JP2020190958A - モデル生成装置、パラメータ算出装置、モデル生成方法、パラメータ算出方法およびプログラム - Google Patents

モデル生成装置、パラメータ算出装置、モデル生成方法、パラメータ算出方法およびプログラム Download PDF

Info

Publication number
JP2020190958A
JP2020190958A JP2019096325A JP2019096325A JP2020190958A JP 2020190958 A JP2020190958 A JP 2020190958A JP 2019096325 A JP2019096325 A JP 2019096325A JP 2019096325 A JP2019096325 A JP 2019096325A JP 2020190958 A JP2020190958 A JP 2020190958A
Authority
JP
Japan
Prior art keywords
model
relationship
sample
machine learning
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096325A
Other languages
English (en)
Other versions
JP7406186B2 (ja
Inventor
慶一 木佐森
Keiichi Kisamori
慶一 木佐森
山崎 啓介
Keisuke Yamazaki
啓介 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NEC Corp
Priority to US17/612,310 priority Critical patent/US20220229428A1/en
Priority to JP2019096325A priority patent/JP7406186B2/ja
Priority to PCT/JP2020/020085 priority patent/WO2020235625A1/ja
Publication of JP2020190958A publication Critical patent/JP2020190958A/ja
Application granted granted Critical
Publication of JP7406186B2 publication Critical patent/JP7406186B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/045Explanation of inference; Explainable artificial intelligence [XAI]; Interpretable artificial intelligence

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Automation & Control Theory (AREA)
  • Computational Linguistics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)
  • Quality & Reliability (AREA)

Abstract

【課題】比較的短い時間で、解析対象の解析に利用可能なデータを得られるようにする。【解決手段】モデル生成装置が、サンプルと、前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成するモデル生成部を備える。【選択図】図2

Description

本発明は、モデル生成装置、パラメータ算出装置、モデル生成方法、パラメータ算出方法およびプログラムに関する。
特許文献1には、実際の状況に即したシミュレーションを実現することを目的として、気象データ等を用いて予め学習された運用状況予測データを、シミュレータによる訓練用シミュレーションの実行に適用するシミュレーション装置が記載されている。
特開2008−180784号公報
シミュレータに用いられるモデルのパラメータを意味付け可能な場合、そのパラメータの値を解析対象の解析に用いることが考えられる。例えば、解析対象を精度よく模擬できるパラメータ値を取得し、得られたパラメータ値を用いて解析対象の状態を推定することが考えられる。しかし、適切なパラメータ値を取得する処理は、多くの処理を含む。このため、処理の所要時間は長い。
本発明は、上述の課題を解決することのできるモデル生成装置、パラメータ算出装置、モデル生成方法、パラメータ算出方法およびプログラムを提供することを目的としている。
本発明の第1の態様によれば、モデル生成装置は、サンプルと、前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成するモデル生成部を備える。
本発明の第2の態様によれば、パラメータ算出装置は、サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出するモデル実行部を備える。
本発明の第3の態様によれば、モデル生成方法は、サンプルと、前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程を含む。
本発明の第4の態様によれば、パラメータ算出方法は、サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出する工程を備える。
本発明の第5の態様によれば、プログラムは、コンピュータに、サンプルと、前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程を実行させるためのプログラムである。
本発明の第6の態様によれば、プログラムは、コンピュータに、サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出する工程を実行させるためのプログラムである。
この発明によれば、比較的短い時間で、解析対象の解析に利用可能なデータを得られる。
実施形態に係る予測システムの装置構成の例を示す概略構成図である。 実施形態に係るモデル生成装置の機能構成の例を示す概略ブロック図である。 実施形態に係る予測システムの対象となる生産ラインの例を示す図である。 実施形態に係るモデル生成装置の構成の例を示す図である。 実施形態に係るパラメータ算出装置の構成の例を示す図である。 実施形態に係るモデル生成方法における処理の例を示す図である。 実施形態に係るパラメータ算出方法における処理の例を示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本発明の実施形態に係る予測システムの装置構成の例を示す概略構成図である。図1に示す構成で、予測システム1は、シミュレータ装置10と、機械学習装置20と、モデル生成装置30とを備える。また、シミュレータ装置10と、機械学習装置20と、モデル生成装置30と、予測対象910とは、通信ネットワーク920を介して通信を行う。
予測システム1は、予測対象910の動作または状態を予測する。さらに、予測システム1は、予測対象910の動作または状態の解析を補助する情報を取得する。
予測対象910は、その動作または状態のシミュレーションを実行可能なものであればよく、特定のものに限定されない。
例えば、予測対象910が宅配会社等の物流系統である場合、予測システム1が、トラックおよび人員などの資源の配置、および、配送物の分布に基づいて、例えば3時間後など所定時間後の配送状況(所定時間後の資源の配置および運送物の分布)を予測し、予測結果をユーザに提供するようにしてもよい。この場合に、入力データの値は、トラックおよび人員などの資源の配置を表すパラメータ値、及び、配送物の分布を表すパラメータ値である。出力データの値は、所定時間後の配送状況を表すパラメータ値である。加えて、予測システム1が、シミュレータでその予測を行う場合のシミュレーションモデルのパラメータ値をユーザに提供するようにしてもよい。また、予測システム1は、入力データ、及び、出力データとは異なる状態値を表すパラメータ(たとえば、中間状態を表すパラメータ、入力データと出力データと間の関連性を表すデータ)を含んでいてもよい。
ユーザは、所定時間後の配送状況が順調か否か、また、順調でない場合はボトルネックがどこにあるかといった配送状況の解析に、予測システム1からのデータを利用することができる。
以下では、予測対象910の動作または状態の解析を、単に予測対象910の解析と称する。上記した配送状況の解析は、予測対象910の解析の例に該当する。
シミュレータ装置10は、予測対象910の動作または状態のシミュレーションを行う。シミュレータ装置10は、予測対象910を模擬するシミュレーションモデルとしてパラメータを含むモデルを用いる。シミュレーションモデルは、入力データから出力データを算出する処理を表す。シミュレーションモデルは、たとえば、入力データと出力データとの関連性を数理的に表現するモデルであってもよいし、入力と出力との間における事象を物理的に表現するモデルであってもよい。
予測対象910における実績データに基づいて、シミュレータ装置10へのモデルへの入力データの値に対して、パラメータに設定する値が予め定められている。シミュレータ装置10が、例えば機械学習等によって自動的に、入力データの値とパラメータ設定値との関係を取得するようにしてもよい。あるいは、人(例えば予測システム1のユーザ)が、シミュレーションの実行またはデータ解析等によって、入力データの値に対するパラメータ設定値を決めておくようにしてもよい。
シミュレータ装置10のシミュレーションモデルは、第2モデルの例に該当する。シミュレータ装置10は、パラメータ設定部の例に該当する。
機械学習装置20は、予測対象910の動作または状態を学習(機械学習)し、学習結果を用いて予測対象910の動作または状態を予測する。機械学習装置20がニューラルネットワークを備えて学習を行うようにしてもよいが、機械学習装置20が機械学習を行う仕組みはこれに限定されない。機械学習装置20は、たとえば、サポートベクターマシン、決定木等のモデルを用いて学習してもよい。機械学習装置20は、入力データ値に対して出力データ値を正確に算出するよう、該モデルのパラメータ値を算出する。
機械学習装置20の機械学習によって得られるモデルを機械学習モデルと称する。機械学習装置20の機械学習モデルは、第1モデルの例に該当する。
シミュレータ装置10による予測と機械学習装置20による予測とを比較すると、機械学習装置20による予測の方が、シミュレータ装置10に予測よりも所要時間が短い。これは、たとえば、機械学習の計算量は、一般的に、物理的なモデルに基づくシミュレーションの計算量よりも少ないからである。一方、シミュレータ装置10が行う予測について、人(例えばユーザ)が、その予測の根拠を解析できる。これに対し、機械学習装置20が行う予測については、人が、その予測の根拠を解析することは困難である。これは、シミュレータ装置10における物理的なモデルが、数理的なモデルよりも理解しやすいからである。
例えば、シミュレータ装置10が用いるシミュレーションモデルのパラメータが、実際の予測対象910に関する物理量となっており、ユーザは、その値を予測対象910の解析に役立てることができる。これに対して、機械学習装置20がニューラルネットワークを用いて機械学習を行う場合、通常、ニューラルネットワークにおける重み(パラメータ値)を実際の物理量に対応付けることは困難である。
モデル生成装置30は、機械学習装置20による予測における入出力に基づいて、シミュレータ装置10が同様の予測を行うためにシミュレーションモデルに設定されるパラメータ値を取得する。そのために、モデル生成装置30は、予測のための入力データおよび機械学習装置20による予測結果の入力を受けて、シミュレータ装置10がその入力データからその予測結果を取得するためのシミュレーションモデルのパラメータ値を出力するモデルを予め学習しておく。以下では、機械学習装置20の予測結果と同じ予測結果をシミュレータ装置10が出力するための、シミュレータ装置10のシミュレーションモデルのパラメータ値を、機械学習装置20の予測結果に対応するシミュレーションモデルのパラメータ値と称する。シミュレータ装置10からの予測結果、及び、機械学習装置20からの予測結果は、一般的に、いずれも誤差を含んでいる。したがって、本実施形態においては、所定範囲(たとえば、1%、5%、7%等)以内の誤差については、予測結果に誤差が生じていたとしても、予測結果が一致していると仮定している。以降では、説明の便宜上、予測結果に所定範囲の誤差が生じている場合であっても、当該予測結果が「同じ」である、または、「一致している」という言葉を用いて説明する。
また、モデル生成装置30が学習するモデルをブリッジモデルとも称する。ブリッジモデルは、第3モデルの例に該当する。言い換えると、ブリッジモデルは、機械学習装置20が算出したパラメータ値と、シミュレーションモデルのパラメータ値との関連性を表すモデルである。
モデル生成装置30は、例えばパソコン(Personal Computer;PC)またはワークステーション(Workstation;WS)等のコンピュータを用いて構成される。
モデル生成装置30が行う処理は、学習フェーズと予測フェーズとに分類される。モデル生成装置30は、学習フェーズでブリッジモデルを生成する。たとえば、モデル生成装置30は、ブリッジモデルを取得し、ブリッジモデルのパラメータ値を算出する。そして、モデル生成装置30は、予測フェーズでモデルブリッジを用いて、機械学習装置20の予測結果に対応するシミュレーションモデルのパラメータ値を取得する。
モデル生成装置30が、シミュレーションモデルのパラメータ値を取得することで、ユーザは、例えば機械学習装置20による予測結果の解析など予測対象910の解析に、シミュレーションモデルのパラメータ値を利用することができる。
通信ネットワーク920は、モデル生成装置30と、シミュレータ装置10と、機械学習装置20と、予測対象910との通信を仲介する。通信ネットワーク920の種類は、特定の種類に限定されない。例えば、通信ネットワーク920は、インターネットであってもよい。あるいは、通信ネットワーク920が、予測システム1の専用回線の通信ネットワークとして構成されていてもよい。
予測システム1が予測対象910の動作または状態を予測する方法は、機械学習による方法に限定されない。また、予測システム1が、予測対象910の解析の補助用に取得するデータは、シミュレーションモデルのパラメータ値に限定されない。たとえば、以下の条件(1)および(2)が成立するいろいろな場面に、予測システム1を適用することができる。
(1) 予測対象910の動作または状態を予測する方法として、予測の根拠を人が(予測モデルのパラメータ値等から)直接的に理解することが困難な方法が用いられる。
(2) 予測対象910の解析の補助用に予測システム1が取得するデータを、仮に、(シミュレーションまたは解析等により)直接的に取得する場合、ブリッジモデルを用いて取得する場合よりも時間を要する、あるいは、直接的に取得することが困難である。
以下では、予測システム1が、予測対象910の解析の補助用に取得するデータを解析補助データと称する。シミュレーションモデルのパラメータ値は、解析補助データの例に該当する。
なお、後述するように、モデル生成装置30が予測結果を必要とせず、予測用の入力データに対して解析用データを出力するブリッジモデルを生成するようにしてもよい。
シミュレータ装置10、機械学習装置20、および、モデル生成装置30のうち何れか2つ以上が、1つの装置に纏められた構成となっていてもよい。この場合に、ブリッジモデルは、入力データと、シミュレーションモデルのパラメータ値との関連性を表すモデルである。
図2は、モデル生成装置30の機能構成の例を示す概略ブロック図である。図2に示す構成で、モデル生成装置30は、通信部110と、表示部120と、操作入力部130と、記憶部180と、制御部190とを備える。制御部190は、モデル生成部191と、モデル実行部192とを備える。
通信部110は、他の装置と通信を行う。例えば、通信部110は、機械学習装置20から予測対象910の動作または状態の予測結果を受信する。
表示部120は、例えば液晶パネルまたはLED(Light Emitting Diode、発光ダイオード)パネル等の表示画面を備え、各種画像を表示する。例えば、表示部120は、解析補助データを表示する。
操作入力部130は、例えばキーボードおよびマウスなどの入力デバイスを備え、ユーザ操作を受け付ける。例えば、操作入力部130は、解析補助データの取得を指示するユーザ操作を受け付ける。
記憶部180は、各種データを記憶する。記憶部180は、モデル生成装置30が備える記憶デバイスを用いて構成される。
制御部190は、モデル生成装置30の各部を制御して各種処理を実行する。制御部190の機能は、モデル生成装置30が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部180からプログラムを読み出して実行することで実行される。
モデル生成部191は、学習フェーズにてブリッジモデルを生成する。
モデル実行部192は、予測フェーズにて、モデル生成部191が生成したブリッジモデルを用いて解析補助データを取得する。具体的には、モデル実行部192は、予測用の入力データをブリッジモデルに適用して、解析補助データを算出する。
モデル生成部191の機能を実行する装置(すなわち、ブリッジモデルを生成する装置)と、モデル実行部192の機能を実行する装置(すなわち、ブリッジモデルを用いて解析補助データを取得する装置)とが別々の装置として構成されていてもよい。
モデル生成部191によるブリッジモデルの生成についてさらに説明する。
ここでは、以下の条件が成立していることを想定して、機械学習装置20が、予測対象910の動作または状態の予測の機械学習を行い、モデル生成装置30が、シミュレータ装置10のシミュレーションモデルのパラメータ値を出力するブリッジモデルを生成する場合を例に説明する。
(A) 予測対象910を模擬するシミュレーションモデルが存在する。かつ、人が、そのシミュレーションモデルのパラメータ値を予測対象910の解析に利用可能である。
(B) 機械学習装置20が、予測対象910の動作または状態の予測を十分に正確に行えるが、機械学習装置20の機械学習のパラメータの値は予測対象910の解析に利用できない。
(C) シミュレータ装置10がシミュレーションで予測対象910の動作または状態の予測を行う計算コストが、機械学習装置20が機械学習結果を用いて予測を行う計算コストよりも高い。特に、シミュレータ装置10が予測を行うのに要する時間が、機械学習装置20が予測を行うのに要する時間よりも長い。
(D) 予測対象910の動作または状態の予測のための入力データの値と、シミュレータ装置10のシミュレーションモデルのパラメータの値との間に関連性がある。
(E) 予測対象910の動作または状態の予測のための入力データの値と、シミュレータ装置10のシミュレーションモデルのパラメータの値との関係を取得するオフライン計算時間は十分にある。一方、実際に予測対象910の動作または状態を予測する予測時間は限られている。
機械学習装置20の機械学習モデルを式(1)のように表記する。
Figure 2020190958
xは、予測のための入力データであり、d個の実数値からなる。すなわち、xは、Rdxの要素である。「R」は実数空間を示す。xは、サンプルの例に該当する。
yは、予測結果を示す出力データであり、d個の実数値からなる。すなわち、yはRdyの要素である。yは、ラベルの例に該当する。ここでいうラベルは、サンプルと関連性のあるデータである。ラベルは、離散的な情報を表すクラスであってもよいし、連続的な情報を表す数値であってもよい。
ξは、機械学習のパラメータ値のベクトル表記である。機械学習装置20は機械学習のパラメータとしてdξ個の実数値のパラメータを持つ。すなわち、ξはRdξの要素である。
また、シミュレータ装置10によるシミュレーションを式(2)のように表記する。
Figure 2020190958
xおよびyは、式(1)の場合と同様である。理想的には、機械学習装置20とシミュレータ装置10とは、同じ入力データxに対して同じ予測結果(出力データy)を出力する。以下では、機械学習装置20とシミュレータ装置10との、同じ入力データxに対する出力データyの差異が十分に小さく、出力データyが同じと見做せるものとする。
θは、シミュレーションモデルのパラメータ値のベクトル表記である。機械学習装置20のシミュレーションモデルはdθ個の実数値のパラメータを持つ。すなわち、θはRdθの要素である。
モデル生成部191は、機械学習装置20の機械学習モデルを示す関数fml、シミュレータ装置10のシミュレーションモデルを示す関数fsimそれぞれの、RKHS(Reproducing Kernel Hilbert Space)における表記を取得する。この処理を前処理と称する。
そして、モデル生成部191は、RKHSで、機械学習装置20の機械学習モデルを示す関数の入力を受けて、シミュレータ装置10のシミュレーションモデルを示す関数を出力する関数を取得する。この処理を本番処理と称する。
前処理では、モデル生成部191は、{X ,Y ,・・・,X ,Y }の入力を受けて、{μ^,ml ,・・・,μ^,ml }および{μ^,sim ,・・・,μ^,sim }を算出する。
ここで、機械学習装置20の機械学習モデルのパラメータ値ξおよびシミュレータ装置10のシミュレーションモデルのパラメータ値θは、予測対象910の状態変化に応じて変化するものとする。
(l=1,・・・,L)は、パラメータ値ξおよびθが一定であると見做せる単位時間における、予測のための入力データxのサンプルデータである。Xnlは、n個のサンプルデータでxの分布を示す。上記のようにxはdの要素なので、Xnlは、n×d個の実数値で示される。すなわち、X はRn×dxの要素である。
(l=1,・・・,L)は、パラメータ値ξおよびθが一定であると見做せる単位時間における、機械学習装置20による予測結果を示す出力データyのサンプルデータである。Ynlは、n個のサンプルデータでyの分布を示す。上記のようにyはdの要素なので、Ynlは、n×d個の実数値で示される。すなわち、Y はRn×dyの要素である。
以下では、パラメータ値ξおよびθが一定であると見做せる単位時間が1日である場合を例に説明する。ただし、パラメータ値ξおよびθが一定であると見做せる単位時間は、特定の時間に限定されない。例えば、予測対象910の状態が比較的変化し易い場合、パラメータ値ξおよびθが一定であると見做せる単位時間が3時間となっていてもよい。
μ^,ml (l=1,・・・,L)は、データセット{X ,Y }に対応する機械学習モデルのカーネル平均を示す。データセット{X ,Y }に対応するモデルとは、X で示される分布のxの入力に対して、Y で示される分布のyを出力するモデルである。上付きの「^」は推定値を示す。
μ^,sim (l=1,・・・,L)は、データセット{X ,Y }に対応するシミュレーションモデルのカーネル平均を示す。
カーネル平均は、RKHS上の点で示される。モデル生成部191が、μ^,ml およびμ^,sim を算出する方法として、カーネルABC(Kernel Approximate Bayesian Computation)の方法を用いることができる。
本番処理では、モデル生成部191は、{μ^,ml ,・・・,μ^,ml }および{μ^,sim ,・・・,μ^,sim }に基づいてTを算出する。Tは、機械学習モデルμ^,mlの入力を受けてシミュレーションモデルμ^,simを出力する関数のRKHS空間での表記である。
モデル生成部191は、式(3)に基づいてTを算出する。
Figure 2020190958
ここで、「λ」は、正則化のための定数でありλ>0である。「H」は、RKHS空間を示す。|| ||は、RKHS空間におけるノルムを示す。RKHS空間では、多項式関数が点で示され、関数の類似度をノルムで計算することができる。
式(3)のΣl=1 ||μ^,sim −T(μ^,sim )|| に示されるように、関数Tを用いてμ^,ml を変換した場合のμ^,sim との誤差が、なるべく小さくなるようにTを算出する。
式(3)のλ||T|| は、過学習を防止するための正則化の項であり、モデルが複雑になることに対するペナルティー項として機能する。
つぎに、モデル実行部192によるシミュレーションモデルのパラメータ値の算出についてさらに説明する。
モデル実行部192は、{X L+1,Y L+1}の入力を受けて、この{X L+1,Y L+1}に対応するシミュレーションモデルのパラメータ値を算出する。ここでいう{X L+1,Y L+1}に対応するシミュレーションモデルのパラメータ値とは、シミュレータ装置10が、X L+1の入力に対してY L+1を出力するためのパラメータ値である。
モデル実行部192は、{X L+1,Y L+1}に基づいてμ^,ml L+1を算出し、得られたμ^,ml L+1をTに適用してμ^,sim L+1を算出する。シミュレータ装置10は、得られたμ^,sim L+1に基づいてθL+1を算出する。
モデル実行部192が、{X L+1,Y L+1}に基づいてμ^,ml L+1を算出する方法は、モデル生成部191が、{X ,Y }に基づいてμ^,ml を求める方法と同様の方法とすることができる。
ここで、μ、μ’を何れもRKHS空間における関数として、ガウシアンライクカーネル(Gaussian Like Kernel)κを、式(4)のように定める。
Figure 2020190958
σμはカーネルκの幅を示す定数であり、σμ>0である。
モデル実行部192が行うμ^,sim L+1の算出は、式(5)のように示される。
Figure 2020190958
は、式(6)のv,・・・,vのように示される。
Figure 2020190958
上付きの「T」は、行列またはベクトルの転置を示す。「I」は、単位行列を示す。
「G」は、Gram Matrixを示し、式(7)のように示される。
Figure 2020190958
「k(μ^,ml L+1)」は、式(8)のように示される。
Figure 2020190958
モデル実行部192が、カーネル平均μ^,sim L+1からシミュレータモデルのパラメータ値を算出する方法としては、カーネルハーディング(Kernel Herding)の方法を用いることができる。例えば、モデル実行部192は、式(9)を用いて、カーネル平均μ^,sim L+1に対するシミュレーションモデルのパラメータ値のサンプルデータθL+1,jを算出する。
Figure 2020190958
θL+1,j(j=1,・・・,m)は、θL+1のj番目のサンプリングデータを示す。したがって、(θL+1,1,・・・,θL+1,m)は、θL+1を示す。
重みwl,jは、θの事後分布のカーネル平均を得るための{X ,Y }に対するカーネルABC(Kernel Approximate Bayesian Computation)によって計算される。
「kθ」は、ガウシアンカーネルを示す。θl,jは、l番目のデータセット{X ,Y }に対するj番目の事前分布からのサンプリングデータを示す。
j=2,・・・,mの場合については、それぞれ式(9)全体を適用する。初期状態となるj=1の場合については、式(9)の右辺の第1項を用いる。したがって、j=1の場合は式(10)を適用する。
Figure 2020190958
このように、モデル実行部192がθL+1を算出することで、ユーザは、予測対象910の解析にθL+1を用いることができる。
モデル生成部191によるμ^,sim lの算出についてさらに説明する。
モデル生成部191が、式(11)を用いてμ^,sim lを算出するようにしてもよい。
Figure 2020190958
θl,jの各々は、事前分布π(θ)に従ったパラメータ値のサンプルを示す。mは、このサンプルの個数を示す。ここでは、jは、個々のサンプルを識別するインデックスである。
括弧内の「・」は、RKHS空間における関数の変数が特定のものに限定されないことを示す。
式(11)のlをL+1と読み替え、モデル実行部192が、式(11)を用いてμ^,sim L+1を算出するようにしてもよい。
次に、モデル生成部191によるμ^,ml lの算出についてさらに説明する。
ここで、機械学習装置20の機械学習モデルがパラメトリックモデルである場合の例として、機械学習装置20が、幾つかの隠れ層を持ったベイジアンニューラルネットワークを用いて機械学習を行う場合を想定する。ここでいうパラメトリックモデルは、パラメータ(ここでは学習パラメータ)を有するモデルである。
この場合、モデル生成部191が、式(12)に基づいてμ^,ml lを算出するようにしてもよい。
Figure 2020190958
l=1,・・・,Lに対する事後分布ξはRdξの要素であり、マルコフチェーンモンテカルロ(Markov Chain Monte Carlo;MCMC)法またはそのバリエーションを用いて得られる。
mはパラメータサンプルの個数を示す。j=1,・・・,mは、個々のパラメータサンプルを識別するインデックスとして用いられている。
関数μ^,ml (μ^,ml はHの要素)のガウシアンライクカーネルを式(13)のようにする。
Figure 2020190958
定数σμは、ガウシアンライクカーネルκの幅を示し、σμ>0である。
<・,・>は、内積を示す。
ξのガウシアンカーネルを式(14)のようにする。
Figure 2020190958
定数σξは、ガウシアンカーネルkξの幅を示し、σξ>0である。
式(12)のkξ(・,ξi,j)を直接計算することはできないのに対し、その内積をとることにより、<k(・,ξ),k(・,ξ)>=k(ξ,ξ)のように計算可能な形になる。式(12)のkξ(・,ξi,j)の場合、式(14)のkξ(ξi,j,ξi’,j’)のようになり、計算可能になる。
式(12)のlをL+1と読み替え、モデル実行部192が、式(12)を用いてμ^,ml L+1を算出するようにしてもよい。
このように、モデル生成部191およびモデル実行部192が機械学習モデルのカーネル平均μ^,ml を算出することで、モデル生成装置30は、機械学習装置20による予測データを得られない場合でも、シミュレーションモデルのパラメータ値を算出し得る。
一方、機械学習装置20の機械学習モデルがノンパラメトリックモデルである場合の例として、機械学習装置20が、ガウス過程回帰(Gaussian Process Regression;GPR)を用いて機械学習を行う場合を想定する。ここでいうノンパラメトリックモデルは、パラメータ(ここでは学習パラメータ)を有していないモデルである。
ガウス過程回帰は、1層の隠れ層を有しノード数が無限のベイジアンニューラルネットワークと等価である。
ガウス過程回帰の結果として、式(15)に示される事前分布の平均が得られる。
Figure 2020190958
l,iは、カーネルkのグラム行列(Gram Matrix)を用いて計算される。ガウス過程回帰とカーネルリッジ回帰との等価性により、式(15)が成り立つことは明らかである。
μ Y|X,lを用いてY l,n+1は式(16)のように算出される。
Figure 2020190958
パラメトリックモデルの場合、パラメータξが入力となるのに対し、ノンパラメトリックモデルの場合は、X が入力となる。したがって、パラメトリックモデルでは、機械学習のパラメータξからシミュレータのパラメータθへ変換されるのに対し、ノンパラメトリックモデルでは、入力Xからシミュレータのパラメータθへ変換される。
したがって、モデル実行部192は、機械学習装置20による予測結果を求める必要なしに、シミュレータモデルのパラメータ値を求めることができる。
ここで、関数μ^,ml のガウシアンライクカーネルκを式(17)のようにする。
Figure 2020190958
また、xのガウシアンカーネルを式18のようにする。
Figure 2020190958
定数σは、カーネルkの幅を示し、σ>0である。
次に、予測システム1の適用場面の例について説明する。
予測システム1は、例えば工場の生産ラインにおける所要時間の予測に適用可能である。
図3は、予測システム1の対象となる生産ラインの例を示す図である。図3の例で、生産ラインには、組立装置と検査装置とが設置されている。
組立装置は、上側部品、下側部品、および2つのねじの4つの部品を組み立てて製品を生成する。組立装置が組み立てた製品は検査装置に搬入される。検査装置は、製品が4つ搬入されると検査を行う。
この組立工程で、単位時間当たりの製品の生産量をデータXとし、X個(データXの値)の製品の出荷時間をデータYとする。また、シミュレータ装置10のシミュレーションモデルにおけるパラメータの個数を2個とし、組立装置の作業時間(組立工程の所要時間)をθ、検査装置の作業時間(検査工程の所要時間)をθとする。
この工程で、生産する製品の個数が増加すると、負荷が増大して各工程における経過時間が大幅に増加するものとする。具体的には、Xの値が110を超えると、組立および検査に時間を要し、θ、θ共に値が大きくなるものとする。
この生産ラインについて、機械学習装置20が出荷時間を予測することで、ユーザは、生産ラインが適切に稼働しているか否かを確認できる。また、モデル生成装置30が、シミュレーションモデルのパラメータθ、θの値を算出することで、ユーザは、例えば、出荷時間のボトルネックがどこにあるかといった生産ラインの解析に、モデル生成装置30が算出したパラメータ値を用いることができる。
なお、モデル生成装置30が算出するパラメータ値は、上述した工程毎の所要時間に限定されず、機械学習装置20の予測に影響し得るいろいろなパラメータの値とし得る。例えば、天気または気温など周囲環境の状態が影響する生産ラインの場合、モデル生成装置30が、工程毎の所要時間に加えて、あるいは代えて、天気または気温、あるいはこれらの組み合わせをパラメータ値として算出するようにしてもよい。
ただし、予測システム1の適用対象は特定のものに限定されない。たとえば、予測システム1を、宅配会社等の物流系統に適用するようにしてもよい。あるいは、予測システム1を、花火大会など人が集まる会場で安全かつ効率的に人を誘導する場合など、人の流れの予測に適用するようにしてもよい。
なお、上記では、機械学習モデル、シミュレーショモデル共にサンプルデータを用いた分布で示される、いわば分布−分布回帰の場合を例に説明したが、予測システム1の適用範囲はこれに限定されない。
RKHS空間のカーネルとして線形カーネルを用いると、カーネル平均は分布の平均の値となる。したがって、機械学習モデル、シミュレーショモデルの何れか一方または両方が点で示される場合にも、上記で説明したのと同様に、予測システム1を適用することができる。
すなわち、モデル生成部191が、機械学習モデルを示す関数の分布の入力を受けて、シミュレーションモデルの関数の分布を出力する、RKHS空間における関数をブリッジモデルとして算出するようにしてもよい。
あるいは、モデル生成部191が、機械学習モデルを示す関数の分布の入力を受けて、シミュレーションモデルの関数を示す点を出力する、RKHS空間における関数をブリッジモデルとして算出するようにしてもよい。
あるいは、モデル生成部191が、機械学習モデルを示す関数を示す点の入力を受けて、シミュレーションモデルの関数の分布を出力する、RKHS空間における関数をブリッジモデルとして算出するようにしてもよい。
あるいは、モデル生成部191が、機械学習モデルを示す関数を示す点の入力を受けて、シミュレーションモデルの関数を示す点を出力する、RKHS空間における関数をブリッジモデルとして算出するようにしてもよい。
機械学習モデル、シミュレーショモデルの何れか一方または両方が点で示されることで、モデル生成装置30の計算コストが比較的小さくて済む。この点で、モデル生成装置30は、シミュレーションモデルのパラメータ値を比較的速く算出し得る。
このように、分布−分布回帰の場合に限らず、分布−点回帰の場合、点−分布回帰の場合、および、点−点回帰の場合にも予測システム1を適用可能である。
以上のように、モデル生成部191は、機械学習モデルに入力される予測用データと、その予測用データに基づく予測結果との関連性を示す機械学習モデルと、前記の関連性を示し機械学習モデルとは異なるシミュレーションモデルのパラメータとの間の関連性を示すブリッジモデルを生成する。
モデル生成装置30によれば、予測対象910の動作または状態の予測時に、シミュレーションモデルを実行する必要なしに、シミュレーションモデルのパラメータ値を得られる。モデル生成装置30によれば、この点で、比較的短い時間で、解析対象の解析に利用可能なデータを得られる。
また、モデル生成部191は、機械学習モデルを示す関数の分布の入力を受けて、シミュレータモデルを示す関数の分布を出力する、RKHS空間における関数をブリッジモデルとして生成する。
モデル生成部191によれば、シミュレーションモデルのパラメータ値の分布を算出することができ、この点で、シミュレーションモデルのパラメータ値をより高精度に算出できる。
また、モデル生成部191は、機械学習モデルを示す関数の分布の入力を受けて、シミュレータモデルを示す関数を示す点を出力する、RKHS空間における関数をブリッジモデルとして生成する。
モデル生成部191によれば、シミュレーションモデルを示す関数が点で示されることで計算コストが比較的小さくて済む。
また、モデル生成部191は、機械学習モデルを示す関数を示す点の入力を受けて、シミュレータモデルを示す関数の分布を出力する、RKHS空間における関数をブリッジモデルとして生成する。
モデル生成部191によれば、機械学習モデルを示す関数が点で示されることで計算コストが比較的小さくて済む。
また、モデル生成部191は、機械学習モデルを示す関数を示す点の入力を受けて、シミュレータモデルを示す関数を示す点を出力する、RKHS空間における関数をブリッジモデルとして生成する。
モデル生成部191によれば、機械学習モデルを示す関数およびシミュレーションモデルを示す関数が、いずれも点で示されることで計算コストが比較的小さくて済む。
また、モデル生成部191は、機械学習モデルを示すカーネル平均の入力を受けて、シミュレーションモデルを示すカーネル平均を出力する、RKHS空間の関数をブリッジモデルとして生成する。
モデル生成装置30によれば、ブリッジモデルの生成の一部にカーネル平均等の技術を用いることができ、比較的容易にブリッジモデルの生成処理を設計し得る。
また、モデル実行部192は、シミュレーションモデルを示すカーネル平均に基づいて、シミュレーションモデルのパラメータ値を算出する。
ユーザは、このパラメータ値を、予測対象910の解析に用いることができる。
また、モデル実行部192は、機械学習モデルに入力される予測用データと、その予測用データに基づく予測結果との関連性を示す第1モデルと、前記の関連性を示し機械学習モデルとは異なるシミュレーションモデルのパラメータとの間の、関連性を示すブリッジモデルを、機械学習モデルの所与サンプルに適用することによって、その所与サンプルについてのシミュレーションモデルのパラメータを算出する。
ユーザは、このパラメータ値を、予測対象910の解析に用いることができる。
次に図4から図7を参照して、実施形態に係る構成の例について説明する。
図4は、実施形態に係るモデル生成装置の構成の例を示す図である。図4に示すモデル生成装置200は、モデル生成部201を備える。
かかる構成にて、モデル生成部201は、サンプルと、そのサンプルのラベルとの関連性を示す第1モデルと、その関連性を示し第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する。
モデル生成装置200によれば、予測対象の動作または状態の予測時に、シミュレーションモデルを実行する必要なしに、シミュレーションモデルのパラメータ値を得られる。モデル生成装置200によれば、この点で、比較的短い時間で、解析対象の解析に利用可能なデータを得られる。
図5は、実施形態にかかるパラメータ算出装置の構成の例を示す図である。図5に示すパラメータ算出装置210は、モデル実行部211を備える。
かかる構成にて、モデル実行部211は、サンプルとそのサンプルのラベルとの関連性を示す第1モデルと、その関連性を示し第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、第1モデルの所与サンプルに適用することによって、その所与サンプルについての第2モデルのパラメータを算出する。
ユーザは、所与サンプルについての第1モデルのパラメータ値を、予測対象の解析に用いることができる。
図6は、実施形態に係るモデル生成方法における処理の例を示す図である。
図6に示すモデル生成方法は、ステップS11を含む。ステップS11は、サンプルと、サンプルのラベルとの関連性を示す第1モデルと、その関連性を示し第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程である。
図6に示すモデル生成方法よれば、予測対象の動作または状態の予測時に、シミュレーションモデルを実行する必要なしに、シミュレーションモデルのパラメータ値を得られる。このモデル生成方法によれば、この点で、比較的短い時間で、解析対象の解析に利用可能なデータを得られる。
図7は、実施形態に係るパラメータ算出方法における処理の例を示す図である。
図7に示すパラメータ算出方法は、ステップS21を含む。ステップS21は、サンプルとそのサンプルのラベルとの関連性を示す第1モデルと、その関連性を示し第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、第1モデルの所与サンプルに適用することによって、その所与サンプルについての第2モデルのパラメータを算出する工程である。
図7に示すパラメータ算出方法によれば、ユーザは、所与サンプルについての第1モデルのパラメータ値を、予測対象の解析に用いることができる。
上記の実施形態においては、シミュレーションを用いて説明したが、シミュレーションではなく、予測対象の実際の動作(または、状態)等を実際に表したパラメータ値であってもよい。または、算出したパラメータ値に従い予測対象の動作を制御してもよい。この場合に、モデル生成装置は、算出したパラメータ値を、予測対象の処理(動作)を制御する制御装置のパラメータ値に設定する。制御装置は、該パラメータ値に従い予測対象を制御する。たとえば、モデル生成装置は、算出したパラメータ値に従いトラックに積載する配送物を決める装置として機能する。または、モデル生成装置は、算出したパラメータ値に従い、生産ラインの各装置にて処理する処理量を決定し、決定した処理量に従い各装置の動作を制御する装置として機能する。すなわち、モデル生成装置は、算出したパラメータ値に従い、予測対象の処理(動作)を制御する制御装置として機能する。
図8は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
図8に示す構成で、コンピュータ700は、CPU710と、主記憶装置720と、補助記憶装置730と、インタフェース740とを備える。
上記のモデル生成装置30、またはモデル生成装置200のうち何れか1つ以上が、コンピュータ700に実装されてもよい。その場合、上述した各処理部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。また、CPU710は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置720に確保する。各装置と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
モデル生成装置30がコンピュータ700に実装される場合、制御部190およびその各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
また、CPU710は、プログラムに従って、記憶部180に対応する記憶領域を主記憶装置720に確保する。通信部110が行う通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。表示部120が行う処理は、インタフェース740が表示装置を備え、CPU710の制御に従って画像を表示することで実行される。操作入力部130が行う処理は、インタフェース740が入力デバイスを備えてユーザ操作を受け付け、行われたユーザ操作を示す信号をCPU710へ出力することで実行される。
モデル生成装置200がコンピュータ700に実装される場合、モデル生成部201の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
なお、モデル生成装置30、モデル生成装置200、または、パラメータ算出装置210の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。ここでいう「コンピュータシステム」とは、OS(オペレーティングシステム)や周辺機器等のハードウェアを含む。
「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD−ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成するモデル生成部
を備えるモデル生成装置。
(付記2)
前記モデル生成部は、前記第1モデルを示す関数の分布の入力を受けて前記第2モデルを示す関数の分布を出力する前記第3モデルを生成する、
付記1に記載のモデル生成装置。
(付記3)
前記モデル生成部は、前記第1モデルを示す関数の分布の入力を受けて前記第2モデルを示す関数を示す点を出力する前記第3モデルを生成する、
付記1に記載のモデル生成装置。
(付記4)
前記モデル生成部は、前記第1モデルを示す関数を示す点の入力を受けて前記第2モデルを示す関数の分布を出力する前記第3モデルを生成する、
付記1に記載のモデル生成装置。
(付記5)
前記モデル生成部は、前記第1モデルを示す関数を示す点の入力を受けて前記第2モデルを示す関数を示す点を出力する前記第3モデルを生成する、
付記1に記載のモデル生成装置。
(付記6)
前記モデル生成部は、前記第1モデルを示すカーネル平均の入力を受けて前記第2モデルを示すカーネル平均を出力するRKHS空間の関数を前記第3モデルとして生成する、
付記1から5の何れか1つに記載のモデル生成装置。
(付記7)
前記第2モデルを示すカーネル平均に基づいて、前記第2モデルのパラメータの値を算出するモデル実行部をさらに備える、
付記6に記載のモデル生成装置。
(付記8)
サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出するモデル実行部
を備えるパラメータ算出装置。
(付記9)
サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程
を含むモデル生成方法。
(付記10)
サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出する工程
を備えるパラメータ算出方法。
(付記11)
コンピュータに、
サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程
を実行させるためのプログラム。
(付記12)
コンピュータに、
サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出する工程
を実行させるためのプログラム。
1 予測システム
10 シミュレータ装置
20 機械学習装置
30、200 モデル生成装置
110 通信部
120 表示部
130 操作入力部
180 記憶部
190 制御部
191、201 モデル生成部
192 モデル実行部

Claims (10)

  1. サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成するモデル生成部
    を備えるモデル生成装置。
  2. 前記モデル生成部は、前記第1モデルを示す関数の分布の入力を受けて前記第2モデルを示す関数の分布を出力する前記第3モデルを生成する、
    請求項1に記載のモデル生成装置。
  3. 前記モデル生成部は、前記第1モデルを示す関数の分布の入力を受けて前記第2モデルを示す関数を示す点を出力する前記第3モデルを生成する、
    請求項1に記載のモデル生成装置。
  4. 前記モデル生成部は、前記第1モデルを示すカーネル平均の入力を受けて前記第2モデルを示すカーネル平均を出力するRKHS空間の関数を前記第3モデルとして生成する、
    請求項1から3の何れか1項に記載のモデル生成装置。
  5. 前記第2モデルを示すカーネル平均に基づいて、前記第2モデルのパラメータの値を算出するモデル実行部をさらに備える、
    請求項4に記載のモデル生成装置。
  6. サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出するモデル実行部
    を備えるパラメータ算出装置。
  7. サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程
    を含むモデル生成方法。
  8. サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出する工程
    を備えるパラメータ算出方法。
  9. コンピュータに、
    サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを生成する工程
    を実行させるためのプログラム。
  10. コンピュータに、
    サンプルと前記サンプルのラベルとの関連性を示す第1モデルと、前記関連性を示し前記第1モデルとは異なる第2モデルのパラメータとの間の、関連性を示す第3モデルを、前記第1モデルの所与サンプルに適用することによって、前記所与サンプルについての前記第2モデルのパラメータを算出する工程
    を実行させるためのプログラム。
JP2019096325A 2019-05-22 2019-05-22 モデル生成装置、パラメータ算出装置、モデル生成方法およびプログラム Active JP7406186B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/612,310 US20220229428A1 (en) 2019-05-22 2019-05-22 Model generation device, parameter calculation device, model generation method, parameter calculation method, and recording medium
JP2019096325A JP7406186B2 (ja) 2019-05-22 2019-05-22 モデル生成装置、パラメータ算出装置、モデル生成方法およびプログラム
PCT/JP2020/020085 WO2020235625A1 (ja) 2019-05-22 2020-05-21 モデル生成装置、パラメータ算出装置、モデル生成方法、パラメータ算出方法および記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096325A JP7406186B2 (ja) 2019-05-22 2019-05-22 モデル生成装置、パラメータ算出装置、モデル生成方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2020190958A true JP2020190958A (ja) 2020-11-26
JP7406186B2 JP7406186B2 (ja) 2023-12-27

Family

ID=73455030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096325A Active JP7406186B2 (ja) 2019-05-22 2019-05-22 モデル生成装置、パラメータ算出装置、モデル生成方法およびプログラム

Country Status (3)

Country Link
US (1) US20220229428A1 (ja)
JP (1) JP7406186B2 (ja)
WO (1) WO2020235625A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001381A (ja) * 2014-06-11 2016-01-07 国立大学法人 東京大学 情報処理装置、情報処理方法、プログラム及び記録媒体
JP2016091306A (ja) * 2014-11-05 2016-05-23 株式会社東芝 予測モデル作成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086549B2 (en) 2007-11-09 2011-12-27 Microsoft Corporation Multi-label active learning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001381A (ja) * 2014-06-11 2016-01-07 国立大学法人 東京大学 情報処理装置、情報処理方法、プログラム及び記録媒体
JP2016091306A (ja) * 2014-11-05 2016-05-23 株式会社東芝 予測モデル作成方法

Also Published As

Publication number Publication date
WO2020235625A1 (ja) 2020-11-26
US20220229428A1 (en) 2022-07-21
JP7406186B2 (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
Meyer et al. Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach
Rogers et al. On a grey box modelling framework for nonlinear system identification
US10984343B2 (en) Training and estimation of selection behavior of target
Cristiani et al. Fatigue damage diagnosis and prognosis of an aeronautical structure based on surrogate modelling and particle filter
WO2020235631A1 (ja) モデル生成装置、システム、パラメータ算出装置、モデル生成方法、パラメータ算出方法および記録媒体
Toyama et al. Biases in estimating the balance between model-free and model-based learning systems due to model misspecification
Toyama et al. Reinforcement learning with parsimonious computation and a forgetting process
Basnet et al. A decision-making framework for selecting an MBSE language–A case study to ship pilotage
Roghabadi et al. Forecasting project duration using risk-based earned duration management
JP6853955B2 (ja) 人流パターン推定システム、人流パターン推定方法および人流パターン推定プログラム
Percy et al. Scheduling preventive maintenance for oil pumps using generalized proportional intensities models
Gaidai et al. Dementia death rates prediction
JP6853968B2 (ja) パラメータ推定システム、パラメータ推定方法およびパラメータ推定プログラム
Delcaillau et al. Model transparency and interpretability: survey and application to the insurance industry
Darko et al. Using machine learning to improve cost and duration prediction accuracy in green building projects
Delcea et al. GM (1, 1) in bankruptcy forecasting
Molter et al. GLAMbox: A Python toolbox for investigating the association between gaze allocation and decision behaviour
WO2020235625A1 (ja) モデル生成装置、パラメータ算出装置、モデル生成方法、パラメータ算出方法および記録媒体
Miller et al. Supporting a modeling continuum in scalation: from predictive analytics to simulation modeling
Bjorkman Test and evaluation resource allocation using uncertainty reduction as a measure of test value
JP6894315B2 (ja) 文書処理システム、文書処理方法、及びプログラム
Enos Developing a theoretical real system age
Kim et al. A New Perspective for Neural Networks: Application to a Marketing Management Problem.
Rashid et al. Generic tool for measuring the reliability of product development processes
WO2023021690A1 (ja) モデル生成装置、モデル生成方法、プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231130

R150 Certificate of patent or registration of utility model

Ref document number: 7406186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150