the circumferential direction at each of the above-mentioned axial positions. It was a point. The total number of measurement points was 28. Then, the arithmetic mean roughness of each axis position was taken as the average value in the circumferential direction. Then, in the axial direction, the arithmetic mean roughness of the region having the highest chargeability and the arithmetic mean roughness of the region having the lowest chargeability were extracted.

「画像流れ」
画像流れの評価は、キヤノン社製iRC6800をマイナス帯電方式に改造した改造機を用いて行った。まず電子写真感光体を設置し、軸方向の帯電ムラの調整を行った。主帯電器の電流値を1000μAの条件にして電子写真感光体を帯電させ、この時表面電位計(TREK社製Model555P−4)により電子写真感光体の暗部表面電位を測定する。そして、暗部表面電位の軸方向のムラが小さくなるように、主帯電器内の帯電ワイヤーと電子写真感光体の表面との距離を調整した。具体的には前述の最も帯電能の低い側に位置する帯電ワイヤーと電子写真感光体の表面との距離を近づけた。そして、軸方向の暗部表面電位のムラを15V以下に調整した。
"Image flow"
The evaluation of the image flow was performed using a modified machine obtained by modifying the Canon iRC6800 to a negative charging method. First, an electrophotographic photosensitive member was installed, and uneven charging in the axial direction was adjusted. The electrophotographic photosensitive member is charged under the condition that the current value of the main charger is 1000 μA, and at this time, the dark surface potential of the electrophotographic photosensitive member is measured by a surface electrometer (Model 555P-4 manufactured by TREK). Then, the distance between the charging wire in the main charger and the surface of the electrophotographic photosensitive member was adjusted so that the unevenness in the axial direction of the dark surface potential was reduced. Specifically, the distance between the charging wire located on the side with the lowest charging ability and the surface of the electrophotographic photosensitive member was brought closer. Then, the unevenness of the surface potential of the dark portion in the axial direction was adjusted to 15 V or less.

次に、1200dpiの解像度において、45度170lpi(1インチあたり170線)の線密度で面積階調ドットスクリーンを用い、全階調範囲を17段階に均等配分した階調データを作成した。このとき最も濃い階調を17、最も薄い階調を0として各階調に番号を割り当て、階調段階とした。
そして、前述の階調データを用いて、テキストモードを用いてA3用紙に出力した。このとき、高湿流れが発生すると画像流れの評価に影響が出るため、温度22℃、相対湿度50%の環境下で、感光体ヒータをONにして、電子写真用感光体の表面を約40℃に保った条件で出力した。
Next, at a resolution of 1200 dpi, using an area gradation dot screen with a linear density of 45 degrees 170 lpi (170 lines per inch), gradation data was created in which the entire gradation range was evenly distributed in 17 steps. At this time, the darkest gradation was set to 17 and the lightest gradation was set to 0, and numbers were assigned to each gradation to set the gradation step.
Then, using the above-mentioned gradation data, the text mode was used to output to A3 paper. At this time, if a high humidity flow occurs, the evaluation of the image flow is affected. Therefore, in an environment of a temperature of 22 ° C. and a relative humidity of 50%, the photoconductor heater is turned on and the surface of the photoconductor for electrophotographic is about 40. The output was performed under the condition of keeping the temperature at ° C.

次に、10万枚の耐久試験を実施した。耐久後、前述の階調データを用いテキストモードを用いてA3用紙出力し、得られた画像のうち、0〜8階調の各階調ごとに反射濃度計(X−Rite Inc製:504 分光濃度計)により画像濃度を測定した。なお、反射濃度測定では各々の階調ごとに3枚の画像を出力し、それらの濃度の平均値を評価値とした。こうして得られた評価値と階調段階との線形近似した時の決定係数R2値を算出した。このとき、評価基準は下記の通りである。
A・・・R2が0.996以上
B・・・R2が0.990以上0.96未満
C・・・R2が0.990未満
Next, a durability test of 100,000 sheets was carried out. After the endurance, the above-mentioned gradation data is used to output A3 paper using the text mode, and among the obtained images, a reflection densitometer (manufactured by X-Rite Inc: 504 spectral density) is used for each gradation of 0 to 8 gradations. The image density was measured by the total). In the reflection density measurement, three images were output for each gradation, and the average value of those densities was used as the evaluation value. The coefficient of determination R2 value when the evaluation value thus obtained and the gradation step were linearly approximated was calculated. At this time, the evaluation criteria are as follows.
A ... R2 is 0.996 or more B ... R2 is 0.990 or more and less than 0.96 C ... R2 is less than 0.990

「クリーニング性」
前述と同様に、10万枚の耐久試験を実施したのちに、全面ハーフトーン画像をA3用紙に出力し、得られた画像で電子写真感光体の回転方向の筋の有無により、クリーニング不良の有無を評価した。筋が目視で認識されればクリーニング不良ありとした。このとき、評価基準は下記の通りである。
A・・・クリーニング不良の無い状態
B・・・感光体の回転方向の筋が幅3mm以内、かつ2本以内
C・・・感光体の回転方向の筋が幅3mm以内のものが2本以上、3mm以上のものが1本以上。
得られた結果を表2に示す。
"Cleanability"
In the same manner as described above, after performing the durability test of 100,000 sheets, the entire halftone image is output on A3 paper, and the obtained image shows the presence or absence of cleaning failure depending on the presence or absence of streaks in the rotation direction of the electrophotographic photosensitive member. Was evaluated. If the streaks were visually recognized, it was considered that there was a cleaning failure. At this time, the evaluation criteria are as follows.
A: No cleaning failure B: Photoreceptor rotation direction streaks within 3 mm and 2 lines C: Photoreceptor rotation direction streaks within 3 mm width 2 or more One or more of 3 mm or more.
The results obtained are shown in Table 2.

<比較例1>
本比較例においては、実施例1と同様に電子写真感光体を作成した。但し、本比較例においては、ウエットブラスト加工時、導電性基体のウエットブラスト加工開始端部から、導電性基体の他の端部までのエアーの圧力を変化させずウエットブラスト加工を行った。つまり、導電性基体の外表面の算術平均粗さを軸方向で変化させなかった以外は、すべて実施例1と同様に行った。そして、実施例1と同様の評価を行った。得られた結果を表2に示す。
<Comparative example 1>
In this comparative example, an electrophotographic photosensitive member was prepared in the same manner as in Example 1. However, in this comparative example, during the wet blasting process, the wet blasting process was performed without changing the air pressure from the wet blasting start end portion of the conductive substrate to the other end portion of the conductive substrate. That is, all were carried out in the same manner as in Example 1 except that the arithmetic mean roughness of the outer surface of the conductive substrate was not changed in the axial direction. Then, the same evaluation as in Example 1 was performed. The results obtained are shown in Table 2.

Figure 2020194088
Figure 2020194088

表2から明らかなように、帯電能の高い領域の電子写真感光体の外表面の算術平均粗さが、帯電能の低い領域よりも大きくすることで、長期間使用しても良好なクリーニング性を維持して画像流れの発生を抑制することが可能であることが判った。 As is clear from Table 2, by making the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member in the region with high chargeability larger than that in the region with low chargeability, good cleanability even after long-term use. It was found that it is possible to suppress the occurrence of image flow by maintaining the above.

比較例1においては、帯電能の低い軸方向の位置で−150mm近傍に画像流れが発生していた。この時の電子写真感光体の外表面を確認した領域−150mm辺りに表面に放電生成物が他の場所に比べて多くなっていることが確認できた。 In Comparative Example 1, an image flow occurred in the vicinity of −150 mm at a position in the axial direction where the charging ability was low. At this time, it was confirmed that the area where the outer surface of the electrophotographic photosensitive member was confirmed-150 mm, had more discharge products on the surface than in other places.

同様に、実施例1の本発明の電子写真感光体200の外表面211を確認した領域、放電生成物は電子写真感光体の全面でほとんど確認が出来なかった。 Similarly, the region where the outer surface 211 of the electrophotographic photosensitive member 200 of the present invention of Example 1 was confirmed, and the discharge product could hardly be confirmed on the entire surface of the electrophotographic photosensitive member.

また、感光体膜の膜厚の厚い領域の電子写真感光体の外表面の算術平均粗さが、感光体膜の膜厚の薄い領域よりも大きくすることで、長期間使用しても良好なクリーニング性を維持して画像流れの発生を抑制する電子写真感光体を提供することが可能となる。 Further, the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member in the region where the film thickness of the photoconductor film is thick is made larger than that in the region where the film thickness of the photoconductor film is thin, so that it is good even if it is used for a long period of time. It is possible to provide an electrophotographic photosensitive member that maintains cleanability and suppresses the occurrence of image flow.

感光体膜の膜厚が薄い領域は、膜厚の厚い領域にくらべて、感光体膜の静電容量は大きくなる。そのため、同じ電荷を付与した場合には、膜厚の薄い領域表面電位が厚い領域にくらべ低下する。よって、同じ表面電位を得るためには、付与する電荷も多くする必要がある。そのため、膜厚の厚い領域にくらべ、薄い領域の方が、放電生成物が多くなる。よって、本発明の感光体膜の膜厚の厚い領域の電子写真感光体の外表面の算術平均粗さを、感光体膜の膜厚の薄い領域よりも大きくすることで、長期間使用しても良好なクリーニング性を維持して画像流れの発生を抑制する電子写真感光体を提供することが可能となる。 The capacitance of the photoconductor film is larger in the region where the film thickness is thin than in the region where the film thickness is thick. Therefore, when the same charge is applied, the surface potential of the region having a thin film thickness is lower than that of the region having a thick film thickness. Therefore, in order to obtain the same surface potential, it is necessary to increase the amount of electric charge applied. Therefore, the amount of discharge products is larger in the thin region than in the thick region. Therefore, the arithmetic average roughness of the outer surface of the electrophotographic photosensitive member in the region where the film thickness of the photoconductor film of the present invention is thick is made larger than the region where the film thickness of the photoconductor film is thin, so that it can be used for a long period of time. It is also possible to provide an electrophotographic photosensitive member that maintains good cleanability and suppresses the occurrence of image flow.

<実施例2>
本実施例においては、実施例1と同様に電子写真感光体を作成した。但し、本実施例においては、ウエットブラスト加工時、導電性基体201のウエットブラスト加工開始端部から、導電性基体201の中央に達するまでの投射時のエアーの圧力に対して、中央から残りの導電性基体201の端部までのエアーの圧力を変化させて、導電性基体201の外表面212の算術平均粗さを変化させた。続いて、以下のような評価を行った。
<Example 2>
In this example, an electrophotographic photosensitive member was prepared in the same manner as in Example 1. However, in this embodiment, during the wet blasting process, the pressure remaining from the center to the air pressure during projection from the wet blasting start end of the conductive substrate 201 to the center of the conductive substrate 201. The pressure of air to the end of the conductive substrate 201 was changed to change the arithmetic mean roughness of the outer surface 212 of the conductive substrate 201. Subsequently, the following evaluation was performed.

「帯電能」
実施例1と同様に測定を行った。但し、本実施例においては、感光体膜210が形成された部分を軸方向に2等分して2つの領域に分けて、それぞれの領域で帯電能の平均値を求めるときは、0mm位置を除いた+側と−側のそれぞれの領域の軸方向3点を平均して求めた。そして、帯電能の平均値が高い側を第1の領域、低い側を第2の領域とし、第1の領域の帯電能の平均値をV1、第2の領域の帯電能の平均値をV2とした。また、帯電能のムラΔV(%)を下記式(3)より算出した。

Figure 2020194088
"Charging ability"
The measurement was carried out in the same manner as in Example 1. However, in this embodiment, when the portion where the photoconductor film 210 is formed is divided into two regions in the axial direction and the average value of the charging ability is calculated in each region, the 0 mm position is set. The three points in the axial direction of each of the excluded + side and-side regions were averaged and calculated. The side with a high average chargeability is the first region, the side with a low average chargeability is the second region, the average value of the chargeability in the first region is V1, and the average value of the chargeability in the second region is V2. And said. Further, the unevenness ΔV (%) of the charging ability was calculated from the following formula (3).
Figure 2020194088

「算術平均粗さ」
実施例1と同様に測定を行った。但し、本実施例においては、感光体膜210が形成された部分を軸方向に2等分して2つの領域に分けて、それぞれの領域で算術平均粗さの平均値を求めるときは、0mm位置を除いた+側と−側のそれぞれの領域の軸方向3点×周方向4点の合計12点を平均して求めた。そして、前述の帯電能の平均値が高い第1の領域の、算術平均粗さの平均値をRa1、前述の帯電能の平均値が低い第2の領域の、算術平均粗さの平均値をRa2とした。また、算術平均粗さのムラΔRa(%)を下記式(4)より算出した。

Figure 2020194088
さらに、帯電能のムラΔV(%)と算術平均粗さのムラΔRa(%)との差を下記式(5)とし、算術平均粗さを算出した。
ΔV−ΔRa 式(5) "Arithmetic mean roughness"
The measurement was carried out in the same manner as in Example 1. However, in this embodiment, when the portion where the photoconductor film 210 is formed is divided into two regions in the axial direction and the average value of the arithmetic mean roughness is obtained in each region, it is 0 mm. A total of 12 points, 3 points in the axial direction and 4 points in the circumferential direction, were obtained by averaging each of the + side and-side regions excluding the positions. Then, the average value of the arithmetic mean roughness in the first region where the average value of the chargeability is high is Ra1, and the average value of the arithmetic mean roughness in the second region where the average value of the chargeability is low is defined as Ra1. It was set to Ra2. Further, the unevenness ΔRa (%) of the arithmetic mean roughness was calculated from the following formula (4).
Figure 2020194088
Further, the difference between the unevenness ΔV (%) of the charging ability and the unevenness ΔRa (%) of the arithmetic mean roughness was set to the following formula (5), and the arithmetic mean roughness was calculated.
ΔV−ΔRa equation (5)

「画像流れおよびクリーニング性」
実施例1と同様の評価を行った。得られた結果を表3に示す。
"Image flow and cleanability"
The same evaluation as in Example 1 was performed. The results obtained are shown in Table 3.

<比較例2>
本比較例においては、実施例2と同様に電子写真感光体を作成した。但し、本比較例においては、ウエットブラスト加工時、導電性基体201のウエットブラスト加工開始端部から、導電性基体201の他の端部までのエアーの圧力を変化させずウエットブラスト加工を行った。つまり、導電性基体201の外表面212の算術平均粗さを軸方向で変化させなかった以外は、すべて実施例2と同様に行った。そして、実施例2と同様の評価を行った。得られた結果を表3に示す。
<Comparative example 2>
In this comparative example, an electrophotographic photosensitive member was prepared in the same manner as in Example 2. However, in this comparative example, during the wet blasting process, the wet blasting process was performed without changing the air pressure from the wet blasting start end portion of the conductive substrate 201 to the other end portion of the conductive substrate 201. .. That is, all were carried out in the same manner as in Example 2 except that the arithmetic mean roughness of the outer surface 212 of the conductive substrate 201 was not changed in the axial direction. Then, the same evaluation as in Example 2 was performed. The results obtained are shown in Table 3.

Figure 2020194088
Figure 2020194088

表3から明らかなように、感光体膜が形成された部分の電子写真感光体を軸方向に2等分して2つの領域に分け、電子写真感光体の帯電能の平均値が高い側を第1の領域、低い側を第2の領域としたとき、第1の領域の電子写真感光体の外表面の算術平均粗さの平均値を、第2の領域よりも大きくすることで、長期間使用しても良好なクリーニング性を維持して画像流れの発生を抑制する電子写真感光体を提供することが可能となる。
さらに、下記式(6)および下記式(7)を満たすことがより好ましいことが判った。

Figure 2020194088
Figure 2020194088
As is clear from Table 3, the electrophotographic photosensitive member in the portion where the photoconductor film is formed is divided into two regions in the axial direction, and the side having the higher average charging ability of the electrophotographic photosensitive member is divided into two regions. When the lower side of the first region is set as the second region, the average value of the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member in the first region is made larger than that of the second region to obtain a length. It is possible to provide an electrophotographic photosensitive member that maintains good cleanability even after being used for a period of time and suppresses the occurrence of image flow.
Further, it was found that it is more preferable to satisfy the following formula (6) and the following formula (7).
Figure 2020194088
Figure 2020194088

帯電能のムラΔV(%)に対して、算術平均粗さのムラΔRa(%)が5%より小さい、つまり算術平均粗さの軸方向の差が余りない場合は、帯電能の低い領域で僅かではあるが画像流れが発生する場合が有った。 If the arithmetic mean roughness unevenness ΔRa (%) is smaller than 5% with respect to the arithmetic mean roughness ΔV (%), that is, if there is not much difference in the arithmetic mean roughness in the axial direction, in the region where the arithmetic mean roughness is low. There was a slight case of image flow.

算術平均粗さに軸方向の差が余りないということは、放電生成物の付着が相対的に多くなる帯電能の低い領域の算術平均粗さが、放電生成物の付着が相対的に少ない帯電能の高い領域に対して、充分に小さくなっていない。その為に、放電生成物の付着のムラの増大を充分に抑制できなくなるためと考えられる。 The fact that there is not much difference in the arithmetic mean roughness in the axial direction means that the adhesion of discharge products is relatively large. It is not small enough for the high capacity area. Therefore, it is considered that the increase in uneven adhesion of the discharge product cannot be sufficiently suppressed.

一方、帯電能のムラΔV(%)に対して、算術平均粗さのムラΔRa(%)が5%より大きい、つまり算術平均粗さの軸方向の差が大きい場合は、僅かであるがクリーニング不足が発生する場合が有った。発生原因を調査したところ、帯電能の小さい領域=算術平均粗さの小さい領域で、クリーニングブレードのビビりが発生していることが判った。 On the other hand, when the unevenness ΔRa (%) of the arithmetic mean roughness is larger than 5% with respect to the unevenness ΔV (%) of the charging ability, that is, when the difference in the axial direction of the arithmetic mean roughness is large, cleaning is slight. There was a case of shortage. As a result of investigating the cause of the occurrence, it was found that chattering of the cleaning blade occurred in the region where the charging ability was small = the region where the arithmetic mean roughness was small.

これは、軸方向でクリーニングブレードと感光体表面との間の摩擦抵抗に差が生じ、算術平均粗さの小さい方で動摩擦抵抗が上昇したために発生したと考えられる。 It is considered that this was caused by a difference in frictional resistance between the cleaning blade and the surface of the photoconductor in the axial direction, and the dynamic frictional resistance increased in the smaller arithmetic mean roughness.

そこでクリーニングブレードの押し圧を低下させることで、クリーニングブレードのビビりを解消できたが、帯電能の大きい領域=算術平均粗さの大きい領域の電子写真感光体の中央付近で、僅かではあるが画像流れが発生する場合が有ることが判った。これは、クリーニングブレードの押し圧を低下させたことで、放電生成物の除去が充分に実施できない場合が有ると考えられる。 Therefore, by reducing the pressing pressure of the cleaning blade, the chattering of the cleaning blade could be eliminated, but the region with high charging ability = the region with large arithmetic mean roughness near the center of the electrophotographic photosensitive member, although it was a slight image. It turned out that a flow may occur. It is considered that this is because the pressing pressure of the cleaning blade is reduced, so that the discharge product may not be sufficiently removed.

よって、帯電能のムラΔV(%)に対して、算術平均粗さのムラΔRa(%)を±5(%)に制御することが好ましい。 Therefore, it is preferable to control the unevenness ΔRa (%) of the arithmetic mean roughness to ± 5 (%) with respect to the unevenness ΔV (%) of the charging ability.

<実施例3>
本実施例においては、実施例1と同様に電子写真感光体を作成した。そして、キヤノン社製iRC6800を、図5のコロナ帯電方式から、図6のような帯電ローラ601が電子写真感光体に接触してマイナス帯電する接触帯電方式に改造した改造機を用いて行った。電子写真感光体を帯電させるために、帯電ローラ601に直流(DC)電圧を印加し、交流(AC)電圧を重畳し電圧を印加した。
まず電子写真感光体100を設置し、電子写真感光体100の中央(0mm)位置における暗部表面電位の一周の平均が500Vになるように帯電ローラに印加する電圧を調整した。その後、実施例1と同様に、10万枚の耐久試験を実施し、画像流れとクリーニング性の評価を行ったところ、画像流れの発生はなく、クリーニング性も良好であった。
<Example 3>
In this example, an electrophotographic photosensitive member was prepared in the same manner as in Example 1. Then, the Canon iRC6800 was modified from the corona charging method shown in FIG. 5 to a contact charging method in which the charging roller 601 contacts the electrophotographic photosensitive member and is negatively charged as shown in FIG. In order to charge the electrophotographic photosensitive member, a direct current (DC) voltage was applied to the charging roller 601, and an alternating current (AC) voltage was superimposed and the voltage was applied.
First, the electrophotographic photosensitive member 100 was installed, and the voltage applied to the charging roller was adjusted so that the average of one circumference of the dark surface potential at the center (0 mm) position of the electrophotographic photosensitive member 100 was 500 V. After that, the durability test of 100,000 sheets was carried out in the same manner as in Example 1, and the image flow and the cleanability were evaluated. As a result, no image flow occurred and the cleanability was good.

<実施例4>
図3に示す円筒状の導電性基体301として、アルミニウムよりなる直径30mm、長さ370mm、肉厚7.5mmを用い、図3に示したように、円筒状の導電性基体301の上に、下引き層302、電荷発生層303、電荷輸送層304、保護層305から構成される、感光体膜310を形成して、有機感光体300を作成した。有機感光体300の各構成要素は、以下のように作成した。実施例中の「部」は「質量部」を意味する。
<Example 4>
As the cylindrical conductive substrate 301 shown in FIG. 3, a diameter of 30 mm, a length of 370 mm, and a wall thickness of 7.5 mm made of aluminum was used, and as shown in FIG. 3, on the cylindrical conductive substrate 301. An organic photoconductor 300 was formed by forming a photoconductor film 310 composed of an undercoat layer 302, a charge generation layer 303, a charge transport layer 304, and a protective layer 305. Each component of the organic photoconductor 300 was prepared as follows. "Parts" in the examples means "parts by mass".

「下引き層」
以下の成分からなる溶液を約20時間、ボールミルで分散し塗料を調製した。
・酸化スズの被覆層を有する硫酸バリウム粒子からなる粉体 60部
(商品名:パストランPC1、三井金属鉱業株式会社製)
・酸化チタン 15部
(商品名:TITANIX JR、テイカ株式会社製)
・レゾール型フェノール樹脂 43部
(商品名:フェノライト J−325、大日本インキ化学工業株式会社製、固形分70%)
・シリコーンオイル 0.015部
(商品名:SH28PA、東レシリコーン株式会社製)
・シリコーン樹脂 3.6部
(商品名:トスパール120、東芝シリコーン株式会社製)
・2−メトキシ−1−プロパノール 50部
・メタノール 50部
このようにして調製した塗料を導電性基体上に浸漬法によって塗布し、温度140℃のオーブンで1時間加熱硬化することにより、膜厚が15μmの樹脂層を形成した。
"Underlay layer"
A solution consisting of the following components was dispersed in a ball mill for about 20 hours to prepare a paint.
-60 parts of powder consisting of barium sulfate particles having a tin oxide coating layer (trade name: Pastran PC1, manufactured by Mitsui Mining & Smelting Co., Ltd.)
・ 15 parts of titanium oxide (trade name: TITANIX JR, manufactured by TAYCA CORPORATION)
-Resol type phenolic resin 43 parts (trade name: Phenolite J-325, manufactured by Dainippon Ink and Chemicals Co., Ltd., solid content 70%)
・ 0.015 parts of silicone oil (trade name: SH28PA, manufactured by Toray Silicone Co., Ltd.)
-Silicone resin 3.6 parts (trade name: Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.)
・ 50 parts of 2-methoxy-1-propanol ・ 50 parts of methanol The paint prepared in this way is applied on a conductive substrate by an immersion method and cured by heating in an oven at a temperature of 140 ° C. for 1 hour to increase the film thickness. A resin layer of 15 μm was formed.

次に、以下の成分をメタノール400部/n−ブタノール200部の混合液に溶解した溶液を、上述の樹脂層の上に浸漬塗布し、温度100℃のオーブンで30分間加熱乾燥することにより、膜厚が0.60μmの中間層を形成した。
・共重合ナイロン樹脂 10部(商品名:アミランCM8000、東レ株式会社製)
・メトキシメチル化6ナイロン樹脂 30部
(商品名:トレジンEF−30T、帝国化学株式会社製)
このように、樹脂層の上に中間層を形成し、樹脂層と中間層を合わせて下引き層とした。
Next, a solution prepared by dissolving the following components in a mixed solution of 400 parts of methanol / 200 parts of n-butanol was immersed and coated on the above-mentioned resin layer, and heated and dried in an oven at a temperature of 100 ° C. for 30 minutes. An intermediate layer having a film thickness of 0.60 μm was formed.
・ 10 parts of copolymerized nylon resin (trade name: Amiran CM8000, manufactured by Toray Industries, Inc.)
・ 30 parts of methoxymethylated 6 nylon resin (trade name: Tredin EF-30T, manufactured by Teikoku Kagaku Co., Ltd.)
In this way, an intermediate layer was formed on the resin layer, and the resin layer and the intermediate layer were combined to form an undercoat layer.

「電荷発生層」
以下の成分を、直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル700部を加えて電荷発生層用分散液を調製した。
・ヒドロキシガリウムフタロシアニン 20部
(CuKα特性X線回折において、7.4°及び28.2°(ブラッグ角2θ±0.2°)に強いピークを有するもの)
・カリックスアレーン化合物 0.2部
・ポリビニルブチラール 10部
(商品名:エスレックBX−1、積水化学株式会社製)
・シクロヘキサノン 600部
これを下引き層上に浸漬コーティング法で塗布し、温度80℃のオーブンで15分間加熱乾燥することにより、膜厚が0.170μmの電荷発生層を形成した。
"Charge generation layer"
The following components were dispersed for 4 hours in a sand mill using glass beads having a diameter of 1 mm, and then 700 parts of ethyl acetate was added to prepare a dispersion for a charge generation layer.
20 parts of hydroxygallium phthalocyanine (with strong peaks at 7.4 ° and 28.2 ° (Brag angle 2θ ± 0.2 °) in CuKα characteristic X-ray diffraction)
・ Calixarene compound 0.2 parts ・ Polyvinyl butyral 10 parts (Product name: Eslek BX-1, manufactured by Sekisui Chemical Co., Ltd.)
600 parts of cyclohexanone This was applied on the undercoat layer by a dip coating method and dried by heating in an oven at a temperature of 80 ° C. for 15 minutes to form a charge generation layer having a film thickness of 0.170 μm.

「電荷輸送層」
以下の成分をモノクロルベンゼン600部及びメチラール200部の混合溶媒中に溶解して電荷輸送層用塗料を調製した。これを用いて、上記電荷発生層上に電荷輸送層を浸漬塗布し、温度90℃のオーブンで1時間加熱乾燥することにより、膜厚が20μmの電荷輸送層を形成した。
・正孔輸送性化合物 120部
・ポリカーボネート樹脂 100部
(ユーピロンZ400、三菱エンジニアリングプラスチックス株式会社社製)
"Charge transport layer"
The following components were dissolved in a mixed solvent of 600 parts of monochlorobenzene and 200 parts of methylal to prepare a coating material for a charge transport layer. Using this, a charge transport layer was dipped and coated on the charge generation layer, and heated and dried in an oven at a temperature of 90 ° C. for 1 hour to form a charge transport layer having a film thickness of 20 μm.
・ 120 parts of hole transporting compound ・ 100 parts of polycarbonate resin (Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd.)

「保護層」
重合性官能基を有する正孔輸送性化合物 30部を、1−プロパノール35部および1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラーH、日本ゼオン株式会社製)35部の混合溶媒に溶解させた後、これをポリテトラフルオロエチレン(PTFE)製の0.5μmメンブレンフィルターで加圧濾過することによって、表面層用塗布液を調製した。この表面層用塗布液を電荷輸送層上に浸漬塗布した後、被塗布体を100℃で5分間保持して溶媒を蒸発させ、形成された塗布膜を風乾させた。
その後、上記被塗布体に、窒素雰囲気(酸素濃度10ppm)下で電子線(加速電圧80kV、線量1.5×104Gy)を照射し、その後、同雰囲気下で電子写真感光体(電子線の被照射体)の温度が120℃になる条件で90秒間硬化処理を行い、被塗布体上に形成された塗布膜の硬化を行った。続いて、得られた有機感光体300の感光体膜310の軸方向のムラを測定した。膜厚の測定は、実施例1と同様に行った。
"Protective layer"
30 parts of a hole transporting compound having a polymerizable functional group, 35 parts of 1-propanol and 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name: Zeolar H, Nippon Zeon Co., Ltd.) A coating solution for a surface layer was prepared by dissolving it in 35 parts of a mixed solvent and then pressure-filtering it with a 0.5 μm membrane filter made of polytetrafluoroethylene (PTFE). After the coating liquid for the surface layer was immersed and coated on the charge transport layer, the object to be coated was held at 100 ° C. for 5 minutes to evaporate the solvent, and the formed coating film was air-dried.
Then, the object to be coated is irradiated with an electron beam (acceleration voltage 80 kV, dose 1.5 × 104 Gy) under a nitrogen atmosphere (oxygen concentration 10 ppm), and then an electrophotographic photosensitive member (electron beam coating) is irradiated under the same atmosphere. The curing treatment was performed for 90 seconds under the condition that the temperature of the irradiated body) was 120 ° C., and the coating film formed on the object to be coated was cured. Subsequently, the axial unevenness of the photoconductor film 310 of the obtained organic photoconductor 300 was measured. The film thickness was measured in the same manner as in Example 1.

続いて、軸方向において、感光体膜の膜厚の厚い領域と、最も薄い領域を抽出した。膜厚の厚い領域は、+150mm位置で36.2μm、薄い領域は−150mm位置で35.6μmあった。 Subsequently, in the axial direction, a region having a thick film thickness and a region having the thinnest film thickness were extracted. The thick region was 36.2 μm at the +150 mm position, and the thin region was 35.6 μm at the −150 mm position.

次に、有機感光体300の外表面311の粗面化を以下のように行った。粗面化は、回転している有機感光体300に対し、有機感光体300の回転方向と同一方向に研磨テープを送り、バックアップローラーで、研磨テープを有機感光体300の外表面311に押し当てることで実施した。まず、有機感光体300全面に下記の条件で粗面化処理を実施した。
・研磨シ−ト:品名「GC(レフライト株式会社製)」
・研磨砥粒の番手:1500以上4000以下
・研磨砥粒:SiC(平均粒径:1μm以上15μm以下)
・研磨シート送りスピード:10mm/min以上500mm/min以下
・押し当て圧:0.005N/m以上15N/m以下
Next, the outer surface 311 of the organic photoconductor 300 was roughened as follows. In roughening, the polishing tape is sent to the rotating organic photoconductor 300 in the same direction as the rotation direction of the organic photoconductor 300, and the polishing tape is pressed against the outer surface 311 of the organic photoconductor 300 by a backup roller. It was carried out by. First, the entire surface of the organic photoconductor 300 was roughened under the following conditions.
・ Polishing sheet: Product name "GC (manufactured by Reflight Co., Ltd.)"
・ Abrasive grain count: 1500 or more and 4000 or less ・ Abrasive grain: SiC (average particle size: 1 μm or more and 15 μm or less)
And polishing sheet feed speed: 10mm / min or more 500mm / min or less-pressing pressure: 0.005N / m 2 more than 15N / m 2 or less

その後、膜厚の厚い領域が含まれるように、有機感光体300の中心(0mm)から、+150mm側の半分だけ上記条件で追加の粗面化処理を実施し、追加部分の表面粗さを大きくした。+150mmの位置で、算術平均粗さは0.057μm、−150mmの位置で、算術平均粗さは0.050μmであった。 After that, an additional roughening treatment is performed under the above conditions only for the half on the +150 mm side from the center (0 mm) of the organic photoconductor 300 so as to include a thick region, and the surface roughness of the additional portion is increased. did. At the +150 mm position, the arithmetic mean roughness was 0.057 μm, and at the −150 mm position, the arithmetic mean roughness was 0.050 μm.

粗面化の処理が終了した有機感光体300を、キヤノン株式会社製iRC4570(電子写真感光体に接触配置された帯電部材から直流電圧に交流電圧を重畳した電圧を印加して電子写真感光体を帯電させるAC/DC帯電方式)に設置し、電子写真感光体100の中央(0mm)位置における暗部表面電位の一周の平均が−700Vになるように帯電ローラに印加する電圧を調整した。 The organic photoconductor 300, which has been roughened, is subjected to iRC4570 manufactured by Canon Corporation (a charging member arranged in contact with the electrophotographic photoconductor by applying a voltage obtained by superimposing an AC voltage on a DC voltage to form an electrophotographic photosensitive member. The voltage applied to the charging roller was adjusted so that the average of one circumference of the dark surface potential at the center (0 mm) position of the electrophotographic photosensitive member 100 was −700 V.

その後、実施例1と同様に、5万枚の耐久試験を実施し、画像流れとクリーニング性の評価を行ったところ、画像流れの発生はなく、クリーニング性も良好であった。 After that, the durability test of 50,000 sheets was carried out in the same manner as in Example 1, and the image flow and the cleanability were evaluated. As a result, no image flow occurred and the cleanability was good.

100,200,300 電子写真感光体
101,201,301 導電性基体
110,210,310 感光体膜
111,211,311 感光体の外表面
202 下部電荷注入阻止層
203 光導電層
204 表面層
212,312 基体の外表面
302 下引き層
303 電荷発生層
304 電荷輸送層
305 保護層
400 堆積形成装置
401 反応容器
402 加熱用ヒータ
403 原料ガス導入管
404 カソード電極
405 高周波マッチングボックス
406 高周波電源
407 補助バルブ
408 受け台
409 真空計
410 メインバルブ
480 堆積装置
490 原料ガス供給装置
500 電子写真装置
501 帯電装置
502 帯電ワイヤー
503,603 画像露光光
504,604 現像装置
505,605 転写装置
506,606 転写材
507,607 クリーニング装置
508,608 クリーニングブレード
509,609 前露光光
601 帯電ローラ
100,200,300 Electrophotographic photosensitive member 101,201,301 Conductive substrate 110,210,310 Photoreceptor film 111,211,311 Outer surface 202 of photoconductor Lower charge injection blocking layer 203 Photoconductive layer 204 Surface layer 212, 312 Outer surface of substrate 302 Undercoat layer 303 Charge generation layer 304 Charge transport layer 305 Protective layer 400 Deposit forming device 401 Reaction vessel 402 Heating heater 403 Raw material gas introduction tube 404 Cone electrode 405 High frequency matching box 406 High frequency power supply 407 Auxiliary valve 408 Cradle 409 Vacuum gauge 410 Main valve 480 Accumulation device 490 Raw material gas supply device 500 Electrophotograph device 501 Charging device 502 Charging wire 503, 603 Image exposure light 504,604 Developing device 505,605 Transfer device 506,606 Transfer material 507,607 Cleaning device 508,608 Cleaning blade 509,609 Pre-exposure light 601 Charging roller

Claims (7)

円筒状の導電性基体上に少なくとも光導電層と表面層とを含む感光体膜が形成された電子写真感光体であって、
前記電子写真感光体に一定の電荷を付与したときの前記電子写真感光体の表面電位を帯電能とした場合、前記感光体膜が形成された部分の前記電子写真感光体の軸方向において、前記帯電能の高い領域の前記電子写真感光体の外表面の算術平均粗さが、前記帯電能の低い領域の前記電子写真感光体の外表面の算術平均粗さよりも大きいことを特徴とする電子写真感光体。
An electrophotographic photosensitive member in which a photoconductor film containing at least a photoconducting layer and a surface layer is formed on a cylindrical conductive substrate.
When the surface potential of the electrophotographic photosensitive member when a constant charge is applied to the electrophotographic photosensitive member is used as the charging ability, the electrophotographic photosensitive member is said to be in the axial direction of the portion where the photoconductor film is formed. An electrophotographic feature in which the arithmetic average roughness of the outer surface of the electrophotographic photosensitive member in a region having a high chargeability is larger than the arithmetic average roughness of the outer surface of the electrophotographic photosensitive member in a region having a low chargeability. Photoreceptor.
前記感光体膜が形成された部分の前記電子写真感光体を軸方向に2等分して2つの領域に分け、前記電子写真感光体の帯電能の平均値が高い側を第1の領域とし、低い側を第2の領域としたとき、前記第1の領域の前記電子写真感光体の外表面の算術平均粗さの平均値が、前記第2の領域の前記電子写真感光体の外表面の算術平均粗さの平均値よりも大きいことを特徴とする請求項1に記載の電子写真感光体。 The electrophotographic photosensitive member of the portion where the photoconductor film is formed is divided into two regions in the axial direction, and the side having a high average value of the charging ability of the electrophotographic photosensitive member is designated as the first region. When the lower side is the second region, the average value of the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member in the first region is the outer surface of the electrophotographic photosensitive member in the second region. The electrophotographic photosensitive member according to claim 1, wherein the value is larger than the average value of the arithmetic mean roughness of the above. 前記第1の領域の前記帯電能の平均値をV1、前記第2の領域の前記帯電能の平均値をV2、前記第1の領域の前記算術平均粗さの平均値をRa1、前記第2の領域の前記算術平均粗さの平均値をRa2としたとき、下記式(1)および下記式(2)を満たすことを特徴とする請求項2に記載の電子写真感光体。
Figure 2020194088
Figure 2020194088
The average value of the chargeability in the first region is V1, the average value of the chargeability in the second region is V2, the average value of the arithmetic mean roughness in the first region is Ra1, and the second region. The electrophotographic photosensitive member according to claim 2, wherein the following formula (1) and the following formula (2) are satisfied when the average value of the arithmetic mean roughness in the region is Ra2.
Figure 2020194088
Figure 2020194088
前記電子写真感光体の外表面の算術平均粗さが、0.04μm以上0.2μm以下であることを特徴とする請求項1乃至3のいずれか一項に記載の電子写真感光体。 The electrophotographic photosensitive member according to any one of claims 1 to 3, wherein the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member is 0.04 μm or more and 0.2 μm or less. 前記感光体膜が形成された部分の前記電子写真感光体の軸方向において、前記感光体膜の膜厚の厚い領域の前記電子写真感光体の外表面の算術平均粗さが、前記感光体膜の膜厚の薄い領域の前記電子写真感光体の外表面の算術平均粗さよりも大きいことを特徴とする請求項1に記載の電子写真感光体。 In the axial direction of the electrophotographic photosensitive member in the portion where the photoconductor film is formed, the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member in a region where the film thickness of the photoconductor film is thick is determined by the photoconductor film. The electrophotographic photosensitive member according to claim 1, wherein the area having a thin film thickness is larger than the arithmetic mean roughness of the outer surface of the electrophotographic photosensitive member. 円筒状の導電性基体上に少なくとも光導電層と表面層を含む感光体膜が形成された電子写真感光体の製造方法であって、
前記電子写真感光体に一定の電荷を付与したときの前記電子写真感光体の表面電位を帯電能とした場合、前記感光体膜が形成された部分の前記電子写真感光体の軸方向において、前記帯電能の高い領域の前記電子写真感光体の外表面の算術平均粗さが、前記帯電能の低い領域の前記電子写真感光体の外表面の算術平均粗さよりも大きくなるように粗面化処理をすることを特徴とする電子写真感光体の製造方法。
A method for producing an electrophotographic photosensitive member in which a photoconductor film including at least a photoconducting layer and a surface layer is formed on a cylindrical conductive substrate.
When the surface potential of the electrophotographic photosensitive member when a constant charge is applied to the electrophotographic photosensitive member is used as the charging ability, the electrophotographic photosensitive member is said to be in the axial direction of the portion where the photoconductor film is formed. The roughening treatment is performed so that the arithmetic average roughness of the outer surface of the electrophotographic photosensitive member in the region having high chargeability is larger than the arithmetic average roughness of the outer surface of the electrophotographic photosensitive member in the region having low chargeability. A method for producing an electrophotographic photosensitive member, which comprises the above.
請求項1乃至5のいずれか一項に記載の電子写真感光体と、
前記電子写真感光体に接触または近接配置され、かつ、電圧を印加して前記電子写真感光体を帯電させる帯電部材と
を備えることを特徴とする画像形成装置。
The electrophotographic photosensitive member according to any one of claims 1 to 5.
An image forming apparatus comprising a charging member that is in contact with or close to the electrophotographic photosensitive member and that charges the electrophotographic photosensitive member by applying a voltage.
JP2019099593A 2019-05-28 2019-05-28 Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus Pending JP2020194088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019099593A JP2020194088A (en) 2019-05-28 2019-05-28 Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019099593A JP2020194088A (en) 2019-05-28 2019-05-28 Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2020194088A true JP2020194088A (en) 2020-12-03

Family

ID=73546611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019099593A Pending JP2020194088A (en) 2019-05-28 2019-05-28 Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2020194088A (en)

Similar Documents

Publication Publication Date Title
JP6562804B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5127991B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
KR101400590B1 (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2014038138A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2018180393A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2017134280A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2010160475A (en) Electrophotographic apparatus and process cartridge
JP2009031499A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US6534228B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2021157031A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP5105982B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus using the electrophotographic photoreceptor
JP2020194088A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, and image forming apparatus
US8808950B2 (en) Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic photoreceptor unit, replaceable image-forming unit, and image-forming apparatus including the same
US6282400B1 (en) Image-forming apparatus and image forming method using a controlled dynamic frictional force between a cleaning blade and a photosensitive member
JP2009271283A (en) Organic photoreceptor, image forming method, image forming apparatus and image forming unit
JP6132473B2 (en) Method for producing electrophotographic photosensitive member
JP2017181926A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2018059990A (en) Image forming apparatus
JP2018049066A (en) Image forming apparatus
JP2008292572A (en) Electrophotographic device
JP3899839B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2010066670A (en) Method of manufacturing electrophotographic photoreceptor
JP3789081B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2023042423A (en) Electro-photographic device
JP5338103B2 (en) Elastic member for image forming apparatus, charging device for image forming apparatus, and image forming apparatus