JP2020193451A - Injection method - Google Patents

Injection method Download PDF

Info

Publication number
JP2020193451A
JP2020193451A JP2019098224A JP2019098224A JP2020193451A JP 2020193451 A JP2020193451 A JP 2020193451A JP 2019098224 A JP2019098224 A JP 2019098224A JP 2019098224 A JP2019098224 A JP 2019098224A JP 2020193451 A JP2020193451 A JP 2020193451A
Authority
JP
Japan
Prior art keywords
cement
injection
based dispersant
aqueous solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019098224A
Other languages
Japanese (ja)
Other versions
JP7170586B2 (en
Inventor
翼 斎藤
Tasuku Saito
翼 斎藤
阿部 智彦
Tomohiko Abe
智彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Original Assignee
Nittoc Constructions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd filed Critical Nittoc Constructions Co Ltd
Priority to JP2019098224A priority Critical patent/JP7170586B2/en
Publication of JP2020193451A publication Critical patent/JP2020193451A/en
Application granted granted Critical
Publication of JP7170586B2 publication Critical patent/JP7170586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To provide an injection method capable of penetrating cement-based injection liquid in suspension liquid into the ground without being filtered.SOLUTION: An injection method for improving the soft ground by injecting a cement-based injection material includes: selecting a cement-based injection material in which polycarboxylic acid-based dispersant (PC dispersant) is added as a cement-based injection material; and injecting PC dispersant solution into the ground at a step before injecting the cement-based injection material in which polycarboxylic acid-based dispersant is added. In the present invention, preferably, water is injected into the ground before injecting the cement-based injection material as well as after injecting the PC dispersant solution into the ground.SELECTED DRAWING: Figure 4

Description

本発明は,例えば軟弱な砂質地盤にセメント系注入材料を注入して,改良する注入工法に関する。 The present invention relates to an injection method for improving by injecting a cement-based injection material into, for example, soft sandy ground.

係る注入工法において,例えば軟弱な砂質地盤に注入される注入液として,例えばセメント系注入液が用いられ,セメント粒子を水中に分散させた懸濁液であるセメントミルクが用いられる。
高強度の改良体を造成する必要があり且つ構造物近傍で注入による影響が懸念される地盤改良工事や,浸透性の低い地盤において高強度の改良体を必要とする地盤改良工事では,セメント粒子の粒径が非常に小さいセメント系固化材(例えば,粒径が数μm〜数10μm程度であるセメント系固化材:例えば,日鉄セメント株式会社製の商品名「Hyper NP1500」や,日鉄セメント株式会社製の商品名「日鐵スーパーファイン」)を用いることがある。
しかし,その様な懸濁液であるセメント系注入液は,懸濁液であるが故に,注入液中のセメント粒子が地盤構成粒子に付着することやそれに伴う目詰まり等の影響で注入液が濾過され,自身の浸透経路を閉塞することによって浸透性を十分に発揮できない場合が存在する。
In such an injection method, for example, a cement-based injection solution is used as the injection solution to be injected into soft sandy ground, and cement milk, which is a suspension in which cement particles are dispersed in water, is used.
Cement particles are used in ground improvement work where it is necessary to create a high-strength improved body and there is concern about the effects of injection near the structure, and in ground improvement work that requires a high-strength improved body in low-permeability ground. Cement-based solidifying material with a very small particle size (for example, cement-based solidifying material with a particle size of several μm to several tens of μm: For example, the trade name “Hyper NP1500” manufactured by Nippon Steel Cement Co., Ltd., or Nittetsu Cement. The product name "Nippon Steel Super Fine") manufactured by Nippon Steel Co., Ltd. may be used.
However, since the cement-based injection solution, which is such a suspension, is a suspension, the injection solution is affected by the adhesion of cement particles in the injection solution to the ground constituent particles and the accompanying clogging. There are cases where the permeability cannot be fully exerted by being filtered and blocking its own permeation pathway.

その他の従来技術として,例えば,注入圧力に脈動成分を付加して動的に注入する際に脈動圧力の制御を容易且つ確実に行う技術が存在する(特許文献1参照)。また,簡単な構造で且つ設備コストが安価なグラウト材動的注入装置が存在する(特許文献2参照)。
しかし,係る従来技術(特許文献1,特許文献2)では,施工するのに特殊な機械を必要とするという問題を有している。
As another conventional technique, for example, there is a technique for easily and surely controlling the pulsating pressure when a pulsating component is added to the injection pressure and dynamically injected (see Patent Document 1). Further, there is a grout material dynamic injection device having a simple structure and low equipment cost (see Patent Document 2).
However, the prior art (Patent Document 1 and Patent Document 2) has a problem that a special machine is required for construction.

特開2004−197305号公報Japanese Unexamined Patent Publication No. 2004-197305 特開2007−217997号公報JP-A-2007-217997

本発明は上述した従来技術の問題点に鑑みて提案されたものであり,懸濁液であるセメント系注入液が地盤内を濾過されることなく浸透することが出来て,汎用機械で施工できる注入工法の提供を目的としている。 The present invention has been proposed in view of the above-mentioned problems of the prior art, and the cement-based injection liquid as a suspension can permeate into the ground without being filtered, and can be constructed by a general-purpose machine. The purpose is to provide an injection method.

本発明の注入工法は,軟弱地盤にセメント系注入材料(注入液)を注入して改良する注入工法において,セメント系注入材料としてポリカルボン酸系分散剤を添加したセメント系注入材料を選択し,ポリカルボン酸系分散剤を添加したセメント系注入材料を注入する以前の段階で,ポリカルボン酸系分散剤水溶液を注入することを特徴としている。
本明細書において,ポリカルボン酸を「PC」,ポリカルボン酸系分散剤を「PC系分散剤」,ポリカルボン酸系分散剤水溶液を「PC系分散剤水溶液」と記載する場合がある。
The injection method of the present invention is an injection method for improving by injecting a cement-based injection material (injection solution) into soft ground, and a cement-based injection material to which a polycarboxylic acid-based dispersant is added is selected as the cement-based injection material. It is characterized in that an aqueous solution of the polycarboxylic acid-based dispersant is injected before the cement-based injection material to which the polycarboxylic acid-based dispersant is added is injected.
In the present specification, the polycarboxylic acid may be referred to as "PC", the polycarboxylic acid-based dispersant may be referred to as "PC-based dispersant", and the polycarboxylic acid-based dispersant aqueous solution may be referred to as "PC-based dispersant aqueous solution".

本発明において,PC系分散剤を添加したセメント系注入材料におけるセメント系固化材としては,例えば高炉スラグをベースにした市販品(例えば,日鉄セメント株式会社製の商品名「Hyper NP1500」)を用いている。ただし,セメント粒子の粒径が非常に小さいセメント系固化材は高炉スラグをベースにしたものに限定される訳ではなく,高炉スラグ以外をベースにするセメント系固化材も適用可能である。
本発明では例えば軟弱な砂質地盤が例示されているが,本発明が適用するのは砂質地盤に限定される訳ではなく,地盤粒子がシルト,(少量の)粘土であっても本発明を施工することが出来る。
In the present invention, as the cement-based solidifying material in the cement-based injection material to which the PC-based dispersant is added, for example, a commercially available product based on blast furnace slag (for example, trade name "Hyper NP1500" manufactured by Nippon Steel Cement Co., Ltd.) is used. I am using it. However, the cement-based solidifying material having a very small particle size of cement particles is not limited to the one based on the blast furnace slag, and the cement-based solidifying material based on other than the blast furnace slag can also be applied.
In the present invention, for example, soft sandy ground is exemplified, but the present invention is not limited to sandy ground, and the present invention is not limited to the present invention even if the ground particles are silt and (small amount) clay. Can be constructed.

本発明において,PC系分散剤水溶液の注入後,PC系分散剤を添加したセメント系注入材料の注入前に,水を注入するのが好ましい。
また本発明において,PC系分散剤水溶液の注入量は,注入されるPC系分散剤水溶液に含有されるPC系分散剤の質量が,施工領域(理想的には球状の領域)における地盤構成粒子の質量の0.01%(質量%)以上であるのが好ましい。
ただし,先行注入されるPC系分散剤水溶液に含有されるPC系分散剤の質量が施工領域における地盤構成粒子の0.5質量%を超えても,浸透性は向上せず,経済性が悪い。そのため,PC系分散剤水溶液の注入量は,注入されるPC系分散剤水溶液に含有されるPC系分散剤の質量が,施工領域における地盤構成粒子の質量の0.5%(質量%)以下であるのが好ましい。
In the present invention, it is preferable to inject water after injecting the PC-based dispersant aqueous solution and before injecting the cement-based injection material to which the PC-based dispersant has been added.
Further, in the present invention, the injection amount of the PC-based dispersant aqueous solution is such that the mass of the PC-based dispersant contained in the injected PC-based dispersant aqueous solution is the ground constituent particles in the construction region (ideally a spherical region). It is preferably 0.01% (mass%) or more of the mass of the above.
However, even if the mass of the PC-based dispersant contained in the pre-injected PC-based dispersant aqueous solution exceeds 0.5% by mass of the ground constituent particles in the construction area, the permeability does not improve and the economic efficiency is poor. .. Therefore, the injection amount of the PC-based dispersant aqueous solution is such that the mass of the PC-based dispersant contained in the injected PC-based dispersant aqueous solution is 0.5% (mass%) or less of the mass of the ground constituent particles in the construction area. Is preferable.

上述の構成を具備する本発明によれば,セメント系注入材料としてポリカルボン酸系分散剤(PC系分散剤)を添加したセメント系注入材料が選択され,懸濁液であるセメント系注入液が地盤に注入されるのに先立って,PC系分散剤水溶液が注入される。
ポリカルボン酸(PC)系分散剤は化学構造中に親水性の側鎖を持つ高分子グラフト共重合体であり,セメント粒子表面に吸着すると側鎖部分が親水的に展開して,粒子表面にPC系分散剤の層を形成し,当該PC系分散剤の層が重なり合うと立体反発力を生じ,セメント粒子が分散する。
従って,PC系分散剤水溶液を注入工法の施工対象地盤に先行注入することにより地盤構成粒子表面にPC系分散剤が付着し,その後に注入されたセメント系注入材料に添加されているPC系分散剤がセメント粒子に付着しているので,当該セメント粒子は既に分散し易い状態になっている。それに加えて,当該セメント粒子に付着したPC系分散剤と,地盤構成粒子に付着したPC系分散剤の層との間に立体反発力が作用する。その結果,セメント粒子の付着及び付着に起因する目詰まりが解消して,注入液の浸透性が向上すると推定される。
なお,PC系分散剤の原液は粘度が高く浸透性が低いため,本発明の実施に際しては,水で希釈してPC系分散剤水溶液を注入する。
According to the present invention having the above-described configuration, a cement-based injection material to which a polycarboxylic acid-based dispersant (PC-based dispersant) is added is selected as the cement-based injection material, and a cement-based injection liquid as a suspension is used. A PC-based dispersant aqueous solution is injected prior to being injected into the ground.
A polycarboxylic acid (PC) -based dispersant is a polymer graft copolymer having a hydrophilic side chain in its chemical structure, and when it is adsorbed on the surface of cement particles, the side chain part expands hydrophilicly on the particle surface. When a layer of the PC-based dispersant is formed and the layers of the PC-based dispersant are overlapped with each other, a steric repulsive force is generated and the cement particles are dispersed.
Therefore, by injecting the PC-based dispersant aqueous solution into the ground to be constructed by the injection method in advance, the PC-based dispersant adheres to the surface of the ground constituent particles, and the PC-based dispersion is added to the cement-based injection material injected thereafter. Since the agent is attached to the cement particles, the cement particles are already in a state of being easily dispersed. In addition, a steric repulsive force acts between the PC-based dispersant adhering to the cement particles and the layer of the PC-based dispersant adhering to the ground constituent particles. As a result, it is presumed that the adhesion of cement particles and the clogging caused by the adhesion are eliminated, and the permeability of the injection liquid is improved.
Since the stock solution of the PC-based dispersant has a high viscosity and low permeability, the PC-based dispersant aqueous solution is injected after diluting with water when carrying out the present invention.

ここで,セメント粒子の粒径が非常に小さいセメント系固化材を含有する注入液を用いた場合には,地盤構成粒子に付着せずに浮遊した状態にあるPC系分散剤により,PC系分散剤水溶液との接触部近傍において当該セメント系注入材中のPC系分散剤濃度が上昇して,材料分離を引き起こす恐れがある。
それに対して,本発明においてPC系分散剤水溶液の先行注入後に,水を注入する(水送りする)ことにより,当該水により地盤構成粒子に付着せずに浮遊した状態にあるPC系分散剤が除去され,注入工法施工領域よりも遠方に移送される。そのためセメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入液中のPC系分散剤濃度は上昇せず,材料分離を引き起こすことが無くなり,浸透性が向上したと推定される。
発明者による実験では,セメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入液を用いた場合,PC系分散剤水溶液の先行注入後に水を注入する(水送りする)ことにより,水を注入しない場合に比較して,浸透性を表現するパラメータである注入速度が10%程度向上することが確認された。
Here, when an injection liquid containing a cement-based solidifying material having a very small grain size of cement particles is used, the PC-based dispersant is dispersed by the PC-based dispersant in a floating state without adhering to the ground constituent particles. The concentration of the PC-based dispersant in the cement-based injection material may increase in the vicinity of the contact portion with the agent aqueous solution, which may cause material separation.
On the other hand, in the present invention, by injecting (water feeding) water after the prior injection of the PC-based dispersant aqueous solution, the PC-based dispersant in a floating state without adhering to the ground constituent particles due to the water is produced. It is removed and transferred farther than the injection method construction area. Therefore, it is presumed that the concentration of the PC-based dispersant in the cement-based injection liquid containing the cement-based solidifying material having a very small particle size of the cement particles did not increase, the material separation did not occur, and the permeability was improved. ..
In the experiment by the inventor, when a cement-based injection solution containing a cement-based solidifying material having a very small particle size of cement particles was used, water was injected (water-fed) after the prior injection of the PC-based dispersant aqueous solution. As a result, it was confirmed that the injection rate, which is a parameter expressing permeability, was improved by about 10% as compared with the case where water was not injected.

ここで本発明においては,PC系分散剤水溶液の注入量は,注入されるPC系分散剤水溶液に含有されるPC系分散剤の質量が,地盤の施工領域における地盤構成粒子の0.01質量%未満であると効果が十分に発揮できない。そのため本発明において,セメントグラウトに先行して注入するPC系分散剤水溶液の注入量として,注入されるPC系分散剤水溶液に含有されるPC系分散剤の質量を地盤の施工領域における地盤構成粒子の0.01質量%以上とすれば,浸透性向上の効果が良好に発揮される。
一方,先行注入されるPC系分散剤水溶液の注入量として,注入されるPC系分散剤水溶液に含有されるPC系分散剤の質量が,地盤の施工領域における地盤構成粒子の0.5質量%を超えても,浸透性はさほど向上しない。
Here, in the present invention, the injection amount of the PC-based dispersant aqueous solution is such that the mass of the PC-based dispersant contained in the injected PC-based dispersant aqueous solution is 0.01 mass of the ground constituent particles in the construction area of the ground. If it is less than%, the effect cannot be fully exerted. Therefore, in the present invention, as the injection amount of the PC-based dispersant aqueous solution to be injected prior to the cement grout, the mass of the PC-based dispersant contained in the injected PC-based dispersant aqueous solution is used as the ground constituent particles in the construction area of the ground. When it is 0.01% by mass or more, the effect of improving the permeability is satisfactorily exhibited.
On the other hand, as the injection amount of the PC-based dispersant aqueous solution to be injected in advance, the mass of the PC-based dispersant contained in the injected PC-based dispersant aqueous solution is 0.5% by mass of the ground constituent particles in the construction area of the ground. Even if it exceeds, the permeability does not improve so much.

本発明の第1実施形態を示すフローチャートである。It is a flowchart which shows 1st Embodiment of this invention. 本発明の第2実施形態を示すフローチャートである。It is a flowchart which shows the 2nd Embodiment of this invention. 実験例1で用いられる実験装置を示す説明図である。It is explanatory drawing which shows the experimental apparatus used in Experimental Example 1. FIG. 実験例1の結果を示す特性図である。It is a characteristic diagram which shows the result of Experimental Example 1. FIG. 図4と同様に実験例1の結果を示す図であって,各サンプルの結果をプロットで表現した図である。Similar to FIG. 4, it is a figure which shows the result of Experimental Example 1, and is the figure which expressed the result of each sample by a plot. 実験例2の結果を示す特性図である。It is a characteristic diagram which shows the result of Experimental Example 2. 図6と同様に実験例2の結果を示す図であって,各サンプルの結果をプロットで表現した図である。Similar to FIG. 6, it is a figure which shows the result of Experimental Example 2, and is the figure which expressed the result of each sample by a plot. 実験例3の結果を示す特性図である。It is a characteristic diagram which shows the result of Experimental Example 3. 実験例4の結果を示す特性図である。It is a characteristic diagram which shows the result of Experimental Example 4. 実験例5で用いられる実験装置を示す説明図であるIt is explanatory drawing which shows the experimental apparatus used in Experimental Example 5. 実験例5の結果を示す特性図である。It is a characteristic diagram which shows the result of Experimental Example 5. 実験例6の結果を示す特性図である。It is a characteristic diagram which shows the result of Experimental Example 6. 図12と同様に実験例6の結果を示す特性図であって,各サンプルの結果をプロットで表現した図である。Similar to FIG. 12, it is a characteristic diagram showing the results of Experimental Example 6, and is a diagram in which the results of each sample are represented by plots.

以下,添付図面を参照して,本発明の実施形態について説明する。
図示の実施形態に係る注入工法は,例えば軟弱な砂質地盤の地盤改良工事に適用されることが好ましい。ただし,実施形態に係る注入工法を適用する地盤は砂質地盤に限定される訳ではなく,地盤粒子が砂,シルト,(少量の)粘土であっても本発明を施工することが出来る。
図示の実施形態及び実験例ではセメント粒子の粒径が非常に小さいセメント系固化材としては,例えば高炉スラグをベースにした市販品(例えば,日鉄セメント株式会社製の商品名「Hyper NP1500」)を用いている。ただし,セメント粒子の粒径が非常に小さいセメント系固化材は高炉スラグをベースにしたものに限定される訳ではなく,高炉スラグ以外をベースにするセメント系固化材も選択することが出来る。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The injection method according to the illustrated embodiment is preferably applied to, for example, ground improvement work on soft sandy ground. However, the ground to which the injection method according to the embodiment is applied is not limited to sandy ground, and the present invention can be applied even if the ground particles are sand, silt, or (small amount) clay.
In the illustrated embodiment and experimental example, as a cement-based solidifying material having a very small particle size of cement particles, for example, a commercially available product based on blast furnace slag (for example, trade name “Hyper NP1500” manufactured by Nippon Steel Cement Co., Ltd.). Is used. However, the cement-based solidifying material having a very small particle size of cement particles is not limited to the one based on the blast furnace slag, and the cement-based solidifying material based on other than the blast furnace slag can also be selected.

最初に図1を参照して,第1実施形態について説明する。
作業手順を示す図1において,ステップS1では,PC系分散剤水溶液が地盤に注入される。ここで,PC系分散剤の原液は粘度が高く浸透性が低いため,当該原液を水で希釈したPC系分散剤水溶液を注入する。
次のステップS2では,懸濁液であるセメント系注入液,例えばセメント粒子の粒径が非常に小さいセメント系固化材を包含する注入液(グラウト)が地盤に注入される。
図示はされていないがステップS2の段階では,セメント系注入材料としては,PC系分散剤を添加(添加量は,例えばセメント系固化材の1.5質量%)したセメント系注入材料が選択される。
上述した様に,ポリカルボン酸(PC)系分散剤は化学構造中に親水性の側鎖を持つ高分子グラフト共重合体であり,セメント粒子表面に吸着すると側鎖部分が親水的に展開して,粒子表面にPC系分散剤の層を形成し,重なり合う層同士に立体反発力を生じ,セメント粒子が分散する。そのため,PC系分散剤を添加したセメント系注入材料が選択されると,添加されたPC系分散剤に含有されているPC系分散剤がセメント粒子に付着して,セメント粒子が分散する。それに加えてステップS1でPC系分散剤水溶液が注入されて地盤構成粒子表面にPC系分散剤が付着するので,ステップS2でPC系分散剤を添加したセメント系注入液が注入されると,セメント粒子に付着したPC系分散剤の層と地盤構成粒子に付着したPC系分散剤の層との間に立体反発力が作用する。その結果,セメント粒子の地盤構成粒子への付着や付着に起因する目詰まり等による流路の閉塞を防止し,懸濁液であるセメント系注入液の浸透性が向上したものと推定する。
First, the first embodiment will be described with reference to FIG.
In FIG. 1 showing the work procedure, in step S1, the PC-based dispersant aqueous solution is injected into the ground. Here, since the stock solution of the PC-based dispersant has a high viscosity and low permeability, an aqueous solution of the PC-based dispersant obtained by diluting the stock solution with water is injected.
In the next step S2, a cement-based injection liquid as a suspension, for example, an injection liquid (grout) containing a cement-based solidifying material having a very small particle size of cement particles is injected into the ground.
Although not shown, at the stage of step S2, a cement-based injection material to which a PC-based dispersant was added (the amount of addition was, for example, 1.5% by mass of the cement-based solidifying material) was selected as the cement-based injection material. To.
As described above, the polycarboxylic acid (PC) -based dispersant is a polymer graft copolymer having a hydrophilic side chain in its chemical structure, and when adsorbed on the surface of cement particles, the side chain portion expands hydrophilicly. As a result, a layer of PC-based dispersant is formed on the particle surface, a steric repulsive force is generated between the overlapping layers, and the cement particles are dispersed. Therefore, when the cement-based injection material to which the PC-based dispersant is added is selected, the PC-based dispersant contained in the added PC-based dispersant adheres to the cement particles, and the cement particles are dispersed. In addition to that, the PC-based dispersant aqueous solution is injected in step S1 and the PC-based dispersant adheres to the surface of the ground constituent particles. Therefore, when the cement-based injection liquid to which the PC-based dispersant is added is injected in step S2, cement A steric repulsive force acts between the layer of the PC-based dispersant attached to the particles and the layer of the PC-based dispersant attached to the ground constituent particles. As a result, it is presumed that the adhesion of cement particles to the ground constituent particles and the blockage of the flow path due to clogging due to the adhesion were prevented, and the permeability of the cement-based injection liquid as a suspension was improved.

次に図2を参照して第2実施形態について説明する。
作業手順を示す図2において,最初のステップS11では第1実施形態と同様に,PC系分散剤水溶液を地盤に先行注入するが,図2の第2実施形態では,PC系分散剤水溶液を先行注入した後のステップS12で水を地盤に注入する(水送り)。
ステップS12で水送りをした後,ステップS13で注入液を地盤に注入する。ステップS13は図1のステップS2と同様な工程である。
図1の第1実施形態において,PC系分散剤を添加したセメント系注入材料として,セメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入材料が用いられた場合,先行注入されたPC系分散剤水溶液に含有されるPC系分散剤であって,地盤構成粒子に付着せずに浮遊した状態にあるPC系分散剤がセメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入材中に包含されるため,PC系分散剤水溶液との接触部近傍において当該セメント系注入におけるPC系分散剤濃度が上昇して,材料分離を引き起こしてしまう恐れがある。
それに対して,PC系分散剤水溶液の先行注入後に水を注入すれば(水送りすれば)(図2のステップS12),地盤構成粒子に付着せずに浮遊した状態にあるPC系分散剤は注入された水により除去され,注入工法の施工領域から離隔した領域に移送される。そのため注入工法の施工領域においては,セメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入材中のPC系分散剤濃度は上昇せず,材料分離を引き起こすことも無く,浸透性が向上したものと推定する。
Next, the second embodiment will be described with reference to FIG.
In FIG. 2 showing the work procedure, in the first step S11, the PC-based dispersant aqueous solution is pre-injected into the ground as in the first embodiment, but in the second embodiment of FIG. 2, the PC-based dispersant aqueous solution is pre-injected. Water is injected into the ground in step S12 after the injection (water feeding).
After water feeding in step S12, the injection liquid is injected into the ground in step S13. Step S13 is the same step as step S2 of FIG.
In the first embodiment of FIG. 1, when a cement-based injection material containing a cement-based solidifying material having a very small particle size of cement particles is used as the cement-based injection material to which a PC-based dispersant is added, pre-injection is performed. A PC-based dispersant contained in the prepared PC-based dispersant aqueous solution, which is a cement-based solidifying material in which the PC-based dispersant in a suspended state without adhering to the ground constituent particles has a very small grain size of cement particles. Since it is contained in the cement-based injection material containing, the concentration of the PC-based dispersant in the cement-based injection may increase in the vicinity of the contact portion with the PC-based dispersant aqueous solution, which may cause material separation.
On the other hand, if water is injected (water is fed) after the prior injection of the PC-based dispersant aqueous solution (step S12 in FIG. 2), the PC-based dispersant in a floating state without adhering to the ground constituent particles It is removed by the injected water and transferred to an area separated from the construction area of the injection method. Therefore, in the construction area of the injection method, the concentration of the PC-based dispersant in the cement-based injection material containing the cement-based solidifying material having a very small particle size of the cement particles does not increase, and the material does not separate and penetrates. It is presumed that the sex has improved.

[実験例1]
実験例1では,図3で示す浸透試験装置を用いて,グラウトの浸透性を計測している。
図3を参照して「珪砂を用いた浸透試験」について説明すると,浸透試験装置10は,浸透試験筒1,支持装置2,ビーカー3,電子秤4を有している。浸透試験筒1は,例えばφ55mm,長さ300mmのアクリル製であり,内部空間に珪砂Kが充填される。浸透試験筒1は支持装置2により所定位置に支持され,浸透試験筒1の下方には,試験筒1に充填された珪砂Kを通過して滴下するPC系分散剤水溶液,水,セメントミルク(注入材)を受けるビーカー3が配置される。実験例1のセメントミルクはW/C=800%である。
ビーカー3は電子秤4の上に配置され,滴下した水,セメントミルクを含めたビーカー3の重量を電子秤で計測し,PC系分散剤水溶液,水,セメントミルクの様な計測対象の排出量,排出速度等を演算する。図3において,電子秤4はパソコン5を接続しており,電子秤4による各種計測結果はパソコン5により演算処理される。
[Experimental Example 1]
In Experimental Example 1, the permeability of grout is measured using the penetration test apparatus shown in FIG.
Explaining the “penetration test using silica sand” with reference to FIG. 3, the permeation test apparatus 10 includes a permeation test cylinder 1, a support device 2, a beaker 3, and an electronic scale 4. The permeation test cylinder 1 is made of, for example, acrylic having a diameter of 55 mm and a length of 300 mm, and the internal space is filled with silica sand K. The permeation test cylinder 1 is supported at a predetermined position by the support device 2, and below the permeation test cylinder 1, a PC-based dispersant aqueous solution, water, and cement milk (which are dropped through the silica sand K filled in the test cylinder 1) ( The beaker 3 that receives the injection material) is arranged. The cement milk of Experimental Example 1 has W / C = 800%.
The beaker 3 is placed on the electronic scale 4, and the weight of the beaker 3 including the dropped water and cement milk is measured by the electronic scale, and the discharge amount of the measurement target such as the PC-based dispersant aqueous solution, water, and cement milk. , Calculate the discharge rate, etc. In FIG. 3, the electronic scale 4 is connected to the personal computer 5, and various measurement results by the electronic scale 4 are calculated and processed by the personal computer 5.

図3における浸透試験装置を用いて行われる実験例1の手順を以下に説明する。
まず,浸透試験筒1に所定量(浸透試験筒1の途中まで)の珪砂Kを所定の密度で充填する。その際,珪砂Kは乾燥した状態である。
次に,浸透試験筒1の上端近傍まで(珪砂充填領域よりも上方の領域に)ゆっくり水を供給する(矢印A)。供給された水は徐々に珪砂K内に浸透して,水位が低下するが,常に水を補給して水位を浸透試験筒1の上端近傍で維持する。そして,浸透試験筒1の下部より浸透水が排出し始め(矢印B),当該排出量が一定になってから所定時間(例えば5分間)注水した後,注水を終了する。
その後,水位が浸透試験筒1内の珪砂充填領域の上端まで低下したならば,矢印Aで示す様に,PC系分散剤水溶液を所定量供給する。
次に,PC系分散剤水溶液の水位が浸透試験筒1内の珪砂充填領域の上端まで低下したならば,水を所定量供給する(「水送り」に相当:矢印A)。
The procedure of Experimental Example 1 performed using the penetration test apparatus in FIG. 3 will be described below.
First, the permeation test cylinder 1 is filled with a predetermined amount of silica sand K (up to the middle of the permeation test cylinder 1) at a predetermined density. At that time, the silica sand K is in a dry state.
Next, water is slowly supplied to the vicinity of the upper end of the permeation test cylinder 1 (to the region above the silica sand filling region) (arrow A). The supplied water gradually permeates into the silica sand K and the water level drops, but water is constantly replenished to maintain the water level near the upper end of the permeation test cylinder 1. Then, the permeated water begins to be discharged from the lower part of the permeation test cylinder 1 (arrow B), and after the discharged amount becomes constant, water is injected for a predetermined time (for example, 5 minutes), and then the water injection is completed.
After that, when the water level drops to the upper end of the silica sand filling region in the permeation test cylinder 1, a predetermined amount of the PC-based dispersant aqueous solution is supplied as shown by arrow A.
Next, when the water level of the PC-based dispersant aqueous solution drops to the upper end of the silica sand-filled region in the permeation test cylinder 1, a predetermined amount of water is supplied (corresponding to "water feed": arrow A).

その後,水送りの水の水位が浸透試験筒1内の珪砂充填領域の上端まで低下したならば,矢印Aで示す様に,セメントミルク(注入材)を浸透試験筒1の上端まで供給する。浸透試験筒1の下部よりセメントミルク(注入材)の排出(矢印B)が確認された後,所定時間(例えば10分間)だけセメントミルクの液位を浸透試験筒1の上端に維持し,所定時間終了後,セメントミルクの供給を終了する。
上述した浸透試験の際に,注水終了直前の,例えば3分間における水の排出量(滴下量)の測定結果から,水の排出速度(1分当たりの水の排出量)を求める。また,セメントミルクの供給終了直前の,例えば3分間におけるセメントミルク(注入材)の排出量(滴下量)の測定結果から,セメントミルクの排出速度(1分当たりのセメントミルクの排出量)を算定する。当該排出量の計測,算定は,電子秤4及びパソコン5により実行される。
After that, when the water level of the water feed drops to the upper end of the silica sand filling region in the permeation test cylinder 1, cement milk (injection material) is supplied to the upper end of the permeation test cylinder 1 as shown by an arrow A. After the discharge of cement milk (injection material) (arrow B) is confirmed from the lower part of the permeation test cylinder 1, the liquid level of cement milk is maintained at the upper end of the permeation test cylinder 1 for a predetermined time (for example, 10 minutes), and a predetermined time is determined. After the end of the time, the supply of cement milk is terminated.
In the above-mentioned osmosis test, the water discharge rate (water discharge amount per minute) is obtained from the measurement result of the water discharge amount (drop amount) immediately before the end of water injection, for example, for 3 minutes. In addition, the cement milk discharge rate (cement milk discharge amount per minute) is calculated from the measurement result of the cement milk (injection material) discharge amount (drop amount) immediately before the end of cement milk supply, for example, for 3 minutes. To do. The measurement and calculation of the emission amount are executed by the electronic scale 4 and the personal computer 5.

実験例1の浸透試験では,上述した作業手順によりPC系分散剤水溶液,水(水送りの際に供給される水),セメントミルク(注入材)の順に浸透試験筒1に充填された珪砂Kに供給する場合(第2実施形態に相当),当該作業手順のうち,水(水送り)の供給を省略する場合(第1実施形態に相当),PC系分散剤水溶液の供給を省略した場合について行った。
そして実験例1では,PC系分散剤水溶液として,市販品のPC系分散剤(日鉄セメント株式会社製の商品名「ML−3000」)の水溶液を使用した。また,最初に供給するPC系分散剤水溶液におけるPC系分散剤の質量は,試験で使用された珪砂Kの質量に対して,0.01質量%,0.09質量%,0.47質量%,0.94質量%に設定した。
ここで,珪砂Kの質量は,実際の注入工法の施工における施工領域(理想的には球状の領域)の地盤構成粒子の質量に相当する。
In the permeation test of Experimental Example 1, the silica sand K filled in the permeation test cylinder 1 in the order of the PC-based dispersant aqueous solution, water (water supplied at the time of water feeding), and cement milk (injection material) according to the above-mentioned work procedure. When the supply of water (water feed) is omitted in the work procedure (corresponding to the first embodiment), when the supply of the PC-based dispersant aqueous solution is omitted. I went about.
In Experimental Example 1, an aqueous solution of a commercially available PC-based dispersant (trade name "ML-3000" manufactured by Nippon Steel Cement Co., Ltd.) was used as the aqueous solution of the PC-based dispersant. The mass of the PC-based dispersant in the first aqueous solution of the PC-based dispersant was 0.01% by mass, 0.09% by mass, and 0.47% by mass with respect to the mass of silica sand K used in the test. , 0.94 mass% was set.
Here, the mass of the silica sand K corresponds to the mass of the ground constituent particles in the construction area (ideally a spherical area) in the construction of the actual injection method.

実験例1ではセメントミルク(セメント系注入材料)におけるセメント系固化材としては粒径3μm未満のセメント系固化材であって高炉スラグをベースにした市販品(例えば,日鉄セメント株式会社が製造している商品名「Hyper NP1500」)に,市販品のPC系分散剤(日鉄セメント株式会社製の商品名「ML−3000」)を添加して用いた。そして実験例1では,PC系分散剤の添加量をセメント系固化材の1.5質量%とした。
実験例1の結果を示す図4において,横軸は「注入率(排出体積/間隙体積)(%)」であり,縦軸は「排出速度比(セメント系注入材/水)(%)」である。
「注入率(排出体積/間隙体積)(%)」は,セメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入材の排出体積の,珪砂の間隙の体積(すなわち,改良するべき地盤の間隙体積)に対する割合であり,グラウト排出の時間経過に応じて数値が大きくなる。
一方,「排出速度比(セメント系注入材/水)(%)」は,セメント粒子の粒径が非常に小さいセメント系固化材のグラウト(セメントミルク)の排出速度を水の排出速度で除した値であり,セメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入材の浸透性を評価する指標となる数値である。「排出速度比」が大きい程,浸透性が良好である。
In Experimental Example 1, the cement-based solidifying material in cement milk (cement-based injection material) is a cement-based solidifying material having a particle size of less than 3 μm and is manufactured by a commercially available product based on blast furnace slag (for example, Nippon Steel Cement Co., Ltd.). A commercially available PC-based dispersant (trade name "ML-3000" manufactured by Nippon Steel Cement Co., Ltd.) was added to the trade name "Hyper NP1500"). In Experimental Example 1, the amount of the PC-based dispersant added was 1.5% by mass of the cement-based solidifying material.
In FIG. 4, which shows the results of Experimental Example 1, the horizontal axis is "injection rate (discharge volume / gap volume) (%)", and the vertical axis is "discharge rate ratio (cement-based injection material / water) (%)". Is.
The "injection rate (discharge volume / gap volume) (%)" is the volume of the gap in the silica sand (that is, improvement) of the discharge volume of the cement-based injection material containing the cement-based solidifying material having a very small particle size of the cement particles. It is the ratio to the gap volume of the ground to be done), and the value increases with the passage of time of grout discharge.
On the other hand, the "discharge rate ratio (cement-based injection material / water) (%)" is the discharge rate of grout (cement milk), which is a cement-based solidifying material with a very small particle size of cement particles, divided by the water discharge rate. It is a value and is a numerical value that is an index for evaluating the permeability of a cement-based injection material containing a cement-based solidifying material having a very small grain size of cement particles. The larger the "discharge rate ratio", the better the permeability.

図4と同様に実験例1の結果を示す図5において,横軸は「試験地盤重量に対する先行注入PCの割合」(単位は質量%)を示し,縦軸は「排出速度比(セメント系注入材/水)(%)」である。排出速度比は,セメント系固化材を含有するセメント系注入材の浸透速度を水の浸透速度で除した値であり,図4における「排出速度比」と同様にセメント粒子の粒径が非常に小さいセメント系固化材を含有するセメント系注入材の浸透性を評価する指標となるパラメータである。
図5では,図4で注入率200%近傍における各サンプルの「試験地盤重量に対する先行注入PCの割合(%)」と「排出速度比(セメント系注入材/水)(%)」の関係をプロットして表示している。ここで,「先行注入PCの割合」なる文言は,先行注入されるPC系分散剤水溶液におけるPC系分散剤の質量の試験地盤重量に対する比率を意味している。
In FIG. 5, which shows the results of Experimental Example 1 in the same manner as in FIG. 4, the horizontal axis represents the “ratio of the prior injection PC to the test ground weight” (unit: mass%), and the vertical axis represents the “discharge rate ratio (cement-based injection)”. Material / water) (%) ”. The discharge rate ratio is a value obtained by dividing the permeation rate of the cement-based injection material containing the cement-based solidifying material by the permeation rate of water, and the particle size of the cement particles is very large as in the “discharge rate ratio” in FIG. This is a parameter that serves as an index for evaluating the permeability of a cement-based injection material containing a small cement-based solidifying material.
In FIG. 5, the relationship between the “ratio of pre-injected PC to the test ground weight (%)” and the “discharge rate ratio (cement-based injection material / water) (%)” of each sample at an injection rate of around 200% is shown in FIG. It is plotted and displayed. Here, the phrase "ratio of pre-injected PC" means the ratio of the mass of the PC-based dispersant to the test ground weight in the pre-injected PC-based dispersant aqueous solution.

PC系分散剤水溶液を先行注入した場合が,図4では0.01%,0.09%,0.47%,0.94%の特性曲線で示されており,図5では先行注入PC系分散剤がゼロ(縦軸上のプロット)以外のプロットで示されている。そしてPC系分散剤水溶液を先行注入しない場合は,図4では「先行注入なし」の特性曲線で示され,図5では先行注入PC系分散剤水溶液におけるPC系分散剤の質量の試験地盤重量に対する比率がゼロのプロット(縦軸上のプロット)で示されている。図4,図5から明らかな様に,PC系分散剤水溶液を先行注入しない場合に比較して,PC系分散剤水溶液を先行注入した場合は,排出速度比及び浸透性が有意に向上している。
しかし,特に図5でよく示されている様に,先行注入するPC系分散剤水溶液におけるPC系分散剤の質量が試験地盤重量に対して0.01質量%未満であると,0.1質量%以上の場合に比較して,浸透性を向上させる効果が低い。一方,先行注入するPC系分散剤水溶液におけるPC系分散剤の質量が試験地盤重量に対して0.5質量%を超えても,浸透性を向上させる効果はそれ以上向上せず,経済性が悪いことが分かる。
すなわち,先行注入するPC系分散剤水溶液におけるPC系分散剤の質量を施工領域における地盤構成粒子の0.01質量%以上とすれば,浸透性が向上する。一方,先行注入するPC系分散剤水溶液におけるPC系分散剤の質量が地盤構成粒子の0.5重量%を超えても,浸透性はさほど向上せず,経済性が悪い。
The case where the PC-based dispersant aqueous solution is pre-injected is shown by the characteristic curves of 0.01%, 0.09%, 0.47%, and 0.94% in FIG. 4, and in FIG. 5, the pre-injected PC system is shown. Dispersants are shown in non-zero plots (plot on the vertical axis). When the PC-based dispersant aqueous solution is not pre-injected, the characteristic curve of "no prior injection" is shown in FIG. 4, and in FIG. 5, the mass of the PC-based dispersant in the pre-injected PC-based dispersant aqueous solution is relative to the test ground weight. It is shown in a plot with a zero ratio (plot on the vertical axis). As is clear from FIGS. 4 and 5, the discharge rate ratio and permeability are significantly improved when the PC-based dispersant aqueous solution is pre-injected as compared with the case where the PC-based dispersant aqueous solution is not pre-injected. There is.
However, as is particularly well shown in FIG. 5, when the mass of the PC-based dispersant in the prior-injected PC-based dispersant aqueous solution is less than 0.01% by mass with respect to the test ground weight, 0.1 mass is obtained. The effect of improving permeability is lower than that of% or more. On the other hand, even if the mass of the PC-based dispersant in the PC-based dispersant aqueous solution to be injected in advance exceeds 0.5% by mass with respect to the test ground weight, the effect of improving the permeability is not further improved, and the economy is improved. It turns out to be bad.
That is, if the mass of the PC-based dispersant in the PC-based dispersant aqueous solution to be injected in advance is 0.01% by mass or more of the ground constituent particles in the construction area, the permeability is improved. On the other hand, even if the mass of the PC-based dispersant in the PC-based dispersant aqueous solution to be injected in advance exceeds 0.5% by weight of the ground constituent particles, the permeability does not improve so much and the economy is poor.

図4において,PC系分散剤水溶液の先行注入後に水送りをした場合(図4における「水送りなし」以外の特性曲線),注入率が概略100%以降で排出速度比(浸透速度比)は一定の数値に落ち着き,特性曲線が横軸と概略平行になった。
一方,PC系分散剤水溶液の先行注入後に水送りをしない場合には(図4における「水送りなし」の特性曲線),注入率の増加に伴い排出速度比は低下する一方であり(右下がりの特性),水送りをした場合の様に排出速度比は一定の数値に落ち着くことは無かった。
セメント粒子の粒径が非常に小さいセメント系固化材の注入液を用いた場合,PC系分散剤水溶液の先行注入後に水を注入した場合(水送りを行った場合)には,水を注入しない場合に比較して,浸透性を表現するパラメータである排出速度比が向上することが,図4,図5から明らかである。
なお,水送りの効果に関しては,図12,図13を参照して実験例6でも説明する。
In FIG. 4, when water is fed after the prior injection of the PC-based dispersant aqueous solution (characteristic curve other than “no water feeding” in FIG. 4), the injection rate is approximately 100% or more and the discharge rate ratio (penetration rate ratio) is It settled down to a certain value, and the characteristic curve became roughly parallel to the horizontal axis.
On the other hand, when water is not fed after the prior injection of the PC-based dispersant aqueous solution (characteristic curve of "no water feed" in FIG. 4), the discharge rate ratio continues to decrease as the injection rate increases (downward to the right). The discharge rate ratio did not settle to a constant value as in the case of water feeding.
When using an injection solution of a cement-based solidifying material with a very small particle size of cement particles, or when water is injected after prior injection of a PC-based dispersant aqueous solution (when water is fed), water is not injected. It is clear from FIGS. 4 and 5 that the discharge rate ratio, which is a parameter expressing permeability, is improved as compared with the case.
The effect of water feeding will be described in Experimental Example 6 with reference to FIGS. 12 and 13.

[実験例2]
実験例2では,実験例1で用いた浸透試験装置10を用いて,実験例1で使用したPC系分散剤と別種のPC系分散剤(市販品:緑興産株式会社販売の商品名「ポリティXY−300M」)を用いて,浸透性の試験を行った。
実験例2の結果を示す図7では,実験例1で使用したPC系分散剤(市販品:日鉄セメント株式会社製の商品名「ML−3000」)の水溶液を注入した場合については「○」のプロット,前記別種のPC系分散剤(市販品:緑興産株式会社販売の商品名「ポリティXY−300M」)の水溶液を注入した場合は「△」のプロット,PC系分散剤水溶液を先行注入しない場合には「□」のプロットで表示している。
セメント系注入液におけるW/Cは800%であり,その他の試験条件は,実験例1と同様である。
実験例2の結果を示す図6は,図4に相当するグラフであり,横軸,縦軸についても図4と同様である。図7も図5と同様である。
図7は,図6で注入率240%近傍における各特性曲線の「試験地盤重量に対する先行注入PCの割合(%)」と「排出速度比(セメント系注入材/水)(%)」の関係をプロットしている。そして,固化材として粒径3μm未満のセメント系固化材を用いている。
[Experimental Example 2]
In Experimental Example 2, the permeation test apparatus 10 used in Experimental Example 1 was used, and a PC-based dispersant different from the PC-based dispersant used in Experimental Example 1 (commercially available: product name “Polity” sold by Ryokukosan Co., Ltd. The permeability test was performed using XY-300M ").
In FIG. 7, which shows the results of Experimental Example 2, when an aqueous solution of the PC-based dispersant used in Experimental Example 1 (commercially available product: trade name “ML-3000” manufactured by Nippon Steel Cement Co., Ltd.) is injected, “◯” is shown. , Plot of "△" when an aqueous solution of the other type of PC-based dispersant (commercially available product: trade name "Polyty XY-300M" sold by Ryokukosan Co., Ltd.) is injected, preceded by the PC-based dispersant aqueous solution. When not injected, it is displayed as a "□" plot.
The W / C in the cement-based injection solution is 800%, and other test conditions are the same as in Experimental Example 1.
FIG. 6 showing the results of Experimental Example 2 is a graph corresponding to FIG. 4, and the horizontal axis and the vertical axis are the same as those in FIG. FIG. 7 is the same as that of FIG.
FIG. 7 shows the relationship between the “ratio of pre-injected PC to the test ground weight (%)” and the “discharge rate ratio (cement-based injection material / water) (%)” of each characteristic curve in the vicinity of the injection rate of 240% in FIG. Is plotted. A cement-based solidifying material having a particle size of less than 3 μm is used as the solidifying material.

PC系分散剤水溶液を先行注入した場合の特性曲線(図6における0.01%,0.09%,0.47%の特性曲線),図7における先行注入PC系分散剤がゼロ以外のプロット(図7の縦軸以外のプロット)は,PC系分散剤水溶液を先行注入しない特性曲線(図6における「先行注入なし」の特性曲線),図7における先行注入PCがゼロのプロット(図7の縦軸のプロット)に比較すると,排出速度比及び浸透性は有意に向上している。
また,図7で示す様に,先行注入するPC系分散剤水溶液におけるPC系分散剤の濃度(質量)が0.01質量%未満(図7における縦軸及び縦軸直近右側におけるプロット)の浸透性は,0.01質量%以上(図7における横軸の数値が0.10以上の領域におけるプロット)の浸透性に比較すると劣っている。一方,先行注入するPC濃度(質量)が0.5質量%を超えても,浸透性を向上せず,PCを余計に混入する分だけ経済性が悪い。
この様に,図6,図7に示す実験例2においても,図4,図5の実験例1と同様に,先行注入する分散材としてPC系分散剤の水溶液を先行注入すれば,PC系分散剤の水溶液を先行して供給しない場合に比較して有意に排出速度比が向上しており,浸透性が向上することが確認された。
Characteristic curves when the PC-based dispersant aqueous solution is pre-injected (characteristic curves of 0.01%, 0.09%, 0.47% in FIG. 6), plots in which the pre-injected PC-based dispersant is non-zero in FIG. (Plots other than the vertical axis in FIG. 7) are a characteristic curve in which the PC-based dispersant aqueous solution is not pre-injected (characteristic curve of “no prior injection” in FIG. 6), and a plot in which the pre-injection PC is zero in FIG. Compared with the plot on the vertical axis of), the discharge rate ratio and permeability are significantly improved.
Further, as shown in FIG. 7, the concentration (mass) of the PC-based dispersant in the PC-based dispersant aqueous solution to be injected in advance is less than 0.01% by mass (the vertical axis in FIG. 7 and the plot on the immediate right side of the vertical axis). The property is inferior to the permeability of 0.01% by mass or more (plot in the region where the value on the horizontal axis in FIG. 7 is 0.10 or more). On the other hand, even if the PC concentration (mass) to be injected in advance exceeds 0.5% by mass, the permeability is not improved, and the economic efficiency is poor because the PC is mixed in excessively.
As described above, in Experimental Example 2 shown in FIGS. 6 and 7, similarly to Experimental Example 1 in FIGS. 4 and 5, if an aqueous solution of the PC-based dispersant is pre-injected as the dispersant to be pre-injected, the PC system is used. It was confirmed that the discharge rate ratio was significantly improved and the permeability was improved as compared with the case where the aqueous solution of the dispersant was not supplied in advance.

[実験例3]
実験例1,実験例2では比較的目の細かい珪砂(7号珪砂)を使用した。
それに対して実験例3では,実験例1,実験例2で用いられた珪砂(7号珪砂)よりもさらに目の細かい「特7号珪砂」を使用した。また,実験例3では実験例1と同じPC系分散剤を使用し,その他の試験条件(試験装置を含めて)も,実験例1(図4,図5)と同様である。実験例3でも,固化材として粒径3μm未満のセメント系固化材を用いている。
実験例3の結果を示す図8は図4に相当する特性図であり,横軸,縦軸も図4と同様である。
図8から明らかな様に,実験例3では,注入率が増加しても(グラウト排出の時間が経過しても),排出速度比すなわち浸透性は低下し続け,一定の数値に落ち着くことはなかった(横軸と平行な状態にならなかった)。浸透性が一定値に落ち着かなかったのは,注入材の流路がセメント粒子の粒径よりも小さい部分が多く存在し,目詰まりが発生してしまったためだと推定される。
[Experimental Example 3]
In Experimental Example 1 and Experimental Example 2, relatively fine-grained silica sand (No. 7 silica sand) was used.
On the other hand, in Experimental Example 3, "Special No. 7 silica sand" having a finer mesh than the silica sand (No. 7 silica sand) used in Experiment Examples 1 and 2 was used. Further, in Experimental Example 3, the same PC-based dispersant as in Experimental Example 1 is used, and other test conditions (including the test apparatus) are the same as in Experimental Example 1 (FIGS. 4 and 5). In Experimental Example 3, a cement-based solidifying material having a particle size of less than 3 μm is used as the solidifying material.
FIG. 8 showing the results of Experimental Example 3 is a characteristic diagram corresponding to FIG. 4, and the horizontal axis and the vertical axis are the same as those in FIG.
As is clear from FIG. 8, in Experimental Example 3, even if the injection rate increases (even if the grout discharge time elapses), the discharge rate ratio, that is, the permeability, continues to decrease and settles at a constant value. It did not (it did not become parallel to the horizontal axis). It is presumed that the reason why the permeability did not settle to a constant value was that there were many parts where the flow path of the injection material was smaller than the particle size of the cement particles, causing clogging.

しかし,図8から明らかな様に,PC系分散剤水溶液を先行注入した場合,PC系分散剤水溶液を先行注入しない場合に比較して,排出速度比は増加しており,浸透性は有意に向上している。すなわち,PC系分散剤水溶液を先行注入すれば,細粒土粒子から成る地盤であってもセメント系注入液の浸透性が向上することが分かった。
なお図8において,先行注入するPC系分散剤水溶液におけるPC系分散剤の質量が試験地盤重量に対して0.47質量%の場合(先行注入あり0.47%の特性曲線)と,PC系分散剤水溶液におけるPC系分散剤の質量が試験地盤重量に対して0.94%の場合(先行注入あり0.94%の特性曲線)とでは,浸透性向上の効果については有意な差はなかった。
However, as is clear from FIG. 8, when the PC-based dispersant aqueous solution is pre-injected, the discharge rate ratio is increased and the permeability is significantly higher than that when the PC-based dispersant aqueous solution is not pre-injected. It is improving. That is, it was found that if the PC-based dispersant aqueous solution was injected in advance, the permeability of the cement-based injection solution was improved even in the ground composed of fine-grained soil particles.
In FIG. 8, when the mass of the PC-based dispersant in the PC-based dispersant aqueous solution to be injected in advance is 0.47% by mass with respect to the test ground weight (characteristic curve of 0.47% with prior injection), the PC-based There is no significant difference in the effect of improving permeability when the mass of the PC-based dispersant in the dispersant aqueous solution is 0.94% with respect to the test ground weight (characteristic curve of 0.94% with prior injection). It was.

[実験例4]
実験例1〜3では,地盤に相当する珪砂は7号珪砂を用い,セメント系固化材としては高炉スラグをベースにした粒径は3μm未満の市販品(日鉄セメント株式会社が製造している商品名「Hyper NP1500」)を用いている。
それに対して実験例4では,セメント系注入材として,実験例1〜3で用いたセメント系固化材よりも粒径の粗い粒径10μm未満の市販品(日鉄セメント株式会社が製造している商品名「日鐵スーパーファイン」)を含有するセメント系注入材を用いた。セメント粒子の粒径が大きくなったことに伴い,実験例4では実験例1〜3で用いた珪砂よりも粒径が粗い5号珪砂を用いた。
また,実験例4で使用したPC系分散剤は実験例1で用いられたポリカルボン酸系分散剤と同一である。
実験例4において,試験地盤重量に対する先行注入PC系分散剤の割合は0.31%である。また,分散剤添加率は0.5%であり,セメント系注入液におけるW/Cは800%である。
実験例4では試験地盤長さは23cmであり,その点で実験例1〜3で用いられた試験装置とは相違する。
[Experimental Example 4]
In Experimental Examples 1 to 3, the silica sand corresponding to the ground is No. 7 silica sand, and the cement-based solidifying material is a commercially available product based on blast furnace slag and having a particle size of less than 3 μm (manufactured by Nippon Steel Cement Co., Ltd.). The product name "Hyper NP1500") is used.
On the other hand, in Experimental Example 4, as a cement-based injection material, a commercially available product (manufactured by Nippon Steel Cement Co., Ltd.) having a coarser particle size than the cement-based solidifying material used in Experimental Examples 1 to 3 and having a particle size of less than 10 μm. A cement-based injection material containing the trade name "Nippon Steel Super Fine") was used. As the particle size of the cement particles increased, in Experimental Example 4, No. 5 silica sand having a coarser particle size than the silica sand used in Experimental Examples 1 to 3 was used.
The PC-based dispersant used in Experimental Example 4 is the same as the polycarboxylic acid-based dispersant used in Experimental Example 1.
In Experimental Example 4, the ratio of the pre-injected PC-based dispersant to the test ground weight is 0.31%. The dispersant addition rate is 0.5%, and the W / C in the cement-based injection liquid is 800%.
In Experimental Example 4, the test ground length is 23 cm, which is different from the test equipment used in Experimental Examples 1 to 3.

実験例4の結果を示す図9では,PC系分散剤水溶液を先行注入しない場合(「先行注入なし」の特性曲線)と比較して,PC系分散剤水溶液を先行注入した場合(「先行注入あり 水送りあり」の特性曲線)における排出速度比が有意に上昇しており,セメント粒子の粒径が大きくなっても,PC系分散剤水溶液を先行注入すること,その後に水送りをすることは浸透性向上に有効であることが確認された。換言すれば,セメント粒子の粒径が大きくなっても本発明が有効であることが確認された。 In FIG. 9, which shows the results of Experimental Example 4, the case where the PC-based dispersant aqueous solution is pre-injected (“pre-injection”) is compared with the case where the PC-based dispersant aqueous solution is not pre-injected (characteristic curve of “no prior injection”). The discharge rate ratio in the characteristic curve of "with water feed") is significantly increased, and even if the particle size of the cement particles becomes large, the PC-based dispersant aqueous solution should be injected in advance, and then water feed should be performed. Was confirmed to be effective in improving permeability. In other words, it was confirmed that the present invention is effective even when the particle size of the cement particles is increased.

[実験例5]
実験例1〜実験例4では,セメント系注入液,PC系分散剤水溶液,水は自然滴下される。
それに対して,実験例5ではセメント系注入液,PC系分散剤水溶液,水は,加圧注入される。
実験例5で用いられる試験装置について,図10を参照して説明する。
図10において,浸透試験装置20は,浸透試験筒11,支持装置12,ビーカー13,電子秤14,ミキサ16,コンプレッサ17を有している。浸透試験筒11は,例えばφ50mm,長さ1000mmのアクリル製であり,浸透試験筒11内の全域に珪砂Kが充填される。浸透試験筒11は,支持装置12により所定位置に支持される。
[Experimental Example 5]
In Experimental Examples 1 to 4, the cement-based injection solution, the PC-based dispersant aqueous solution, and water are naturally dropped.
On the other hand, in Experimental Example 5, the cement-based injection solution, the PC-based dispersant aqueous solution, and water are injected under pressure.
The test apparatus used in Experimental Example 5 will be described with reference to FIG.
In FIG. 10, the permeation test apparatus 20 includes a permeation test cylinder 11, a support device 12, a beaker 13, an electronic scale 14, a mixer 16, and a compressor 17. The permeation test cylinder 11 is made of acrylic having a diameter of 50 mm and a length of 1000 mm, for example, and the entire inside of the permeation test cylinder 11 is filled with silica sand K. The penetration test cylinder 11 is supported at a predetermined position by the support device 12.

ミキサ16はコンプレッサ17と接続される。ミキサ16から浸透試験筒11下面の流入口11Aまでは配管18が配策され,ミキサ16と浸透試験筒11が接続されている。
浸透試験筒11の上端面には排出口11Bが設けられ,排出口11Bからビーカー13の上方位置まで配管19が配策され,浸透試験筒11の排出口11Bは配管19を介してビーカー13に連通している。
ビーカー13は電子秤14の上に配置され,滴下した液体(水,セメントミルク等)を含めたビーカー13の重量を電子秤14で計測する。
電子秤14にはパソコン15が接続され,電子秤14による計測結果がパソコン15により演算処理されて,計測対象なる各種液体(PC系分散剤水溶液,水,注入液)の排出量,排出速度等が決定される。
The mixer 16 is connected to the compressor 17. A pipe 18 is arranged from the mixer 16 to the inflow port 11A on the lower surface of the penetration test cylinder 11, and the mixer 16 and the penetration test cylinder 11 are connected to each other.
A discharge port 11B is provided on the upper end surface of the penetration test cylinder 11, a pipe 19 is arranged from the discharge port 11B to a position above the beaker 13, and the discharge port 11B of the penetration test cylinder 11 is connected to the beaker 13 via the pipe 19. Communicating.
The beaker 13 is arranged on the electronic scale 14, and the weight of the beaker 13 including the dropped liquid (water, cement milk, etc.) is measured by the electronic scale 14.
A personal computer 15 is connected to the electronic scale 14, and the measurement results of the electronic scale 14 are calculated and processed by the personal computer 15, and the discharge amount, discharge rate, etc. of various liquids (PC-based dispersant aqueous solution, water, injection liquid) to be measured, etc. Is determined.

図10における浸透試験では,先行注入されるPC系分散剤水溶液,水,注入液の順に投入される。PC系分散剤水溶液,水,注入液は,コンプレッサ17及びミキサ16により0.1MPaに加圧され,配管18,流入口11Aを介して浸透試験筒11(アクリルパイプ)に注入され(矢印C),浸透試験筒11の下方から上方に向かって液体(水,PC水溶液,セメントミルク)を浸透させる(流す)。浸透試験筒11内には珪砂Kが充填され,浸透試験筒11下方からPC系分散剤水溶液,水,注入液が供給される。
浸透試験筒11内に供給され,珪砂Kを通過したPC系分散剤水溶液,水,注入液は,浸透試験筒11の上方から,排出口11B,配管19を介してビーカー13の上方に送られ,ビーカー13内に滴下する(矢印D)。
In the permeation test in FIG. 10, the PC-based dispersant aqueous solution, water, and injection liquid to be injected in advance are added in this order. The PC-based dispersant aqueous solution, water, and injection liquid are pressurized to 0.1 MPa by the compressor 17 and the mixer 16, and are injected into the permeation test cylinder 11 (acrylic pipe) via the pipe 18 and the inflow port 11A (arrow C). , The liquid (water, PC aqueous solution, cement milk) is permeated (flowed) from the lower side to the upper side of the permeation test cylinder 11. The permeation test cylinder 11 is filled with silica sand K, and the PC-based dispersant aqueous solution, water, and injection liquid are supplied from below the permeation test cylinder 11.
The PC-based dispersant aqueous solution, water, and injection liquid supplied into the permeation test cylinder 11 and passed through the silica sand K are sent from above the permeation test cylinder 11 to above the beaker 13 via the discharge port 11B and the pipe 19. , Dropped into the beaker 13 (arrow D).

PC系分散剤水溶液,水,注入液の排出量,排出速度の測定,算定については,図3の実験例1と同様である。
所定量のPC系分散剤水溶液が排出されたならば水を加圧注入し,所定量の水が排出されたならば注入液を加圧注入する。
The measurement and calculation of the discharge amount and the discharge rate of the PC-based dispersant aqueous solution, water, and injection liquid are the same as in Experimental Example 1 of FIG.
When a predetermined amount of the PC-based dispersant aqueous solution is discharged, water is pressurized and injected, and when a predetermined amount of water is discharged, the injection solution is pressure-injected.

実験例5では,試験地盤として実験例1,実験例2と同様に7号珪砂を用い,セメント粒子の粒径が非常に小さいセメント系固化材を含む注入材料を用いている。上述した様に,注入圧力は,0.1MPaであり,セメント系注入液におけるW/Cは800%である。実験例5で用いられるPC系分散剤の固化材への添加量,先行注入される質量は,実験例1と同一である。
実験例5の結果を示す図11から明らかな様に,PC系分散剤水溶液,水,注入液を加圧注入した場合においても,PC系分散剤水溶液を先行注入した場合には,PC系分散剤水溶液を先行注入しない場合に比較して,排出速度比が有意に向上しており,浸透性が有意に向上することが確認された。
In Experimental Example 5, No. 7 silica sand is used as the test ground as in Experimental Example 1 and Experimental Example 2, and an injection material containing a cement-based solidifying material having a very small particle size of cement particles is used. As described above, the injection pressure is 0.1 MPa, and the W / C in the cement-based injection liquid is 800%. The amount of the PC-based dispersant used in Experimental Example 5 added to the solidifying material and the mass pre-injected are the same as in Experimental Example 1.
As is clear from FIG. 11 showing the results of Experimental Example 5, even when the PC-based dispersant aqueous solution, water, and the injection solution are pressure-injected, when the PC-based dispersant aqueous solution is injected in advance, the PC-based dispersion is dispersed. It was confirmed that the discharge rate ratio was significantly improved and the permeability was significantly improved as compared with the case where the agent aqueous solution was not injected in advance.

[実験例6]
実験例6は,PC系分散剤水溶液を先行注入した後の「水送り」における水の供給量と,透水性(浸透性)との関係を確認する実験である。試験地盤は実験例1,2と同様に7号珪砂を用い,セメント粒子の粒径が非常に小さいセメント系固化材を含んだ注入材料を用いている。セメント系固化材と添加するPC系分散剤及びその添加量と,先行注入するPC系分散剤の種類及び先行注入される水溶液中のPC系分散剤の質量は,実験例1と同様である。試験装置は,実験例1〜4と同様に自然滴下を利用した装置(図3)を使用している。
また,PC系分散剤水溶液を先行注入した後の「水送り」における水の供給量は,送水率(施工領域における(改良対象地盤の)間隙体積に対する「水送り」における水の供給量の割合)を0%(送水しない),10%,30%,50%,100%としている。
[Experimental Example 6]
Experimental Example 6 is an experiment for confirming the relationship between the amount of water supplied and the water permeability (permeability) in "water feeding" after the prior injection of the PC-based dispersant aqueous solution. As the test ground, No. 7 silica sand is used as in Experimental Examples 1 and 2, and an injection material containing a cement-based solidifying material having a very small particle size of cement particles is used. The cement-based solidifying material, the PC-based dispersant to be added, the amount thereof added, the type of the PC-based dispersant to be pre-injected, and the mass of the PC-based dispersant in the pre-injected aqueous solution are the same as in Experimental Example 1. As the test device, the device using natural dropping (Fig. 3) is used as in Experimental Examples 1 to 4.
In addition, the amount of water supplied in "water feeding" after the PC-based dispersant aqueous solution is injected in advance is the ratio of the amount of water supplied in "water feeding" to the gap volume (of the ground to be improved) in the construction area. ) Is 0% (no water is sent), 10%, 30%, 50%, and 100%.

実験例6の結果を示す図12において,横軸,縦軸は図4(実験例1)と同様である。
図13も図5と同様な図面であるが,図13では,横軸は「送水率(送水量/間隙体積)」(%)を示し,縦軸は「排出速度比(セメント系注入材/水)(%)」である。「送水率(送水量/間隙体積)」(%)は,送水量(水の供給量)の珪砂の間隙の体積に対する割合である。
また,図13は,図12で所定の注入率における各サンプルの「送水率(送水量/間隙体積)」(%)と「排出速度比(セメント系注入材/水)(%)」の関係をプロットしたものである。
In FIG. 12, which shows the results of Experimental Example 6, the horizontal axis and the vertical axis are the same as those in FIG. 4 (Experimental Example 1).
FIG. 13 is the same drawing as in FIG. 5, but in FIG. 13, the horizontal axis shows the “water supply rate (water supply amount / gap volume)” (%), and the vertical axis shows the “discharge rate ratio (cement-based injection material / cement-based injection material /”. Water) (%) ". "Water supply rate (water supply amount / gap volume)" (%) is the ratio of the water supply amount (water supply amount) to the volume of the silica sand gap.
Further, FIG. 13 shows the relationship between the “water supply rate (water supply amount / gap volume)” (%) and the “discharge rate ratio (cement-based injection material / water) (%)” of each sample at the predetermined injection rate in FIG. Is a plot.

図12,図13から明らかな様に,送水率0%に比較して,送水率10%,30%,50%,100%の方が,排出速度比(透水性に関するパラメータ)は良好である。すなわち,PC系分散剤が添加され且つセメント粒子の粒径が非常に小さいセメント系固化材を含有する注入液を用いた場合,PC水溶液の先行注入後に水を注入する(水送りする:送水率10%,30%,50%,100%)ことにより,水を注入しない場合(送水率が0%)に比較して,透水性が有意に向上する。
さらに,送水率(10%,30%,50%,100%)により浸透性が変化し,図13では送水率30%が最も排出速度比が高く,浸透性が良好である。
As is clear from FIGS. 12 and 13, the discharge rate ratio (parameter related to water permeability) is better at the water supply rates of 10%, 30%, 50%, and 100% than at the water supply rate of 0%. .. That is, when an injection liquid containing a cement-based solidifying material to which a PC-based dispersant is added and the particle size of cement particles is very small is used, water is injected after the prior injection of the PC aqueous solution (water feed: water feed rate). By (10%, 30%, 50%, 100%), the water permeability is significantly improved as compared with the case where water is not injected (water supply rate is 0%).
Further, the permeability changes depending on the water transfer rate (10%, 30%, 50%, 100%), and in FIG. 13, the water transfer rate of 30% has the highest discharge rate ratio and good permeability.

図12において,PC系分散剤水溶液の先行注入後に水送りをすれば,透水性を示す排出速度比は一定の数値に落ち着く(横軸と平行な状態になる)のに対して,PC系分散剤水溶液の先行注入後に水送りをしない場合(「送水率0%」の特性曲線)には,浸透速度比は低下する一方である(右下がりの特性)。
さらに図12,図13においても,実験例1,2,3,5と同様に,PC系分散剤水溶液を先行注入した場合,PC系分散剤水溶液を先行注入しない場合に比較して,浸透性は有意に向上していることが確認できた。
In FIG. 12, if water is fed after the prior injection of the PC-based dispersant aqueous solution, the discharge rate ratio indicating water permeability settles at a constant value (becomes parallel to the horizontal axis), whereas the PC-based dispersant is dispersed. When water is not fed after the prior injection of the aqueous agent solution (characteristic curve of "water supply rate 0%"), the permeability ratio continues to decrease (characteristic of downward slope).
Further, also in FIGS. 12 and 13, as in Experimental Examples 1, 2, 3 and 5, the permeability when the PC-based dispersant aqueous solution is pre-injected is compared with the case where the PC-based dispersant aqueous solution is not pre-injected. Was confirmed to be significantly improved.

図示の実施形態はあくまでも例示であり,本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。 It should be added that the illustrated embodiment is merely an example and is not a description intended to limit the technical scope of the present invention.

1,11・・・浸透試験筒
2,12・・・支持装置
3,13・・・ビーカー
4,14・・・電子秤
5,15・・・パソコン
16・・・ミキサ
17・・・コンプレッサ
10,20・・・浸透試験装置
K・・・珪砂
1,11 ... Penetration test cylinder 2,12 ... Support device 3,13 ... Beaker 4,14 ... Electronic scale 5,15 ... Personal computer 16 ... Mixer 17 ... Compressor 10 , 20 ... Penetration test device K ... Silica sand

Claims (3)

軟弱地盤にセメント系注入材料を注入して改良する注入工法において,セメント系注入材料としてポリカルボン酸系分散剤を添加したセメント系注入材料を選択し,ポリカルボン酸系分散剤を添加したセメント系注入材料を注入する以前の段階で,ポリカルボン酸系分散剤水溶液を注入することを特徴とする注入工法。 In the injection method to improve by injecting a cement-based injection material into soft ground, a cement-based injection material to which a polycarboxylic acid-based dispersant was added was selected as the cement-based injection material, and a cement-based injection material to which a polycarboxylic acid-based dispersant was added was selected. An injection method characterized by injecting an aqueous solution of a polycarboxylic acid-based dispersant before injecting the injection material. ポリカルボン酸系分散剤水溶液の注入後,ポリカルボン酸系分散剤を添加したセメント系注入材料の注入前に,水を注入する請求項1の注入工法。 The injection method according to claim 1, wherein water is injected after the injection of the polycarboxylic acid-based dispersant aqueous solution and before the injection of the cement-based injection material to which the polycarboxylic acid-based dispersant is added. ポリカルボン酸系分散剤水溶液の注入量は,注入されるポリカルボン酸系分散剤水溶液に含有されるポリカルボン酸系分散剤の質量が施工領域における地盤構成粒子の0.01質量%以上である請求項1,2の何れかの注入工法。 The injection amount of the polycarboxylic acid-based dispersant aqueous solution is such that the mass of the polycarboxylic acid-based dispersant contained in the injected polycarboxylic acid-based dispersant aqueous solution is 0.01% by mass or more of the ground constituent particles in the construction area. The injection method according to any one of claims 1 and 2.
JP2019098224A 2019-05-27 2019-05-27 Injection method Active JP7170586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019098224A JP7170586B2 (en) 2019-05-27 2019-05-27 Injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019098224A JP7170586B2 (en) 2019-05-27 2019-05-27 Injection method

Publications (2)

Publication Number Publication Date
JP2020193451A true JP2020193451A (en) 2020-12-03
JP7170586B2 JP7170586B2 (en) 2022-11-14

Family

ID=73546080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019098224A Active JP7170586B2 (en) 2019-05-27 2019-05-27 Injection method

Country Status (1)

Country Link
JP (1) JP7170586B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108051A (en) * 1996-06-21 1998-01-13 Mitsui Petrochem Ind Ltd Solidification grout for soil improvement and impregnation and consolidation using the same
JP2002255618A (en) * 2000-12-27 2002-09-11 Taiheiyo Cement Corp Cement-based grout
JP2012172468A (en) * 2011-02-23 2012-09-10 Kajima Corp Injection method for cement-based injection material
JP2018204269A (en) * 2017-06-02 2018-12-27 有限会社シモダ技術研究所 Method for injecting flash setting hardened grout

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108051A (en) * 1996-06-21 1998-01-13 Mitsui Petrochem Ind Ltd Solidification grout for soil improvement and impregnation and consolidation using the same
JP2002255618A (en) * 2000-12-27 2002-09-11 Taiheiyo Cement Corp Cement-based grout
JP2012172468A (en) * 2011-02-23 2012-09-10 Kajima Corp Injection method for cement-based injection material
JP2018204269A (en) * 2017-06-02 2018-12-27 有限会社シモダ技術研究所 Method for injecting flash setting hardened grout

Also Published As

Publication number Publication date
JP7170586B2 (en) 2022-11-14

Similar Documents

Publication Publication Date Title
US7770609B2 (en) Method of supplying a powdered chemical composition to a wellsite
KR101354821B1 (en) Device and method for sequestering a substance
US10253596B2 (en) Equipment and method enabling to directly use powder polymer in hydraulic fracturing
US20060272735A1 (en) Method of supplying a powdered chemical composition to a wellsite
MXPA03003374A (en) Conductive proppant and method of hydraulic fracturing using the same.
KR101382753B1 (en) Retention device for retained substance and retention method
JP3264887B2 (en) High-pressure injection mixing ground improvement method
JP2020193451A (en) Injection method
Singh et al. Implications of sand mobilization on stability and rheological properties of carbon dioxide foam and its transport mechanism in unconsolidated sandstone
Liang et al. Experimental investigation on hole erosion behaviors of chemical stabilizer treated soil
JP5598886B1 (en) Ground injection method and injection material manufacturing equipment
CA2825511C (en) Subaqueous mining tailings placement
CN108330918A (en) One kind, which is blown sand, makes island curing apparatus
JP5156341B2 (en) Acid soil treatment method
SE1950819A1 (en) Method for redistributing a flake material into at least two flake size fractions
JP4512897B2 (en) Chemical injection method
RU2387808C1 (en) Method of chemical injection in well and related device for implementation thereof
JP2903375B2 (en) Method and apparatus for producing injection liquid for ground consolidation and ground injection method
Nishad et al. Impact of Ionic Strength on Colloid Retention in a Porous Media: A Micromodel Study
DE602005003156T2 (en) Method for moving sand
JP7257983B2 (en) High-pressure injection stirring method
JP5271603B2 (en) Method for forming plant growth base on slope and apparatus used therefor
KR102232383B1 (en) Method for conctrete pumping using activating lubricant layer in pipeline
JP2009125830A (en) Supplying device and supplying method of processing water
JP5216416B2 (en) Materials used to form plant growth base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7170586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150