JP2020191214A - Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus - Google Patents

Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2020191214A
JP2020191214A JP2019095443A JP2019095443A JP2020191214A JP 2020191214 A JP2020191214 A JP 2020191214A JP 2019095443 A JP2019095443 A JP 2019095443A JP 2019095443 A JP2019095443 A JP 2019095443A JP 2020191214 A JP2020191214 A JP 2020191214A
Authority
JP
Japan
Prior art keywords
heat treatment
superconducting
treatment step
wire rod
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019095443A
Other languages
Japanese (ja)
Inventor
田中 秀樹
Hideki Tanaka
秀樹 田中
一宗 児玉
Kazumune Kodama
一宗 児玉
孝明 鈴木
Takaaki Suzuki
孝明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019095443A priority Critical patent/JP2020191214A/en
Publication of JP2020191214A publication Critical patent/JP2020191214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide a super conducting wire having high local bending resistance, a method for manufacturing a superconducting wire, a superconducting magnet and a magnetic resonance imaging apparatus.SOLUTION: A superconducting wire 100 according to the present invention has: a superconducting filament 21; a metal sheath 22 coating the superconducting filament 21; a wire main portion 1 having a metal base material 23 coating the metal sheath 22; and a strain resistance reinforced- portion 2 which has, in an arbitrary portion including the wire main portion 1, an allowable tensile strain 0.01% higher than that of the other portion. The manufacturing method according to the present invention includes: a precursor manufacturing step S1 of manufacturing the precursor of the superconducting material 100; and a heat treatment step S2 of heat-treating the precursor thereby manufacturing the superconducting wire 100, wherein the heat treatment step S2 has a first heat treatment step of performing heat treatment thereby forming the wire main portion 1, and a second heat treatment step of performing heat treatment thereby forming the strain resistance-reinforced portion 2, wherein a heat treatment temperature in the second heat treatment step is higher than a heat treatment temperature in the first heat treatment step.SELECTED DRAWING: Figure 1

Description

本発明は、超伝導線材、超伝導線材の製造方法、超伝導磁石および磁気共鳴断層撮影装置に関する。 The present invention relates to a superconducting wire, a method for manufacturing a superconducting wire, a superconducting magnet, and a magnetic resonance tomography apparatus.

磁気共鳴断層撮影装置(MRI装置)などで強力かつ安定的な磁場を必要とする場合、超伝導コイルにほぼ減衰しない電流を通電することで所望の磁場を得ている。銅線で電磁石を作製する場合、銅線の断面積あたりの電流密度は数A/mm程度であるが、超伝導コイルの場合は数百A/mm程度の高い電流密度を得ることができる。そのため、超伝導コイルは、小さな体格のコイルで強力な磁場を発生させることができる。 When a strong and stable magnetic field is required in a magnetic resonance tomography apparatus (MRI apparatus) or the like, a desired magnetic field is obtained by energizing a superconducting coil with a current that is hardly attenuated. When an electromagnet is manufactured from a copper wire, the current density per cross-sectional area of the copper wire is about several A / mm 2 , but in the case of a superconducting coil, a high current density of about several hundred A / mm 2 can be obtained. it can. Therefore, the superconducting coil can generate a strong magnetic field with a coil having a small physique.

従来の超伝導コイルには主に低温超伝導線材であるNbTi線材が用いられているが、その動作温度は約4ケルビン(K)と低いため、主に液体ヘリウムによる冷却が必要である。近年のヘリウム受給逼迫に伴い、液体ヘリウムを必要としない高い温度で使用できる超伝導線材が開発されている。 NbTi wire rods, which are low-temperature superconducting wire rods, are mainly used for conventional superconducting coils, but since the operating temperature is as low as about 4 Kelvin (K), cooling with liquid helium is mainly required. With the recent tightness of helium reception, superconducting wires that do not require liquid helium and can be used at high temperatures have been developed.

液体ヘリウムを必要としない超伝導線材として、NbSn超伝導線材、ビスマス系酸化物超伝導線材、レアアース系酸化物超伝導線材、MgB超伝導線材(単に「MgB線材」ということがある)がある。レアアース系酸化物超伝導線材を除き、一般的にこれらの作製方法は大きく分けて2種類ある。一つは、ワインド・アンド・リアクト法と呼ばれる方法であり、超伝導線材の前駆体をコイル状に巻き回した後に熱処理を施す方法である。もう一つは、リアクト・アンド・ワインド法と呼ばれる方法であり、熱処理済みの超伝導線材をコイル状に巻き回す方法である。 As superconducting wires that do not require liquid helium, Nb 3 Sn superconducting wires, bismuth-based oxide superconducting wires, rare earth-based oxide superconducting wires, and MgB 2 superconducting wires (simply called "MgB 2 wires") may be used. ). Except for rare earth oxide superconducting wires, these production methods are generally roughly divided into two types. One is a method called a wind-and-react method, which is a method in which a precursor of a superconducting wire is wound into a coil and then heat-treated. The other is a method called the reactor-and-wind method, which is a method of winding a heat-treated superconducting wire into a coil.

なお、熱処理済みの超伝導線材には許容曲げ半径が存在する。許容曲げ半径よりも小さな曲率で超伝導線材を曲げると超伝導特性が低下してしまう。そのため、許容曲げ半径は超伝導線材を用いた超伝導コイルの設計・作製の制約になっている。 The heat-treated superconducting wire has an allowable bending radius. If the superconducting wire is bent with a curvature smaller than the allowable bending radius, the superconducting characteristics will deteriorate. Therefore, the permissible bending radius is a constraint on the design and manufacture of superconducting coils using superconducting wires.

ここで、MgB線材を例に示す。例えば、非特許文献1に記載されているように、熱処理済みのMgB線材に対し、室温で引っ張り負荷や曲げ負荷を印加した際の許容引っ張り歪みは0.2%程度である。よって、熱処理済みのMgB線材を巻き回して超伝導コイルを作製する際、線材に対する引っ張りや曲げにより、MgB線材に許容される引っ張り歪みを超過してその超伝導特性を低下させる懸念がある。非特許文献1に記載されているように、MgB線材の曲げによる性能低下は、MgB線材に内包されているMgBフィラメントに加えられる歪みが許容値を超えることで発生する。MgB線材の曲げに伴うMgBフィラメントに加わる歪みは、そのフィラメントの曲げの中立線からの距離、一般的にはフィラメントとMgB線材の中心との距離に比例する。よって、許容曲げ半径を小さくするためにはMgBフィラメントをMgB線材の中心のみに配置するか、MgB線材全体を細くすればよいが、これらの解決法ではMgBフィラメントの面積が減少するため、MgB線材の臨界電流値が極端に低下してしまう。 Here, MgB 2 wire rod is shown as an example. For example, as described in Non-Patent Document 1, the allowable tensile strain when a tensile load or a bending load is applied to a heat-treated MgB 2 wire rod at room temperature is about 0.2%. Therefore, when the heat-treated MgB 2 wire is wound around to produce a superconducting coil, there is a concern that tension or bending of the wire may exceed the tensile strain allowed for the MgB 2 wire and reduce its superconducting characteristics. .. As described in Non-Patent Document 1, the performance degradation due to bending of the MgB 2 wire material is produced by strain applied to the MgB 2 filaments are encapsulated in MgB 2 wire material exceeds the allowable value. Strain applied to the MgB 2 filaments due to bending of the MgB 2 wire material, the distance from the bending neutral line of the filament, is generally proportional to the distance between the center of the filament and MgB 2 wire material. Therefore, either in order to reduce the allowable bending radius places the MgB 2 filaments only the center of the MgB 2 wire material, but may be thinner overall MgB 2 wire member, the area of the MgB 2 filaments decreases in these solutions Therefore, the critical current value of the MgB 2 wire rod is extremely lowered.

Hideki Tanaka et al., “Tensile and Bending Stress Tolerance on Round MgB2 Wire Made By In Situ PIT Process”, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 4, JUNE 2018.Hideki Tanaka et al., “Tensile and Bending Stress Tolerance on Round MgB2 Wire Made By In Situ PIT Process”, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 4, JUNE 2018.

超伝導線材の主な応用機器である超伝導コイルや超伝導磁石ではソレノイドコイル形状が採用されることが多い。その場合、コイルを形成する主要巻線部の曲げ半径はおよそ一定の大きさである。これに対し、例えば、超伝導線材の口出し部などは電極や他のコイルへの接続へと向かうため、主要巻線部の巻線方向とは異なる方向に曲げたり、主要巻線部の曲げ半径よりもきつい曲率で曲げたりする必要がある。なお、両端の口出し部を主要巻線部と同じ曲率で曲げた場合、超伝導コイル全体が大きくなるなど、コイル形状を制限してしまう。 Solenoid coil shapes are often used in superconducting coils and superconducting magnets, which are the main application devices for superconducting wires. In that case, the bending radius of the main winding portion forming the coil is approximately constant. On the other hand, for example, since the lead portion of the superconducting wire goes toward the connection to the electrode and other coils, it may be bent in a direction different from the winding direction of the main winding portion, or the bending radius of the main winding portion. It is necessary to bend with a tighter curvature than. If the outlets at both ends are bent with the same curvature as the main winding, the coil shape is limited, for example, the entire superconducting coil becomes large.

本発明は前記状況に鑑みてなされたものであり、局所的に高い曲げ耐性を有する超伝導線材、超伝導線材の製造方法、超伝導磁石および磁気共鳴断層撮影装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a superconducting wire having high bending resistance locally, a method for manufacturing the superconducting wire, a superconducting magnet, and a magnetic resonance tomography apparatus. ..

前記課題を解決した本発明に係る超伝導線材は、電流を通電する超伝導フィラメント、前記超伝導フィラメントを被覆する金属シースおよび前記金属シースを被覆する金属母材を有する線材主要部と、前記線材主要部を含む任意の箇所において他の部分より許容引っ張り歪みが0.01%以上高い歪み耐性強化部と、を有する。 The superconducting wire rod according to the present invention that solves the above problems includes a superconducting filament that conducts an electric current, a metal sheath that coats the superconducting filament, a wire rod main portion having a metal base material that coats the metal sheath, and the wire rod. It has a strain resistance strengthening portion in which the allowable tensile strain is 0.01% or more higher than that of other portions at any portion including the main portion.

本発明によれば、局所的に高い曲げ耐性を有する超伝導線材、超伝導線材の製造方法、超伝導磁石および磁気共鳴断層撮影装置を提供できる。
前記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a superconducting wire having high bending resistance locally, a method for producing a superconducting wire, a superconducting magnet, and a magnetic resonance tomography apparatus.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.

本実施形態に係る超伝導線材の全体的な構成を説明する概念図である。It is a conceptual diagram explaining the overall structure of the superconducting wire rod which concerns on this embodiment. 図1中のIIa−IIa線断面図である。FIG. 2 is a cross-sectional view taken along the line IIa-IIa in FIG. 図2A中のIIb部拡大図である。It is an enlarged view of part IIb in FIG. 2A. 本実施形態に係る超伝導線材の好適な製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the preferable manufacturing method of the superconducting wire rod which concerns on this embodiment. 本実施形態に係る超伝導線材を熱処理する様子を説明する概念図である。It is a conceptual diagram explaining the state of heat-treating the superconducting wire material which concerns on this embodiment. 第1熱処理工程の熱処理温度の推移(上のグラフ)および第2熱処理工程の熱処理温度の推移(下のグラフ)の一例を説明するグラフである。It is a graph explaining an example of the transition of the heat treatment temperature of the first heat treatment step (upper graph) and the transition of the heat treatment temperature of the second heat treatment step (lower graph). 線材主要部および歪み耐性強化部を有する超伝導線材の超伝導特性グラフである。It is a superconducting characteristic graph of a superconducting wire having a wire main part and a strain resistance strengthening part. 線材主要部の温度の推移(上のグラフ)および歪み耐性強化部の温度の推移(下のグラフ)の他の一例を説明するグラフである。It is a graph explaining another example of the temperature transition of the main part of the wire rod (upper graph) and the temperature transition of the strain resistance strengthening part (lower graph). 線材主要部の温度の推移(上のグラフ)および歪み耐性強化部の温度の推移(下のグラフ)の他の一例を説明するグラフである。It is a graph explaining another example of the temperature transition of the main part of the wire rod (upper graph) and the temperature transition of the strain resistance strengthening part (lower graph). 線材主要部の前駆体をボビンに巻き回してコイル状とした後に超伝導線材を製造する様子を説明する概念図である。It is a conceptual diagram explaining the state of manufacturing a superconducting wire after winding the precursor of the main part of a wire around a bobbin into a coil shape. 第2熱処理工程を行う際に除熱装置を用いて主要巻線部を保護する様子を説明する概念図である。It is a conceptual diagram explaining the mode of protecting the main winding part by using a heat removing device at the time of performing a 2nd heat treatment step. 超伝導線材を特定の位置で特定の方向に曲げることが予め決定されている場合において、歪み耐性強化部の曲げ内側方向に放熱部材を熱的に接触させた状態で第2熱処理工程を行う様子を説明する概略断面図である。When it is predetermined to bend the superconducting wire in a specific direction at a specific position, the second heat treatment step is performed with the heat radiating member in thermal contact in the bending inner direction of the strain resistance strengthening portion. It is a schematic cross-sectional view explaining. 超伝導線材を用いた超伝導磁石を説明する概略断面図である。It is schematic cross-sectional view explaining superconducting magnet using superconducting wire rod. 超伝導磁石を用いた(すなわち、超伝導線材を用いた)磁気共鳴断層撮影装置を説明する概略断面図である。It is schematic cross-sectional view explaining the magnetic resonance tomography apparatus using a superconducting magnet (that is, using a superconducting wire).

以下、図面を参照して、本発明の実施形態について説明する。なお、以下の説明において参照する図面は、実施形態を概略的に示したものであるため、部材のスケールや間隔、位置関係などが誇張や変形、あるいは、部材の一部の図示が省略されている場合がある。なお、以下の説明は本発明の内容の具体例を示すものであり、本発明はこれらの説明に限定されるものではない。本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは同一の符号を付し、その繰り返しの説明は省略する場合がある。
本明細書に記載される「〜」は、その前後に記載される数値を下限値および上限値として有する意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された下限値または上限値は、他の段階的に記載されている下限値または上限値に置き換えてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Since the drawings referred to in the following description schematically show an embodiment, the scale, spacing, positional relationship, etc. of the members are exaggerated or deformed, or a part of the members is not shown. There may be. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various changes and modifications by those skilled in the art are possible within the scope of the technical ideas disclosed herein. Further, in all the drawings for explaining the present invention, those having the same function are designated by the same reference numerals, and the repeated description thereof may be omitted.
The "~" described in the present specification is used to mean that the numerical values described before and after it are used as the lower limit value and the upper limit value. In the numerical range described stepwise in the present specification, the lower limit value or the upper limit value described in one numerical range may be replaced with the lower limit value or the upper limit value described in another stepwise.

[超伝導線材]
図1は、本実施形態に係る超伝導線材100の全体的な構成を説明する概念図である。図2Aは、図1中のIIa−IIa線断面図である。なお、図2Aでは、断面形状が円形であり8本の超伝導フィラメント21を有する超伝導線材100の断面を示しているが、断面形状や超伝導フィラメント21の本数はこれに限定されない。図2Bは、図2A中のIIb部拡大図である。
[Superconducting wire]
FIG. 1 is a conceptual diagram illustrating the overall configuration of the superconducting wire 100 according to the present embodiment. FIG. 2A is a cross-sectional view taken along the line IIa-IIa in FIG. Note that FIG. 2A shows the cross section of the superconducting wire 100 having a circular cross-sectional shape and eight superconducting filaments 21, but the cross-sectional shape and the number of superconducting filaments 21 are not limited to this. FIG. 2B is an enlarged view of part IIb in FIG. 2A.

図1に示すように、超伝導線材100は、線材主要部1と、歪み耐性強化部2と、を有している。超伝導線材100は、図2Aに示すように、その全体にわたって超伝導フィラメント21、金属シース22、金属母材23および金属シース最外層24を有している。超伝導フィラメント21、金属シース22、金属母材23および金属シース最外層24は、一般的な超伝導線材に用いられる公知の材料で形成できる。超伝導線材100について、一見して超伝導フィラメント21、金属シース22、金属母材23および金属シース最外層24の区別が困難であるときは、断面を任意の条件でエッチング処理などすることによって各界面が明確に区別できるようになる。 As shown in FIG. 1, the superconducting wire rod 100 has a wire rod main portion 1 and a strain resistance strengthening portion 2. As shown in FIG. 2A, the superconducting wire 100 has a superconducting filament 21, a metal sheath 22, a metal base material 23, and a metal sheath outermost layer 24 throughout. The superconducting filament 21, the metal sheath 22, the metal base material 23, and the outermost layer 24 of the metal sheath can be formed of a known material used for a general superconducting wire. Regarding the superconducting wire 100, when it is difficult to distinguish the superconducting filament 21, the metal sheath 22, the metal base material 23, and the outermost layer 24 of the metal sheath at first glance, the cross section is etched under arbitrary conditions. The interface becomes clearly distinguishable.

ここで、超伝導フィラメント21は、電流を通電する機能を有する。超伝導フィラメント21は、NbSn、ビスマス系酸化物、レアアース系酸化物、MgBなどで形成できるが、中でもMgBで形成することが好ましい。超伝導フィラメント21をMgBで形成すると、液体ヘリウムを必要としない高い温度で使用できる超伝導線材100を比較的安価で得ることができる。
金属シース22は、超伝導フィラメント21を被覆する。金属シース22は、例えば、ニオブや鉄、ステンレスなどで形成できる。
金属母材23は、金属シース22と金属シース最外層24との間を充填するとともに超伝導線材100の強度維持に寄与する。金属母材23は、例えば、銅や鉄、ステンレスなどで形成できる。
金属シース最外層24は、線材の傷付き防止や強度維持などに寄与する。金属シース最外層24は、例えば、銅や鉄、ステンレス、銅合金などで形成できる。
Here, the superconducting filament 21 has a function of energizing an electric current. The superconducting filament 21 can be formed of Nb 3 Sn, a bismuth-based oxide, a rare earth-based oxide, MgB 2, or the like, and is preferably formed of MgB 2 . When the superconducting filament 21 is formed of MgB 2 , a superconducting wire 100 that does not require liquid helium and can be used at a high temperature can be obtained at a relatively low cost.
The metal sheath 22 covers the superconducting filament 21. The metal sheath 22 can be formed of, for example, niobium, iron, stainless steel, or the like.
The metal base material 23 fills the space between the metal sheath 22 and the outermost layer 24 of the metal sheath and contributes to maintaining the strength of the superconducting wire 100. The metal base material 23 can be formed of, for example, copper, iron, stainless steel, or the like.
The outermost layer 24 of the metal sheath contributes to prevention of scratches on the wire and maintenance of strength. The outermost layer 24 of the metal sheath can be formed of, for example, copper, iron, stainless steel, a copper alloy, or the like.

超伝導線材100は、その長さが数キロメートルにわたるため、ボビンB(図9参照)に巻き付けたコイル状としたうえで熱処理を行うのが一般的である。すなわち、線材主要部1は、大半が、ボビンBに巻き付けたコイル状をなす部分に相当する。なお、本明細書では、超伝導線材100のうち、コイル状をなす部分を主要巻線部1aということがある。 Since the superconducting wire 100 has a length of several kilometers, it is generally heat-treated after being coiled around a bobbin B (see FIG. 9). That is, most of the wire rod main portion 1 corresponds to a coiled portion wound around the bobbin B. In the present specification, the coiled portion of the superconducting wire 100 may be referred to as the main winding portion 1a.

歪み耐性強化部2は、線材主要部1を含む任意の箇所に設けることができるが、図1に示すように、特に、主要巻線部1a以外に設けることが好ましい。例えば、歪み耐性強化部2は、主要巻線部1aから延出した部分であればどのような箇所でも好適に設けることができる。なお、歪み耐性強化部2は、端面2aから20cm以上離れた位置2bを基点として、主要巻線部1aに向けて所望の長さをもって設けることが好ましい。言い換えると、歪み耐性強化部2は、端面2aから20cm未満の範囲には設けないことが好ましい。歪み耐性強化部2の端部は他の線材や端子などと接続するため、接続性を考慮すると主要巻線部1aが有する高い超伝導特性をそのまま用いることが好ましいためである。歪み耐性強化部2は、1本の線材中に1箇所以上設けることができる。 The strain resistance strengthening portion 2 can be provided at any position including the wire rod main portion 1, but as shown in FIG. 1, it is particularly preferable to provide the strain resistance strengthening portion 2 other than the main winding portion 1a. For example, the strain resistance strengthening portion 2 can be suitably provided at any portion as long as it extends from the main winding portion 1a. It is preferable that the strain resistance strengthening portion 2 is provided with a desired length toward the main winding portion 1a with the position 2b separated from the end face 2a by 20 cm or more as a base point. In other words, it is preferable that the strain resistance strengthening portion 2 is not provided in a range of less than 20 cm from the end face 2a. This is because the end portion of the strain resistance strengthening portion 2 is connected to other wire rods, terminals, etc., and therefore it is preferable to use the high superconducting characteristics of the main winding portion 1a as it is in consideration of connectivity. The strain resistance strengthening portion 2 can be provided at one or more locations in one wire rod.

そして、本実施形態における歪み耐性強化部2は、線材主要部1を含む任意の箇所において他の部分より許容引っ張り歪みが0.01%以上高くなっている。つまり、本実施形態では、1本の超伝導線材100中に少なくとも1箇所、局所的に許容引っ張り歪みが線材主要部1のそれよりも0.01%以上高くなっている部位を有している。これにより、本実施形態に係る超伝導線材100は、局所的に高い曲げ耐性を有している。従って、本実施形態では、歪み耐性強化部2における曲げ耐性が線材主要部1よりも高くなっており、主要巻線部1aの曲げ半径よりもきつい曲率(小さい曲率)で曲げることができる。このため、超伝導線材100は、歪み耐性強化部2において線材主要部1よりも小さい曲げ半径で曲げることができ、例えば、超伝導コイル5(図9参照)の設計・作製の自由度が向上する。このような観点から、歪み耐性強化部2の許容引っ張り歪みは、線材主要部1の許容引っ張り歪みよりも高いほど好ましく、特に限定されるものではないが、0.02%以上、0.03%以上、0.04%以上または0.05%以上などとすることが好ましい。なお、歪み耐性強化部2の許容引っ張り歪みを線材主要部1の許容引っ張り歪みよりも高くするほど歪み耐性強化部2を得るための熱処理の条件が厳しくなり、超伝導特性の低下を招くことがある。そのため、歪み耐性強化部2の許容引っ張り歪みは、線材主要部1の許容引っ張り歪みよりも0.3%高いことを上限とすることが好ましく、0.2%高いことを上限とすることがより好ましく、0.1%高いことを上限とすることがさらに好ましい。
歪み耐性強化部2は、後述する製造方法で説明する熱処理工程S2を行うことによって好適に形成することができる。
The strain resistance strengthening portion 2 in the present embodiment has a allowable tensile strain higher than other portions by 0.01% or more at any portion including the wire rod main portion 1. That is, in the present embodiment, one superconducting wire 100 has at least one portion where the permissible tensile strain is locally higher than that of the main portion 1 of the wire by 0.01% or more. .. As a result, the superconducting wire 100 according to the present embodiment has high bending resistance locally. Therefore, in the present embodiment, the bending resistance of the strain resistance strengthening portion 2 is higher than that of the wire rod main portion 1, and the bending can be performed with a curvature (smaller curvature) than the bending radius of the main winding portion 1a. Therefore, the superconducting wire 100 can be bent at the strain resistance strengthening portion 2 with a bending radius smaller than that of the wire main portion 1, and for example, the degree of freedom in designing and manufacturing the superconducting coil 5 (see FIG. 9) is improved. To do. From this point of view, the allowable tensile strain of the strain resistance strengthening portion 2 is preferably higher than the allowable tensile strain of the wire rod main portion 1, and is not particularly limited, but is 0.02% or more and 0.03%. As mentioned above, it is preferably 0.04% or more, 0.05% or more, and the like. The higher the allowable tensile strain of the strain resistance strengthening portion 2 is higher than the allowable tensile strain of the wire rod main portion 1, the stricter the heat treatment conditions for obtaining the strain resistance strengthening portion 2, which may lead to deterioration of superconducting characteristics. is there. Therefore, the upper limit of the allowable tensile strain of the strain resistance strengthening portion 2 is preferably 0.3% higher than the allowable tensile strain of the wire rod main portion 1, and more preferably 0.2% higher. It is preferable that the upper limit is 0.1% higher.
The strain resistance strengthening portion 2 can be suitably formed by performing the heat treatment step S2 described in the manufacturing method described later.

許容引っ張り歪みは、以下の(1)および(2)のいずれの手法でも測定することができる。
(1)引っ張り負荷を加えることで、超伝導特性が劣化しない限界引っ張り歪みを測定することができる。具体的には、およそ直線状の短尺超伝導線材(長さ数十ミリメートル〜百ミリメートル、以下「サンプル」という)を複数本用意し、それぞれのサンプルにそれぞれの大きさの引っ張り歪みを加える。通常、超伝導フィラメント21に加えられた引っ張り歪みを直接測定するのは難しいが、伸び計や歪みゲージをサンプル表面に取り付けて引っ張ることで、超伝導フィラメント21の引っ張り歪み=サンプルの引っ張り歪みとして測定することができる。その後、極低温中でサンプルの臨界電流測定を行って臨界電流値とn値とを評価し、これらの性能が劣化した引っ張り歪み限界値を得る。
The allowable tensile strain can be measured by any of the following methods (1) and (2).
(1) By applying a tensile load, it is possible to measure the critical tensile strain in which the superconducting characteristics do not deteriorate. Specifically, a plurality of short superconducting wires (several tens of millimeters to 100 millimeters in length, hereinafter referred to as "samples"), which are approximately linear, are prepared, and tensile strain of each size is applied to each sample. Normally, it is difficult to directly measure the tensile strain applied to the superconducting filament 21, but by attaching an extensometer or strain gauge to the sample surface and pulling it, the tensile strain of the superconducting filament 21 is measured as the tensile strain of the sample. can do. Then, the critical current of the sample is measured at an extremely low temperature to evaluate the critical current value and the n value, and the tensile strain limit value in which these performances are deteriorated is obtained.

(2)曲げ負荷を加えることで、超伝導特性が劣化しない限界引っ張り歪みおよび限界圧縮歪みを測定することができる。具体的には、およそ直線状の短尺超伝導線材(長さ数十ミリメートル〜百ミリメートル、以下「サンプル」という)を複数本用意し、それぞれのサンプルに曲げ半径の異なる曲げ負荷を与える。この際、サンプルの曲げ内側には圧縮歪みが、サンプルの曲げ外側には引っ張り歪みが加えられる。超伝導フィラメント21に加えられる最大引っ張り歪みおよび最大圧縮歪みは、曲げ中心線(通常はサンプルの曲げ半径方向の厚さ中心)からの最長距離と、曲げ半径とで求められる。つまり、曲げ中心線から最も曲げ外側方向の超伝導フィラメント21に最大引っ張り歪みが加わり、曲げ中心線から最も曲げ内側方向の超伝導フィラメント21に最大圧縮歪みが加わる。その後、極低温中でサンプルの臨界電流測定を行って臨界電流値とn値とを評価し、これらの性能が劣化した引っ張り歪み限界値または圧縮歪み限界値を得る。
また、曲げ負荷を加える場合、曲げ負荷により特性が劣化したサンプルの断面観察を行って引っ張り歪みまたは圧縮歪みのいずれで劣化したかを判断することもできる。例えば、引っ張り歪みによる劣化の場合、曲げ外側方向の超伝導フィラメント21においてフィラメントの断裂などが観察される。また、圧縮歪みによる劣化の場合、曲げ内側方向の超伝導フィラメント21においてフィラメントの座屈などが観察される。
(2) By applying a bending load, it is possible to measure the critical tensile strain and the critical compressive strain in which the superconducting characteristics do not deteriorate. Specifically, a plurality of short superconducting wires (several tens of millimeters to 100 millimeters in length, hereinafter referred to as "samples") having a substantially linear shape are prepared, and bending loads having different bending radii are applied to each sample. At this time, compressive strain is applied to the inside of the bending of the sample, and tensile strain is applied to the outside of the bending of the sample. The maximum tensile strain and maximum compressive strain applied to the superconducting filament 21 are determined by the longest distance from the bending center line (usually the thickness center in the bending radius direction of the sample) and the bending radius. That is, the maximum tensile strain is applied to the superconducting filament 21 in the most bending outer direction from the bending center line, and the maximum compressive distortion is applied to the superconducting filament 21 in the bending innermost direction from the bending center line. Then, the critical current of the sample is measured at an extremely low temperature to evaluate the critical current value and the n value, and the tensile strain limit value or the compression strain limit value whose performance is deteriorated is obtained.
Further, when a bending load is applied, it is also possible to observe the cross section of the sample whose characteristics have deteriorated due to the bending load and determine whether the deterioration is due to tensile strain or compressive strain. For example, in the case of deterioration due to tensile strain, rupture of the filament is observed in the superconducting filament 21 in the bending outer direction. Further, in the case of deterioration due to compression strain, buckling of the filament is observed in the superconducting filament 21 in the bending inner direction.

ここで、1本の超伝導線材(MgB線材)に対して異なる熱処理温度で熱処理を行い、歪み耐性を向上させた具体例について説明する。
〔A〕非特許文献1に示されているように、600℃で熱処理したMgB線材の限界引っ張り歪みは0.2%程度であった。なお、この限界引っ張り歪みは、前記した(1)および(2)の手法の両方で測定したものであり、いずれも0.2%程度となった。
〔B〕これに対し、同線材の一部を700℃および800℃でそれぞれ熱処理した箇所の限界引っ張り歪みは、0.3%程度および0.4%程度であった。すなわち、同線材の一部を700℃および800℃でそれぞれ熱処理した箇所の限界引っ張り歪みは、非特許文献1に示されているものに対して0.1%程度および0.2%程度高くなった。なお、これらの限界引っ張り歪みは、前記した(2)の手法で測定したものである。
前記〔A〕および〔B〕から、熱処理温度を高温化することで、限界引っ張り歪みが向上すること、すなわち許容引っ張り歪みが向上することが確認された。具体的には、限界引っ張り歪みは、熱処理温度が50℃(50K)高くなるにつれて0.05%程度向上することが分かった。
Here, a specific example in which one superconducting wire (MgB 2 wire) is heat-treated at different heat treatment temperatures to improve strain resistance will be described.
[A] as shown in Non-Patent Document 1, the limit tensile strain of MgB 2 wire material heat-treated at 600 ° C. was about 0.2%. The limit tensile strain was measured by both the methods (1) and (2) described above, and both were about 0.2%.
[B] On the other hand, the limit tensile strain at the portion where a part of the wire was heat-treated at 700 ° C. and 800 ° C. was about 0.3% and about 0.4%, respectively. That is, the limit tensile strain at the portion where a part of the wire is heat-treated at 700 ° C. and 800 ° C., respectively, is about 0.1% and 0.2% higher than that shown in Non-Patent Document 1. It was. These limit tensile strains were measured by the method (2) described above.
From the above [A] and [B], it was confirmed that the critical tensile strain was improved, that is, the allowable tensile strain was improved by raising the heat treatment temperature. Specifically, it was found that the critical tensile strain improves by about 0.05% as the heat treatment temperature increases by 50 ° C. (50K).

また、超伝導線材100の超伝導フィラメント21がMgBで形成されている場合、超伝導線材100は、図2Bに示すように、超伝導フィラメント21と金属シース22との間に、MgB以外のホウ素化合物またはマグネシウム化合物を有する中間層25が形成される場合が多い。例えば、超伝導フィラメント21にMgBを使用し、金属シース22に鉄を使用した場合、主にFeBからなる中間層25が形成される。このような中間層25は、高温による熱処理、または長時間による熱処理により成長する。よって、前述したように、歪み耐性強化部2に第2熱処理温度T2(図5、図7、図8参照)を経験させた際に線材主要部1のどこまでその影響を受けたかを事前試作で確認することができる。つまり、熱処理後の超伝導線材100の断面を観察し、中間層25の厚さt25を線材長手方向にたどっていくことで、第2熱処理温度T2の影響を受けた箇所を確認できる。 Further, when the superconducting filament 21 of the superconducting wire 100 is formed of MgB 2 , the superconducting wire 100 is placed between the superconducting filament 21 and the metal sheath 22 other than MgB 2 as shown in FIG. 2B. In many cases, an intermediate layer 25 having the above boron compound or magnesium compound is formed. For example, using the MgB 2 superconducting filaments 21, when using the iron metal sheath 22, the intermediate layer 25 is formed mainly consisting of Fe 2 B. Such an intermediate layer 25 grows by heat treatment at a high temperature or heat treatment at a long time. Therefore, as described above, when the strain resistance strengthening portion 2 is subjected to the second heat treatment temperature T2 (see FIGS. 5, 7, and 8), the extent to which the main portion 1 of the wire rod is affected by the preliminary trial production is performed. You can check. That is, by observing the cross section of the superconducting wire 100 after the heat treatment and tracing the thickness t 25 of the intermediate layer 25 in the longitudinal direction of the wire, the portion affected by the second heat treatment temperature T2 can be confirmed.

そして、図2Bに示すように、超伝導線材100は、歪み耐性強化部2における中間層25の厚さt25が、線材主要部1における中間層25の厚さt25の1.2倍以上となっていることが好ましい。このような態様であると、歪み耐性強化部2の位置確認が容易となる。また、歪み耐性強化部2における許容引っ張り歪みが線材主要部1のそれと比較してより確実に0.01%以上高くできる。 Then, as shown in FIG. 2B, in the superconducting wire 100, the thickness t 25 of the intermediate layer 25 in the strain resistance strengthening portion 2 is 1.2 times or more the thickness t 25 of the intermediate layer 25 in the wire main portion 1. Is preferable. In such an aspect, the position of the strain resistance strengthening portion 2 can be easily confirmed. Further, the allowable tensile strain in the strain resistance strengthening portion 2 can be more reliably increased by 0.01% or more as compared with that in the wire rod main portion 1.

[超伝導線材100の好適な製造方法]
次に、超伝導線材100の好適な製造方法(以下、単に「本製造方法」ということがある)について説明する。なお、本製造方法の説明にあたって、既に説明している構成要素と同一の構成要素については同一の符号を付し、その説明は省略することがある。また、以下に説明する本製造方法は、前述した超伝導線材100を好適に製造するための一例を示しているに過ぎず、以下のものに限定されるものではない。
[Preferable manufacturing method of superconducting wire 100]
Next, a suitable manufacturing method of the superconducting wire 100 (hereinafter, may be simply referred to as “the present manufacturing method”) will be described. In the description of the present manufacturing method, the same components as those already described may be designated by the same reference numerals, and the description thereof may be omitted. Further, the present manufacturing method described below is merely an example for suitably manufacturing the above-mentioned superconducting wire 100, and is not limited to the following.

図3は、超伝導線材100の好適な製造方法の一例を示すフローチャートである。
図3に示すように、本製造方法は、前駆体作製工程S1と、熱処理工程S2と、を有し、これらの工程についてはこの順に行うものである。
FIG. 3 is a flowchart showing an example of a suitable manufacturing method of the superconducting wire 100.
As shown in FIG. 3, this manufacturing method includes a precursor manufacturing step S1 and a heat treatment step S2, and these steps are performed in this order.

(前駆体作製工程S1)
前駆体作製工程S1は、超伝導フィラメント21の原料を金属シース22で被覆するとともに金属シース22を金属母材23で被覆して超伝導線材100の前駆体(図示せず)を作製する。前駆体作製工程S1は、例えば、円柱状の超伝導フィラメント21の原料を円筒状の金属シース22内に挿入したものを所定数用意し、これらを円柱状の中心材(図示せず)の周りに好ましくは等間隔に配置する。なお、この中心材は、金属母材23となるものである。そして、その状態を維持しつつそれらを円筒形の金属シース最外層24内に挿入する。そして、この前駆体作製工程S1においては、それを引き抜き加工などにより伸線処理し、超伝導線材100の前駆体を作製する。
(Precursor preparation step S1)
In the precursor production step S1, the raw material of the superconducting filament 21 is coated with the metal sheath 22, and the metal sheath 22 is coated with the metal base material 23 to produce a precursor (not shown) of the superconducting wire 100. In the precursor manufacturing step S1, for example, a predetermined number of materials obtained by inserting the raw materials of the columnar superconducting filament 21 into the cylindrical metal sheath 22 are prepared, and these are placed around the columnar center material (not shown). It is preferably arranged at equal intervals. The central material is the metal base material 23. Then, while maintaining that state, they are inserted into the outermost layer 24 of the cylindrical metal sheath. Then, in this precursor manufacturing step S1, it is drawn by drawing or the like to prepare a precursor of the superconducting wire 100.

(熱処理工程S2)
熱処理工程S2は、作製した前駆体を熱処理して超伝導線材100を製造する。この熱処理工程S2は、熱処理を行って線材主要部1を形成する第1熱処理工程(図示せず)と、熱処理を行って歪み耐性強化部2を形成する第2熱処理工程(図示せず)と、を有する。本実施形態においては、第2熱処理工程の熱処理温度は、第1熱処理工程の熱処理温度よりも高い条件で行う。このようにすると、歪み耐性強化部2の許容引っ張り歪みを線材主要部1の許容引っ張り歪みよりも0.01%以上高くすることができる。なお、第2熱処理工程の熱処理温度は、第1熱処理工程の熱処理温度よりも50K以上高くすることが好ましい。このようにすると、より確実に歪み耐性強化部2の許容引っ張り歪みを線材主要部1の許容引っ張り歪みよりも0.01%以上高くすることができ、好ましくは0.05%以上高くすることができる。第2熱処理工程の熱処理温度は、第1熱処理工程の熱処理温度よりも100K以上高くすることがより好ましい。このようにすると、歪み耐性強化部2の許容引っ張り歪みを線材主要部1の許容引っ張り歪みよりも0.1%以上高くすることができる。なお、第2熱処理工程の熱処理温度は、第1熱処理工程の熱処理温度よりも200K高くすることで線材主要部1の許容引っ張り歪みよりも0.2%高くすることができる。
(Heat treatment step S2)
In the heat treatment step S2, the produced precursor is heat-treated to produce the superconducting wire 100. The heat treatment step S2 includes a first heat treatment step (not shown) for forming the wire rod main portion 1 by heat treatment and a second heat treatment step (not shown) for forming the strain resistance strengthening portion 2 by heat treatment. Have. In the present embodiment, the heat treatment temperature of the second heat treatment step is performed under conditions higher than the heat treatment temperature of the first heat treatment step. In this way, the allowable tensile strain of the strain resistance strengthening portion 2 can be made 0.01% or more higher than the allowable tensile strain of the wire rod main portion 1. The heat treatment temperature in the second heat treatment step is preferably 50 K or more higher than the heat treatment temperature in the first heat treatment step. By doing so, the allowable tensile strain of the strain resistance strengthening portion 2 can be more reliably increased by 0.01% or more, preferably 0.05% or more, than the allowable tensile strain of the wire rod main portion 1. it can. It is more preferable that the heat treatment temperature in the second heat treatment step is 100 K or more higher than the heat treatment temperature in the first heat treatment step. In this way, the allowable tensile strain of the strain resistance strengthening portion 2 can be made 0.1% or more higher than the allowable tensile strain of the wire rod main portion 1. The heat treatment temperature in the second heat treatment step can be made 0.2% higher than the allowable tensile strain of the wire rod main portion 1 by making it 200 K higher than the heat treatment temperature in the first heat treatment step.

熱処理工程S2は、次のようにして行うことができる。
なお、図4は、超伝導線材100を熱処理する様子を説明する概念図である。図5は、第1熱処理工程の熱処理温度の推移(上のグラフ)および第2熱処理工程の熱処理温度の推移(下のグラフ)の一例を説明するグラフである。
The heat treatment step S2 can be performed as follows.
Note that FIG. 4 is a conceptual diagram illustrating a state in which the superconducting wire 100 is heat-treated. FIG. 5 is a graph illustrating an example of a transition of the heat treatment temperature in the first heat treatment step (upper graph) and a transition of the heat treatment temperature in the second heat treatment step (lower graph).

図4に示すように、線材主要部1はコイル状で第1加熱装置3によって第1熱処理温度T1(図5)で熱処理され、歪み耐性強化部2は線材主要部1から切り離されることなく一体のまま、第2加熱装置4によって第2熱処理温度T2(図5)で熱処理される。なお、図4では、歪み耐性強化部2を直線状に伸ばして主要巻線部1aから遠ざけた形状を示したが、例えば、歪み耐性強化部2は、コイル状の主要巻線部1aからコイル軸方向に遠ざける形で熱処理することもできる。 As shown in FIG. 4, the wire rod main portion 1 is coiled and heat-treated by the first heating device 3 at the first heat treatment temperature T1 (FIG. 5), and the strain resistance strengthening portion 2 is integrated without being separated from the wire rod main portion 1. As it is, it is heat-treated by the second heating device 4 at the second heat treatment temperature T2 (FIG. 5). Note that FIG. 4 shows a shape in which the strain resistance strengthening portion 2 is linearly extended away from the main winding portion 1a. For example, the strain resistance strengthening portion 2 is coiled from the coil-shaped main winding portion 1a. It is also possible to heat-treat the material away from the axial direction.

そして、熱処理工程S2は、図5に示すように、第1熱処理工程と第2熱処理工程とを同時に実施することができる。第1熱処理工程および第2熱処理工程における熱処理温度維持開始時間をt1、熱処理温度維持終了時間をt2とすると、線材主要部1は、熱処理温度維持開始時間t1〜熱処理温度維持終了時間t2にわたって第1熱処理温度T1に維持される。これと同時に、歪み耐性強化部2は、熱処理温度維持開始時間t1〜熱処理温度維持終了時間t2にわたって第2熱処理温度T2に維持される。熱処理温度維持終了時間t2に至った後、線材主要部1と歪み耐性強化部2は室温T3に向かって冷却される。ここで、第2熱処理温度T2は、第1熱処理温度T1よりも高温である。なお、第1熱処理温度T1は、超伝導線材100の前駆体を超伝導体にならしめるために十分な温度である。一般的に、超伝導フィラメント21は、金属シース22、金属母材23、金属シース最外層24などに覆われているため、熱処理後の室温T3へ向かう冷却に伴う金属シース22、金属母材23および金属シース最外層24の熱収縮により圧縮歪みが印加される。金属の熱膨張係数はおよそ10−5/℃であるため、例えば、第2熱処理温度T2が第1熱処理温度T1よりも50K高温であった場合、第2熱処理温度T2で熱処理された超伝導線材100の超伝導フィラメント21は、第1熱処理温度T1で熱処理されたそれよりも、最大で0.05%程度高い圧縮歪みが印加されることになる。その結果、そのような温度差で熱処理した場合、最大で0.05%程度高い許容引っ張り歪みを持つことになる。これらの温度差が大きくなるほど許容引っ張り歪みも大きくなり、例えば、温度差が100Kある場合は0.1%程度高くなり、温度差が200Kある場合は0.2%程度高くなり得る。第2熱処理工程によって得られる許容引っ張り歪み向上効果は、一般的な超伝導線材100の許容引っ張り歪みである0.2%〜0.4%(すなわち、線材主要部1の許容引っ張り歪み0.2%〜0.4%)に対して重畳的に得られるものであり、超伝導線材100の曲げ耐性向上の観点からは目覚ましい向上率といえる。 Then, in the heat treatment step S2, as shown in FIG. 5, the first heat treatment step and the second heat treatment step can be carried out at the same time. Assuming that the heat treatment temperature maintenance start time in the first heat treatment step and the second heat treatment step is t1 and the heat treatment temperature maintenance end time is t2, the wire main part 1 is the first over the heat treatment temperature maintenance start time t1 and the heat treatment temperature maintenance end time t2. The heat treatment temperature is maintained at T1. At the same time, the strain resistance strengthening portion 2 is maintained at the second heat treatment temperature T2 over the heat treatment temperature maintenance start time t1 to the heat treatment temperature maintenance end time t2. After reaching the heat treatment temperature maintenance end time t2, the wire rod main portion 1 and the strain resistance strengthening portion 2 are cooled toward room temperature T3. Here, the second heat treatment temperature T2 is higher than the first heat treatment temperature T1. The first heat treatment temperature T1 is a temperature sufficient to smooth the precursor of the superconducting wire 100 into a superconductor. Generally, since the superconducting filament 21 is covered with the metal sheath 22, the metal base material 23, the outermost layer 24 of the metal sheath, and the like, the metal sheath 22, the metal base material 23, and the like as the cooling toward room temperature T3 after the heat treatment occurs. And compression strain is applied by heat shrinkage of the outermost layer 24 of the metal sheath. Since the thermal expansion coefficient of the metal is about 10-5 / ° C., for example, when the second heat treatment temperature T2 is 50 K higher than the first heat treatment temperature T1, the superconducting wire material heat-treated at the second heat treatment temperature T2. The superconducting filament 21 of 100 is subjected to a compressive strain up to about 0.05% higher than that of the superconducting filament 21 heat-treated at the first heat treatment temperature T1. As a result, when the heat treatment is performed with such a temperature difference, the allowable tensile strain is as high as 0.05% at the maximum. As these temperature differences increase, the allowable tensile strain also increases. For example, when the temperature difference is 100K, it can be increased by about 0.1%, and when the temperature difference is 200K, it can be increased by about 0.2%. The effect of improving the allowable tensile strain obtained by the second heat treatment step is 0.2% to 0.4%, which is the allowable tensile strain of the general superconducting wire 100 (that is, the allowable tensile strain 0.2 of the main part 1 of the wire). % To 0.4%), and it can be said that the improvement rate is remarkable from the viewpoint of improving the bending resistance of the superconducting wire 100.

図6に、線材主要部1および歪み耐性強化部2を有する超伝導線材100の超伝導特性グラフを示す。一般的に、超伝導線材100の熱処理条件においては、その温度・時間を検討のうえ、最も臨界電流が高くなる条件で線材主要部1を熱処理する。よって、図6中の実線で示す第1熱処理温度T1を経験した線材主要部1の臨界電流特性61は、図6中の破線で示す第2熱処理温度T2を経験した歪み耐性強化部2の臨界電流特性62と比べ、同じ経験磁場に対する臨界電流値が高い。ここで、両者は切り離されることなく一つのコイル状またはその延長上で使用されるため、それぞれの超伝導特性が臨界電流値Ic以上となる経験磁場の上限を比較すると、これらの区別を容易につけることができる。具体的には、図6に示すように、第1熱処理温度T1を経験した線材主要部1の経験磁場上限B1と、第2熱処理温度T2を経験した歪み耐性強化部2の経験磁場上限B2とは、B1>B2の関係となる。また、このことから、曲げ耐性が強化された歪み耐性強化部2は、線材主要部1よりも磁場強度が低い領域で使用することが好ましい。なお、一般的に、ソレノイドコイル状の超伝導コイル5(図9参照)の磁場分布は容易に計算できる。最も磁場強度が高い箇所は主要巻線部1aの最内層であり、主要巻線部1aから離れた口出し部(端面2aを含む端部(例えば、図1に示す端面2aから位置2bまでの部分))の磁場強度は比較的低い。よって、図6に示した歪み耐性強化部2の臨界電流特性62と、線材主要部1やそれを組み合わせた超伝導磁石(図示せず)の磁場分布とを比較し、磁場強度が低くてもよい箇所に歪み耐性強化部2が位置するようにする。このようにすると、比較的低い臨界電流特性62を有する歪み耐性強化部2でも問題なく使用することができる。ここで、線材主要部1と歪み耐性強化部2の間の超伝導線材100は、両者の中間の臨界電流特性を或る傾斜をもって有することになる(そのような部分を「傾斜部」と呼ぶこととする)。従って、この傾斜部の臨界電流特性と磁場強度とを十分に比較し、通電電流値よりも高い臨界電流特性となるように設計することが好ましい。 FIG. 6 shows a superconducting characteristic graph of the superconducting wire 100 having the wire main part 1 and the strain resistance strengthening part 2. Generally, under the heat treatment conditions of the superconducting wire 100, the main part 1 of the wire is heat-treated under the condition where the critical current is the highest after considering the temperature and time. Therefore, the critical current characteristic 61 of the wire rod main portion 1 that has experienced the first heat treatment temperature T1 shown by the solid line in FIG. 6 is the criticality of the strain resistance strengthening portion 2 that has experienced the second heat treatment temperature T2 shown by the broken line in FIG. Compared with the current characteristic 62, the critical current value for the same empirical magnetic field is higher. Here, since the two are used in a single coil shape or an extension thereof without being separated, it is easy to distinguish between them by comparing the upper limits of the empirical magnetic fields in which the respective superconducting characteristics are equal to or higher than the critical current value Ic. Can be attached. Specifically, as shown in FIG. 6, the empirical magnetic field upper limit B1 of the wire rod main part 1 that experienced the first heat treatment temperature T1 and the empirical magnetic field upper limit B2 of the strain resistance strengthening part 2 that experienced the second heat treatment temperature T2. Has a relationship of B1> B2. Further, from this, it is preferable to use the strain resistance strengthening portion 2 having the strengthened bending resistance in a region where the magnetic field strength is lower than that of the wire rod main portion 1. In general, the magnetic field distribution of the solenoid coil-shaped superconducting coil 5 (see FIG. 9) can be easily calculated. The portion having the highest magnetic field strength is the innermost layer of the main winding portion 1a, and is a mouth portion separated from the main winding portion 1a (the portion including the end face 2a (for example, the portion from the end face 2a to the position 2b shown in FIG. 1). )) The magnetic field strength is relatively low. Therefore, the critical current characteristic 62 of the strain resistance strengthening portion 2 shown in FIG. 6 is compared with the magnetic field distribution of the wire main portion 1 and the superconducting magnet (not shown) in which it is combined, even if the magnetic field strength is low. The strain resistance strengthening portion 2 is located in a good place. In this way, even the strain resistance strengthening unit 2 having a relatively low critical current characteristic 62 can be used without any problem. Here, the superconducting wire 100 between the wire main portion 1 and the strain resistance strengthening portion 2 has a critical current characteristic intermediate between the two with a certain inclination (such a portion is referred to as an "inclined portion"). To be). Therefore, it is preferable to sufficiently compare the critical current characteristics of the inclined portion with the magnetic field strength and design the critical current characteristics to be higher than the energizing current value.

また、熱処理工程S2は、図7に示すように、前駆体に対し第1熱処理工程を経験させた後に、所定部位に対してさらに第2熱処理工程を行うことができる。この態様とすることにより、超伝導線材100の任意の箇所に歪み耐性強化部2を形成することができる。なお、図7は、線材主要部1の温度の推移(上のグラフ)および歪み耐性強化部2の温度の推移(下のグラフ)の他の一例を説明するグラフである。 Further, in the heat treatment step S2, as shown in FIG. 7, after the precursor is subjected to the first heat treatment step, the second heat treatment step can be further performed on the predetermined portion. According to this aspect, the strain resistance strengthening portion 2 can be formed at an arbitrary position of the superconducting wire 100. Note that FIG. 7 is a graph illustrating another example of the temperature transition of the wire rod main portion 1 (upper graph) and the temperature transition of the strain resistance strengthening portion 2 (lower graph).

図7に示す態様は、歪み耐性強化部2への熱処理プロセスを2段階にした場合の熱処理プロセスを示している。図7の下のグラフに示すように、この態様では、歪み耐性強化部2の温度は、線材主要部1とともに熱処理温度維持開始時間t1〜熱処理温度維持終了時間t2にわたって第1熱処理温度T1を経験した後、熱処理温度維持終了時間t2〜第2熱処理温度維持開始時間t3において第2熱処理温度T2に向かって昇温される。そして、第2熱処理温度維持開始時間t3〜第2熱処理温度維持終了時間t4まで第2熱処理温度T2が維持される。ただし、第2熱処理温度T2の維持時間は超伝導線材100のうち、金属シース最外層24および金属母材23が第2熱処理温度T2に到達する程度の短時間とするのが好適である。第2熱処理温度T2の維持時間が長くなると、超伝導フィラメント21の超伝導特性が低下する可能性がある。この間、図7の上のグラフに示すように、線材主要部1は、第1熱処理温度T1に維持される。第2熱処理温度維持終了時間t4に至った後、線材主要部1と歪み耐性強化部2は室温T3に向かって冷却される。この態様では、歪み耐性強化部2が第1熱処理温度T1で熱処理温度維持開始時間t1〜熱処理温度維持終了時間t2にわたって維持されて超伝導体が生成される。そのため、図5を参照して説明した態様と比較して、歪み耐性強化部2の臨界電流特性62が下がりにくく、比較的、線材主要部1の臨界電流特性61に近い性能が得られる。さらに、歪み耐性強化部2のうち特に金属シース最外層24および金属母材23が第2熱処理温度T2を経験するため、線材主要部1よりも曲げ耐性が強くなる。 The aspect shown in FIG. 7 shows a heat treatment process when the heat treatment process for the strain resistance strengthening portion 2 is performed in two stages. As shown in the graph below FIG. 7, in this embodiment, the temperature of the strain resistance strengthening portion 2 experiences the first heat treatment temperature T1 over the heat treatment temperature maintenance start time t1 to the heat treatment temperature maintenance end time t2 together with the wire rod main portion 1. After that, the temperature is raised toward the second heat treatment temperature T2 at the heat treatment temperature maintenance end time t2 to the second heat treatment temperature maintenance start time t3. Then, the second heat treatment temperature T2 is maintained from the second heat treatment temperature maintenance start time t3 to the second heat treatment temperature maintenance end time t4. However, the maintenance time of the second heat treatment temperature T2 is preferably a short time such that the outermost layer 24 of the metal sheath and the metal base material 23 of the superconducting wire 100 reach the second heat treatment temperature T2. If the maintenance time of the second heat treatment temperature T2 becomes long, the superconducting characteristics of the superconducting filament 21 may deteriorate. During this period, as shown in the upper graph of FIG. 7, the wire rod main portion 1 is maintained at the first heat treatment temperature T1. After reaching the second heat treatment temperature maintenance end time t4, the wire rod main portion 1 and the strain resistance strengthening portion 2 are cooled toward room temperature T3. In this aspect, the strain resistance strengthening portion 2 is maintained at the first heat treatment temperature T1 for the heat treatment temperature maintenance start time t1 to the heat treatment temperature maintenance end time t2 to generate a superconductor. Therefore, as compared with the embodiment described with reference to FIG. 5, the critical current characteristic 62 of the strain resistance strengthening portion 2 is less likely to decrease, and performance relatively close to the critical current characteristic 61 of the wire rod main portion 1 can be obtained. Further, among the strain resistance strengthening portions 2, since the metal sheath outermost layer 24 and the metal base material 23 experience the second heat treatment temperature T2, the bending resistance becomes stronger than that of the wire rod main portion 1.

さらに、熱処理工程S2は、第1熱処理工程と第2熱処理工程との間に、線材主要部1を巻き回してコイル状とするコイル形成工程(図示せず)を有している。このようにすると、コイル状にした超伝導線材100の任意の箇所に歪み耐性強化部2を形成することができる。ここで、図8は、線材主要部1の温度の推移(上のグラフ)および歪み耐性強化部2の温度の推移(下のグラフ)の他の一例を説明するグラフである。また、図9は、前駆体をボビンBに巻き回してコイル状とした後に超伝導線材100を製造する様子を説明する概念図である。 Further, the heat treatment step S2 includes a coil forming step (not shown) in which the wire rod main portion 1 is wound to form a coil between the first heat treatment step and the second heat treatment step. In this way, the strain resistance strengthening portion 2 can be formed at an arbitrary portion of the coiled superconducting wire 100. Here, FIG. 8 is a graph illustrating another example of the temperature transition of the wire rod main portion 1 (upper graph) and the temperature transition of the strain resistance strengthening portion 2 (lower graph). Further, FIG. 9 is a conceptual diagram illustrating a state in which the superconducting wire 100 is manufactured after winding the precursor around the bobbin B to form a coil.

図8に示す態様は、超伝導線材100がおよそコイル状に巻き回された後に、歪み耐性強化部2に第2熱処理温度T2を経験させる場合の熱処理プロセスを示している。図8に示すように、この態様では、はじめに、超伝導線材100の前駆体の全体に対して、熱処理温度維持開始時間t1〜熱処理温度維持終了時間t2にわたって第1熱処理工程を行い、第1熱処理温度T1を経験させて超伝導性能を備えさせる。その後、超伝導線材100を室温T3近くまで冷却した後、超伝導線材100をボビンBに巻き回してコイル状の超伝導コイル5とする(コイル形成工程)。そして、その後、図8の下のグラフに示すように、超伝導線材100の任意の箇所に、第2熱処理温度維持開始時間t3〜第2熱処理温度維持終了時間t4にわたって第2熱処理工程を行い、第2熱処理温度T2を経験させて歪み耐性強化部2を形成する。なお、図8の上のグラフに示すように、歪み耐性強化部2に第2熱処理温度T2を経験させる間、線材主要部1は室温T3に維持される。 The aspect shown in FIG. 8 shows a heat treatment process in which the strain resistance strengthening portion 2 is allowed to experience the second heat treatment temperature T2 after the superconducting wire 100 is wound in a substantially coil shape. As shown in FIG. 8, in this embodiment, first, the first heat treatment step is performed on the entire precursor of the superconducting wire 100 over the heat treatment temperature maintenance start time t1 to the heat treatment temperature maintenance end time t2, and the first heat treatment is performed. The temperature T1 is experienced to provide superconducting performance. Then, after cooling the superconducting wire 100 to near room temperature T3, the superconducting wire 100 is wound around the bobbin B to form a coil-shaped superconducting coil 5 (coil forming step). Then, as shown in the graph at the bottom of FIG. 8, a second heat treatment step is performed at an arbitrary portion of the superconducting wire 100 over a second heat treatment temperature maintenance start time t3 to a second heat treatment temperature maintenance end time t4. The strain resistance strengthening portion 2 is formed by experiencing the second heat treatment temperature T2. As shown in the upper graph of FIG. 8, the wire rod main part 1 is maintained at room temperature T3 while the strain resistance strengthening part 2 is allowed to experience the second heat treatment temperature T2.

図9に示すように、この態様では、超伝導コイル5を形成する絶縁材料やボビンBに、高温熱処理には耐えられない樹脂などを使用することができる。この場合、歪み耐性強化部2を熱処理する際には、超伝導コイル5は室温T3または室温T3に近い温度に維持する。超伝導コイル5から伸ばされた歪み耐性強化部2は、第2加熱装置4を用いて第2熱処理温度T2へと加熱された後、冷却される。この態様のように超伝導コイル5の形状に巻き回された後に歪み耐性強化部2へのみ熱処理を行うと、曲げ耐性を強化させたい箇所をコイル作製前に決定する必要がなく、任意の箇所の曲げ耐性を強化できる。 As shown in FIG. 9, in this embodiment, a resin or the like that cannot withstand high-temperature heat treatment can be used for the insulating material or bobbin B forming the superconducting coil 5. In this case, when the strain resistance strengthening portion 2 is heat-treated, the superconducting coil 5 is maintained at room temperature T3 or a temperature close to room temperature T3. The strain resistance strengthening portion 2 extended from the superconducting coil 5 is heated to the second heat treatment temperature T2 by using the second heating device 4, and then cooled. When the heat treatment is performed only on the strain resistance strengthening portion 2 after being wound into the shape of the superconducting coil 5 as in this embodiment, it is not necessary to determine the portion where the bending resistance is to be strengthened before the coil is manufactured, and the portion is arbitrary. Bending resistance can be strengthened.

図10は、第2熱処理工程を行う際に除熱装置6を用いて主要巻線部1aを保護する様子を説明する概念図である。
一般的に、超伝導線材100には無酸素銅など熱伝達し易い金属材料が含有されている。そのため、歪み耐性強化部2の熱処理時に熱がそのような金属材料を伝達して超伝導コイル5(つまり、線材主要部1のうち、特に主要巻線部1a)に到達し、温度が上昇することがあり得る。そこで、図10に示すように、歪み耐性強化部2と線材主要部1(特に主要巻線部1a)との間の任意の位置に、歪み耐性強化部2から線材主要部1に伝達される熱を除去する除熱装置6を配置して前記した熱処理工程S2(すなわち、第1熱処理工程および第2熱処理工程)を行うことが好ましい。除熱装置6は、例えば、水冷のものを用いることが好ましい。このように、歪み耐性強化部2から超伝導コイル5へとつながる箇所を冷却することで線材主要部1の温度を室温近くに維持することができる。そのため、線材主要部1における超伝導フィラメント21の超伝導特性が低下するのを防止することができる。また、このように除熱装置6を用いると、線材主要部1から歪み耐性強化部2までの距離を短くできる。図10において、超伝導コイル5のもう一方の歪み耐性強化部2cと線材主要部1との間の任意の位置にも同様に除熱装置(図示せず)を設けてもよい。さらに、除熱装置6で除熱した位置が分かるように、超伝導線材100において除熱装置6で除熱した位置が分かるよう印を付けておくことが好ましい。このようにすると、超伝導線材100を用いて加工を行う際の作業性が向上する。
FIG. 10 is a conceptual diagram illustrating a state in which the main winding portion 1a is protected by using the heat removing device 6 when the second heat treatment step is performed.
Generally, the superconducting wire 100 contains a metal material such as oxygen-free copper that easily transfers heat. Therefore, during the heat treatment of the strain resistance strengthening portion 2, heat is transmitted to such a metal material and reaches the superconducting coil 5 (that is, particularly the main winding portion 1a of the wire rod main portion 1), and the temperature rises. It is possible. Therefore, as shown in FIG. 10, the strain resistance strengthening portion 2 transmits the wire rod main portion 1 to an arbitrary position between the strain resistance strengthening portion 2 and the wire rod main portion 1 (particularly, the main winding portion 1a). It is preferable to arrange the heat removing device 6 for removing heat and perform the heat treatment step S2 (that is, the first heat treatment step and the second heat treatment step) described above. As the heat removing device 6, for example, it is preferable to use a water-cooled device 6. In this way, the temperature of the wire rod main portion 1 can be maintained near room temperature by cooling the portion connected from the strain resistance strengthening portion 2 to the superconducting coil 5. Therefore, it is possible to prevent the superconducting characteristics of the superconducting filament 21 in the wire main portion 1 from deteriorating. Further, when the heat removing device 6 is used in this way, the distance from the wire rod main portion 1 to the strain resistance strengthening portion 2 can be shortened. In FIG. 10, a heat removing device (not shown) may be similarly provided at an arbitrary position between the other strain resistance strengthening portion 2c of the superconducting coil 5 and the wire rod main portion 1. Further, it is preferable to mark the superconducting wire 100 so that the position where the heat is removed by the heat removing device 6 can be known so that the position where the heat is removed by the heat removing device 6 can be known. In this way, workability when performing processing using the superconducting wire 100 is improved.

図11は、超伝導線材100を特定の位置で特定の方向に曲げることが予め決定されている場合において、歪み耐性強化部2の曲げ内側方向に放熱部材19を熱的に接触させた状態で第2熱処理工程を行う様子を説明する概略断面図である。
図11に示すように、歪み耐性強化部2のうち曲げ内側方向18に放熱部材19を熱的に接触させた状態で第2熱処理温度T2(例えば、図5など参照)を経験させることが好ましい。なお、放熱部材19としては、例えば、放熱板や金属塊などが挙げられるが、これらに限定されない。このように、本実施形態では、放熱部材19を設置して歪み耐性強化部2のうち曲げ内側方向18の温度を曲げ外側方向17の第2熱処理温度T2よりも低くなるように維持する。これにより、歪み耐性強化部2のうち、曲げ内側方向18に位置する超伝導フィラメント21の臨界電流特性は、第1熱処理温度T1を経験した臨界電流特性61に近い特性となる。その一方で、歪み耐性強化部2のうち曲げ外側方向17に位置する金属シース最外層24や金属母材23は第2熱処理温度T2に近い温度を経験することになるので、相応の圧縮歪みが印加され、許容引っ張り歪みが高くなる。すなわち、歪み耐性強化部2の曲げ耐性を強化しつつ、高い臨界電流特性を発揮することが可能となる。
FIG. 11 shows a state in which the heat radiating member 19 is thermally contacted in the bending inner direction of the strain resistance strengthening portion 2 when the superconducting wire 100 is predetermined to be bent at a specific position in a specific direction. It is schematic cross-sectional view explaining the state of performing the 2nd heat treatment step.
As shown in FIG. 11, it is preferable to experience the second heat treatment temperature T2 (see, for example, FIG. 5) in a state where the heat radiating member 19 is in thermal contact with the bending inner direction 18 of the strain resistance strengthening portion 2. .. Examples of the heat radiating member 19 include, but are not limited to, a heat radiating plate and a metal block. As described above, in the present embodiment, the heat radiating member 19 is installed to maintain the temperature of the strain resistance strengthening portion 2 in the bending inner direction 18 so as to be lower than the second heat treatment temperature T2 in the bending outer direction 17. As a result, the critical current characteristic of the superconducting filament 21 located in the bending inner direction 18 of the strain resistance strengthening portion 2 becomes a characteristic close to the critical current characteristic 61 that has experienced the first heat treatment temperature T1. On the other hand, the outermost layer 24 of the metal sheath and the metal base material 23 located in the bending outer direction 17 of the strain resistance strengthening portion 2 experience a temperature close to the second heat treatment temperature T2, so that a corresponding compressive strain is generated. It is applied and the allowable tensile strain becomes high. That is, it is possible to exhibit high critical current characteristics while strengthening the bending resistance of the strain resistance strengthening portion 2.

[超伝導磁石および磁気共鳴断層撮影装置]
以上に説明した本実施形態に係る超伝導線材100は、図12および図13に示すように、超伝導磁石200および磁気共鳴断層撮影装置(MRI装置)300に好適に用いることができる。図12は、超伝導線材100を用いた超伝導磁石200を説明する概略断面図である。図13は、超伝導磁石200を用いた(すなわち、超伝導線材100を用いた)MRI装置300を説明する概略断面図である。
[Superconducting magnet and magnetic resonance tomography]
As shown in FIGS. 12 and 13, the superconducting wire 100 according to the present embodiment described above can be suitably used for the superconducting magnet 200 and the magnetic resonance tomography apparatus (MRI apparatus) 300. FIG. 12 is a schematic cross-sectional view illustrating the superconducting magnet 200 using the superconducting wire 100. FIG. 13 is a schematic cross-sectional view illustrating the MRI apparatus 300 using the superconducting magnet 200 (that is, using the superconducting wire 100).

図12に示すように、超伝導磁石200は、超伝導線材100を用いた円筒形状の超伝導コイル5と、超伝導コイル5と電気的に接続された永久電流スイッチ108と、これらを格納するとともにこれらを冷媒または冷凍機で冷却する有底円筒形状の冷凍容器109と、を含んで構成されている。超伝導コイル5と永久電流スイッチ108に流れる永久電流は、測定対象110(図13参照)の位置に、時間安定性の高い静磁場を発生させる。この静磁場強度が高いほど、核磁気共鳴周波数が高くなり、核磁気共鳴信号強度も高くなる。 As shown in FIG. 12, the superconducting magnet 200 houses a cylindrical superconducting coil 5 using the superconducting wire 100, a permanent current switch 108 electrically connected to the superconducting coil 5, and these. It is configured to include a bottomed cylindrical refrigerating container 109 for cooling these with a refrigerant or a refrigerator. The permanent current flowing through the superconducting coil 5 and the permanent current switch 108 generates a static magnetic field with high time stability at the position of the measurement target 110 (see FIG. 13). The higher the static magnetic field strength, the higher the nuclear magnetic resonance frequency and the higher the nuclear magnetic resonance signal strength.

また、図13に示すように、MRI装置300は、前記した円筒形状の超伝導磁石200の内側に、超伝導コイル5と同軸に設けられた円筒形状の傾斜磁場コイル111と、傾斜磁場コイル111と電気的に接続された傾斜磁場用アンプ112と、を備えている。また、MRI装置300は、傾斜磁場コイル111の内側にRF(Radio Frequency)アンテナ113を有しており、このRFアンテナ113はRF送受信機114と電気的に接続されている。そして、このRFアンテナ113の内側に前記した測定対象110が配置される。 Further, as shown in FIG. 13, the MRI apparatus 300 includes a cylindrical gradient magnetic field coil 111 provided coaxially with the superconducting coil 5 inside the cylindrical superconducting magnet 200, and a gradient magnetic field coil 111. The gradient magnetic field amplifier 112, which is electrically connected to the cable, is provided. Further, the MRI apparatus 300 has an RF (Radio Frequency) antenna 113 inside the gradient magnetic field coil 111, and the RF antenna 113 is electrically connected to the RF transmitter / receiver 114. Then, the measurement target 110 described above is arranged inside the RF antenna 113.

このような構成を有するMRI装置300は、傾斜磁場用アンプ112から必要に応じて時間変化する電流が傾斜磁場コイル111に供給され、測定対象110の位置に空間的に分布をもつ静磁場が発生する。さらに、RFアンテナ113とRF送受信機114とを用いて測定対象110に核磁気共鳴周波数の磁場を印加し、反応信号を測定することで測定対象110の断面画像診断を行うことができる。MRI装置300と同じ構成とすることで核磁気共鳴(NMR)装置も具現できる。なお、図13に示したMRI装置300の構成は一例であり、これに限定されない。 In the MRI apparatus 300 having such a configuration, a current that changes with time as needed is supplied from the gradient magnetic field amplifier 112 to the gradient magnetic field coil 111, and a static magnetic field having a spatial distribution is generated at the position of the measurement target 110. To do. Further, the cross-sectional image diagnosis of the measurement target 110 can be performed by applying a magnetic field having a nuclear magnetic resonance frequency to the measurement target 110 using the RF antenna 113 and the RF transmitter / receiver 114 and measuring the reaction signal. A nuclear magnetic resonance (NMR) device can also be realized by using the same configuration as the MRI device 300. The configuration of the MRI apparatus 300 shown in FIG. 13 is an example, and the present invention is not limited to this.

以上、本発明に係る超伝導線材100、超伝導線材100の製造方法、超伝導磁石200およびMRI装置300について実施形態により詳細に説明したが、本発明の主旨はこれに限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、前記した各構成、機能、処理部、処理手段、制御手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)などの記録装置、または、ICカード、SDカード、DVDなどの記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
The superconducting wire 100, the method for manufacturing the superconducting wire 100, the superconducting magnet 200, and the MRI apparatus 300 according to the present invention have been described in detail in accordance with the embodiments, but the gist of the present invention is not limited thereto. , Various variants are included. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
Further, each of the above-mentioned configurations, functions, processing units, processing means, control means and the like may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

100 超伝導線材
1 線材主要部
1a 主要巻線部
2 歪み耐性強化部
21 超伝導フィラメント
22 金属シース
23 金属母材
24 金属シース最外層
25 中間層
S1 前駆体作製工程
S2 熱処理工程
100 Superconducting wire 1 Wire main part 1a Main winding part 2 Strain resistance strengthening part 21 Superconducting filament 22 Metal sheath 23 Metal base material 24 Metal sheath outermost layer 25 Intermediate layer S1 Precursor manufacturing process S2 Heat treatment process

Claims (12)

電流を通電する超伝導フィラメント、前記超伝導フィラメントを被覆する金属シースおよび前記金属シースを被覆する金属母材を有する線材主要部と、
前記線材主要部を含む任意の箇所において他の部分より許容引っ張り歪みが0.01%以上高い歪み耐性強化部と、
を有することを特徴とする超伝導線材。
A superconducting filament that carries an electric current, a metal sheath that coats the superconducting filament, and a main part of a wire rod having a metal base material that coats the metal sheath.
A strain resistance strengthening portion having a allowable tensile strain of 0.01% or more higher than other portions at any location including the main portion of the wire rod.
A superconducting wire rod characterized by having.
請求項1において、
前記超伝導フィラメントがMgBで形成されていることを特徴とする超伝導線材。
In claim 1,
A superconducting wire rod characterized in that the superconducting filament is formed of MgB 2 .
請求項2において、
前記超伝導フィラメントと前記金属シースとの間に、前記MgB以外のホウ素化合物またはマグネシウム化合物を有する中間層を有し、
前記歪み耐性強化部における前記中間層の厚さが、前記線材主要部における前記中間層の厚さの1.2倍以上となっていることを特徴とする超伝導線材。
In claim 2,
An intermediate layer having a boron compound or a magnesium compound other than MgB 2 is provided between the superconducting filament and the metal sheath.
A superconducting wire rod in which the thickness of the intermediate layer in the strain resistance strengthening portion is 1.2 times or more the thickness of the intermediate layer in the wire rod main portion.
超伝導フィラメント、前記超伝導フィラメントを被覆する金属シースおよび前記金属シースを被覆する金属母材を有する線材主要部と、前記線材主要部の任意の箇所において他の部分より許容引っ張り歪みが0.01%以上高い歪み耐性強化部と、を有する超伝導線材の製造方法であり、
前記超伝導フィラメントの原料を前記金属シースで被覆するとともに前記金属シースを前記金属母材で被覆して前記超伝導線材の前駆体を作製する前駆体作製工程と、
前記前駆体を熱処理して超伝導線材を製造する熱処理工程と、を有し、
前記熱処理工程は、熱処理を行って前記線材主要部を形成する第1熱処理工程と、熱処理を行って前記歪み耐性強化部を形成する第2熱処理工程と、を有し、
前記第2熱処理工程の熱処理温度が、前記第1熱処理工程の熱処理温度よりも高いことを特徴とする超伝導線材の製造方法。
The main part of the wire rod having the superconducting filament, the metal sheath covering the superconducting filament, and the metal base material covering the metal sheath, and the allowable tensile strain of 0.01 than other parts at any part of the main part of the wire rod. It is a method for manufacturing a superconducting wire having a strain resistance strengthening portion having a high strain resistance of% or more.
A precursor manufacturing step of coating the raw material of the superconducting filament with the metal sheath and coating the metal sheath with the metal base material to prepare a precursor of the superconducting wire.
It has a heat treatment step of heat-treating the precursor to produce a superconducting wire.
The heat treatment step includes a first heat treatment step of performing heat treatment to form the main portion of the wire rod, and a second heat treatment step of performing heat treatment to form the strain resistance strengthening portion.
A method for producing a superconducting wire rod, characterized in that the heat treatment temperature of the second heat treatment step is higher than the heat treatment temperature of the first heat treatment step.
請求項4において、
前記熱処理工程は、
前記第1熱処理工程と前記第2熱処理工程とを同時に実施することを特徴とする超伝導線材の製造方法。
In claim 4,
The heat treatment step is
A method for producing a superconducting wire rod, which comprises simultaneously performing the first heat treatment step and the second heat treatment step.
請求項4において、
前記熱処理工程は、
前記前駆体に対して前記第1熱処理工程を経験させた後に、所定部位に対してさらに前記第2熱処理工程を行うことを特徴とする超伝導線材の製造方法。
In claim 4,
The heat treatment step is
A method for producing a superconducting wire rod, which comprises subjecting the precursor to the first heat treatment step and then further performing the second heat treatment step on a predetermined portion.
請求項4において、
前記熱処理工程は、
前記第1熱処理工程と前記第2熱処理工程との間に、前記線材主要部を巻き回してコイル状とするコイル形成工程を有することを特徴とする超伝導線材の製造方法。
In claim 4,
The heat treatment step is
A method for producing a superconducting wire rod, which comprises a coil forming step of winding the main portion of the wire rod into a coil shape between the first heat treatment step and the second heat treatment step.
請求項4において、
前記歪み耐性強化部と前記線材主要部との間の任意の位置に、前記歪み耐性強化部から前記線材主要部に伝達される熱を除去する除熱装置を配置して前記熱処理工程を行うことを特徴とする超伝導線材の製造方法。
In claim 4,
The heat treatment step is performed by arranging a heat removing device for removing heat transferred from the strain resistance strengthening portion to the wire main portion at an arbitrary position between the strain resistance strengthening portion and the wire rod main portion. A method for manufacturing a superconducting wire rod, which is characterized by.
請求項4において、
前記第2熱処理工程は、前記歪み耐性強化部の曲げ内側方向に放熱部材を熱的に接触させた状態で行うことを特徴とする超伝導線材の製造方法。
In claim 4,
The second heat treatment step is a method for producing a superconducting wire rod, characterized in that the heat radiating member is thermally contacted in the bending inner direction of the strain resistance strengthening portion.
請求項4において、
前記第2熱処理工程の熱処理温度が、前記第1熱処理工程の熱処理温度よりも50ケルビン以上高いことを特徴とする超伝導線材の製造方法。
In claim 4,
A method for producing a superconducting wire rod, characterized in that the heat treatment temperature of the second heat treatment step is 50 kelvin or more higher than the heat treatment temperature of the first heat treatment step.
請求項1から請求項3のいずれか1項に記載の超伝導線材を用いた超伝導磁石。 A superconducting magnet using the superconducting wire according to any one of claims 1 to 3. 請求項1から請求項3のいずれか1項に記載の超伝導線材を用いた磁気共鳴断層撮影装置。 The magnetic resonance tomography apparatus using the superconducting wire according to any one of claims 1 to 3.
JP2019095443A 2019-05-21 2019-05-21 Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus Pending JP2020191214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095443A JP2020191214A (en) 2019-05-21 2019-05-21 Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095443A JP2020191214A (en) 2019-05-21 2019-05-21 Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JP2020191214A true JP2020191214A (en) 2020-11-26

Family

ID=73455122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095443A Pending JP2020191214A (en) 2019-05-21 2019-05-21 Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2020191214A (en)

Similar Documents

Publication Publication Date Title
Razeti et al. Construction and Operation of Cryogen Free ${\hbox {MgB}} _ {2} $ Magnets for Open MRI Systems
US7626477B2 (en) Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet
US7319329B2 (en) Cold mass with discrete path substantially conductive coupler for superconducting magnet and cryogenic cooling circuit
Song et al. Quench behavior of conduction-cooled Y Ba2Cu3O7− δ coated conductor pancake coils stabilized with brass or copper
JP5307354B2 (en) Cable and method of manufacturing the cable
JP4686588B2 (en) Magnet assembly for magnetic resonance imaging system
JP5000252B2 (en) NbTi superconducting wire
Modica et al. Design, construction and tests of MgB2 coils for the development of a cryogen free magnet
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
Mine et al. Second Test Coil for the Development of a Compact 3 T $\hbox {MgB} _ {2} $ Magnet
WO2021131166A1 (en) Superconducting wire, method for manufacturing superconductingn wire, and mri device
JP4249770B2 (en) Antenna coil for NMR probe and NMR system
JP6668350B2 (en) Superconducting wire, superconducting coil, MRI and NMR
JP5020699B2 (en) Low AC loss single filament superconductor for superconducting magnet and method of manufacturing
Marshall et al. Bi-2223 test coils for high-resolution NMR magnets
Kim et al. Persistent current mode of a 1-T-class HTS pancake coil for NMR/MRI applications
JP2020191214A (en) Superconducting wire, method for manufacturing superconducting wire, superconducting magnet and magnetic resonance imaging apparatus
JP2006313923A (en) High temperature superconducting coil and high temperature superconducting magnet using the same
JP7291469B2 (en) Superconducting wire manufacturing method
JP5058702B2 (en) Device for low AC loss heat shield
JPH08504107A (en) Superconducting magnets and related improvements
EP2031668B1 (en) Nb3Sn superconducting wire fabricated by bronze process and precursor therefor
Li et al. Design and experimental demonstration of an MgB2 based 1.5 T MRI test magnet
JP2018195736A (en) Superconducting coil, superconducting magnet and superconducting equipment
Zhang et al. Research on ${\rm MgB} _ {2} $ Superconducting Magnet With Iron Core for MRI