JP2020192517A - Method for recycling contaminated soil - Google Patents

Method for recycling contaminated soil Download PDF

Info

Publication number
JP2020192517A
JP2020192517A JP2019101516A JP2019101516A JP2020192517A JP 2020192517 A JP2020192517 A JP 2020192517A JP 2019101516 A JP2019101516 A JP 2019101516A JP 2019101516 A JP2019101516 A JP 2019101516A JP 2020192517 A JP2020192517 A JP 2020192517A
Authority
JP
Japan
Prior art keywords
soil
mass
contaminated soil
contaminated
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019101516A
Other languages
Japanese (ja)
Other versions
JP7334932B2 (en
Inventor
善夫 川崎
Yoshio Kawasaki
善夫 川崎
一道 高橋
Kazumichi Takahashi
一道 高橋
新吾 尾張
Shingo Owari
新吾 尾張
長谷川 武
Takeshi Hasegawa
武 長谷川
正章 森川
Masaaki Morikawa
正章 森川
天行 董
Tien-Hsing Tung
天行 董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO RENAISSANCE ENTEC KK
Original Assignee
ECO RENAISSANCE ENTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO RENAISSANCE ENTEC KK filed Critical ECO RENAISSANCE ENTEC KK
Priority to JP2019101516A priority Critical patent/JP7334932B2/en
Publication of JP2020192517A publication Critical patent/JP2020192517A/en
Application granted granted Critical
Publication of JP7334932B2 publication Critical patent/JP7334932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a novel soil dispersant that clears various problems of concern with pearlite used as a soil dispersant in the conventional method, and is suitable for soil contamination countermeasure excellent at low cost.SOLUTION: Starting with the modification of a silt and clay-containing contaminated soil using an inexpensive inorganic porous body that is a colored and highly rigid soil dispersant suitable for soil contamination countermeasure; achieving decontamination and drying with enhanced efficiency in the manufacturing process; finally converting to a decontaminated and dried granulated soil, which is an extremely inexpensive soil dispersant having soil dispersion performance derived from contaminated soil.SELECTED DRAWING: Figure 1

Description

本発明は、汚染土壌の再資源化方法を本旨とし、特に汚染土壌粒子の分散化能を有するパーライトに替わる無機質多孔質体を利用して汚染土壌を改質し、汚染土壌の除染や一定条件下における汚染土壌の乾燥工程を経て、汚染土壌を由来とした土壌分散材への再資源化を図る方法に関する。 The main purpose of the present invention is to recycle contaminated soil, and in particular, the contaminated soil is reformed by using an inorganic porous body instead of pearlite, which has the ability to disperse contaminated soil particles, and the contaminated soil is decontaminated and constant. The present invention relates to a method for recycling contaminated soil into a soil dispersant derived from the contaminated soil through a drying step of the contaminated soil under the conditions.

従来より、シルトや粘土分を多く含むVOC(揮発性有機化合物)や油分に汚染された土壌を対象として浄化対策を実施する方法は、極めて限定されており、施工条件として、大型重機や大型土壌運搬車の進入が可能な土地であって、汚染が掘削可能な深度に存在するのであれば、まずほとんどのケースで掘削除去と清浄土置換を組み合わせた方法が検討される。 Conventionally, the method of implementing purification measures for soil contaminated with VOC (volatile organic compounds) and oil containing a large amount of silt and clay has been extremely limited, and as construction conditions, large heavy machinery and large soil If the land is accessible to transport vehicles and the contamination is at an excavable depth, then in most cases a combination of excavation removal and clean soil replacement will be considered.

しかしながら、掘削除去と清浄土置換を組み合わせた方法は、浄化対策方法の中でも特に費用が高く、上記の施工条件は満たしていても、施工費用で折り合わない場合も多い。後述する様な特殊な浄化方法を実施可能な業者との接点が無ければ、そのまま汚染が放置され土地活用もされない様な、ブラウンフィールド化(例えば非特許文献1)する場合も少なくない。 However, the method that combines excavation removal and clean soil replacement is particularly expensive among purification measures, and even if the above construction conditions are satisfied, there are many cases where the construction cost cannot be met. If there is no contact with a contractor who can implement a special purification method as described later, there are many cases where the pollution is left as it is and the land is not utilized (for example, Non-Patent Document 1).

掘削除去と清浄土置換よりは、技術的に高度であるが比較的廉価で実施可能な特殊な浄化方法として、注入井戸から浄化薬液をシルトや粘土分が多く含まれる地層にクラックを生じさせる様に圧入する方法(例えば特許文献1)や、柱状改良機を用いた垂直方向への軸混合による混練による強制的に浄化薬剤を混合する方法(例えば特許文献2)が挙げられる。 As a special purification method that is technically more advanced than excavation removal and clean soil replacement, but can be carried out at a relatively low cost, the purification chemical solution from the injection well causes cracks in the silt and clay-rich formation. (For example, Patent Document 1) and a method for forcibly mixing the purifying agent by kneading by vertical shaft mixing using a columnar improver (for example, Patent Document 2) can be mentioned.

前者は、圧入液の注入が地層に生成されたクラックに依存する工法であり、地層の不均質性に起因したクラック生成に偏りを生じると浄化が極めて不確実となり易く、後者は、施工の確実性は極めて高いが、長いロッドを直立させて施工するため、搬入路のサイズが条件となるのに加え、建屋内では10m程度の高さに至る施工空間が必要となり、適用が極めて限定されていた。 The former is a construction method in which the injection of the press-fitting liquid depends on the cracks generated in the stratum, and if the crack formation due to the inhomogeneity of the stratum is biased, the purification tends to be extremely uncertain, and the latter is the reliable construction. Although the property is extremely high, since long rods are installed upright, the size of the carry-in path is a condition, and a construction space up to a height of about 10 m is required inside the building, so the application is extremely limited. It was.

また、更に限定的で一般的ではないものの、シルトや粘土分の含有がほぼ無いに等しい、いわば砂分を主体とする汚染土壌であれば、土壌間隙を通じた流体の出し入れは容易に実施できるので、掘削した汚染土壌をオンサイトにてパイル通気処理(例えば特許文献3)を実施する等の格段に廉価な浄化対策方法も選択できる。 In addition, although it is more limited and uncommon, if the soil is contaminated with almost no silt or clay, so to speak, mainly composed of sand, fluid can be easily taken in and out through the soil gap. It is also possible to select a remarkably inexpensive purification measure method such as performing pile aeration treatment (for example, Patent Document 3) on-site for the excavated contaminated soil.

しかしながら、シルトや粘土分が一定以上に含まれる汚染土壌に対して、この様なパイル通気処理等を選択するケースは、現行の汚染浄化業界においては皆無といって良いが、特許技術としては、シルトや粘土分が一定以上に含まれる汚染土壌に対し、土壌改良材としてパーライトを用いて通気性を改善した好気性のバイオ浄化技術が提案されている(例えば特許文献4)。但し、パーライトは重金属の吸着能が報告される資材でもあった(例えば非特許文献2、3)。 However, it can be said that there is no case in the current pollution purification industry where such pile aeration treatment is selected for contaminated soil containing silt or clay above a certain level, but as a patented technology, An aerobic biopurification technique has been proposed in which pearlite is used as a soil conditioner for contaminated soil containing a certain amount of silt or clay to improve air permeability (for example, Patent Document 4). However, pearlite was also a material for which the adsorption ability of heavy metals was reported (for example, Non-Patent Documents 2 and 3).

特許3753644号公報Japanese Patent No. 3735644 特開2007−283229号JP-A-2007-283229 特許6055233号公報Japanese Patent No. 6055233 特許4767472号公報Japanese Patent No. 4767472

保高徹生、横浜国立大学大学院博士論文 2007年3月Tetsuo Hodaka, Doctoral Dissertation, Yokohama National University Graduate School March 2007 T.Mathialagan,T.Viraraghavan,Adsorption of cadmium from aqueous solutions by perlite, Journal of Hazardous Materials,Vol.94,(3),2002, P291−303.T. Mathialagan, T.M. Viraraghavan, Adsorption of cadmium from solutions by perlite, Journal of Hazardous Materials, Vol. 94, (3), 2002, P291-303. H.Ghassabzadeh,M.Torab−Mostaedi,A.Mohaddespour,M.G.Maragheh,S. J.Ahmadi,P.Zaheri,Characterizations of Co(II)and Pb(II) removal process from aqueous solutions using expanded perlite, Desalination, Vol.261, (1−2),2010,P73−79.H. Ghassabzadeh, M.D. Torab-Mostadei, A.M. Mohaddespour, M. et al. G. Maragheh, S.M. J. Ahmadi, P.I. Zaheri, characterizations of Co (II) and Pb (II) removal process from solution solutions using expanded perlite, Desalination, Vol. 261 (1-2), 2010, P73-79.

従来技術としては、シルトや粘土分が一定以上に含まれる汚染土壌に対し、土壌改良材としてパーライトを用いて通気性を改善した好気性のバイオ浄化技術(例えば特許文献4)が、既に公開・提案されているが、以後の汚染浄化業界において、係る技術が導入された事例は皆無と断言できる程に、未だ普及には至っていない。 As a conventional technique, an aerobic biopurification technique (for example, Patent Document 4) in which air permeability is improved by using pearlite as a soil conditioner for contaminated soil containing silt or clay above a certain level has already been published. Although it has been proposed, it has not yet become widespread to the extent that it can be said that there are no cases in which such technology has been introduced in the subsequent pollution purification industry.

この様に提案として存在する技術ではあるものの、浄化業界にて普及にまで至らない理由として、以下が想定される。
まず、パーライトは、土壌改良資材として汚染浄化に用いるには非常に高価であること、また重金属類をイオン性の不可逆的に吸着する性質から、重金属蓄積による局所的な土壌汚染形成が助長される、或いは、その持込の懸念を払拭できないこと、加えて、パーライトを土壌に添加した際、土圧によってパーライトの脆弱な多孔質部が破壊され、土壌改良状態が施工経過と共に失われる改良効果の継続性への懸念があることや、真白色を呈するパーライトのテクスチャーが対象汚染土壌のテクスチャーと乖離すること、更に、軽い比重によって降雨時にはパーライトが土壌表面に浮き上がり表土付近に集積して粉を吹いた様になる等の仕上がり品質を損ねる懸念のあること等、パーライトを土壌汚染対策に用いる場合に対して数多くの懸念が存在する状況にある。
Although the technology exists as a proposal in this way, the following are assumed as the reasons why it has not become widespread in the purification industry.
First, pearlite is very expensive to use as a soil improvement material for soil purification, and because of its irreversible ionic adsorption of heavy metals, local soil contamination formation due to heavy metal accumulation is promoted. Or, the concern of bringing it in cannot be dispelled, and in addition, when pearlite is added to the soil, the fragile porous part of pearlite is destroyed by the soil pressure, and the soil improvement state is lost over the course of construction. There is concern about continuity, the texture of pure white pearlite deviates from the texture of the target contaminated soil, and due to the light specific gravity, pearlite floats on the soil surface during rainfall and accumulates near the surface soil to blow powder. There are many concerns about the use of pearlite as a countermeasure against soil contamination, such as the concern that the finished quality may be impaired, such as the appearance of soil.

極めて廉価な浄化施工となるポテンシャルを孕む汚染土壌対策技術として、シルトや粘土分が含まれる汚染土壌を対象としたパイル通気処理等の適用が望まれるが、その技術の完成と普及には、土壌間隙の水分を吸収して間隙の通気改善を促す土壌分散能を有すると共に、パーライト利用で懸念される種々の問題点をクリアーした上で、更にその廉価性に秀でた、土壌汚染対策向けの新たな土壌分散材が不可欠であった。 As a contaminated soil countermeasure technology that has the potential to be an extremely inexpensive purification work, it is desirable to apply pile aeration treatment for contaminated soil containing silt and clay, but soil is required for the completion and dissemination of this technology. It has the ability to disperse soil by absorbing the moisture in the gaps and promoting the improvement of ventilation in the gaps, and after clearing various problems that are concerned about the use of pearlite, it is also excellent in its low price, for soil contamination countermeasures. A new soil dispersant was essential.

前述の目的を達成するための本発明の要旨とするところは、次の発明に存する。
シルトや粘土たる細粒分を包含する汚染土の1質量部に対し、無機質多孔質体を0.1質量部以下で添加し、前記細粒分の含有に応じて20cm以下の粒度となる土塊への分散を図る工程を有し、
前記無機質多孔質体が、吸水率30%以下、比重0.5以上、平均粒子径5mm以下の有色粒子であること特徴とする汚染土壌の再資源化方法である。
The gist of the present invention for achieving the above-mentioned object lies in the following invention.
An inorganic porous body is added in an amount of 0.1 part by mass or less to 1 part by mass of contaminated soil containing fine particles such as silt and clay, and a soil mass having a particle size of 20 cm or less depending on the content of the fine particles. Has a process to disperse to
A method for reusing contaminated soil, wherein the inorganic porous body is colored particles having a water absorption rate of 30% or less, a specific gravity of 0.5 or more, and an average particle diameter of 5 mm or less.

本発明に係る汚染土壌の再資源化方法によれば、従前工法における土壌分散材として利用されるパーライトで懸念される種々の問題点をクリアーすると共に廉価に秀でた土壌汚染対策向きの新たな土壌分散材を提供することが可能となる。 According to the method for recycling contaminated soil according to the present invention, various problems of pearlite used as a soil dispersant in the conventional method are solved, and a new method suitable for soil pollution countermeasures, which is excellent at low cost, is solved. It becomes possible to provide a soil dispersant.

従来法で用いられる真珠岩パーライトと、本発明にて使用・製造される無機質多孔質体と除染乾燥造粒土の諸性質を比較した一覧である。This is a list comparing the properties of pearlite pearlite used in the conventional method, the inorganic porous body used and manufactured in the present invention, and the decontaminated and dried granulated soil. 本発明での土壌ガス吸引時に使用される(8)に示す吸気管の代表的な構造を示す図である。It is a figure which shows the typical structure of the intake pipe shown in (8) used at the time of the soil gas suction in this invention.

以下、本発明を代表する実施の形態を、実施例と併せて示し説明する。
本実施の形態に係る汚染土壌の土壌分散材への再資源化方法は、土壌汚染対策に向いた有色の剛性の高い土壌分散材たる無機質多孔質体を利用したシルト質や粘土質を含む汚染土壌の改質に始まり、その製造過程で効率性を高めた除染と乾燥を図り、最終的に土壌分散性能を有した除染乾燥造粒土に変換し浄化対策にリサイクル活用することに集約される。
Hereinafter, embodiments representing the present invention will be shown and described together with examples.
The method for reusing contaminated soil into a soil dispersant according to the present embodiment is a method of recycling contaminated soil into a soil dispersant, which is contaminated with silty or clay using an inorganic porous body which is a colored and highly rigid soil dispersant suitable for soil contamination countermeasures. Beginning with soil reforming, decontamination and drying with improved efficiency in the manufacturing process are aimed at, and finally it is converted to decontamination and drying granulated soil with soil dispersion performance and concentrated for recycling for purification measures. Will be done.

図1に従来法で用いられるパーライトと、本発明に使用・製造される無機質多孔質体と除染乾燥造粒土の諸性質を示す。本発明で使用・製造される土壌分散材は、従来法で用いられるパーライトと較べて、粒子径を除いて、諸性質において乖離が見られるが、この乖離こそが土壌汚染対策に求められる土壌分散材としての性状であった。 FIG. 1 shows various properties of pearlite used in the conventional method, an inorganic porous body used and manufactured in the present invention, and decontaminated and dried granulated soil. Compared with the pearlite used in the conventional method, the soil dispersant used and manufactured in the present invention shows a difference in various properties except for the particle size, and this difference is the soil dispersion required for soil contamination countermeasures. It was a property as a material.

即ち、吸水性能と比重における差異は、本発明で使用・製造される土壌分散材の剛性の高さを示し、色調における差異は、本発明で使用・製造される土壌分散材の対象土壌とのテクスチャーの同調性を示し、重金属吸収能での差異は、本発明で使用・製造される土壌分散材における重金属汚染蓄積の懸念を払拭する。 That is, the difference in water absorption performance and specific gravity indicates the high rigidity of the soil dispersant used / manufactured in the present invention, and the difference in color tone is different from the target soil of the soil dispersant used / manufactured in the present invention. It shows the synchrony of the texture, and the difference in heavy metal absorption capacity dispels the concern of heavy metal contamination accumulation in the soil dispersant used and manufactured in the present invention.

加えて、従来法で用いられるパーライトと本発明で使用・製造される土壌分散材における圧倒的な違いは、これらの単価にある。本発明の初期プロセスで使用される無機質多孔質体の価格は、パーライトの1/2程度、後段のプロセスで製造・使用される除染乾燥造粒土の価格に至っては、パーライトの1/10程度の価格で本発明に供されるので、極めて廉価な汚染浄化対策を市場に提供することが可能となった。 In addition, the overwhelming difference between the pearlite used in the conventional method and the soil dispersant used / manufactured in the present invention lies in their unit price. The price of the inorganic porous material used in the initial process of the present invention is about 1/2 that of pearlite, and the price of the decontamination-dried granulated soil manufactured and used in the subsequent process is 1/10 of that of pearlite. Since the present invention is provided at a reasonable price, it has become possible to provide the market with extremely inexpensive pollution purification measures.

ところで、本発明において対象となる土壌は、具体的には、土性区分で区別される、砂土(Sand)、壌質砂土(Loamy Sand)、砂壌土(Sandy Loam)、壌土(Loam)、シルト質壌土(Silt Loam)、砂質埴壌土(Sandy Clay Loam)、埴壌土(Clay Loam)、シルト質埴壌土(Silty Clay Loam)、砂質埴土(Sandy Clay)、軽埴土(Light Clay)、シルト質埴土(Silty Clay)、重埴土(Heavy Clay)の内、物理学的な破砕が必要な固結性土壌等でない限り、シルト質や粘土質を含む土壌であれば、特にその種類に限定されない。 By the way, the target soils in the present invention are specifically classified by soil type, such as sand soil (Sand), loam sand soil (Loamy Sand), sand loam soil (Sandy Loam), and loam soil (Loam). Silt Loam, Sandy Clay Loam, Clay Loam, Silt Clay Loam, Sandy Clay, Sandy Clay, Sandy Clay, Of the silty clay and heavy clay, unless it is a solidified soil that requires physical crushing, the soil containing silty or clay is particularly limited to that type. Not done.

また土壌分散と深く関わる土壌水分量に関しても、特に本発明において適用範囲を限定することはなく、土質と水分量に応じて、無機質多孔質体や除染乾燥造粒土を適切な施用量で用いた土壌分散たる土壌改良を図れば良い。 Further, the scope of application of the soil water content, which is closely related to soil dispersion, is not particularly limited in the present invention, and an inorganic porous body or decontaminated and dried granulated soil is applied at an appropriate dose according to the soil quality and water content. It suffices to improve the soil used as the soil dispersion.

また、本発明に適する汚染土壌として、土壌汚染対策法等で定められる、クロロエチレン、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、1,3−ジクロロプロペン、ジクロロメタン、テトラクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、ベンゼン、1,4−ジオキサンで汚染された土壌であり、その他、原油、重油、軽油、灯油、ガソリン相当の組成を有した油類、金属加工や装置メンテナンス等に用いられた廃切削油や廃潤滑油やグリース等、トルエン、キシレン、エチルベンゼン、フェノール、トリニトロトルエン等の単環式芳香族炭化水素類や、ナフタレン、アントラセン、フェナントレン、ピレン、フルオランテン、クリセン、ベンゾフルオランテン、ベンゾピレン等の多環芳香族炭化水素類、他、ダイオキシン、PCB等で汚染された土壌を挙げる。 Further, as contaminated soil suitable for the present invention, chloroethylene, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,3-, which are defined by the Soil Contamination Countermeasures Law and the like. Soil contaminated with dichloropropene, dichloromethane, tetrachloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichlorethylene, benzene, 1,4-dioxane, crude oil, heavy oil, light oil, kerosene, etc. Oils with a composition equivalent to gasoline, waste cutting oil used for metal processing and equipment maintenance, waste lubricating oil, grease, etc., monocyclic aromatic hydrocarbons such as toluene, xylene, ethylbenzene, phenol, trinitrotoluene, etc. Examples include polycyclic aromatic hydrocarbons such as naphthalene, anthracene, phenanthrene, pyrene, fluorantene, chrysene, benzofluorantene, and benzopyrene, and soil contaminated with dioxin, PCB, and the like.

ここで、本発明であるところの無機質多孔質体を利用したシルト質や粘土質を含む汚染土壌の土壌分散材への再資源化事例を、この変換プロセスを踏襲して実施した汚染浄化事業の実例をもって示す。 Here, in the case of the recycling of contaminated soil containing silty and clay using the inorganic porous body of the present invention into a soil dispersant, the contamination purification project was carried out by following this conversion process. It is shown with an example.

対象の汚染土は、黄橙色掛かった明るい茶褐色の色調を呈し、シルトおよび粘土を68%の割合で含有し、テトラクロロエチレンを高濃度に含む、クリーニング工場構内の汚染中心部に由来する汚染土(溶出濃度:32mg/L)であった。水分含有量は19.6%であり、大きな土塊を形成する可塑性を強く有する汚染土壌であった。 The target contaminated soil has a yellow-orange light brown color, contains silt and clay in a proportion of 68%, and contains a high concentration of tetrachlorethylene, and is contaminated soil derived from the contaminated center of the cleaning factory premises (elution). Concentration: 32 mg / L). The water content was 19.6%, and the soil was contaminated with strong plasticity forming large soil masses.

無機質多孔質体の添加は、バックホウを用いて掘削した土塊を、更にバケットで裁断して5cm程度以下の土塊とし、図2に示す吸気管を中央部に複数設置した20立米吸引パイルを造成し吸気処理を実施した(この20立米の処理に使用された無機質多孔質体は、最終的に約2.8tであった)。 To add the inorganic porous body, the soil mass excavated using a backhoe was further cut with a bucket to make a soil mass of about 5 cm or less, and a 20 cubic meter suction pile with a plurality of intake pipes shown in FIG. 2 installed in the center was created. An inspiratory treatment was carried out (the inorganic porous body used in the treatment of this 20 cubic meters was finally about 2.8 tons).

なお、施工の実施時期が冬季であったため、パイル全面を、足場単管とシートを用いた簡易テント内に納めて、テント内空気に対し熱風機による加温養生を実施した。このテント設置の都合上、パイルは単基で浄化処理を実施した。 Since the construction was carried out in winter, the entire pile was placed in a simple tent using a single scaffolding pipe and a sheet, and the air inside the tent was heated and cured with a hot air blower. For the convenience of installing this tent, the pile was purified by itself.

通気を開始した翌日に、パイル表面よりパイル内部中央に位置する吸気面に至る吸気経路での土塊間隙温度分布を確認したところ、温度差として摂氏10度程度を生じる温度低下は確認されたものの、その勾配は、吸気面に至る50cmの範囲で温度変化が見られない不連続な状況であった。この温度変化の不連続性は、以後17日間継続した。 The day after the start of ventilation, the temperature distribution of the soil mass gap in the intake path from the pile surface to the intake surface located in the center of the pile was confirmed, and although a temperature drop of about 10 degrees Celsius was confirmed as a temperature difference. The gradient was a discontinuous situation in which no temperature change was observed within a range of 50 cm to the intake surface. This discontinuity of temperature change continued for 17 days thereafter.

通気3週間後には、テトラクロロエチレンの溶出濃度は、未だ0.42mg/Lの基準超過の状態であったものの、土塊は内部に到るまでの乾燥が図られたので、パイルを崩し、バックホウのキャタピラを用いた転圧にて減染乾燥土塊の細粒化を実施した。土塊が概ね5mm以下の細粒となったことを確認後、この細粒を用いて再びパイルを造成して吸引を実施した。 After 3 weeks of aeration, the elution concentration of tetrachlorethylene was still above the standard of 0.42 mg / L, but the soil mass was dried to the inside, so the pile was broken and the backhoe caterpillar was used. The decontaminated and dried soil mass was granulated by rolling compaction using. After confirming that the soil mass became fine particles of about 5 mm or less, piles were formed again using these fine particles and suction was performed.

テトラクロロエチレン汚染濃度が溶出濃度で不検出となった約6週間後で通気を停止し、除染乾燥造粒土を得た。 About 6 weeks after the tetrachlorethylene contamination concentration was not detected in the elution concentration, the aeration was stopped to obtain decontaminated and dried granulated soil.

今回の一連では想定以上に乾燥期間が長く掛かってしまったが、この原因として、土塊の表面積に比して通気量が少ない為に、通気の湿度がすぐ飽和に達して蒸発に伴う潜熱による温度低下が停滞し、一部に乾燥が図られない部分をパイル内に形成してしまったことが挙げられた。この考察に従って、土塊径を数倍程度に増大させて、表面積を1/30程度に減少させ、更に土塊間隙を大きくすることで通気を改善して、連続した温度低下勾配を生じる通気を図ることとした。 In this series, the drying period took longer than expected, but the reason for this is that the amount of ventilation is small compared to the surface area of the soil mass, so the humidity of ventilation quickly reaches saturation and the temperature due to latent heat due to evaporation. It was pointed out that the decline stagnated and a part of the pile that was not dried was formed in the pile. According to this consideration, the diameter of the soil mass is increased several times, the surface area is reduced to about 1/30, and the space between the soil masses is increased to improve the ventilation to generate a continuous temperature decrease gradient. And said.

この新たな汚染土壌の処理として、この除染乾燥造粒土たる土壌分散材の添加を、バックホウを用いて掘削孔内で実施した。今回は、20cm以下(例えば20cm程度)の幅に切り出した土塊を、更にスケルトンバケットで裁断して10〜20cm程度の土塊とし、表面に無機質多孔質体をまぶした後、スケルトンバケットで余分な無機質多孔質体や小塊を篩い落とした後に掘削孔から搬出し、そのままパイル置場まで輸送し積載して、以後は前回と同様の操作にて20立米吸引パイルを造成して吸気処理を実施した(この20立米の処理に使用された除染乾燥造粒土は、最終的に約0.8tであった)。 As a treatment for this new contaminated soil, the addition of the soil dispersant, which is the decontamination and dry granulated soil, was carried out in the excavation hole using a backhoe. This time, the soil mass cut out to a width of 20 cm or less (for example, about 20 cm) is further cut with a skeleton bucket to make a soil mass of about 10 to 20 cm, and after sprinkling an inorganic porous body on the surface, excess inorganic material is used with the skeleton bucket. After sieving off the porous material and small lumps, they were carried out from the excavation hole, transported to the pile yard as they were, and loaded. The decontaminated and dried granulated soil used for the treatment of 20 cubic meters was finally about 0.8 tons).

通気を開始した翌日に、パイル表面よりパイル内部中央に位置する吸気面に至る吸気経路での土塊間隙温度分布を確認したところ、連続した温度低下勾配が確認されたものの、温度差が摂氏8度程度であったことから、更に予備の吸引ブロアを用いて最大の吸引を実施したところ、温度差が摂氏5度以下となるまでの吸気(0.4vvm)が図られた。 The day after the start of ventilation, the temperature distribution of the soil mass gap in the intake path from the pile surface to the intake surface located in the center of the pile was confirmed, and although a continuous temperature decrease gradient was confirmed, the temperature difference was 8 degrees Celsius. Since the temperature was about the same, when the maximum suction was further performed using a spare suction blower, intake (0.4 vvm) was achieved until the temperature difference became 5 degrees Celsius or less.

通気7日後には、テトラクロロエチレンの溶出濃度は、未だ0.31mg/Lの基準超過の状態であったものの、土塊は内部に到るまでの乾燥が図られたので、パイルを崩し、バックホウのキャタピラを用いた転圧にて減染乾燥土塊の細粒化を実施した。土塊が概ね5mm以下の細粒となったことを確認後、この細粒を用いて再びパイルを造成して吸引を実施した。 After 7 days of aeration, the elution concentration of tetrachlorethylene was still above the standard of 0.31 mg / L, but the soil mass was dried to the inside, so the pile was broken and the backhoe caterpillar was used. The decontaminated and dried soil mass was granulated by rolling compaction using. After confirming that the soil mass became fine particles of about 5 mm or less, piles were formed again using these fine particles and suction was performed.

テトラクロロエチレン汚染濃度が溶出濃度で不検出となった翌日で通気を停止し、新たな除染乾燥造粒土を得た。 The day after the tetrachlorethylene contamination concentration was not detected in the elution concentration, the aeration was stopped and new decontaminated and dried granulated soil was obtained.

以後、除染乾燥造粒土を土壌分散材として用いた処理を繰り返して、全対象土壌量が57立米の汚染浄化対策を完了した。 After that, the treatment using decontaminated and dried granulated soil as a soil dispersant was repeated, and the pollution purification measures with a total target soil amount of 57 cubic meters were completed.

対象汚染土は、有機質を含む黒色掛かった色を呈し、シルトおよび粘土を33%の割合で含有する、油分とトリクロロエチレンを含む汚染土であった。水分含有量は17%であり、無機質多孔質体2%w/wの添加で、1cmの小塊にも満たない状態の土粒子分散が図られた。対象土壌量が98立米であったため、まずは、この内の20立米を、パイル通気を模した鋼製タンク底面に吸気管を備えた吸引設備に充填し、吸気処理を施した。 The target contaminated soil was a contaminated soil containing oil and trichlorethylene, which had a blackish color containing organic substances and contained silt and clay at a ratio of 33%. The water content was 17%, and by adding 2% w / w of the inorganic porous body, soil particles were dispersed in a state of less than 1 cm small lumps. Since the target soil amount was 98 cubic meters, first, 20 cubic meters of this was filled in a suction facility equipped with an intake pipe on the bottom of a steel tank imitating pile ventilation, and intake treatment was performed.

通気1週間後、土塊の乾燥が図られ、トリクロロエチレン汚染濃度(初期汚染濃度:溶出濃度で0.93mg/L)が、溶出濃度で不検出となった時点で通気を停止し減染乾燥土粒子(この時点で既に2〜3mm程度の主とする粒度分布を中心とする土粒子になっていた)を得た。但し、この時点では油分としてTPH濃度は2010mg/kgが残存(TPH濃度の初期値は、3240mg/kg)していた。 One week after aeration, the soil mass was dried, and when the trichloroethylene contamination concentration (initial contamination concentration: elution concentration 0.93 mg / L) was not detected at the elution concentration, the aeration was stopped and the decontaminated dried soil particles were aerated. (At this point, the soil particles had already become soil particles centered on the main particle size distribution of about 2 to 3 mm). However, at this time, the TPH concentration remained at 2010 mg / kg as the oil content (the initial value of the TPH concentration was 3240 mg / kg).

この油汚染が残存する減染乾燥土粒子に対し、特許第4695666号公報に記載される浄化工法を参考に、水分を調整した脱脂米糠と化成肥料等を添加し、再度、同じ鋼製タンク吸引設備に充填して、好熱性油分解菌による減染乾燥土粒子の油分分解と乾燥を堆肥化昇温下で図った。5日を経て土壌温度は最高温度の摂氏75度に達し、更に4日を経て摂氏50度まで低下した時点で乾燥土粒子を採取して、油分濃度としてTPHが850mg/kgに低下したことと、トリクロロエチレン溶出値が不検出を確認後、吸引操作を終了し、除染乾燥造粒土を得た。 With reference to the purification method described in Japanese Patent No. 4695666, defatted rice bran with adjusted moisture, chemical fertilizer, etc. are added to the decontaminated dry soil particles where this oil contamination remains, and the same steel tank suction is performed again. The equipment was filled and the decontaminated dried soil particles were decomposed and dried by thermophilic oil-degrading bacteria under composting and heating. After 5 days, the soil temperature reached the maximum temperature of 75 degrees Celsius, and when it dropped to 50 degrees Celsius after 4 days, dry soil particles were collected and the TPH as an oil concentration decreased to 850 mg / kg. After confirming that the trichlorethylene elution value was not detected, the suction operation was completed to obtain decontaminated and dried granulated soil.

この除染乾燥造粒土の0.1質量部に対して、新たな汚染土0.9質量部の割合で混合して、残る全ての汚染土を鋼製タンク吸気処理に供した。以後は、前回同様の操作を繰り返し実施して、乾燥が図られ、油分として1000mg/kg以下、トリクロロエチレン溶出値を基準値以下とする、20立米単位のバッチ作業を繰り返し実施し、一連の汚染対策を完了した。 A ratio of 0.9 parts by mass of new contaminated soil was mixed with 0.1 part by mass of this decontaminated and dried granulated soil, and all the remaining contaminated soil was subjected to a steel tank intake treatment. After that, the same operation as the previous one was repeated to dry it, and the batch work of 20 cubic meters was repeated to reduce the oil content to 1000 mg / kg or less and the trichlorethylene elution value to the standard value or less, and to take a series of pollution countermeasures. Completed.

なお、この繰り返し操作時には、繰り返す毎に堆肥化昇温の最高温度に達する期間が短くなり、最終的には35時間となった。この繰り返し操作時によって、除染乾燥造粒土に含まれる好熱性細菌濃度が増加し菌叢が安定化したことに起因する現象と推察された。 During this repeated operation, the period for reaching the maximum temperature of the composting temperature rise was shortened each time, and finally it was 35 hours. It was speculated that this phenomenon was caused by the increase in the concentration of thermophilic bacteria contained in the decontaminated and dried granulated soil and the stabilization of the flora by the repeated operation.

実施例1は、本発明であるところの一連の汚染土壌の土壌分散材への再資源化を図った典型的な事例であるが、実施例2の様に、実施状況に応じて、本発明の本旨を逸脱しない限り、プロセスの簡略化が図られることがあっても本発明の範疇であることはいうまでもない。 Example 1 is a typical example of recycling a series of contaminated soil into a soil dispersant, which is the present invention. However, as in Example 2, the present invention depends on the implementation situation. Needless to say, it is within the scope of the present invention even if the process is simplified as long as it does not deviate from the main point of the above.

また、後述する実施事例3は、屋外で発生した灯油配管損傷による灯油漏洩時の緊急対策で実施された事例であり、現場状況・事情に応じて、本発明の本旨を逸脱しない範囲において、本発明の一部が省略された応用形で実施された事例である。 In addition, Example 3, which will be described later, is an example implemented as an emergency measure in the event of kerosene leakage due to damage to kerosene pipes that occurred outdoors, and this is a case that does not deviate from the main point of the present invention depending on the site conditions and circumstances. This is an example in which a part of the invention is omitted.

この様な応用は、繰り返しを必要としない対策土量が極めて少ない場合や、屋外での浄化対策工事時の汚染の気散や降雨浸透の恐れがある場合や、対策期間が極めて限定された緊急性の高い施工等の特殊な事情で図られることが多い。 Such applications are used when the amount of soil for countermeasures that does not require repetition is extremely small, when there is a risk of pollution dispersal or precipitation infiltration during outdoor purification countermeasure construction, or when the countermeasure period is extremely limited in an emergency. It is often planned for special circumstances such as high-quality construction.

対象土は、黒土を主体とする高濃度の灯油が含浸した盛土であった。漏洩から1日を経過した状況であり、200L超の漏洩が想定される状況であった。一方、連日の降雨で、現地の地表面は、漏洩箇所のみならず、いたる所に油膜が観察され、灯油汚染が、不用意な人の立入によって二次拡散している状況であった。 The target soil was an embankment impregnated with high-concentration kerosene, mainly black soil. One day has passed since the leak, and a leak of more than 200 L is expected. On the other hand, due to daily rainfall, oil slicks were observed not only at the leaked points but also everywhere on the local ground surface, and kerosene contamination was secondarily diffused by the inadvertent entry of people.

緊急対応として、無機質多孔質体と粉末活性炭の添加を提案し、漏洩箇所と周辺の油膜が見られる地点の表土に散布した。また、漏洩箇所直下の土壌試料を一部採取して、無機質多孔質体と粉末活性炭をそれぞれ2%w/wで添加する条件にて、油膜・油臭がマスキングされること、併せてベンゼンの溶出値も不検出となることを現地での簡易溶出/GC分析にて確認し、漏洩部の深度方向に対して、設計濃度の無機質多孔質体と粉末活性炭の混合改良を施して、以後の深度方向への汚染の拡散防止の緊急対応を夜間に実施した。 As an emergency response, we proposed the addition of an inorganic porous material and powdered activated carbon, and sprayed it on the topsoil of the leaked part and the surrounding oil film. In addition, the oil film and oil odor are masked under the condition that a part of the soil sample directly under the leaked part is taken and the inorganic porous body and powdered activated carbon are added at 2% w / w respectively, and benzene. It was confirmed by a simple elution / GC analysis in the field that the elution value was not detected, and the mixture of the inorganic porous body with the design concentration and the powdered activated carbon was improved in the depth direction of the leaked part. Emergency measures were taken at night to prevent the spread of pollution in the depth direction.

約一週間後、現地の雨水溜まりが引いた頃合いをみて、対策部の再掘削と掘削底側面の汚染状況を確認する2次施工を実施した。結果、一部の掘削側面でベンゼンの超過が見られ、余掘りを実施し、再度の側面調査を実施して、不検出を確認後、新たに掘削した汚染土壌に対し、緊急対策時の資材設計条件と同様に無機質多孔質体と粉末活性炭の添加・混合を施した。 Approximately one week later, at the time when the local rainwater pool was pulled out, the re-excavation of the countermeasures department and the secondary construction to confirm the contamination status on the side of the excavation bottom were carried out. As a result, excess benzene was found on some of the excavated sides, and after excavating, conducting a side survey again and confirming no detection, materials for emergency measures were taken for newly excavated contaminated soil. Similar to the design conditions, the inorganic porous body and powdered activated carbon were added and mixed.

続いて、活性炭により低濃度の平衡吸着状態に保たれた土壌の油分やベンゼンに対し、バイオレメディエーションでの分解浄化を図るために、化成肥料を添加して混合した後、図2に示す吸引管を底側面に設置したバックホウ掘削孔に戻し、施工箇所をシート養生して、ターボブロアを用いて0.1vvmの吸引強度の吸気操作を実施した。 Subsequently, a chemical fertilizer was added and mixed with the oil and benzene of the soil maintained in a low concentration equilibrium adsorption state by activated carbon in order to decompose and purify by bioremediation, and then the suction tube shown in FIG. Was returned to the backhoe excavation hole installed on the bottom side surface, the construction site was cured with a sheet, and an intake operation with a suction intensity of 0.1 vvm was performed using a turbo blower.

2カ月後の経過調査にて、ベンゼン溶出値が基準値以下、TPH濃度が1000mg/kg以下を確認して、吸引を停止し、吸引管の抜管を行って、浄化対策を完了した。 In a follow-up survey two months later, it was confirmed that the benzene elution value was below the standard value and the TPH concentration was 1000 mg / kg or less, suction was stopped, the suction tube was extubated, and purification measures were completed.

浄化後の土壌は、一部に最大で5cm程度の土塊を含む、概ね2mm以下の乾燥粒子で構成されており、粒子径を整える操作を実施すれば除染乾燥造粒土として活用できる状態までの乾燥が図られていた。しかしながら、本ケースでは、更なる対策が必要な汚染土は存在せず、生じた乾燥土壌を除染乾燥造粒土としての汚染浄化への再活用が図られることなく、対策事業が完了となった。 The soil after purification is composed of dry particles of approximately 2 mm or less, including a soil mass of up to 5 cm in part, and can be used as decontamination and dry granulated soil by performing an operation to adjust the particle size. Was being dried. However, in this case, there is no contaminated soil that requires further countermeasures, and the countermeasure project was completed without reusing the generated dry soil for decontamination and dry granulation soil for pollution purification. It was.

実施例3のケースでは、緊急対策時に実施された無機質多孔質体の添加・施工範囲を一部に限定して、残った汚染土の対策を、時間をスライドした複数回の対策とすれば、初回の無機質多孔質体の添加範囲の汚染土壌処理で生じた除染乾燥土粒子を、次回の施工では、無機質多孔質体の代用として、前回の施工で生じた除染乾燥造粒土を使用することもできた。 In the case of Example 3, if the addition / construction range of the inorganic porous body implemented at the time of emergency measures is limited to a part, and the measures for the remaining contaminated soil are set to multiple measures by sliding the time, In the next construction, the decontaminated and dried soil particles generated in the contaminated soil treatment in the range of the first addition of the inorganic porous body will be used as a substitute for the inorganic porous body in the decontaminated and dried granulated soil generated in the previous construction. I was able to do it.

しかしながら、緊急対応で全面施工を短期間に実施しなければならなかったこと、また活性炭により低濃度の平衡吸着状態に保たれた状況下、施工期間の長期化によって浄化処理の1バッチ期間が長くなることに鑑み、(除染乾燥土粒子としての再利用のポテンシャルを十分に有していたにも係わらず、)本発明の一部たる除染乾燥造粒土の再利用を省略した形で完了した事例となった。 However, due to the fact that the entire construction had to be carried out in a short period of time as an emergency response, and under the condition that the low concentration of equilibrium adsorption was maintained by activated carbon, the lengthening of the construction period made the purification treatment batch period longer. In view of the above, the reuse of the decontaminated and dried granulated soil, which is a part of the present invention, is omitted (despite the fact that it has sufficient potential for reuse as decontaminated and dried soil particles). It was a completed case.

この様に、本発明の本旨を逸脱しない限りにおいて、実施状況に鑑み、本発明のプロセスの一部簡略化が図られることがあっても、本発明の範疇であることはいうまでもない。 As described above, it goes without saying that the process of the present invention may be partially simplified in view of the implementation situation as long as it does not deviate from the main purpose of the present invention, but it is within the scope of the present invention.

なお、活性炭は、実施例3で示される雨天時施工での汚染浸透・拡散を防止するのみならず、屋外にてテント設営等の拡散防止対策が困難な状況下で、開放系でのVOC汚染土の掘削を伴う対策を実施する際のVOCの周囲への拡散防止を図る目的でも活用する。このように、無機質多孔質体の添加のみならず、必要に応じて活性炭等の汚染対策資材を添加すると良い。 Activated carbon not only prevents the penetration and diffusion of contamination in the rainy weather construction shown in Example 3, but also VOC contamination in an open system in a situation where it is difficult to prevent diffusion such as setting up a tent outdoors. It will also be used for the purpose of preventing the diffusion of VOCs around when implementing measures that involve excavation of soil. As described above, it is advisable to add not only the inorganic porous body but also the pollution control material such as activated carbon as needed.

ところで、汚染対策資材として、その一部に活性炭が含まれる場合は、活性炭表面に吸着されている汚染や活性炭により低濃度の平衡吸着状態に保たれ低濃度で徐放されてくる汚染に対する浄化処置が図られる浄化資材を併せて対策土に添加することが肝要である。 By the way, when activated carbon is partly contained as a pollution control material, purification measures are taken against the pollution adsorbed on the surface of the activated carbon and the pollution maintained in a low concentration equilibrium adsorption state by the activated carbon and gradually released at a low concentration. It is important to add the purification material that can be used as a countermeasure soil to the countermeasure soil.

前者の活性炭表面に吸着されている汚染に対し適用可能な浄化方法としては、短期間で効果的な除染が可能な硫酸ラジカルやヒドロキシラジカルを生じる化学酸化法が有効である。一方、活性炭により低濃度の平衡吸着状態に保たれ低濃度で徐放されてくる汚染に対しては、長期間の継続性を有する分解微生物を活用する生物学的処理が有効となる。 As a purification method applicable to the former contamination adsorbed on the surface of activated carbon, a chemical oxidation method that generates sulfuric acid radicals and hydroxyl radicals that can be effectively decontaminated in a short period of time is effective. On the other hand, for contamination that is maintained in an equilibrium adsorption state at a low concentration by activated carbon and is gradually released at a low concentration, biological treatment utilizing a degrading microorganism having long-term continuity is effective.

なお、活性炭の有無を問わず、汚染対策資材が、液体を含むものであるならば、少なくともこの液体成分の添加は、土塊の乾燥が図られた後の(4)のプロセスでの添加が、土粒子への浄化薬剤の浸透が土粒子内部までに及び、取りこぼしの無い精度の高い汚染浄化に寄与する。 If the pollution control material contains a liquid regardless of the presence or absence of activated carbon, at least the addition of this liquid component is the addition of soil particles in the process (4) after the soil mass has been dried. The permeation of the purification agent into the soil particles extends to the inside of the soil particles, contributing to highly accurate pollution purification without omission.

以上に説明した実施の形態および実施例より、次の発明概念が導かれる。
(1)シルトや粘土たる細粒分を包含する汚染土の1質量部に対し、無機質多孔質体を0.1質量部以下で添加し、前記細粒分の含有に応じて20cm以下の粒度となる土塊への分散を図る工程を有し、
前記無機質多孔質体が、吸水率30%以下、比重0.5以上、平均粒子径5mm以下の有色粒子であること特徴とする汚染土壌の再資源化方法である。
The following invention concept is derived from the embodiments and examples described above.
(1) To 1 part by mass of contaminated soil containing fine particles such as silt and clay, an inorganic porous body is added in an amount of 0.1 part by mass or less, and the particle size is 20 cm or less depending on the content of the fine particles. It has a process to disperse it into the soil mass
A method for reusing contaminated soil, wherein the inorganic porous body is colored particles having a water absorption rate of 30% or less, a specific gravity of 0.5 or more, and an average particle diameter of 5 mm or less.

(2)前記無機質多孔質体に加えて、汚染対策資材を添加することを特徴とする前記(1)に記載の汚染土壌の再資源化方法である。 (2) The method for recycling contaminated soil according to (1) above, wherein a contamination countermeasure material is added in addition to the inorganic porous body.

(3)前記土塊を積載して成型土塊を作成し、該成形土塊の底面部より吸気操作を実施することを特徴とする前記(2)に記載の汚染土壌の再資源化方法である。 (3) The method for reusing contaminated soil according to (2) above, wherein the soil mass is loaded to prepare a molded soil mass, and an intake operation is performed from the bottom surface of the molded soil mass.

(4)前記吸気操作が、前記成型土塊中の吸気経路での土塊間隙温度分布が、摂氏5度以内の連続した温度低下勾配を形成する吸気速度に設定することを特徴とする前記(3)に記載の汚染土壌の再資源化方法である。 (4) The above-mentioned (3) is characterized in that the intake operation is set to an intake speed at which the temperature distribution of the soil mass gap in the intake path in the molded soil mass forms a continuous temperature decrease gradient within 5 degrees Celsius. It is a method of recycling contaminated soil described in.

(5)前記成形土塊を破壊して粒径5mm以下とする造粒土を製造した後、該造粒土に対し前記汚染対策資材を添加・混合し、新たな成形土塊を形成して、除染乾燥造粒土たる土壌分散材を製造する工程を含むことを特徴とする前記(3)または(4)に記載の汚染土壌の再資源化方法である。 (5) After the granulated soil having a particle size of 5 mm or less is produced by destroying the molded soil mass, the anti-contamination material is added and mixed with the granulated soil to form a new molded soil mass and removed. The method for reclaiming contaminated soil according to (3) or (4) above, which comprises a step of producing a soil dispersant which is a dye-dried granulated soil.

(6)前記新たな成形土塊中の温度を、摂氏55度を超える高温環境とし、
前記高温環境下にて造粒土中の汚染物質である炭化水素系化合物を資化する好熱性微生物の代謝により、前記炭化水素系化合物の分解を促す工程を含むことを特徴とする前記(5)に記載の汚染土壌の再資源化方法である。
(6) The temperature in the new molded soil mass is set to a high temperature environment exceeding 55 degrees Celsius.
The above (5), which comprises a step of promoting the decomposition of the hydrocarbon compound by the metabolism of a thermophilic microorganism assimilating the hydrocarbon compound which is a pollutant in the granulated soil in the high temperature environment. ) Is the method for recycling contaminated soil.

(7)前記吸気操作において、細孔を有した内管と網目状の表面を有した外管で構成される二重管の周囲を更にフィルター材で覆った吸気管を用いて実施することを特徴とする前記(3)から(6)のいずれか一項に記載の汚染土壌の再資源化方法である。 (7) The intake operation is carried out by using an intake pipe in which the circumference of a double pipe composed of an inner pipe having pores and an outer pipe having a mesh-like surface is further covered with a filter material. The method for recycling contaminated soil according to any one of (3) to (6) above.

(8)前記汚染浄化資材として、その一部に、比表面積が900m/gを越える粉末活性炭を含み、該粉末活性炭を0.05質量部以下で添加することを特徴とする前記(2)から(7)のいずれか一項に記載の汚染土壌の再資源化方法である。 (8) The above-mentioned (2), wherein the pollutant purification material contains a powdered activated carbon having a specific surface area of more than 900 m 2 / g, and the powdered activated carbon is added in an amount of 0.05 parts by mass or less. This is the method for reclaiming contaminated soil according to any one of (7).

(9)前記無機質多孔質体が、清浄な有色廃ガラス粉末、或いは有色鉱物を含む清浄な資材を原料の一部に含む焼成物であることを特徴とする前記(1)から(8)のいずれか一項に記載の汚染土壌の再資源化方法である。 (9) The above-mentioned (1) to (8), wherein the inorganic porous body is a fired product containing clean colored waste glass powder or a clean material containing colored minerals as a part of a raw material. It is the method for recycling contaminated soil according to any one of the above.

(10)前記無機質多孔質体の代用として、前記(5)に記載の土壌分散材を用いることを特徴とする汚染土壌の再資源化方法である。 (10) A method for recycling contaminated soil, which comprises using the soil dispersant according to (5) above as a substitute for the inorganic porous body.

次に、前述した発明概念の作用効果について説明する。
本開示のうち(1)に係る汚染土壌の再資源化方法によれば、シルトや粘土たる細粒分を包含する汚染土の1質量部に対し、無機質多孔質体を0.1質量部以下で添加し、細粒分の含有に応じて20cm以下の粒度となる土塊分散を図ると、土塊同士の再接合が少なくなり、流体通過性の良い連通する土塊間隙空間を確保することができる。
Next, the effects of the above-mentioned invention concept will be described.
According to the method for reclaiming contaminated soil according to (1) of the present disclosure, 0.1 part by mass or less of the inorganic porous body is used for 1 part by mass of the contaminated soil containing fine particles such as silt and clay. If the soil mass is dispersed in a particle size of 20 cm or less according to the content of the fine particles, the rejoining of the soil mass is reduced, and a communicative soil mass gap space having good fluid permeability can be secured.

結果、土塊表面の乾燥が促され、土塊内部の水分や汚染は、土塊内部に発生する毛細管現象を通じて速やかに乾燥状態にある土塊表面に移動せしめられ、土塊全体に亘る乾燥効果と揮発性汚染物質の表面への移送による除染効果を飛躍的に高めることができる。
この際、殊にシルトや粘土たる細粒分を多く含む土壌の場合は、土塊の大きさは20cmを超えない範囲で、より大きな土塊を形成する様に努めると、通気性の良い連通した土塊間隙空間が確保され、極めて効率の良い土塊表面の乾燥を促すことができる。
As a result, the surface of the soil mass is promoted to dry, and the moisture and contamination inside the soil mass are rapidly transferred to the surface of the soil mass in a dry state through the capillary phenomenon generated inside the soil mass, and the drying effect and volatile pollutants throughout the soil mass are produced. The decontamination effect by transferring to the surface of the material can be dramatically enhanced.
At this time, especially in the case of soil containing a large amount of fine particles such as silt and clay, if the size of the soil mass does not exceed 20 cm and efforts are made to form a larger soil mass, a well-ventilated continuous soil mass Gap space is secured, and extremely efficient drying of the soil mass surface can be promoted.

加えて、この様に大きな土塊であれば、その土塊の表面積はその土量に比して小さくなり、土塊表面に付着させて使用する無機質多孔質体の量が格段に節約され、費用対効果の高い土塊表面の乾燥化を促すことができる。 In addition, with such a large soil mass, the surface area of the soil mass is smaller than the soil volume, and the amount of the inorganic porous body used by adhering to the soil mass surface is significantly saved, which is cost-effective. It is possible to promote the drying of the surface of soil with a high surface area.

また、パーライトの様な一般的な多孔質体よりも質量当たりの比表面積や吸水率は明らかに劣る、吸水率30%以下、比重0.5以上という性状の粒子強度たる多孔質構造の強度が殊更に安定的である無機質多孔質体に限定して本開示に用いることで、土塊同士の接触時や積載時の土圧による多孔質体の損壊が少なく、土塊同士の再接合が抑制された、連通した通気性の良い土塊間隙空間を継続的に確保することができる。 In addition, the specific surface area and water absorption rate per mass are clearly inferior to those of general porous materials such as pearlite, and the strength of the porous structure, which is the particle strength of the properties of water absorption rate of 30% or less and specific gravity of 0.5 or more, is high. By using only the inorganic porous material which is particularly stable in the present disclosure, the porous body is less damaged by the soil pressure when the soil masses come into contact with each other or when the soil masses are loaded, and the rejoining of the soil masses is suppressed. , It is possible to continuously secure a well-ventilated space between soil masses.

加えて、パーライトに比して比重が大きな有色粒子である無機質多孔質体を用いることによって、パーライトを添加した際に生じる、テクスチャー変化や降雨時の土壌表面への浮き上がりや集積等の仕上がり品質に対する懸念を払拭することができる。 In addition, by using an inorganic porous material that is a colored particle with a higher specific gravity than pearlite, the finish quality such as texture change and floating and accumulation on the soil surface during rainfall that occur when pearlite is added Concerns can be dispelled.

また、本開示のうち(2)に係る汚染土壌の再資源化方法によれば、必要に応じて汚染対策資材を併せて添加すると、水分と共に毛管現象にて土塊表面に滲出した汚染を土塊表面で分解処理を図る等の汚染対策を実施できるので、施工域周囲への汚染の拡散が減じられた安全な汚染対策を実施することができる。 In addition, according to the method for reclaiming contaminated soil according to (2) of the present disclosure, when a contamination countermeasure material is added as necessary, the contamination exuded to the surface of the soil mass due to the capillary phenomenon together with water is discharged to the surface of the soil mass. Since it is possible to implement pollution countermeasures such as disassembling the soil, it is possible to implement safe pollution countermeasures in which the spread of pollution around the construction area is reduced.

また、本開示のうち(3)に係る汚染土壌の再資源化方法によれば、土塊を積載して成型土塊を作成し、更に成型土塊の底面部より吸気操作を積極的に実施することにより、土塊全体に亘る乾燥効果と揮発性汚染物質の表面への移送による除染効果を飛躍的に高めることができる。 Further, according to the method for recycling contaminated soil according to (3) of the present disclosure, a soil mass is loaded to create a molded soil mass, and an intake operation is positively performed from the bottom surface of the molded soil mass. , The drying effect over the entire soil mass and the decontamination effect by transferring volatile pollutants to the surface can be dramatically enhanced.

更に、成型土塊における吸気操作において、本開示のうち(4)に係る汚染土壌の再資源化方法によれば、成型土塊中の吸気経路での土塊間隙温度分布が、摂氏5度以内の連続した温度低下勾配を形成する吸気強度に設定することにより、勾配非形成時たる土壌間隙の湿度過多条件下での土塊の可塑性増加によって生じる土塊間隙の縮小や目詰まり等の歩留まりの無い、極めて効率の良い揮発性汚染物質の回収と脱水を可能とする吸気操作が達成され、減染乾燥土塊を停滞無く極めて効率的に製造できる。 Further, in the intake operation in the molded soil mass, according to the method for reclaiming contaminated soil according to (4) in the present disclosure, the temperature distribution in the soil mass gap in the intake path in the molded soil mass is continuous within 5 degrees Celsius. By setting the intake intensity to form a temperature decrease gradient, there is no yield such as shrinkage or clogging of the soil mass caused by the increase in plasticity of the soil mass under the condition of excessive humidity of the soil gap when the gradient is not formed, and it is extremely efficient. An inspiratory operation that enables the recovery and dehydration of good volatile pollutants is achieved, and decontaminated and dried soil mass can be produced extremely efficiently without stagnation.

続いて、本開示のうち(5)に係る汚染土壌の再資源化方法によれば、土塊を破壊して粒径5mm以下とする造粒土を製造した後、該造粒土に対し汚染浄化資材を添加・混合して、適切な吸気操作を施すことにより、残存する揮発性汚染や不揮発性汚染に対する更なる浄化が図られて、該無機質多孔質体よりも吸水性能でやや劣るが代替の可能な、除染乾燥造粒土たる新たな土壌分散材への再資源化を達成することができる。 Subsequently, according to the method for recycling contaminated soil according to (5) of the present disclosure, after the soil mass is destroyed to produce granulated soil having a particle size of 5 mm or less, the granulated soil is contaminated and purified. By adding and mixing materials and performing an appropriate intake operation, further purification against residual volatile and non-volatile contamination is achieved, and the water absorption performance is slightly inferior to that of the inorganic porous body, but it is an alternative. Possible recycling of decontaminated and dried granulated soil into new soil dispersants can be achieved.

続いて、本開示のうち(6)に係る汚染土壌の再資源化方法によれば、造粒土の乾燥と揮発性汚染物質の回収を図ると共に造粒土表面での汚染の分解や吸着を併せて図る方法が、特許第4695666号公報に示される堆肥化昇温を伴う汚染浄化方法であることにより、堆肥化昇温による土粒間隙温度の上昇が図られ、間隙空気の相対湿度を下げる効果と蒸発量の増加による高効率な乾燥を図ることができる。加えて、高温条件下において10度の温度上昇で代謝活性が2倍に高まるとされる好熱性分解菌の汚染分解代謝によって、極めて効率的に汚染土壌の浄化を図ることができる。 Subsequently, according to the method for recycling contaminated soil according to (6) of the present disclosure, the granulated soil is dried and volatile pollutants are recovered, and the contamination on the surface of the granulated soil is decomposed and adsorbed. The method to be combined is the pollution purification method accompanied by the temperature rise of composting disclosed in Japanese Patent No. 4695666, so that the temperature of the soil grain gap is increased by the temperature rise of composting and the relative humidity of the gap air is lowered. Highly efficient drying can be achieved by increasing the effect and the amount of evaporation. In addition, the contaminated soil can be purified extremely efficiently by the decontamination and metabolism of thermophilic degrading bacteria, which is said to double the metabolic activity when the temperature rises by 10 degrees under high temperature conditions.

また、本開示のうち(7)に係る汚染土壌の再資源化方法によれば、吸気操作において、細孔を有した内管と網目状の表面を有した外管で構成される二重管の周囲を更にフィルター材で覆った吸気管を用いることにより、乾燥過程の土塊から剥離した細粒土壌、或いは粒径5mm以下に造粒した際に生じた土壌細粒による、吸気管の目詰まりや吸気管以降の活性炭槽やブロア等で構成される吸気システムへの悪影響を回避することが可能であり、また排気への除塵システム等の導入を必要としない、極めて簡便なシステムにて安定的な吸気操作を実施することができる。 Further, according to the method for recycling contaminated soil according to (7) of the present disclosure, in the intake operation, a double pipe composed of an inner pipe having pores and an outer pipe having a mesh-like surface. By using an intake pipe whose circumference is further covered with a filter material, the intake pipe is clogged with fine-grained soil exfoliated from the soil mass in the drying process or soil fine particles generated when granulating to a particle size of 5 mm or less. It is possible to avoid adverse effects on the intake system consisting of the activated coal tank and blower after the intake pipe, and it is stable with an extremely simple system that does not require the introduction of a dust removal system to the exhaust. It is possible to carry out various intake operations.

また、本開示のうち(8)に係る汚染土壌の再資源化方法によれば、汚染対策資材の一部として、0.05質量部以下の割合で、比表面積が900m/gを越える粉末活性炭をVOC汚染等の揮発成分を含む汚染土に添加することにより、活性炭の平衡吸着によってVOC等の揮発成分の脱着・溶脱速度を十分に低減した汚染土壌の減臭・減溶出が図られるので、周囲環境への汚染拡散防止を図った汚染対策や土壌分散材への再資源化を達成することができる。 Further, according to the method for reclaiming contaminated soil according to (8) of the present disclosure, a powder having a specific surface area of more than 900 m 2 / g at a ratio of 0.05 parts by mass or less as a part of the anti-contamination material. By adding activated charcoal to contaminated soil containing volatile components such as VOC contamination, deodorization and elution of contaminated soil with sufficiently reduced desorption / leaching rate of volatile components such as VOC can be achieved by equilibrium adsorption of activated charcoal. It is possible to achieve pollution control measures to prevent the spread of pollution to the surrounding environment and recycling of soil dispersants.

加えて、本開示のうち(9)に係る汚染土壌の再資源化方法によれば、無機質多孔質体が、清浄な有色廃ガラス粉末、或いは有色鉱物を含む清浄な資材を原料の一部に含む焼成物であることにより、その表面構造が重金属の吸着・蓄積が少ないガラス質の平滑構造となる点、また高温条件によって有機系汚染の懸念が皆無である点、また原料選別時に、重金属含有の無い原料を取捨選択して使用することで重金属の持込を最少とできる点から、本資材を汚染土に添加する際の本資材由来の土壌汚染リスクを最小限とすることができる。 In addition, according to the method for reclaiming contaminated soil according to (9) of the present disclosure, the inorganic porous body uses clean colored waste glass powder or a clean material containing colored minerals as a part of the raw material. Since it is a calcined product containing heavy metals, its surface structure becomes a vitreous smooth structure with less adsorption and accumulation of heavy metals, there is no concern about organic contamination due to high temperature conditions, and heavy metals are contained when selecting raw materials. It is possible to minimize the risk of soil contamination derived from this material when adding this material to contaminated soil, because heavy metals can be brought in to the minimum by selecting and using raw materials that do not have any.

更に、清浄な有色廃ガラス粉末や有色鉱物を含む土壌等の安価な原料を用いて製造された無機質多孔質体は、既存のパーライトと較べて非常に廉価であることから、本開示にて規定される無機質多孔質体を用いることによって再汚染の懸念が極めて少ない安全性が担保された廉価な土質改良を実施できる。 Furthermore, inorganic porous materials produced using inexpensive raw materials such as clean colored waste glass powder and soil containing colored minerals are extremely inexpensive as compared with existing pearlite, and are therefore specified in the present disclosure. By using the inorganic porous material, it is possible to carry out inexpensive soil improvement with extremely little concern about recontamination and ensuring safety.

更に、本開示のうち(10)に係る汚染土壌の再資源化方法によれば、前記無機質多孔質体の代用として、前記(5)に記載の土壌分散材を用いることにより、無機質多孔質体の代用となる極めて安価な材たる除染乾燥造粒土を、必要とされる汚染浄化対象地たる現地で、汚染浄化を図りながら連続的に生産することができる。 Further, according to the method for recycling contaminated soil according to (10) of the present disclosure, the inorganic porous body is obtained by using the soil dispersant according to (5) as a substitute for the inorganic porous body. It is possible to continuously produce decontaminated and dried granulated soil, which is an extremely inexpensive material that can be used as a substitute for the above, at the site where the required decontamination and purification target area is required, while pursuing decontamination and purification.

この様に、本開示によって、無機質多孔質体と除染乾燥造粒土という2種類の新たな土壌汚染対策向けの土壌分散材を用いた廉価な汚染浄化方法を市場に提供できる。 As described above, the present disclosure can provide the market with an inexpensive pollution purification method using two types of new soil dispersants for soil contamination countermeasures, an inorganic porous body and a decontaminated and dried granulated soil.

また、この汚染土壌由来の土壌分散材たる除染乾燥造粒土を、新たな汚染土壌に添加する操作は、一連の浄化施工プロセスの観点からすれば、旧処理土の一部を新たな汚染土に返送することに他ならない。好気性汚染分解菌を用いたバイオレメディエーションにおいて本プロセスを踏襲することにより、汚染分解菌が豊富に存在する旧処理土の一部を新たな汚染土に対するスターターとして汚染分解菌を接種する操作が自ずと図られるので、汚染分解菌資材と土壌分散材の新たな購入を必要としない従来に比して格段に廉価なバイオレメディエーション施工を実施することができる。 In addition, the operation of adding decontaminated and dried granulated soil, which is a soil dispersant derived from this contaminated soil, to the new contaminated soil is a new contamination of a part of the old treated soil from the viewpoint of a series of purification construction processes. It is nothing but returning it to the soil. By following this process in bioremediation using aerobic pollutant-degrading bacteria, it is natural to inoculate a part of the old treated soil, which is rich in pollutant-degrading bacteria, as a starter for new contaminated soil. Therefore, it is possible to carry out bioremediation construction at a significantly lower cost than in the past, which does not require the purchase of new pollutant-degrading bacteria materials and soil dispersants.

また、本開示であるところの汚染土壌の再資源化方法によれば、汚染土壌量に応じた多孔質体の購入が必要であった従来法に較べ、本開示であるところの無機質多孔質体の購入は、一連の浄化施工における初回のみに低減され、以降の汚染浄化施工では、汚染土壌由来の除染乾燥造粒土を無機質多孔質体の代用とすることにより、シルトや粘土たる細粒分を包含する汚染土に対し、パイル施工等吸気系浄化技術を用いた極めて廉価な土壌汚染対策施工を実施できる様になった。 Further, according to the method for reclaiming contaminated soil according to the present disclosure, the inorganic porous body according to the present disclosure is compared with the conventional method in which it is necessary to purchase a porous body according to the amount of contaminated soil. The purchase of is reduced only to the first time in a series of purification works, and in the subsequent pollution purification works, decontamination and dry granulated soil derived from contaminated soil is used as a substitute for the inorganic porous body, so that fine grains such as silt and clay are used. It has become possible to carry out extremely inexpensive soil contamination countermeasure construction using intake system purification technology such as pile construction for contaminated soil that includes the amount of soil.

以上、本発明の実施の形態および実施例を説明してきたが、具体的な構成は前述した開示に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although embodiments and examples of the present invention have been described above, the specific configuration is not limited to the above-mentioned disclosure, and the present invention may be changed or added without departing from the gist of the present invention. include.

通気等を介する浄化操作を実施する一連のプロセスを有する汚染土壌浄化において、特に適用することができる。 It can be particularly applied in the purification of contaminated soil having a series of processes for carrying out the purification operation through ventilation and the like.

1…有孔塩ビ管
2…樹脂製暗渠管
3…フェルト様シート
1 ... Perforated PVC pipe 2 ... Resin underdrain pipe 3 ... Felt-like sheet

Claims (10)

シルトや粘土たる細粒分を包含する汚染土の1質量部に対し、無機質多孔質体を0.1質量部以下で添加し、前記細粒分の含有に応じて20cm以下の粒度となる土塊への分散を図る工程を有し、
前記無機質多孔質体が、吸水率30%以下、比重0.5以上、平均粒子径5mm以下の有色粒子であること特徴とする汚染土壌の再資源化方法。
An inorganic porous body is added in an amount of 0.1 part by mass or less to 1 part by mass of contaminated soil containing fine particles such as silt and clay, and a soil mass having a particle size of 20 cm or less depending on the content of the fine particles. Has a process to disperse to
A method for recycling contaminated soil, wherein the inorganic porous body is colored particles having a water absorption rate of 30% or less, a specific gravity of 0.5 or more, and an average particle diameter of 5 mm or less.
前記無機質多孔質体に加えて、汚染対策資材を添加することを特徴とする請求項1に記載の汚染土壌の再資源化方法。 The method for recycling contaminated soil according to claim 1, wherein a contamination countermeasure material is added in addition to the inorganic porous body. 前記土塊を積載して成型土塊を作成し、該成型土塊の底面部より吸気操作を実施することを特徴とする請求項2に記載の汚染土壌の再資源化方法。 The method for recycling contaminated soil according to claim 2, wherein the soil mass is loaded to prepare a molded soil mass, and an intake operation is performed from the bottom surface of the molded soil mass. 前記吸気操作が、前記成型土塊中の吸気経路での土塊間隙温度分布が、摂氏5度以内の連続した温度低下勾配を形成する吸気速度に設定することを特徴とする請求項3に記載の汚染土壌の再資源化方法。 The contamination according to claim 3, wherein the intake operation sets the temperature distribution of the soil mass gap in the intake path in the molded soil mass to an intake speed that forms a continuous temperature decrease gradient within 5 degrees Celsius. Soil recycling method. 前記成型土塊を破壊して粒径5mm以下とする造粒土を製造した後、該造粒土に対し前記汚染対策資材を添加・混合し、新たな成形土塊を形成して、除染乾燥造粒土たる土壌分散材を製造する工程を含むことを特徴とする請求項3または4に記載の汚染土壌の再資源化方法。 After the molded soil mass is destroyed to produce a granulated soil having a particle size of 5 mm or less, the anti-contamination material is added and mixed with the granulated soil to form a new molded soil mass, and decontamination and drying are performed. The method for reusing contaminated soil according to claim 3 or 4, wherein the step of producing a soil dispersant as a grain soil is included. 前記新たな成形土塊中の温度を、摂氏55度を超える高温環境とし、
前記高温環境下にて造粒土中の汚染物質である炭化水素系化合物を資化する好熱性微生物の代謝により、前記炭化水素系化合物の分解を促す工程を含むことを特徴とする請求項5に記載の汚染土壌の再資源化方法。
The temperature in the new molded soil mass was set to a high temperature environment exceeding 55 degrees Celsius.
5. A claim is characterized by comprising a step of promoting decomposition of the hydrocarbon compound by metabolism of a thermophilic microorganism assimilating the hydrocarbon compound which is a pollutant in the granulated soil in the high temperature environment. Recycling method of contaminated soil described in.
前記吸気操作において、細孔を有した内管と網目状の表面を有した外管で構成される二重管の周囲を更にフィルター材で覆った吸気管を用いて実施することを特徴とする請求項3から6のいずれか一項に記載の汚染土壌の再資源化方法。 The intake operation is performed by using an intake pipe in which the circumference of a double pipe composed of an inner pipe having pores and an outer pipe having a mesh-like surface is further covered with a filter material. The method for recycling contaminated soil according to any one of claims 3 to 6. 前記汚染浄化資材として、その一部に、比表面積が900m/gを越える粉末活性炭を含み、該粉末活性炭を0.05質量部以下で添加することを特徴とする請求項2から7のいずれか一項に記載の汚染土壌の再資源化方法。 Any of claims 2 to 7, wherein the pollutant purification material contains powdered activated carbon having a specific surface area of more than 900 m 2 / g as a part thereof, and the powdered activated carbon is added in an amount of 0.05 parts by mass or less. The method for reclaiming contaminated soil described in item 1. 前記無機質多孔質体が、清浄な有色廃ガラス粉末、或いは有色鉱物を含む清浄な資材を原料の一部に含む焼成物であることを特徴とする請求項1から8のいずれか一項に記載の汚染土壌の再資源化方法。 The invention according to any one of claims 1 to 8, wherein the inorganic porous body is a clean colored waste glass powder or a fired product containing a clean material containing a colored mineral as a part of a raw material. How to recycle contaminated soil. 前記無機質多孔質体の代用として、請求項5に記載の土壌分散材を用いることを特徴とする汚染土壌の土壌分散材への再資源化方法。 A method for recycling contaminated soil into a soil dispersant, which comprises using the soil dispersant according to claim 5 as a substitute for the inorganic porous body.
JP2019101516A 2019-05-30 2019-05-30 Method for recycling contaminated soil Active JP7334932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101516A JP7334932B2 (en) 2019-05-30 2019-05-30 Method for recycling contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101516A JP7334932B2 (en) 2019-05-30 2019-05-30 Method for recycling contaminated soil

Publications (2)

Publication Number Publication Date
JP2020192517A true JP2020192517A (en) 2020-12-03
JP7334932B2 JP7334932B2 (en) 2023-08-29

Family

ID=73548325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101516A Active JP7334932B2 (en) 2019-05-30 2019-05-30 Method for recycling contaminated soil

Country Status (1)

Country Link
JP (1) JP7334932B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119953A (en) * 2000-10-12 2002-04-23 Nippon Kokan Light Steel Kk Method for removing contaminant
JP2003211147A (en) * 2002-01-17 2003-07-29 Ohbayashi Corp Method for cleaning contaminated soil by microorganism
WO2003061862A1 (en) * 2002-01-18 2003-07-31 Toudai Tlo, Ltd. Method and apparatus for removing pollutant
JP2004298826A (en) * 2003-04-01 2004-10-28 Meidensha Corp Recycling resource material and its manufacturing method
JP2005021748A (en) * 2003-06-30 2005-01-27 Ohbayashi Corp Wall for preventing diffusion of volatile organic compound, method for constructing wall, and method for purifying volatile organic compound
JP2005048147A (en) * 2003-07-17 2005-02-24 Shigeo Takamura Agent for decontaminating/conditioning combined-contaminated soil and decontaminating and conditioning agent for combined-contaminated soil and stabilizing and decontaminating agent for combined-contaminated soil and decontamination method
JP2005131579A (en) * 2003-10-31 2005-05-26 Ohbayashi Corp Method for purifying contaminated cohesive soil
WO2006092950A1 (en) * 2005-02-28 2006-09-08 Obayashi Corporation Method of purifying polluted soil
JP2007229601A (en) * 2006-02-28 2007-09-13 Kubota Corp Cleaning method of viscous soil contaminated with volatile chlorine based organic compound
JP2007283229A (en) * 2006-04-18 2007-11-01 Nippon Sheet Glass Co Ltd Remediation method of contaminated soil
JP2009254992A (en) * 2008-04-18 2009-11-05 Eco Renaissance Entec:Kk Contaminated soil treatment method
WO2011074120A1 (en) * 2009-12-18 2011-06-23 株式会社テラウィング Agent for purifying contaminated soil and method for purifying contaminated soil by using same
JP2012153876A (en) * 2011-01-06 2012-08-16 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material, method for producing the same, and environmental cleanup method using the same
WO2014073570A1 (en) * 2012-11-08 2014-05-15 小松精練株式会社 Soil improving material and culture soil containing same
JP2014131793A (en) * 2012-12-07 2014-07-17 National Agriculture & Food Research Organization Removal method of contaminated earth surface layer in winter
JP2014184421A (en) * 2013-03-25 2014-10-02 Daiwa House Industry Co Ltd Ground buried pipe arrangement and purification method of contaminated soil using the ground buried pipe arrangement

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119953A (en) * 2000-10-12 2002-04-23 Nippon Kokan Light Steel Kk Method for removing contaminant
JP2003211147A (en) * 2002-01-17 2003-07-29 Ohbayashi Corp Method for cleaning contaminated soil by microorganism
US20050152746A1 (en) * 2002-01-17 2005-07-14 Kensuke Fujii Method of purifying contaminated soil using microorganism
WO2003061862A1 (en) * 2002-01-18 2003-07-31 Toudai Tlo, Ltd. Method and apparatus for removing pollutant
JP2004298826A (en) * 2003-04-01 2004-10-28 Meidensha Corp Recycling resource material and its manufacturing method
JP2005021748A (en) * 2003-06-30 2005-01-27 Ohbayashi Corp Wall for preventing diffusion of volatile organic compound, method for constructing wall, and method for purifying volatile organic compound
JP2005048147A (en) * 2003-07-17 2005-02-24 Shigeo Takamura Agent for decontaminating/conditioning combined-contaminated soil and decontaminating and conditioning agent for combined-contaminated soil and stabilizing and decontaminating agent for combined-contaminated soil and decontamination method
JP2005131579A (en) * 2003-10-31 2005-05-26 Ohbayashi Corp Method for purifying contaminated cohesive soil
WO2006092950A1 (en) * 2005-02-28 2006-09-08 Obayashi Corporation Method of purifying polluted soil
JP2007229601A (en) * 2006-02-28 2007-09-13 Kubota Corp Cleaning method of viscous soil contaminated with volatile chlorine based organic compound
JP2007283229A (en) * 2006-04-18 2007-11-01 Nippon Sheet Glass Co Ltd Remediation method of contaminated soil
JP2009254992A (en) * 2008-04-18 2009-11-05 Eco Renaissance Entec:Kk Contaminated soil treatment method
WO2011074120A1 (en) * 2009-12-18 2011-06-23 株式会社テラウィング Agent for purifying contaminated soil and method for purifying contaminated soil by using same
JP2012153876A (en) * 2011-01-06 2012-08-16 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material, method for producing the same, and environmental cleanup method using the same
WO2014073570A1 (en) * 2012-11-08 2014-05-15 小松精練株式会社 Soil improving material and culture soil containing same
JP2014131793A (en) * 2012-12-07 2014-07-17 National Agriculture & Food Research Organization Removal method of contaminated earth surface layer in winter
JP2014184421A (en) * 2013-03-25 2014-10-02 Daiwa House Industry Co Ltd Ground buried pipe arrangement and purification method of contaminated soil using the ground buried pipe arrangement

Also Published As

Publication number Publication date
JP7334932B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US10737959B2 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
Philp et al. Bioremediation of contaminated soils and aquifers
ES2754812T5 (en) Compositions for the removal of hydrocarbons and halogenated hydrocarbons from contaminated environments
Oluremi et al. Oil contaminated soil as potential applicable material in civil engineering construction
Abu-Khasan Analysis of soil contamination with oil and petroleum products
CN113333424A (en) Method for treating storage building garbage landfill stacking points
JP2020192517A (en) Method for recycling contaminated soil
Bridges Dealing with contaminated soils
Liu et al. Amendment additions and their potential effect on soil geotechnical properties: A perspective review
Mostafa et al. 3 Groundwater Protection
RU2703780C1 (en) Method of recycling household and other biological wastes
W Rate Urban Soil Remediation
Bhalla et al. Assessment of industrial byproducts as permeable reactive barriers for landfill leachate Management
Geethamani et al. Emerging contaminants in the environment and bioremediation control strategies–A review
Bruce Schappell et al. TECHNOLOGY DEPLOYMENT AT THE SAVANNAH RIVER SITE: DRIVING REMEDIATION & COST EFFICIENCIES IN ENVIRONMENTAL RESTORATION
Meuser et al. Soil Decontamination
Piotrowski et al. Intercept trench technology for remediating waste oil contaminated soil and groundwater: a case study.
Yang et al. A conceptual study on the bio‐wall technology: Feasibility and process design
Yadav et al. Soil Remediation Applications of Nanoparticles
Altaee et al. Soil Remediation Applications of Nanoparticles
Morgan Anaerobic/aerobic treatment of hazardous waste leachate
CN115677047A (en) Coupling restoration method integrating emergency disposal, long-term reduction and intelligent monitoring of underground water pollution of retired chemical land blocks
Mhasawade Remediation and reuse of a former manufactured gas plant site in Champaign, IL
Sanning et al. NATO/CCMS Pilot on “Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater” December 1990 Update of Activities
Floess et al. Freeman's bridge road site remediation using thermal desorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7334932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150