以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。
[開示の概要]
特許文献9は、電源の電圧が放電終止電圧に達する前に、二次電池の劣化情報に応じた管理電圧値を設定することを開示する。この管理電圧値は、二次電池の放電を終了させるための指標として用いられる。この管理電圧値は、二次電池の劣化情報に基づき設定されるが、二次電池の劣化情報を正確に算出することは難しい。そのため、二次電池の劣化情報の算出値は、算出する度に大きくばらつくことがある。このように、算出する度に大きくばらつき得る値に基づき装置を制御することは好ましくない。
一態様によれば、吸引成分生成装置は、電源からの電力により吸引成分源を気化又は霧化する負荷と、通知部と、前記電源の残量を表す値を取得し、かつ前記負荷への動作要求信号を取得して前記負荷を動作させるための指令を生成する制御部と、を有する。前記制御部は、前記通知部に、前記電源の残量を表す値が第1閾値未満、かつ前記第1閾値より小さい第2閾値以上の場合に第2通知を行わせるよう構成される。また、前記制御部は、前記通知部に、前記電源の残量を表す値が前記第2閾値未満の場合に第3通知を行わせるように構成される。前記第1閾値は、アルゴリズムに基づき変更可能である。前記制御部は、前記アルゴリズムによって導出された一次第1閾値を、前に変更された複数の前記第1閾値のうちの少なくとも1つに近づけるなまし処理を施すことによって導出された値に基づき、前記第1閾値を設定するよう構成されている。
本態様によれば、上記の第1閾値は、前に変更された複数の第1閾値のうちの少なくとも1つに近づけるなまし処理を施すことによって導出された値に基づき設定される。そのため、上記アルゴリズムによって導出された一次第1閾値の精度がよくなかったとしても、なまし処理によって、第1閾値のばらつきは軽減される。したがって、導出された一次第1閾値のばらつきに起因して好ましくないタイミングでユーザに第2通知を行うことを抑制することができ、ユーザに与える違和感を防止することができる。
[第1実施形態]
(吸引成分生成装置)
以下において、第1実施形態に係る吸引成分生成装置について説明する。図1は、一実施形態に係る吸引成分生成装置を示す分解図である。図2は、一実施形態に係る霧化ユニットを示す図である。図3は、一実施形態に係る吸引センサの構成の一例を示す模式図である。図4は、吸引成分生成装置のブロック図である。図5は、負荷が接続された状態の霧化ユニット及び電装ユニットの電気回路を示す図である。図6は、充電器が接続された状態の充電器及び電装ユニットの電気回路を示す図である。
吸引成分生成装置100は、燃焼を伴わずに吸引成分(香喫味成分)を吸引するための非燃焼型の香味吸引器であってよい。吸引成分生成装置100は、非吸口端E2から吸口端E1に向かう方向である所定方向Aに沿って延びる形状を有していてよい。この場合、吸引成分生成装置100は、吸引成分を吸引する吸引口141を有する一方の端部E1と、吸引口とは反対側の他方の端部E2と、を含んでいてよい。
吸引成分生成装置100は、電装ユニット110及び霧化ユニット120を有していてよい。霧化ユニット120は、電装ユニット110に対して機械的な接続部分111,121を介して着脱可能に構成されていてよい。霧化ユニット120と電装ユニット110とが互いに機械的に接続されたときに、霧化ユニット120内の後述する負荷121Rは、電気的な接続端子110t,120tを介して、電装ユニット110の設けられた電源10に電気的に接続される。すなわち、電気的な接続端子110t,120tは、負荷121Rと電源10を電気的に断接可能な接続部を構成する。
霧化ユニット120は、ユーザにより吸引される吸引成分源と、電源10からの電力により吸引成分源を気化又は霧化する負荷121Rと、を有する。吸引成分源は、エアロゾルを発生するエアロゾル源、及び/又は香味成分を発生する香味源を含んでいてよい。
負荷121Rは、電力を受けることによってエアロゾル源及び/又は香味源からエアロゾル及び/又は香味成分を発生させることができる素子であればよい。例えば、負荷121Rは、ヒータのような発熱素子、又は超音波発生器のような素子であってよい。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。
以下では、図1及び図2を参照しつつ、霧化ユニット120のより詳細な一例について説明する。霧化ユニット120は、リザーバ121Pと、ウィック121Qと、負荷121Rと、を有していてよい。リザーバ121Pは、液状のエアロゾル源又は香味源を貯留するよう構成されていてよい。リザーバ121Pは、例えば、樹脂ウェブ等材料によって構成される多孔質体であってよい。ウィック121Qは、リザーバ121Pから毛管現象を利用してエアロゾル源又は香味源を引き込む液保持部材であってよい。ウィック121Qは、例えば、ガラス繊維や多孔質セラミックなどによって構成することができる。
負荷121Rは、ウィック121Qに保持されるエアロゾル源を霧化又は香味源を加熱する。負荷121Rは、例えば、ウィック121Qに巻き回される抵抗発熱体(例えば、電熱線)によって構成される。
流入孔122Aから流入した空気は、霧化ユニット120の内の負荷121R付近を通過する。負荷121Rによって生成された吸引成分は、空気とともに吸口の方へ流れる。
エアロゾル源は、常温で液体であってよい。例えば、エアロゾル源としては、多価アルコールを用いることができる。エアロゾル源自身が香味成分を有していてもよい。或いは、エアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。
なお、上記実施形態では、常温で液体のエアロゾル源についての例を詳細に説明したが、この代わりに、エアロゾル源は、常温で固体のものを用いることもできる。
霧化ユニット120は、交換可能に構成された香味ユニット130を備えていてもよい。香味ユニット130は、香味源を収容する筒体131を有する。筒体131は、膜部材133とフィルタ132とを含んでいてよい。膜部材133とフィルタ132とにより構成される空間内に香味源が設けられていてよい。
霧化ユニット120は、破壊部90を含んでいてもよい。破壊部90は、香味ユニット130の膜部材133の一部を破壊するための部材である。破壊部90は、霧化ユニット120と香味ユニット130とを仕切るための隔壁部材126によって保持されていてよい。隔壁部材126は、例えば、ポリアセタール樹脂である。破壊部90は、例えば、円筒状の中空針である。中空針の先端を膜部材133に突き刺すことによって、霧化ユニット120と香味ユニット130とを空気的に連通する空気流路が形成される。ここで、中空針の内部には、香味源が通過しない程度の粗さを有する網目が設けられることが好ましい。
好ましい実施形態の一例によれば、香味ユニット130内の香味源は、霧化ユニット120の負荷121Rによって生成されたエアロゾルに香喫味成分を付与する。香味源によってエアロゾルに付与される香味は、吸引成分生成装置100の吸口に運ばれる。このように、吸引成分生成装置100は、複数の吸引成分源を有していてよい。この代わりに、吸引成分生成装置100は、1つの吸引成分源のみを有していてもよい。
香味ユニット130内の香味源は、常温で固体であってよい。一例として、香味源は、エアロゾルに香喫味成分を付与する植物材料の原料片によって構成される。香味源を構成する原料片としては、刻みたばこやたばこ原料のようなたばこ材料を粒状に成形した成形体を用いることができる。この代わりに、香味源は、たばこ材料をシート状に成形した成形体であってもよい。また、香味源を構成する原料片は、たばこ以外の植物(例えば、ミント、ハーブ等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。
吸引成分生成装置100は、使用者が吸引成分を吸引するための吸引口141を有するマウスピース142を含んでいてよい。マウスピース142は、霧化ユニット120又は香味ユニット130に着脱可能に構成されていてもよく、一体不可分に構成されていてもよい。
電装ユニット110は、電源10、吸引センサ20、押しボタン30、通知部40及び制御部50を有していてよい。電源10は、香味吸引器100の動作に必要な電力を蓄える。電源10は、電装ユニット110に対して着脱可能であってよい。電源10は、例えばリチウムイオン二次電池のような再充電可能な電池であってよい。
霧化ユニット120が電装ユニット110に接続されたとき、霧化ユニット120に設けられた負荷121Rは、電装ユニット110の電源10と電気的に接続される(図5参照)。
吸引成分生成装置100は、負荷121Rと電源10とを電気的に接続及び切断可能なスイッチ140を含んでいてよい。スイッチ140は、制御部50によって開閉される。スイッチ140は、例えばMOSFETにより構成されていてよい。
スイッチ140がONになると、電源10から負荷121Rへ電力が供給される。一方、スイッチ140がOFFになると、電源10から負荷121Rへ電力の供給が停止される。スイッチ140のON/OFFは、制御部50によって制御される。
制御部50は、ユーザの作動要求に関連する動作を検出する作動要求センサを含んでいてよい。作動要求センサは、例えばユーザにより押される押しボタン30、又はユーザの吸引動作を検出する吸引センサ20であってよい。制御部50は、負荷121Rへの動作要求信号を取得して負荷121Rを動作させるための指令を生成する。具体的一例では、制御部50は、負荷121Rを動作させるための指令をスイッチ140へ出力し、この指令に応じてスイッチ140がONになる。このように、制御部50は、電源10から負荷121Rへの給電を制御するよう構成されている。電源10から負荷121Rへ電力が供給されると、負荷121Rにより吸引成分源が気化又は霧化される。
さらに、吸引成分生成装置100は、必要に応じて、電圧センサ150、電流センサ152及び温度センサ154のうちの少なくとも1つを含んでいてよい。なお、便宜上、図5及び図6には、温度センサ154は示されていない。
電圧センサ150は、電源10の電圧を検出可能に構成されていてよい。電流センサ152は、電源10から流出した電流量及び電源10に流入した電流量を検出可能に構成されていてよい。温度センサ154は、例えば電源10付近の温度を検出可能に構成されていてよい。制御部50は、電圧センサ150、電流センサ152及び温度センサ154の出力を取得可能に構成されている。制御部50は、これらの出力を用いて各種の制御を行う。
吸引センサ20は、非吸口側から吸口側に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する値(例えば、電圧値又は電流値)を出力するセンサであってよい。そのようなセンサとして、例えば、コンデンサマイクロフォンセンサや公知の流量センサなどが挙げられる。
図3は、吸引センサ20の具体的一例を示している。図3に例示された吸引センサ20は、センサ本体21と、カバー22と、基板23と、を有する。センサ本体21は、例えば、コンデンサによって構成されている。センサ本体21の電気容量は、空気導入孔125から吸引される空気(すなわち、非吸口側から吸口側に向けて吸引される空気)によって生じる振動(圧力)によって変化する。カバー22は、センサ本体21に対して吸口側に設けられており、開口22Aを有する。開口22Aを有するカバー22を設けることによって、センサ本体21の電気容量が変化しやすく、センサ本体21の応答特性が向上する。基板23は、センサ本体21(コンデンサ)の電気容量を示す値(ここでは、電圧値)を出力する。
吸引成分生成装置100、より具体的には電装ユニット110は、電装ユニット110内の電源10を充電する充電器200と接続可能に構成されていてよい(図6参照)。充電器200が電装ユニット110に接続されたとき、充電器200は電装ユニット110の電源10と電気的に接続される。
電装ユニット110は、充電器200が接続されたか否かを判定する判定部を有していてよい。判定部は、例えば、充電器200が接続される一対の電気端子どうしの間の電位差の変化に基づき、充電器200の接続の有無を判定する手段であってよい。判定部は、この手段に限定されず、充電器200の接続の有無を判定することができれば、どのような手段であってもよい。
充電器200は、電装ユニット110内の電源10を充電するための外部電源210を有する。吸引成分生成装置100は、充電器200のプロセッサ250と通信可能であってよい。プロセッサ250は、電源10から外部電源210への放電と、電源10への外部電源210からの充電の少なくとも一方を制御可能に構成されていてよい。また、充電器200は、充電電流の値を取得する電流センサ230と、充電電圧の値を取得する電圧センサ240と、を有していてよい。
制御部50は、ユーザのパフ動作を検出した回数をカウントするカウンタ52を有していてよい。また、制御部50は、ユーザのパフ動作の検出、すなわち負荷121Rへの動作要求信号の取得から経過した時間を計測するタイマ54を有していてもよい。
通知部40は、各種の情報をユーザに知らせるための通知を発する。通知部40は、例えばLEDのような発光素子であってよい。この代わりに、通知部40は、音を発生する素子、又はバイブレータであってもよい。制御部50は、通常使用モード、充電要求モード及び異常通知モードのいずれかで動作するように通知部40を制御可能に構成されていてよい。通常使用モード、充電要求モード及び異常通知モードについては後述する。
通知部40が発光素子を含む場合、発光素子は、吸口端E1と非吸口端E2との間を延びる側面124に設けられていることが好ましい(図1参照)。この場合、吸口端E1から発光素子までの長さは、好ましくは58mm以上、より好ましくは100mm以上である。さらに、一方の端部E1から他方の端部E2までの長さは、135mm以下であることが好ましい。
また、発光素子は、吸引成分生成装置100の非吸口端E2と、吸口端E1と非吸口端E2との間を延びる側面124の一部と、にわたって設けられていてもよい。この場合、一方の端部E1から他方の端部E2までの長さ、すなわち吸口端E1から発光素子までのおよその長さは、好ましくは58mm以上、より好ましくは100mm以上である。さらに、一方の端部E1から他方の端部E2までの長さは、135mm以下であることが好ましい。この長さは、広く流通しているシガレットの形状を模倣する観点や、ユーザが端部E1を口にくわえたときに通知部40がユーザの視野内に入るという観点から、設定されていてよい。
これにより、ユーザが吸口端E1を咥えて吸引成分生成装置100を使用する場合に、ユーザの目から吸引成分生成装置100の他方の端部E2、すなわち発光素子までの距離を確保することができる。一般的なユーザの両目の間の距離を100mmと仮定し、周辺視の考えを考慮すると、発光素子が紫色で発光する場合、吸口端E1から発光素子までの長さが58mm以上でユーザの視線が前方中央を向いている状態においてもユーザが発光素子の色を認識し始めることができる。すなわち、ユーザが発光素子を注視しなくとも発光素子の色の違いを認識しやすくすることができる。また、吸口端E1から発光素子までの長さが100mm以上でユーザの紫色に対する認識率が50%を超える。なお、色の認識は、特定の色と他の色を区別できることを指す。また、必ずしも同系色に属する複数の色を区別できる必要はなく、少なくても同系色に属さず且つ区別しやすい複数の色を区別できればよい。
ところで、上述したユーザが発光素子の色を認識し始められる長さや、ユーザの色に対する認識率が50%を超える長さは、発光素子が紫色で発光する一例における値である点に留意されたい。換言すれば、発光素子の発光色のうち特にユーザに認識させたい色に基づいて、吸口端E1から発光素子までの長さを決定してもよい。
また、発光素子が吸口端E1と非吸口端E2との間を延びる側面124の一部に設けられている場合、ユーザは吸引成分生成装置を咥えた状態で発光素子の色を認識し易いというメリットがある。
図7は、吸引成分生成装置の制御方法の一例を示すフローチャートである。図8は、ユーザによるパフ動作の回数と、電源の残量を示す値との関係を示している。
以下の一連の処理の間、カウンタ52は、ユーザがパフ動作を行った回数を計測することが好ましい。
制御部50は、充電器200により電源10の充電が行われたかどうかを監視する(ステップS100)。充電が行われたかどうかの判定は、電源10の残量を示す値を監視することによって行うことができる。例えば、制御部50は、電源10の残量を示す値が、所定量以上まで増加した場合に、充電が行われたと判断することができる。またはこれに代えて、電装ユニット110に設けられた電流センサ152が電源10を充電する充電電流を検知した場合に、充電が行われたと判断してもよい。またはこれに代えて、電装ユニット110と充電器200の間の通信を可能とする図示しない通信手段によって、充電器200から電装ユニット110へ充電が実行されている旨が通信されている場合に、充電が行われたと判断してもよい。またはこれに代えて、電装ユニット110から充電器200へ、充電を要求する信号が送信されている場合に、充電が行われたと判断してもよい。なお、電装ユニット110と充電器200の間の通信は、専用の通信手段を用いることなく、回路を介した電力線搬送通信(PLC)によって行われてもよい。
電源10の残量を示す値は、例えば、電源10の電圧、電源10の充電率(SOC)又は電源の残容量であってよい。電源10の電圧は、電源10に負荷121Rを電気的に接続することなく取得される開回路電圧(OCV)であってもよく、電源に負荷を電気的に接続して取得される閉回路電圧(CCV)であってもよい。ただし、電源10の残量の推定の精度という観点からは、負荷121Rの電気的接続に伴う電圧降下や放電に伴う内部抵抗や温度の変化の影響を排除するため、電源10の残量を示す値は、閉回路電圧(CCV)よりも開回路電圧(OCV)によって規定されることが好ましい。
制御部50は、充電が行われた場合、カウンタ52の値を「0」にセットすることが好ましい(ステップS102)。これにより、カウンタ52は、充電が行われてから現在までのパフ動作の回数を計測することができる。
また、制御部50は、充電が行われた場合に、必要に応じて閾値変更処理S104を実施してもよい。閾値変更処理S104については、以下で詳細に説明する。
また、制御部50は、負荷121Rへの動作要求信号を取得するまで待機する(ステップS106)。負荷121Rへの動作要求信号は、ユーザの動作に応じて、前述した作動要求センサから制御部50に入力される。
制御部50は、負荷121Rへの動作要求信号を取得すると、電源10の残量を示す値を取得する(ステップS108)。電源10の残量を示す値の例は、前述したとおりである。取得された電源10の残量を示す値は、メモリ58に記憶される。
取得した電源10の残量を示す値が第2閾値未満の場合、制御部50は、異常通知モードで通知部40を制御し、通知部40に第3通知を行わせる(ステップS110,S112)。異常通知モードは、電源10の残量が0又は極めて低く、負荷121Rが吸引成分源から吸引成分を正常に生成できないことを示すモードである。
第2閾値は、例えば0又は0近傍の電源の残量に相当する値によって規定されていてよい。電源10の残量を示す値が電源10の電圧である場合、第2閾値は、例えば放電終止電圧、又は放電終止電圧よりわずかに大きい電圧によって規定されていてよい。電源10の残量を示す値が電源10の充電率又は残容量である場合、第2閾値は、例えば放電終止電圧、又は放電終止電圧よりわずかに大きい電圧に相当する充電率又は残容量によって規定されていてよい。
制御部50は、異常通知モードにおいて、負荷121Rへの電力供給をすることなく待機してもよい。代替的に、制御部50は、異常通知モードに入ると、自動的に吸引成分生成装置100をOFFにしてもよい。
好ましくは、制御部50は、異常通知モードに入ると、必要に応じて閾値変更処理(ステップS114)を実行する。閾値変更処理S114の詳細については、後述する。
取得した電源10の残量を示す値が第2閾値よりも大きい第1閾値以上の場合、制御部50は、通常使用モードで通知部40を制御し、通知部40に第1通知を行わせる(ステップS110,S116,S118)。通常使用モードは、電源10の残量が十分に多く、負荷121Rにより吸引成分源から吸引成分を生成可能なモードである。第1閾値は、通常使用モードと後述する充電要求モードとを区別するために用いられる。
制御部50は、通常使用モードにおいて、負荷121Rへの動作要求信号を取得して負荷121Rを動作させるための指令を生成する。この指令に基づきスイッチ140がONになり、これにより負荷121Rへ電力が供給される(ステップS120)。これにより、負荷121Rは吸引成分源から吸引成分を生成する。生成された吸引成分は、吸口を介してユーザに吸い込まれる。制御部50は、負荷121Rへ供給する電力量をパルス幅制御(PWM)により制御してもよい。
制御部50は、作動要求センサからの動作要求信号に基づきユーザの作動要求動作(吸引動作)が完了したと判断すると、スイッチ140をOFFにすることによって負荷121Rへの電力供給を停止する(ステップS122,ステップS124)。また、制御部50は、ユーザの作動要求動作(吸引動作)が所定の期間を超えて続いた場合には、強制的に負荷121Rへの電力供給を停止してもよい。負荷121Rへの電力供給を強制的に停止するための上記の所定の期間は、通常のユーザの1回の吸い込み動作の期間に基づき設定されていればよく、例えば2〜4秒の範囲に設定されていてよい。
制御部50は、作動要求センサからの動作要求信号に基づきユーザのパフ動作を検知すると、パフ動作の回数を計測するカウンタ52の値を1つ上げる。さらに、制御部50は、タイマ54をリセットし、タイマ54により時間経過を測定する(ステップS128)。これにより、制御部50は、タイマ54を用いて、負荷121Rに電力を供給しない期間である放置時間を計測することができる。
負荷121Rへの電力供給が停止されると待機状態に戻り、制御部50は、再び、充電が行われたかどうか(ステップS100)、及び負荷121Rへの動作要求信号を取得したかどうかを監視する(ステップS106)。
ステップS108において取得した電源の残量を示す値が第1閾値未満かつ第2閾値以上の場合、制御部50は、充電要求モードで通知部40を制御し、通知部40に第2通知を行わせる(ステップS110,S116,S119)。充電要求モードは、負荷121Rへの電力供給により吸引成分を生成可能であるものの、電源10の残量の減少をユーザに知らせ、ユーザへ充電を要求するために設けられている。
充電要求モードにおいても、制御部50は、通常使用モードと同様に、負荷121Rへの動作要求信号を取得して負荷121Rを動作させるための指令を生成する。この指令に基づきスイッチ140がONになり、これにより負荷121Rへ電力が供給される(ステップS120)。これにより、負荷121Rは吸引成分源から吸引成分を生成する。充電要求モードにおける負荷121Rへの電力供給の開始から終了に致るステップ(ステップS120,S122,S124)は、前述したように、通常使用モードと同様に行うことができる。また、制御部50は、ユーザのパフ動作を検知すると、充電要求モードにおいてもカウンタ52の値を1つ上げる(ステップS126)。さらに、制御部50は、タイマ54をリセットし、タイマ54により時間経過を測定する(ステップS128)。これにより、制御部50は、タイマ54を用いて、負荷121Rに電力を供給しない期間である放置時間を計測することができる。
前述した第1閾値は、制御部50が取得した負荷121Rへの動作要求信号に基づき変更可能な可変値である。すなわち、通常使用モードと充電要求モードとを切り替える条件は、動作要求信号に基づき変更される。第1閾値の変更は、例えば前述した閾値変更処理において、制御部50により自動的に行われる。好ましくは、第1閾値は、電源10から負荷121Rへの給電に関する値に基づき変更される。この給電に関する値は、電源10の電圧、電源10の充電率、又は電源の残容量などであってよい。より具体的には、第1閾値は、例えばパフ毎の電源10の電圧降下量、パフ毎の電源10の充電率の減少量、又はパフ毎の電源10の残容量の減少量に基づき変更されればよい。
ここで、パフ動作の仕方(吸引時間及び吸引量)や電源10の劣化の度合い等に応じて、図8に示す電源の残量を示す値とパフ動作の回数との関係性を表す曲線は変化する。
動作要求信号は、ユーザによる使い方に応じた信号を出力する。例えば、吸引センサ20は、ユーザの1パフあたりの吸引量及び吸引時間に応じた出力信号(動作要求信号)を出力する(図9及び図10の上段のグラフ参照)。
したがって、第1閾値が負荷121Rへの動作要求信号、例えば負荷121Rへの給電に関する値に基づき変更可能である場合、第1閾値は、負荷121Rの使い方に応じて変更可能となる。これにより、第2通知を通知するタイミングは、ユーザによる吸引成分生成装置の使い方により変更可能となる。よって、本態様によれば、ユーザによる吸引成分生成装置の使い方に応じてより適切なタイミングで第2通知を通知することが可能となる。
(通知部による通知の態様)
前述した第1通知、第2通知及び第3通知は互いに異なっている。すなわち、上述した実施形態では、通常使用モード、充電要求モード及び異常通知モードにおける通知部40の通知は互いに異なる。したがって、通知部40は、電源10の残量に応じた少なくとも3種類の異なる通知によって、電源10の残量及び/又はモードの区別をユーザに認識させることができる。
これにより、通知部40は、通常使用モード、充電要求モード及び異常通知モードの違いを、互いに異なる通知によってユーザに知らせることができる。電子シガレットのような吸引成分生成装置は、エアロゾル源又は/及び香味源を貯留又は収容するリザーバ121P及び香味ユニット130や、電源10のような小型化困難な部品を必須の構成要素として含みつつも、広く流通しているシガレットの形状や重量を模倣しなければならない。そのため、ユーザインタフェース(U/I)及びレイアウト(L/O)の制約が特に厳しい。こののような吸引成分生成装置において、通知部40は、互いに異なる通知、例えば通知の態様の違いを利用して、通常使用モード、充電要求モード及び異常通知モードの違いを、効果的にユーザに認識させることができる。
さらに、第3通知の前に第2通知によって電源10の残量が減っていることを知らせることで、電源10の残量が枯渇する前に電源10の充電を要求する通知をユーザに与えることができる。ここで、電源10の残量が枯渇すると、電源10の劣化が促進されることが知られている。本態様によれば、電源10の残量が枯渇する前に、電源10の充電を促すことによって、電源10の劣化の促進を抑止することができる。
通知部40は発光素子を含むことが好ましい。この場合、第1通知、第2通知及び第3通知は、それぞれ、発光素子による第1発光色、第2発光色及び第3発光色により構成されていてよい。ここで、第1発光色、第2発光色及び第3発光色は互いに異なっている。
より好ましくは、第1発光色は寒色を含み、第2発光色は中間色を含み、第3発光色は暖色を含む。ここで、第2発光色としての「中間色」は、色相環において「寒色」である第1発光色と「暖色」である第3発光色との間に位置する色によって規定される。
「色相環」は、例えば、マンセル表色系における色相を順序立てて円環状に並べた色相環によって規定される。「暖色」は、マンセル表色系において10RP〜10Yの色相を有する領域、又は570nm〜830nmの波長帯に光スペクトルピークを有する光によって規定されていてよい。「暖色」は、例えば赤色を例示することができる。「寒色」は、マンセル表色系において5BG〜5PBの色相を有する領域、又は450nm〜500nmの波長帯に光スペクトルピークを有する光によって規定されていてよい。「寒色」は、例えば青色を例示することができる。「中間色」は、マンセル表色系において5PB〜10RPの色相を有する領域、又は380〜450nmの波長帯に光スペクトルピークを有する光によって規定されていてよい。「中間色」は、例えば紫色を例示することができる。
異常通知モードにおける第3発光色が暖色を含むことにより、異常が生じていること、具体的には電源10の残量が無くなっていることをユーザに効果的に印象づけることができる。一方、通常使用モードにおける第1発光色が寒色を含むことにより、吸引成分生成装置100が問題なく動作していることをユーザに印象付けることができる。さらに、充電要求モードにおける第2発光色が第1発光色と第3発光色との間の中間色であることにより、電源10の残量が十分な通常使用モードから、電源10の残量が枯渇した異常通知モードへ遷移しつつあることを、ユーザに効果的に印象付けられる。
好ましくは、第1発光色の補色と第3発光色との間の色相環上の距離は、第1発光色の補色と第2発光色との間の色相環上の距離よりも短い。この代わりに、又はこれに加えて、第3発光色の補色と第1発光色との間の色相環上の距離は、第3発光色の補色と第2発光色との間の色相環上の距離よりも短いことが好ましい。
ここで、ある色の「補色」とは、色相環上において、当該色とは正反対に(換言すれば対角線上に)位置する色を意味する。ある色とその補色の組合せは、互いの色を目立たせる色の組合せに相当する。したがって、第2発光色よりも第3発光色の方が、色相環上において第1発光色の補色に近い場合、ユーザは、第3発光色を、第1発光色からより区別し易くなる。これにより、第3発光色に関連するモードが、第1発光色に関連する通常使用モードとは対極にあるモード、すなわち異常通知モードであるとユーザに効果的に印象付けることができる。
また、第2発光色に相当する光の波長は、第1発光色に相当する光の波長より、第3発光色に相当する光の波長に近くてもよい。特に、発光素子が、例えばLEDのように特定の波長帯で突出した光スペクトルピークを有するものである場合、各発光色における光の波長は、このような関係を満たすことが好ましい。
好ましい態様の一例として、第1通知は発光素子による青色光により構成され、第2通知は発光素子による紫色光により構成され、かつ第3通知は発光素子による赤色光により構成されていてよい。
次に、図9及び図10を参照し、発光素子の発光パターンの例について説明する。図9は、通常使用モード及び充電要求モードにおける発光素子の発光パターンの一例を示す図である。図10は、異常通知モードにおける発光素子の発光パターンの一例を示す図である。図9及び図10において、上段のグラフは、動作要求センサ、例えば吸引センサ20の出力値の時間依存性を示している。図9及び図10において、中段のグラフは、発光素子への電力供給の時間依存性を示している。図9及び図10において、下段のグラフは、負荷121Rへの電力供給の時間依存性を示している。
発光素子は、通常使用モード、充電要求モード及び異常通知モードのそれぞれにおいて、常時発光し続けていてもよく、又は発光と非発光とを繰り返すことで点滅してもよい。図示した例では、発光素子は、通常使用モード及び充電要求モードにおいて、所望の期間、発光する。一方、発光素子は、異常通知モードにおいて、発光と非発光を繰り返す。
制御部50は、通常使用モード、充電要求モード及び異常通知モードのそれぞれにおいて、動作要求信号をトリガとして発光素子を発光させ始めればよい。例えば、動作要求センサが、吸引成分生成装置100内の流速に関連する値を出力する吸引センサ20である場合、図9及び図10に示すように、吸引センサ20の出力値が所定の閾値を超えたときに、制御部50は、発光素子へ電力を供給し始め、発光素子を発光させ始めればよい。
さらに、制御部50は、通常使用モード及び充電要求モードにおいて、ユーザの作動要求動作(吸引動作)が完了したと判断すると、発光素子の発光を終了させればよい。例えば、動作要求センサが、吸引成分生成装置100内の流速に関連する値を出力する吸引センサ20である場合、図9に示すように、吸引センサ20の出力値が別の所定の閾値を下回ったときに、制御部50は、発光素子への電力の供給を停止し、発光素子を非発光にすればよい。すなわち、制御部50は、吸引センサ20からの動作要求信号を継続して取得した期間に応じて、通知部40により行われる第1通知及び第2通知の期間を可変に制御する。ここでは、吸引センサ20からの動作要求信号に基づき通知部40を制御する方法について説明したが、動作要求信号は、吸引センサ20以外のセンサから出力されてもよい。例えば、押しボタン30が利用される場合、制御部50は、押しボタン30からの動作要求信号を継続して取得した期間に応じて、通知部40により行われる第1通知及び第2通知の期間を可変に制御してもよい。
通常使用モードにおける第1通知と充電要求モードにおける第2通知における発光素子の発光パターンは同じであることが好ましい(図9参照)。具体的には、制御部50が動作要求信号を検知したときの第1通知と第2通知の通知タイミング及び通知期間の少なくとも一方、より好ましくは両方が、互いに同じであってよい。第2通知における発光色を第1通知と異なるものに設定しつつも、第1通知と第2通知とで通知パターン(発光パターン)を同じにすることで、第2通知、すなわち充電要求モードにおいては、第1通知、すなわち通常使用モードと同様に、吸引成分源から吸引成分を生成可能であるということをユーザに認識させ易くすることができる。
また、図9に示すように、通知部40による第1通知及び第2通知を開始するタイミング及び終了するタイミングは、負荷121Rへ電力を供給開始するタイミング及び供給終了するタイミングと同じであってよい。
この代わりに、充電要求モードにおける第2通知を終了するタイミングは、負荷121Rへの電力の供給を終了するタイミング、より好ましくはパフ動作を終了するタイミングよりも長くてもよい。
制御部50は、動作要求信号を継続して取得した期間に依存しない所定期間だけ、第3通知を行うように通知部40を制御するよう構成されていてよい(図10参照)。すなわち、通知部40は、ユーザのパフ動作の時間に影響をうけず、所定期間だけ第3通知を行えばよい。この場合、通知部40が第1通知及び第2通知を行う期間は、第3通知が行われる上記の所定期間より短いことが好ましい。例えば、第3通知が行われる所定期間は、通常のユーザの1回の吸い込み動作の期間よりも長く設定されていればよく、例えば4.5〜6秒の範囲に設定されていてよい。
上記態様により、異常通知モードにおける第3通知は、通常使用モードにおける第1通知、及び充電要求モードにおける第2通知と区別し易くなる。また、通常使用モードにおける第1通知、及び充電要求モードにおける第2通知よりも長い期間第3通知がされ続けるため、ユーザに充電が必要な状態であることを効果的に伝えられる。
なお本実施形態では、通常使用モードにおける第1通知は発光素子による青色光により構成され、充電要求モードにおける第2通知は発光素子による紫色光により構成され、異常通知モードにおける第3通知は発光素子により赤色光により構成される態様について説明した。この態様に代えて各通知において発光素子は複数の発光色により構成されてもよい。より具体的には、各通知を開始してからの時間経過に応じて、同一のモード内であっても、発光素子の発光色を変えてもよい。また、発光素子は同時に複数の発光色で発光してもよい。
すなわち、通常使用モードにおける第1通知の少なくとも一部の期間において発光素子の少なくても一部が青色光により構成され、充電要求モードにおける第2通知の少なくても一部の期間において発光素子の少なくても一部が紫色光により構成され、異常通知モードにおける第3通知の少なくても一部の期間において発光素子の少なくても一部が赤色光により構成されていてよい。
(閾値変更処理)
前述した閾値変更処理について詳細に説明する。図11は、閾値変更処理のフローチャートの一例を示している。制御部50は、電源10の残量を表す値が第2閾値以下になった場合に、閾値変更処理S114を実行することが好ましい。
閾値変更処理では、既定のアルゴリズムに基づき一次第1閾値を導出する(ステップS200)。図12は、本例に係る既定のアルゴリズムを実施するための制御部のブロック図を示している。
図12に示す例では、電源10の残量を示す値は、電源10の電圧によって規定されている。この場合、満充電は、満充電電圧によって規定され、第2閾値は放電終始電圧によって規定されていてよい。また、この場合、図7に示すフローチャートにおいて、制御部50は、電源10の残量を表す値として電源10の電圧を取得する。電源10の電圧は、スイッチ140をOFFにした状態で取得された開回路電圧(OCV)であることが好ましい。開回路電圧(OCV)は、パフ動作が行われる毎にメモリ58に格納されることになる。
本例に係る既定のアルゴリズムは、電源10の電圧が放電終止電圧以下になった場合に実行される。このアルゴリズムでは、第1閾値は、電源10の電圧が放電終止電圧に到達したときよりも既定回数だけ前に負荷121Rを動作させたときの電源10の電圧の値に基づき変更される。具体的には、制御部50は、充電が行われてから計測されたパフ動作の回数(N)から既定回数(Nre)だけ前に取得した電源10の電圧(OCV(N−Nre))をメモリ58から取得し、一次第1閾値として設定する(図12参照)。
制御部50は、第1所定条件が満たされない場合には、一次第1閾値を新しい第1閾値に設定する(ステップS202,S208)。制御部50は、第1所定条件が満たされた場合には、一次第1閾値をなまし処理した値を第1閾値に設定する(ステップS202,S204,S206)。ここで、第1所定条件は、例えば後述するように、電源10の劣化状態が所定の判定状態を越えて進行していないという条件であってよい。なまし処理については後述する。
既定回数(Nre)は、予め設定された固定値であってもよく、ユーザにより設定可能な可変値であってもよい。具体的一例として、既定回数(Nre)は、特に制限されないが、好ましくは15〜35回、より好ましくは20〜30回である。
既定回数(Nre)は、未使用の吸引成分源の使用可能回数よりも小さいことが好ましい。吸引成分生成装置100が複数の吸引成分源を有する場合、既定回数は、複数の吸引成分源のうち最小の未使用からの使用可能回数よりも小さいことがより好ましい。例えば、吸引成分生成装置100がエアロゾル源を含む霧化ユニット120と、香味源を含む香味ユニット130と、を含む場合、既定回数は、霧化ユニット120と香味ユニット130のうち使用可能回数が小さい方の値よりも小さく設定されていてよい。
ここで、使用可能回数は、霧化ユニット120又は香味ユニット130の設計に応じて予め設定された値であってよい。使用可能回数は、例えば、吸引成分源ごとに予めパフ毎の吸引煙量が設計範囲内であるときの最大使用回数、パフ毎の吸引成分が設計範囲内であるときの最大使用回数であってよい。
既定回数(Nre)が未使用の吸引成分源の使用可能回数よりも小さいことにより、充電要求モードの間に、霧化ユニット120又は香味ユニット130の交換時期がくることを抑止することができる。したがって、充電要求モードにおいて既定回数程度パフ動作が可能という認識が覆される事態を抑制することができる。
制御部50は、必要に応じて、既定のアルゴリズムによって導出された一次第1閾値を、前に変更された複数の第1閾値のうちの少なくとも1つに近づけるなまし処理を施すことが好ましい(ステップS204)。この場合、制御部50は、なまし処理を施すことによって導出された値に基づき、第1閾値を設定する(ステップS206)。
なお、第1閾値は、変更される毎に、メモリ58に記憶されることが好ましい(ステップS210)。すなわち、メモリ58は、第1閾値の履歴を記憶する。上述した閾値変更処理により、図7に示すフローチャートで用いられる第1閾値の値が変更されることになる。
第1閾値が変更されると、必要に応じて異常診断処理S300を実施することが好ましい。異常診断処理S300については後述する。
本例に係る閾値変更処理により第1閾値を変更することで、充電要求モードから異常通知モードに移行するまでに既定回数程度のパフ動作を確保することができるようになる。すなわち、ユーザのパフ動作の仕方(動作要求信号のパターン)や電源10の劣化によらず、充電要求モードにおいて可能なパフ動作の回数を確保することができる。これにより、充電要求モードに入ってから突然吸引成分生成装置100が使用できなくなることを防止し、ユーザにとって利便性の高い吸引成分生成装置100を提供できる。
(既定のアルゴリズムの別の一例)
次に、既定のアルゴリズムの別の一例について説明する。図13は、本例に係る既定のアルゴリズムを実施するための制御部のブロック図を示している。
図13に示す例では、電源10の残量を示す値は、電源10の充電率(SOC)又は残容量によって規定されている。この場合、第2閾値は、電源の電圧が放電終止電圧となったときの電源の充電率又は残容量であってよい。また、この場合、図7に示すフローチャートにおいて、制御部50は、電源10の残量を表す値として電源10の充電率又は残容量を取得する。取得された充電率又は残容量は、パフ動作が行われる毎にメモリ58に格納されることになる。また、電源10の残量を表す値として電源10の充電率(SOC)を用いる場合、ステップS110における第2閾値とステップS116における第1閾値は、充電率(SOC)との比較に適した値となり、その次元(単位)は(%)となる。一方、電源10の残量を表す値として電源10の残容量を用いる場合、ステップS110における第1閾値とステップS116における第2閾値は、残容量との比較に適した値となり、その次元(単位)は(Wh)となる。
本例に係る既定のアルゴリズムは、電源10の充電率が放電終止電圧に相当する充電率以下になった場合に実行されることが好ましい。このアルゴリズムでは、第1閾値は、第2閾値に、前述した既定回数に相当する量だけ負荷121Rを動作させるために必要な電源10の充電率又は残容量を加算した値に基づき変更される。
電源10の充電率(SOC)又は残容量は、例えば公知のSOC−OCV法や電流積算法(クーロン・カウンティング法)等により推定することができる。図13は、SOC−OCV法を用いた一例を示している。この方法では、制御部50は、電源10の劣化状態を推定する劣化状態推定部70を有する。さらに、制御部50は、積算放電電流導出部62、積算充電電流導出部64、インピーダンス計測部66及び積算消費容量導出部68を有する。積算放電電流導出部62及び積算充電電流導出部64は、電流センサ152を用い、それぞれ電源10から流出した電流の積算値、及び電源10へ流入した電流の積算値を算出する。インピーダンス計測部66は、電圧センサ150及び電流センサ152を用い、インピーダンス(内部抵抗)を計測する。劣化状態推定部70は、公知の方法により、電源10から流出した電流の積算値、電源10へ流入した電流の積算値、インピーダンス、及び温度センサ154を用いて計測された温度に基づき、電源10の劣化状態(SOH)を取得する。
制御部50は、電源10の劣化状態(SOH)からマッピング72により電源10の満充電容量を取得する。積算消費容量導出部68によって導出された電源10の積算消費容量と満充電容量とを用いて、前述した既定回数に相当する量だけ負荷121Rを動作させるために必要な電源10の充電率又は残容量を導出する。電源10の充電率(SOC)と電源10の開回路電圧とのマッピング74を用いて導出された必要な電源10の充電率又は残容量から、一次第1閾値としての開回路電圧(Vth1)を導出する。
電源10の充電率(SOC)と電源10の開回路電圧とのマッピング74は、電源10の劣化状態に依存することが知られているため、電源の劣化状態に応じた複数のマッピング74が予めメモリ58に記憶されていることが好ましい。
以上のように、SOC−OCV法では、充電率と電源の電圧とが一対一の関係性を有することを利用し、予め電源の種類に応じた充電率と電源の電圧とのマッピングを用いて、使用時に取得された電源の電圧から充電率を推定することができる。ここで、電源の電圧は、開回路電圧であることが好ましい。
本例では、一次第1閾値として開回路電圧を導出するアルゴリズムを詳細に説明した。この代わりに、電源10の残量を表す値として電源10の充電率(SOC)や残容量が用いられる場合、図13に示すマッピング74の前段で導出された「既定回数に相当する量だけ負荷121Rを動作させるために必要な電源10の充電率又は残容量」を一次第1閾値として用いてもよい。またはこれに代えて、マッピング74又は/及び満充電容量と、マッピング74で導出された開回路電圧を用いて導出される「既定回数に相当する量だけ負荷121Rを動作させるために必要な電源10の充電率又は残容量」を、一次第1閾値として用いてもよい。
また本例では、一次第1閾値を導出するアルゴリズムが前述した例と異なるものの、閾値変更処理は、図11に示すフローチャートどおりに実行することができる。
(閾値変更処理の別の一例)
閾値変更処理の別の一例について詳細に説明する。図14は、閾値変更処理のフローチャートの一例を示している。制御部50は、電源10の残量を表す値が第2閾値未満になる前に電源10の充電が行われた場合に、閾値変更処理S104を実行することが好ましい。なお、図15は、電源10の電圧が第2閾値、例えば放電終止電圧に至る前に充電が開始された場合における電源の電圧値のようすを示している。
本例に係る閾値変更処理において、第2所定条件が満たされない場合には、第1閾値は変更せず、閾値変更処理を終了することが好ましい(ステップS220、S222)。
一態様では、第2所定条件は、電源10の充電開始時又は前までの負荷121Rの動作量又は負荷121Rによる吸引成分の生成量が基準量以上という条件である。すなわち、電源10の充電開始時又は前までの負荷121Rの動作量又は負荷121Rによる吸引成分の生成量が基準量未満である場合、第1閾値は変更されない。ここで、負荷121Rの動作量又は負荷121Rによる吸引成分の生成量は、前に充電を行った時点から算出される。
別の態様では、第2所定条件は、電源10の充電開始時又は前における制御部50が取得した値が第1閾値未満という条件である。すなわち、電源10の充電開始時又は前における制御部50が取得した電源10の残量を示す値が第1閾値以上の場合、第1閾値は変更されない。より具体的には、電源10の残量を示す値が第1閾値以上の場合、電源10が充電されたとしても、第1閾値は変更しないことが好ましい。
前述した第2所定条件においては、電源10の残量が多い、すなわちパフ動作回数が少ない条件を意味する。そのため、通常使用モードと充電要求モードとを切り分ける第1閾値は、変更しなくても、比較的適切な値に設定されたままと考えられる。
さらに別の態様では、第2所定条件は、負荷121Rに電力を供給しない期間である放置時間が既定時間未満という条件である。すなわち、負荷121Rに電力を供給しない期間である放置時間が既定時間以上の場合、第1閾値は変更されない。放置時間は、前述したタイマ54により計測することができる。
放置時間が既定時間以上に大きくなると、自然放電による著しい電圧降下が生じ得る。そのため、閾値変更処理、より具体的には既定のアルゴリズムによって導出される一次第1閾値の値の精度が低下することがある。このような一次第1閾値を用いて第1閾値を変更した場合、通常使用モードと充電要求モードとを切り分ける第1閾値が、適切な値から外れてしまう可能性がある。したがって、前述したように自然放電により著しい電圧降下が生じるようなケースでは、第1閾値を変更しないことが好ましい。
閾値変更処理において、第2所定条件が満たされた場合には、既定のアルゴリズムに基づき一次第1閾値を導出する(ステップS200)。本例において、第1閾値は、第2閾値よりも、既定回数に相当する量だけ負荷121Rを動作させたときの電源10の電圧の降下量に相当する量だけ大きい値に基づき変更される。ここで、既定回数に相当する量だけ負荷121Rを動作させたときの電源10の電圧の降下量は、制御部50によって推定された値であってよい。すなわち、電源10の電圧の降下量は、電源の充電開始時又は前における制御部50が取得した電源10の残量を表す値に基づいて推定される。すなわち、本例において、第1閾値は、充電要求モードにおいて既定回数程度のパフ動作を可能とするように変更される。
具体的には、制御部50は、パフ動作ごとに、電源10の残量を表す値として電源10の電圧を取得する。これにより、制御部50は、パフ動作ごとの電圧降下量ΔV(i)を取得することができる。ここで、「i」は、のパフ動作の回数を表す指標である。
電源10が充電された場合、制御部50は、パフ動作ごとの電圧降下量の平均値ΔVAVEを取得する。ここで、パフ動作ごとの電圧降下量の平均値ΔVAVEは、前に電源10が充電されてから行われたパフ動作の回数にわたって算出されてもよい。
この代わりに、パフ動作ごとの電圧降下量の平均値ΔVAVEは、電源10の電圧が所定の値を下回ってから行われたパフ動作の回数にわたって算出されてもよい。この場合、所定の値は、現在設定されている第1閾値であってもよい。この場合、電源10の電圧が第1閾値を下回る前に電源10の充電が開始されたときには、制御部50は第1閾値を変更しなくてもよい。
制御部50は、電圧降下量の平均値ΔVAVEを用いて、充電開始時における残りのパフ回数を推定する。残りのパフ回数とは、充電開始時おける電源の残量においてあと何回パフ動作を行うことができるかという指標である。残りのパフ回数は、例えば電源10の電圧がパフ動作とともに直線的に減少すると仮定することによって推定できる。この場合、残りのパフ回数(puffremain)は、次の式によって取得できる:puffremain=(V(N)−放電終止電圧)/ΔVAVE。ここで、V(N)は、充電開始時における電源10の電圧を意味する。
制御部50は、このように推定された残りのパフ回数puffremainを用いて、充電が行われてから計測されたパフ動作の回数(N)と残りのパフ回数(puffremain)との和から既定回数(Nre)だけ前に取得した電源10の電圧(OCV(N+puffremain−Nre))をメモリ58から取得し、一次第1閾値として設定すればよい。
前述したように、制御部50は、第1所定条件が満たされない場合には、一次第1閾値を新しい第1閾値に設定する(ステップS202,S208)。制御部50は、第1所定条件が満たされた場合には、一次第1閾値をなまし処理した値を第1閾値に設定する(ステップS202,S204,S206)。ここで、第1所定条件は、例えば電源10の劣化状態が所定の判定状態を越えて進行していないという条件であってよい。
既定回数(Nre)は、前述したとおりであり、予め設定された固定値であってもよく、ユーザにより設定可能な可変値であってもよい。
(既定のアルゴリズムのさらに別の一例)
次に、既定のアルゴリズムのさらに別の一例について説明する。図16は、本例に係る既定のアルゴリズムを実施するための制御部のブロック図を示している。
図16に示す例では、電源10の残量を示す値は、電源10の充電率(SOC)又は残容量によって規定されている。この場合、第2閾値は、電源の電圧が放電終止電圧となったときの電源の充電率又は残容量であってよい。また、この場合、図7に示すフローチャートにおいて、制御部50は、電源10の残量を表す値として電源10の充電率又は残容量を取得する。取得された充電率又は残容量は、パフ動作が行われる毎にメモリ58に格納されることになる。また、電源10の残量を表す値として電源10の充電率(SOC)を用いる場合、ステップS110における第2閾値とステップS116における第1閾値は、充電率(SOC)との比較に適した値となり、その次元(単位)は(%)となる。一方、電源10の残量を表す値として電源10の残容量を用いる場合、ステップS110における第1閾値とステップS116における第2閾値は、残容量との比較に適した値となり、その次元(単位)は(Wh)となる。
本例に係る既定のアルゴリズムは、電源10の充電率が放電終止電圧に相当する充電率又は残容量以下になった場合に実行されることが好ましい。このアルゴリズムでは、第1閾値は、第2閾値よりも、既定回数に相当する量だけ負荷121Rを動作させたときの電源10の充電率又は残容量の降下量に相当する量だけ大きい値に基づき変更される。電源10の充電率又は残容量の降下量は、電源10の充電開始時又は前における制御部50が取得した充電率又は残容量に基づいて推定すればよい。
電源10の充電率(SOC)又は残容量は、例えば公知のSOC−OCV法や電流積算法(クーロン・カウンティング法)等により推定することができる。図16は、SOC−OCV法を用いた一例を示している。この方法では、制御部50は、電源10の劣化状態を推定する劣化状態推定部70を有する。さらに、制御部50は、積算放電電流導出部62、積算充電電流導出部64、インピーダンス計測部66及びパフ毎の消費電力導出部69を有する。
積算放電電流導出部62及び積算充電電流導出部64は、電流センサ152を用い、それぞれ電源10から流出した電流の積算値、及び電源10へ流入した電流の積算値を算出する。インピーダンス計測部66は、電圧センサ150及び電流センサ152を用い、インピーダンス(内部抵抗)を計測する。劣化状態推定部70は、公知の方法により、電源10から流出した電流の積算値、電源10へ流入した電流の積算値、インピーダンス、及び温度センサ154を用いて計測された温度に基づき、電源10の劣化状態(SOH)を取得する。
制御部50は、電源10の劣化状態(SOH)からマッピング72により電源10の満充電容量を取得する。また、制御部50は、電源10の劣化状態(SOH)に基づく適切なマッピング74を用いて、充電開始時における電源10の電圧値から、電源10の充電率(%)を導出する。制御部50は、取得した満充電容量と電源10の充電率(SOC)とを掛けることによって、充電開始時における電源10の残容量を推定することができる。
さらに、制御部50は、パフ毎の消費電力導出部69によって導出されたパフ毎の電力消費量の累積値をパフ回数で除した値によって、1パフ動作に必要とする電力消費量の推定値を導出する。制御部50は、充電開始時における電源10の残容量を、1パフ動作に必要とする電力消費量の推定値で割ることによって、残りのパフ回数(puffremain)を推定することができる。
制御部50は、このように推定された残りのパフ回数puffremainを用いて、充電が行われてから計測されたパフ動作の回数(N)と残りのパフ回数(puffremain)との和から既定回数(Nre)だけ前に取得した電源10の電圧(OCV(N+puffremain−Nre))をメモリ58から取得し、一次第1閾値として設定すればよい。
前述したように、制御部50は、第1所定条件が満たされない場合には、一次第1閾値を新しい第1閾値に設定する(ステップS202,S208)。制御部50は、第1所定条件が満たされた場合には、一次第1閾値をなまし処理した値を第1閾値に設定する(ステップS202,S204,S206)。ここで、第1所定条件は、例えば電源10の劣化状態が所定の判定状態を越えて進行していないという条件であってよい。
既定回数(Nre)は、前述したとおり予め設定された固定値であってもよく、ユーザにより設定可能な可変値であってもよい。
本例では、一次第1閾値として開回路電圧を導出するアルゴリズムを詳細に説明した。この代わりに、電源10の残量を表す値として電源10の充電率(SOC)や残容量が用られる場合、図16に示すマッピング74の前段で導出された「既定回数に相当する量だけ負荷121Rを動作させるために必要な電源10の充電率又は残容量」を一次第1閾値として用いてもよい。またはこれに代えて、マッピング74又は/及び満充電容量と、マッピング74で導出された開回路電圧を用いて導出される「既定回数に相当する量だけ負荷121Rを動作させるために必要な電源10の充電率又は残容量」を、一次第1閾値として用いてもよい。
また本例では、一次第1閾値を導出するアルゴリズムが前述した例と異なるものの、閾値変更処理は、例えば図14に示すフローチャートどおりに実行することができる。
(外部プロセッサによる制御)
前述した例では、制御部50が、電源10の残量を示す値を用いて既定のアルゴリズムによって第1閾値を変更する処理をすべて行う。この代わりに、当該処理の少なくとも一部は、外部電源のプロセッサ250、例えば充電器200のプロセッサにより行われてもよい。
一例として、吸引成分生成装置100は、放電開始時又は前の電源10の残量を推定可能な外部電源のプロセッサ250と通信可能であってよい。プロセッサ250は、電源10の充電開始時又は前の電源10の残量を推定可能であり、推定した電源10の残量を表す値を吸引成分生成装置100へ送信すればよい。
プロセッサ250は、電源10から外部電源210へ放電される電力量を表す値と、電源10へ外部電源210から充電される電力量を表す値の少なくとも一方に基づき、電源10の残量を推定することができる。これらの電力量は、電流センサ230及び電圧センサ240を用いて導出することができる。
プロセッサ250による電源10の残量の推定は、公知の任意の方法により行われてよい。例えば、電源10が充電器200に接続された際に、電源10を放電終止電圧まで放電した放電電力量と、電源10を放電終止電圧から満充電電圧まで充電した充電電力量と、の比により、電源10の残量を推定することができる。この場合、放電電力量と充電電力量の導出は、例えば一端電源10を放電終止電圧まで放電した後に、満充電電圧まで充電することによって得られる。
プロセッサ250により電源10の残量を推定する場合、制御部50は、第1閾値を、プロセッサ250から取得した電源10の残量に基づき変更すればよい。具体的には、制御部50は、プロセッサ250から取得した電源10の残量を用いて前述した既定のアルゴリズムのいずれかを適用することによって、一次第1閾値を導出することができる。
(なまし処理)
図17は、なまし処理を実施するための制御部のブロック図の一例を示している。なまし処理は、例えば、過去に変更された複数の第1閾値のうち、直近の所定個の第1閾値の移動平均をとる処理であってよい。すなわち、なまし処理は、メモリ58に格納されている複数の第1閾値(Vth1)のうち、新しい方から順に抽出した所定個の第1閾値の平均値である。
前述したように、既定のアルゴリズムは、電源10の電圧の値に基づいて一次第1閾値を導出する。しかしながら、電源10の電圧の値は、温度条件等の様々な環境による変化や誤差を含み得るため、単純に一次第1閾値を第1閾値として設定すると、第1閾値が前の第1閾値から大きく変化してしまうことがある。一次第1閾値になまし処理を施した値を新しい第1閾値に設定することで、温度条件等の様々な環境による変化や誤差を軽減することができる。併せて、ユーザの吸引ごとの吸い方の細かな違いや、吸引成分生成装置100の製品誤差や経時変化が新しい第1閾値に与える影響を低減させることができる。また、新しく設定された第1閾値が大きく変化することを抑制することで、ユーザに与える違和感を軽減することもできる。
一例では、なまし処理の強度は、前に変更された第1閾値の数、具体的にはメモリ58に格納されている第1閾値の数に基づき変更されればよい。例えば、メモリ58に既に格納されている第1閾値の数が0の場合、制御部50は、なまし処理を行うことなく、既定のアルゴリズムによって導出された一次第1閾値を、第1閾値として設定する。すなわちこの場合では、なまし処理に用いられる第1閾値の数(n1)は0である。
また、メモリ58に既に格納されている第1閾値の数が1つの場合、制御部50は、メモリ58に格納された第1閾値と、既定のアルゴリズムによって導出された一次第1閾値との平均値を、第1閾値として設定すればよい。すなわちこの場合では、なまし処理に用いられる第1閾値の数(n1)は1である。
さらに、メモリ58に既に格納されている第1閾値の数が2つ以上の場合、制御部50は、メモリに格納された2つの第1閾値と、既定のアルゴリズムによって導出された一次第1閾値との平均値を、第1閾値として設定すればよい。すなわちこの場合では、なまし処理に用いられる第1閾値の数(n1)は2である。
このように、メモリ58に格納された第1閾値の数に応じて、移動平均をとるために用いられる値の数を変更することで、なまし処理の強度を適切に設定することができる。これにより、なまし処理が強過ぎることにより第1閾値を適切に変更できないということを抑制するとともに、なまし処理が弱過ぎることにより処理が機能しないことを抑制することができる。
さらに、なまし処理の強度は、電源10の劣化状態(SOH)に基づき変更されてもよい。具体的には、なまし処理の強度は、電源10の劣化状態が進行するとともに弱められることが好ましい。具体的には、電源10の劣化状態が進行するとともに、なまし処理に用いられる第1閾値の数(n2)を減らせばよい。より好ましくは、なまし処理で用いられる第1閾値の数は、メモリ58に格納された第1閾値の数に応じた数(n1)と、電源10の劣化状態(SOH)に基づき得られた数(n2)のうちの小さい方であってよい(図17参照)。
例えば、電源10の劣化状態(SOH)が第1判定状態以下である場合、制御部50は、メモリ58に既に格納されている2つの第1閾値と、既定のアルゴリズムによって導出された一次第1閾値との平均値を、第1閾値として設定すればよい。もっとも、メモリ58に格納されている第1閾値の数が2つ未満であれば、なまし処理に用いる第1閾値の数をメモリ58に格納されている第1閾値の数に応じて減らしてもよい。同様に、メモリ58に第1閾値が格納されていなければ、なまし処理を実行しなくてもよい。
また、電源10の劣化状態(SOH)が第1判定状態を超えて進行し、第2判定状態以下の場合、制御部50は、メモリ58に既に格納されている1つの第1閾値と、既定のアルゴリズムによって導出された一次第1閾値との平均値を、第1閾値として設定すればよい。もっとも、メモリ58に第1閾値が格納されていなければ、なまし処理を実行しなくてもよい。
さらに、電源10の劣化状態(SOH)が第2判定状態を超えて進行した場合、制御部50は、第1閾値を、既定のアルゴリズムによって導出された一次第1閾値に設定することが好ましい(ステップS202,S208)。
電源10が劣化するとともに、電源10の残量を示す値、例えば電源10の電圧、電源10の充電率、電源10の残容量の値が急激に変化することがある。このような場合、なまし処理の強度を弱くする、又はなまし処理をしないことによって、閾値変更処理において、第1閾値を電源10の劣化状態を反映した値に設定可能になる。
制御部50は、なまし処理において、接続部120tに対して負荷121Rが取り付けられた後に得られた第1閾値のみを使用することが好ましい。また、制御部50は、接続部120tに対する負荷121Rの脱着に基づき、メモリ58に記憶された第1閾値の少なくても一部、好ましくは全部を使用不能又は消去してもよい。これにより、制御部50は、なまし処理において、接続部120tに対して負荷121Rが取り付けられる前に得られた第1閾値を使用しないようにすることができる。
なお、本例では一次第1閾値に対するなまし処理として、一次第1閾値とメモリ58に格納された第1閾値の移動平均値をとる処理について、詳細に説明した。これに代えて、メモリ58に格納された複数の第1閾値、またはこれに一次第1閾値を加えたデータ群の最小二乗法によるなまし処理を用いてもよい。若しくはなまし処理において、メモリ58に格納された第1閾値のうち直近のものほど大きい重み付けた加重移動平均又は指数移動平均が行われてもよい。
また、本例では図11と図14のステップS200で導出された一次第1閾値をメモリ58に格納せず、一次第1閾値を制御フローにおける一時的な変数として扱うアルゴリズムについて、詳細に説明した。これに代えて図11と図14のステップS200で導出された一次第1閾値を、なまし処理を施す前にメモリ58に格納してもよい。つまり、図17において、なまし処理を施す前までは、メモリ58に格納された最も新しいデータVth1(n)は、図11と図14のステップS200で導出された一次第1閾値となる。よって、前述したメモリ58に格納されている第1閾値の数や電源10の劣化状態(SOH)に基づいてなまし処理の強度を設定する際には、最低でも1つのデータがメモリ58に格納されている。この場合、なまし処理において、メモリ58に格納された第1閾値の全てに亘って、メモリ58に格納された第1閾値の数に応じた数(n1)を1だけ増やす必要がある。同様に、電源10の劣化状態(SOH)の全てに亘って、電源10の劣化状態(SOH)に基づき得られた数(n2)を1だけ増やす必要ある。さらに、なまし処理によって得られた新たな第1閾値でメモリ58に格納された一次第1閾値Vth1(n)を上書きしなければならない点に留意する必要がある。
また、本例では電源10の残量を表す値、一次第1閾値及び第1閾値として電源10の電圧を用いた場合のなまし処理について、詳細に説明した。これに代えて、電源10の残量を表す値、一次第1閾値及び第1閾値として電源10の充電率(SOC)や残容量を用いてもよい。
(長期放置対策)
電源10を長期間放置した後に前述した閾値変更処理が行われると、自然放電により上述した既定のアルゴリズムの精度が低下することがある。そこで、制御部50は、放置時間に応じて、動作要求信号に基づき変更される第1閾値を補正することが好ましい。ここで、放置時間は、前述したように負荷121Rに電力を供給しない期間によって規定され、タイマ54によって計測することができる。
図18は、長期間放置した後に閾値変更処理を行う場合における第1閾値の補正を実施するための制御部のブロック図の一例を示している。本例では、制御部50は、既定のアルゴリズムによって導出された一次第1閾値(Vth1)を、次の補正式によって補正する:Vth1_amend=Vth1−α1+α2×α3。
ここで、Vth1_amendは、補正後の一次第1閾値である。Vth1は、補正前の一次第1閾値、すなわち前述した既定のアルゴリズムにより得られた一次第1閾値である。α1,α2,α3は、それぞれ補正係数である。
補正係数α1は、電源10の放置の伴う電源10の電圧の自然降下を補償するための係数である。上述した既定のアルゴリズムによれば、放置時間に応じた補正をしない場合、一次第1閾値は、自然放電による電圧降下分だけ高い値に設定されてしまうことがある。したがって、自然放電による電圧降下をキャンセルするように、補正係数α1が設定されていてよい。すなわち、制御部50は、放置時間に応じて一次第1閾値を小さい値に補正することが好ましい。
補正係数α2,α3は、電源10の放置の伴う電源10の容量劣化(換言すれば満充電容量の低下)を補償するための係数である。一般的に、電源10は長期放置すると劣化が進行し、満充電容量が低下することが知られている。さらにこの低下の度合は、放置する際の電源10の残量に依存する。上述した既定のアルゴリズムによれば、放置時間に応じた補正をしない場合、一次第1閾値は、満充電容量の低下だけ低い値に設定されてしまうことがある。したがって、長期放置に伴う満充電容量の低下を考慮するように、補正係数α2,α3に基づく補正を行うことが好ましい。
補正係数α3は、負荷121Rが動作又は吸引成分を生成した際の電源10の残量に応じた値である。より具体的には、補正係数α3は、電源10の放置後に負荷121Rが動作されたときの電源10の残量に応じた値である。前述したとおり、長期放置に伴う電源10の満充電容量の低下は、放置時の電源の残量に依存する。特に、満充電電圧や放電終止電圧に相当する残量の近傍で電源10を長期放置してしまうと、電源10の満充電容量が低下しやすい。このような観点からは、放置時における電源10の残量が、満充電電圧又は放電終止電圧に近いほど一次第1閾値を大きい値に補正することが好ましい。
そして、電源10の放置に伴う蓄電容量(≒パフ動作の可能回数)の低下は、放置する時間の長さにも影響を受ける。そのため、制御部50は、電源10の放置時の残量に基づく補正係数α2と補正係数α3との積を、一次第1閾値に足すことによって、一次第1閾値を補正すればよい。
なお、補正係数α1,α2と放置時間との関係性は、使用する電源10の種類(設計)で決まる。同様に、補正係数α3と放電電圧、電源の充電率又は残容量との関係性は、使用する電源10の種類(設計)で決まる。したがって、補正係数α1,α2,α3は、使用する電源10について予め実験により導出しておくことができる。
制御部50は、このように補正された値を第1閾値に設定する。また、前述したように、このように補正された値になまし処理を行って得られた値を第1閾値に設定してもよい。
また、本例では電源10の残量を表す値、一次第1閾値及び第1閾値として電源10の電圧を用いた場合のなまし処理について、詳細に説明した。これに代えて、電源10の残量を表す値、一次第1閾値及び第1閾値として電源10の充電率(SOC)や残容量を用いてもよい。
(異常判定処理)
図19は、異常判定処理の一例を示すフローチャートである。制御部50は、変更された第1閾値が所定の判定値以上の場合、電源10の劣化又は異常を検知する(ステップS302)。
劣化した電源10では、電源10の残量を示す値は、パフ動作の回数とともに急速に低下する。したがって、既定回数に相当する量だけ負荷121Rを動作可能又は吸引成分を生成可能な値に基づき第1閾値を変更しようとすると、第1閾値は、電源10の劣化とともに大きくなる。そのため、変更された第1閾値が所定の判定値以上の場合、電源10が劣化、又は電源10に異常が生じたと考えることができる。
ここで、所定の判定値は、電源10の劣化又は電源10の異常と考えられる程度の予め決められた値に設定されていてよい。電源10の残量を示す値が電源の電圧であり、電源10としてリチウムイオン二次電池を用いる場合、所定の判定値は、例えば3.7〜3.9Vの範囲であってよい。
制御部50は、電源10の劣化又は異常を検知した場合、第4通知を行うように通知部40を制御する(ステップS306)。第4通知は、前述した第1通知、第2通知及び第3通知と異なることが好ましい。通知部40が発光素子である場合、第4通知における発光素子の発光色及び/発光パターンが、第1通知、第2通知及び第3通知における発光素子の発光色及び/発光パターンと異なっていてよい。
制御部50は、異常を検知した場合、吸引成分生成装置100のあらゆる動作を停止してもよい。
[その他の実施形態]
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
例えば、上記の各実施形態に記載された構成は、可能な限り、互いに組み合わせ、及び/又は置き換えることができる。
また、制御部50によって行われる前述した各種の方法を吸引成分生成装置に実行させるプログラムも本発明の範囲に含まれることに留意されたい。