JP2020190549A - Magnetization device - Google Patents

Magnetization device Download PDF

Info

Publication number
JP2020190549A
JP2020190549A JP2020069904A JP2020069904A JP2020190549A JP 2020190549 A JP2020190549 A JP 2020190549A JP 2020069904 A JP2020069904 A JP 2020069904A JP 2020069904 A JP2020069904 A JP 2020069904A JP 2020190549 A JP2020190549 A JP 2020190549A
Authority
JP
Japan
Prior art keywords
magnetizing
magnetized
coils
coil
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020069904A
Other languages
Japanese (ja)
Other versions
JP7381891B2 (en
Inventor
俊之 鈴間
Toshiyuki Suzuma
俊之 鈴間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2020190549A publication Critical patent/JP2020190549A/en
Application granted granted Critical
Publication of JP7381891B2 publication Critical patent/JP7381891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

To provide a magnetization device capable of obtaining sufficient magnetization performance even in a long material in which the size of a cross section and the position of a cross sectional center are different depending on a longitudinal position.SOLUTION: A magnetizing device 100 comprises a plurality of magnetization coils 1 arranged side by side along a longitudinal direction of a long material S1 and having a dimension of being capable of inserting the entire length of the long material, and a driving means 2 that moves the plurality of magnetization coils in an arbitrary direction in a plane orthogonal to the longitudinal direction of the long material. The driving means moves the plurality of magnetization coils so that when viewed from the longitudinal direction of the long material, mutually overlapping regions 12 inside a magnetization coil group 10 composed of N (N≥2) magnetization coils arranged continuously out of the plurality of magnetization coils approach cross sections Sa, Sb of a portion of the long material at the position where the magnetization coil group is arranged.SELECTED DRAWING: Figure 1

Description

本発明は、鋼管、棒鋼、車軸、クランクシャフト等の長尺材の磁粉探傷・漏洩磁束探傷や誘導加熱に用いることができる磁化装置に関する。特に、本発明は、長手方向の位置によって断面の大きさや断面中心の位置が異なる長尺材であっても十分な磁化性能を得ることができる磁化装置に関する。 The present invention relates to a magnetization device that can be used for magnetic particle flaw detection / leakage flux flaw detection and induction heating of long materials such as steel pipes, steel bars, axles, and crankshafts. In particular, the present invention relates to a magnetization device capable of obtaining sufficient magnetization performance even for a long material in which the size of the cross section and the position of the center of the cross section differ depending on the position in the longitudinal direction.

従来、鋼管、棒鋼、車軸、クランクシャフト等の長尺材の品質保証技術として、磁粉探傷法や漏洩磁束探傷法が適用されている。
磁粉探傷法や漏洩磁束探傷法は、長尺材を磁化し、長尺材に存在するきずから外部に漏れ出る漏洩磁束によってきずを検出する方法である。磁粉探傷法では、蛍光特性を有する磁粉を分散させた磁粉液を長尺材に散布し、漏洩磁束によって凝集した磁粉に紫外線を照射して蛍光発光させ、得られた磁粉模様を目視又は撮像手段で観察することできずを検出する。漏洩磁束探傷法では、漏洩磁束をホール素子等の磁気センサで検出することできずを検出する。
Conventionally, the magnetic particle flaw detection method and the leakage flux flaw detection method have been applied as quality assurance techniques for long materials such as steel pipes, steel bars, axles, and crankshafts.
The magnetic particle flaw detection method and the leakage magnetic flux flaw detection method are methods in which a long material is magnetized and a flaw is detected by a leakage magnetic flux leaking from a flaw existing in the long material to the outside. In the magnetic particle inspection method, a magnetic powder liquid in which magnetic particles having fluorescent characteristics are dispersed is sprayed on a long material, and the magnetic powder aggregated by the leakage magnetic flux is irradiated with ultraviolet rays to emit fluorescence, and the obtained magnetic powder pattern is visually or imaged. Detects that cannot be observed with. In the leakage magnetic flux flaw detection method, the leakage magnetic flux cannot be detected by a magnetic sensor such as a Hall element.

磁粉探傷法や漏洩磁束探傷法において、長尺材を磁化する磁化装置として、貫通コイルとも称される長尺材を挿通する磁化コイルを備えた磁化装置が広く用いられている(例えば、特許文献1、2参照)。この磁化コイルに直流電流又は交流電流を通電することにより、長尺材の長手方向に沿った磁界が形成され、この磁界によって長尺材が磁化される。 In the magnetic particle flaw detection method and the leakage flux flaw detection method, as a magnetization device for magnetizing a long material, a magnetizing device provided with a magnetization coil for inserting a long material, which is also called a penetrant coil, is widely used (for example, Patent Documents). See 1 and 2). By energizing the magnetizing coil with a direct current or an alternating current, a magnetic field is formed along the longitudinal direction of the long material, and the long material is magnetized by this magnetic field.

磁化コイルとしては、長尺材の全長を挿通可能な寸法を有するコイルを用いる必要がある。具体的には、長尺材が鋼管や棒鋼である場合、磁化コイルが円形コイルであれば、鋼管や棒鋼の外径よりも内径の大きな磁化コイルを用いる必要がある。また、長尺材が、長手方向の位置によって断面の外径が異なる車軸である場合、磁化コイルが円形コイルであれば、車軸の各断面の最大外径よりも内径の大きな磁化コイルを用いる必要がある。さらに、長尺材が、長手方向の位置によって断面の大きさや断面中心の位置が異なるクランクシャフトである場合、磁化コイルが円形コイルであれば、クランクシャフトの各断面を長手方向に投影した投影断面を囲むことが可能な大きさの内径を有する磁化コイルを用いる必要がある。 As the magnetizing coil, it is necessary to use a coil having a size capable of inserting the entire length of the long material. Specifically, when the long material is a steel pipe or steel bar, if the magnetizing coil is a circular coil, it is necessary to use a magnetized coil having an inner diameter larger than the outer diameter of the steel pipe or steel bar. Further, when the long material is an axle whose cross-sectional outer diameter differs depending on the position in the longitudinal direction, if the magnetizing coil is a circular coil, it is necessary to use a magnetizing coil having an inner diameter larger than the maximum outer diameter of each cross section of the axle. There is. Further, when the long material is a crankshaft in which the size of the cross section and the position of the center of the cross section differ depending on the position in the longitudinal direction, if the magnetizing coil is a circular coil, each cross section of the crankshaft is projected in the longitudinal direction. It is necessary to use a magnetized coil having an inner diameter large enough to surround the.

したがい、長尺材が、車軸やクランクシャフトである場合、断面の寸法が小さな部位では、磁化コイルの充填率(磁化コイルが配置された位置での長尺材の断面積/磁化コイル内部の面積)が低下し、これにより磁化性能が低下して、きずの検出性能が低下するおそれがある。また、長尺材が、鋼管や棒鋼である場合にも、外径の異なる鋼管や棒鋼を同じ寸法の磁化コイルで磁化するときには、外径の小さな鋼管や棒鋼について同様の問題が生じる。 Therefore, when the long material is an axle or a crankshaft, the filling rate of the magnetized coil (cross-sectional area of the long material at the position where the magnetized coil is placed / the area inside the magnetized coil) is found in the part where the cross-sectional dimension is small. ) Decreases, which may reduce the magnetization performance and the flaw detection performance. Further, even when the long material is a steel pipe or steel bar, when magnetizing steel pipes or steel bars having different outer diameters with magnetizing coils of the same size, the same problem occurs for steel pipes or steel bars having a small outer diameter.

また、長尺材を挿通する磁化コイルを備えた磁化装置は、長尺材を誘導加熱する際にも用いられる(例えば、特許文献3参照)。
誘導加熱法は、磁化コイルに交流電流を通電することにより、長尺材の長手方向に沿った交流磁界が形成され、この交流磁界によって長尺材に渦電流が生じ、この渦電流によって長尺材を加熱する方法である。
長尺材を誘導加熱する際にも、長尺材を磁粉探傷したり漏洩磁束探傷する場合と同様に、磁化コイルの充填率の低下に起因して、磁化性能が低下し、加熱性能が低下するおそれがある。
Further, a magnetizing device provided with a magnetizing coil through which a long material is inserted is also used for induction heating of a long material (see, for example, Patent Document 3).
In the induction heating method, an alternating current is applied to the magnetizing coil to form an alternating magnetic field along the longitudinal direction of the long material, and this alternating magnetic field generates an eddy current in the long material, and the eddy current causes the long material to be long. This is a method of heating the material.
When the long material is induced and heated, the magnetization performance is lowered and the heating performance is lowered due to the decrease in the filling rate of the magnetizing coil, as in the case of magnetic particle flaw detection or leakage flux flaw detection of the long material. There is a risk of

特許文献1〜3には、特に、長手方向の位置によって断面の大きさや断面中心の位置が異なる長尺材に対して、磁化コイルの充填率の低下に起因した磁化性能の低下を解決する手段について何ら提案されていない。 Patent Documents 1 to 3 describe, in particular, a means for solving a decrease in magnetization performance due to a decrease in the packing rate of a magnetizing coil for a long material having a different cross-sectional size and cross-sectional center position depending on the position in the longitudinal direction. No suggestions have been made about.

特開平3−223668号公報JP-A-3-223668 特開平7−103942号公報Japanese Unexamined Patent Publication No. 7-103942 特開2016−219371号公報JP-A-2016-219371

本発明は、上記従来技術の問題点を解決するべくなされたものであり、長手方向の位置によって断面の大きさや断面中心の位置が異なる長尺材であっても十分な磁化性能を得ることができる磁化装置を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems of the prior art, and it is possible to obtain sufficient magnetization performance even for a long material in which the size of the cross section and the position of the center of the cross section differ depending on the position in the longitudinal direction. An object of the present invention is to provide a magnetizing device capable of performing the same.

前記課題を解決するため、本発明は、長尺材の長手方向に沿って並べて配置され、前記長尺材の全長を挿通可能な寸法を有する複数の磁化コイルと、前記複数の磁化コイルを前記長尺材の長手方向に直交する平面内で任意の方向に移動させる駆動手段と、を備え、前記駆動手段は、前記長尺材の長手方向から見た場合に、前記複数の磁化コイルのうち連続して配置されたN(N≧2)個の磁化コイルからなる磁化コイル群の内部の互いに重複する領域が、前記磁化コイル群が配置された位置での前記長尺材の部位の断面に近づくように、前記複数の磁化コイルを移動させる、ことを特徴とする磁化装置を提供する。 In order to solve the above-mentioned problems, the present invention comprises a plurality of magnetizing coils arranged side by side along the longitudinal direction of the long material and having dimensions capable of inserting the entire length of the long material, and the plurality of magnetizing coils. A driving means for moving in an arbitrary direction in a plane orthogonal to the longitudinal direction of the long member is provided, and the driving means is among the plurality of magnetized coils when viewed from the longitudinal direction of the long member. The overlapping regions inside the magnetized coil group consisting of N (N ≧ 2) magnetized coils arranged continuously form a cross section of the portion of the long member at the position where the magnetized coil group is arranged. Provided is a magnetizing device characterized in that the plurality of magnetizing coils are moved so as to approach each other.

本発明によれば、駆動手段によって、長尺材の長手方向から見た場合に、複数の磁化コイルのうち連続して配置されたN(N≧2)個の磁化コイルからなる磁化コイル群の内部の互いに重複する領域が、磁化コイル群が配置された位置での長尺材の部位の断面に近づくように、複数の磁化コイルが移動することになる。換言すれば、長尺材の長手方向から見た場合に、磁化コイル群の内部の互いに重複する領域(磁化コイル群を構成する各磁化コイルの内部領域のうち互いに重複する領域)が長尺材の断面よりもやや大きくなるように、磁化コイル群を構成する各磁化コイルの内面がそれぞれ長尺材の外面に近づくことになる。したがい、磁化コイル群の内部の互いに重複する領域を基準にした充填率(磁化コイル群が配置された位置での長尺材の断面積/磁化コイル群の内部の互いに重複する領域の面積)が高まることで、十分な磁化性能を得ることが可能である。そして、本発明によれば、駆動手段によって複数の磁化コイルが長尺材の長手方向に直交する平面内で任意の方向に移動可能であるため、長手方向の位置によって断面の大きさや断面中心の位置が異なる長尺材であっても、磁化コイル群の内部の互いに重複する領域が長尺材の断面に近づくことができ、重複する領域を基準とした充填率が高まることで、十分な磁化性能を得ることが可能である。
本発明によれば、十分な磁化性能を得ることができるため、長尺材の磁粉探傷・漏洩磁束探傷に用いる場合には、きずの検出性能が低下するおそれがない。また、長尺材の誘導加熱に用いる場合には、加熱性能が低下するおそれがない。
なお、本発明において、「長尺材の全長を挿通可能な寸法を有する」とは、磁化コイルの内部領域の大きさが、長尺材の全長における何れの部位の断面よりも大きいことを意味する。例えば、磁化コイルが円形コイルである場合には、円形コイルの内径が、長尺材の全長における何れの部位の断面に対しても、断面の外縁を構成する任意の2点間距離よりも大きいことを意味する。
また、本発明の磁化コイル群は、1組であっても、複数組であってもよい。磁化コイル群が複数組の場合、駆動手段は、磁化コイル群毎に、各磁化コイル群の内部の互いに重複する領域が各磁化コイル群が配置された位置での長尺材の部位の断面に近づくように、各磁化コイル群を構成する複数の磁化コイルを移動させることになる。
さらに、本発明において、磁化装置が3個以上の複数の磁化コイルを備え、磁化コイル群が連続して配置された3個以上(すなわち、N≧3)の磁化コイルからなることが好ましい。
According to the present invention, a group of magnetized coils composed of N (N ≧ 2) magnetized coils arranged continuously among a plurality of magnetized coils when viewed from the longitudinal direction of a long member by a driving means. The plurality of magnetized coils will move so that the internal overlapping regions of the magnetized coils approach the cross section of the portion of the long member at the position where the magnetized coils are arranged. In other words, when viewed from the longitudinal direction of the long material, the overlapping regions inside the magnetized coil group (the regions that overlap each other among the internal regions of the magnetized coils constituting the magnetized coil group) are the long materials. The inner surface of each magnetizing coil constituting the magnetizing coil group approaches the outer surface of the long member so as to be slightly larger than the cross section of the above. Therefore, the filling rate (the cross-sectional area of the long material at the position where the magnetized coil group is arranged / the area of the overlapping region inside the magnetized coil group) is based on the mutually overlapping region inside the magnetized coil group. By increasing it, it is possible to obtain sufficient magnetization performance. According to the present invention, since a plurality of magnetizing coils can be moved in an arbitrary direction in a plane orthogonal to the longitudinal direction of the long member by the driving means, the size of the cross section and the center of the cross section are determined by the position in the longitudinal direction. Even for long materials at different positions, the overlapping regions inside the magnetized coil group can approach the cross section of the long material, and the filling rate based on the overlapping regions increases, resulting in sufficient magnetization. It is possible to obtain performance.
According to the present invention, since sufficient magnetization performance can be obtained, there is no possibility that the flaw detection performance will be deteriorated when used for magnetic particle flaw detection and leakage flux flaw detection of a long material. Further, when it is used for induction heating of a long material, there is no possibility that the heating performance is deteriorated.
In the present invention, "having a size that allows the entire length of the long material to be inserted" means that the size of the internal region of the magnetizing coil is larger than the cross section of any part of the total length of the long material. To do. For example, when the magnetizing coil is a circular coil, the inner diameter of the circular coil is larger than the distance between any two points constituting the outer edge of the cross section with respect to the cross section of any part in the total length of the long material. It means that.
Further, the magnetizing coil group of the present invention may be one set or a plurality of sets. When there are a plurality of sets of magnetizing coil groups, the driving means is a cross section of a long member portion at a position where each magnetizing coil group is arranged so that the overlapping regions inside each magnetizing coil group are arranged for each magnetizing coil group. A plurality of magnetizing coils constituting each magnetizing coil group will be moved so as to approach each other.
Further, in the present invention, it is preferable that the magnetization device includes a plurality of magnetizing coils of three or more, and the magnetization coil group is composed of three or more (that is, N ≧ 3) magnetizing coils arranged continuously.

好ましくは、前記駆動手段は、前記長尺材の長手方向から見た場合に、前記磁化コイル群を構成する各磁化コイルの中心が前記磁化コイル群が配置された位置での前記長尺材の部位の断面の中心に一致した状態から、前記磁化コイル群を構成する磁化コイルの数に応じて前記長尺材の周方向に略等角度で分割された方向に前記磁化コイル群を構成する各磁化コイルを移動させる。 Preferably, when the driving means is viewed from the longitudinal direction of the long material, the driving means of the long material is such that the center of each magnetizing coil constituting the magnetizing coil group is a position where the magnetizing coil group is arranged. Each of the magnetized coil groups is formed in a direction divided at substantially equal angles in the circumferential direction of the long member according to the number of magnetized coils constituting the magnetized coil group from a state corresponding to the center of the cross section of the portion. Move the magnetizing coil.

上記の好ましい構成によれば、長尺材の断面が円形で、各磁化コイルが同一寸法の円形コイルであれば、駆動手段によって移動した後の磁化コイル群の内部の互いに重複する領域を円形に近い形状にすることができる。したがい、充填率を十分に高めて、磁化性能をより一層十分に高めることが可能である。 According to the above preferred configuration, if the long member has a circular cross section and each magnetizing coil is a circular coil having the same dimensions, the overlapping regions inside the magnetizing coil group after being moved by the driving means are circular. It can be made into a similar shape. Therefore, it is possible to sufficiently increase the filling rate and further enhance the magnetization performance.

本発明において、磁化コイルは、1回巻きのコイルであってもよいし、複数回巻きのコイルであってもよい。磁化コイルが複数回巻きのコイルである場合、磁化コイル群を構成する複数回巻きの磁化コイルを、長尺材の長手方向に沿って単純に並べて配置する(長尺材の長手方向に沿って互いに重複する部分を有さないように配置する)ことも可能である。しかしながら、複数回巻きの磁化コイルを単純に並べて配置すると、1回巻きの磁化コイルを並べて配置する場合に比べて、磁化コイルの長さ(長尺材の長手方向に沿った寸法)が大きくなる。各磁化コイルの長さ分の領域のみに着目すると、その領域では磁化コイルの充填率が高まらないため、複数回巻きの磁化コイルを単純に並べて配置したのでは、磁化性能が低下するおそれがある。 In the present invention, the magnetized coil may be a one-turn coil or a multi-turn coil. When the magnetizing coil is a multi-turn coil, the multi-turn magnetizing coils constituting the magnetizing coil group are simply arranged side by side along the longitudinal direction of the long member (along the longitudinal direction of the long member). It is also possible to arrange them so that they do not overlap with each other). However, when the magnetized coils with multiple turns are simply arranged side by side, the length of the magnetized coils (dimensions along the longitudinal direction of the long material) becomes larger than when the magnetized coils with one turn are arranged side by side. .. Focusing only on the region corresponding to the length of each magnetized coil, the filling rate of the magnetized coil does not increase in that region. Therefore, if the magnetized coils of multiple turns are simply arranged side by side, the magnetization performance may deteriorate. ..

したがい、前記複数の磁化コイルは、それぞれ複数回巻きのコイルであり、前記磁化コイル群を構成する磁化コイルは、前記長尺材の長手方向に沿って互いに重複する部分を有することが好ましい。 Therefore, each of the plurality of magnetizing coils is a coil wound a plurality of times, and it is preferable that the magnetizing coils constituting the magnetizing coil group have portions overlapping with each other along the longitudinal direction of the long member.

上記の好ましい構成によれば、長尺材の長手方向に沿って互いに重複する部分では、磁化コイルの充填率が高まるため、磁化性能を十分に高めることが可能である。
磁化コイルが長尺材の長手方向に沿って互いに重複する部分を有するには、磁化コイルの導線間に空隙を設けた構造とし、一方の磁化コイルの導線間に他方の磁化コイルの導線が位置するように各磁化コイルを配置すればよい。
なお、上記の好ましい構成において、「互いに重複する部分を有する」とは、磁化コイル群を構成する全ての磁化コイルが互いに重複する部分を有する場合に限るものではなく、少なくとも長尺材の長手方向に沿って隣り合う一対の磁化コイルが互いに重複する部分を有することを意味する。例えば、磁化コイル群を構成する磁化コイルが3個の場合、3個の磁化コイルの全てが互いに重複する部分を有する態様であってもよいし、1番目と2番目の磁化コイルが重複する部分を有し、2番目と3番目の磁化コイルが重複する部分を有する態様であってもよい。
According to the above-mentioned preferable configuration, the filling rate of the magnetizing coil is increased at the portion overlapping with each other along the longitudinal direction of the long member, so that the magnetization performance can be sufficiently improved.
In order for the magnetizing coils to have overlapping portions along the longitudinal direction of the long material, a structure is provided in which a gap is provided between the conducting wires of the magnetizing coil, and the conducting wire of the other magnetizing coil is positioned between the conducting wires of one magnetizing coil. Each magnetizing coil may be arranged so as to do so.
In the above preferred configuration, "having overlapping portions" is not limited to the case where all the magnetizing coils constituting the magnetizing coil group have overlapping portions, and at least in the longitudinal direction of the long member. It means that a pair of magnetizing coils adjacent to each other have a portion overlapping with each other. For example, when there are three magnetizing coils constituting the magnetizing coil group, all three magnetizing coils may have a portion that overlaps with each other, or a portion where the first and second magnetizing coils overlap each other. It may be an embodiment having a portion in which the second and third magnetizing coils overlap.

好ましくは、前記複数の磁化コイルに対して前記長尺材を長手方向に相対的に搬送する搬送手段を備え、前記駆動手段は、前記搬送手段が前記長尺材を長手方向に相対的に搬送している過程で、前記複数の磁化コイルを移動させる。 Preferably, the transport means for transporting the long material relative to the plurality of magnetized coils in the longitudinal direction is provided, and the driving means is such that the transport means conveys the long material relative to the longitudinal direction. In the process of doing so, the plurality of magnetizing coils are moved.

上記の好ましい構成によれば、駆動手段によって、搬送手段が長尺材を長手方向に相対的に搬送している過程で、複数の磁化コイルが移動することになる。換言すれば、磁化コイル群が配置された位置に順次到達する長尺材の部位の断面の大きさや断面中心の位置に応じて、磁化コイル群の内部の互いに重複する領域が当該断面に近づくように、磁化コイル群を構成する各磁化コイルが順次移動することになる。
上記の好ましい構成によれば、1組の磁化コイル群で長尺材の全長を磁化することが可能である。
According to the above-mentioned preferable configuration, the plurality of magnetized coils move in the process in which the transporting means relatively transports the long material in the longitudinal direction by the driving means. In other words, depending on the size of the cross section of the part of the long material that sequentially reaches the position where the magnetized coil group is arranged and the position of the center of the cross section, the overlapping regions inside the magnetized coil group approach the cross section. In addition, each magnetizing coil constituting the magnetizing coil group moves in sequence.
According to the above preferred configuration, it is possible to magnetize the entire length of the long member with one set of magnetizing coil groups.

好ましくは、前記駆動手段は、前記複数の磁化コイルの全てに前記長尺材が挿通した後、前記複数の磁化コイルを移動させる。 Preferably, the driving means moves the plurality of magnetizing coils after the long member is inserted into all of the plurality of magnetizing coils.

上記の好ましい構成によれば、例えば、複数の磁化コイルの中心を合致させた状態で長尺材を複数の磁化コイルの全てに挿通させた後、駆動手段によって、磁化コイル群の内部の互いに重複する領域が、磁化コイル群が配置された位置での長尺材の部位の断面に近づくように、複数の磁化コイルが移動することになる。
上記の好ましい構成によれば、前述の好ましい構成(長尺材を長手方向に相対的に搬送している過程で複数の磁化コイルを移動させる構成)に比べて、必要な磁化コイル群の数が増えるものの、磁化コイルを移動させる制御が容易であるという利点を有する。
According to the above preferred configuration, for example, after a long material is inserted through all of the plurality of magnetized coils with the centers of the plurality of magnetized coils aligned, they overlap each other inside the magnetized coil group by a driving means. A plurality of magnetizing coils will move so that the region to be magnetized approaches the cross section of the portion of the long member at the position where the magnetizing coil group is arranged.
According to the above preferred configuration, the number of magnetized coil groups required is larger than that of the above preferred configuration (a configuration in which a plurality of magnetizing coils are moved in the process of relatively transporting a long member in the longitudinal direction). Although it increases, it has the advantage that it is easy to control the movement of the magnetizing coil.

ここで、長尺材が、例えば、クランクシャフトである場合、クランクシャフトは、所定の受台の設置位置まで搬送され、受台に載置された状態で磁化されて、磁粉探傷や漏洩磁束探傷が行われる場合が多い。受台の設置位置が固定されていれば、受台に載置されたクランクシャフトの鉛直方向の位置や長手方向の向きは、同一仕様のクランクシャフトである限り、安定していると考えられるものの、クランクシャフトの長手方向の位置や長手方向周りの角度は、同一仕様のクランクシャフトであっても、クランクシャフト毎に異なる可能性がある。したがい、クランクシャフトが所定の基準位置(基準となる鉛直方向の位置、基準となる長手方向の向き、基準となる長手方向の位置及び基準となる長手方向周りの角度)にあるときに、磁化コイル群の内部の互いに重複する領域が、磁化コイル群が配置された位置でのクランクシャフトの部位の断面に近づくように、クランクシャフトの各長手方向位置での断面形状や磁化コイルの寸法に応じて、磁化コイル群を構成する各磁化コイルの移動方向及び移動量を予め決めたとしても、クランクシャフトの長手方向の位置や長手方向周りの角度が基準位置からずれれば、決められた各磁化コイルの移動方向及び移動量が不適切になるおそれがある。以上の説明では、長尺材がクランクシャフトである場合を例に挙げたが、受台等に載置された状態で磁化され、長手方向の位置や長手方向周りの角度にばらつきが生じ得る長尺材に共通する問題である。 Here, when the long material is, for example, a crankshaft, the crankshaft is conveyed to a predetermined pedestal installation position and magnetized while being mounted on the pedestal to detect magnetic particles or leakage magnetic flux. Is often done. If the installation position of the pedestal is fixed, the vertical position and longitudinal orientation of the crankshaft mounted on the pedestal are considered to be stable as long as the crankshafts have the same specifications. , The position of the crankshaft in the longitudinal direction and the angle around the longitudinal direction may differ for each crankshaft even if the crankshafts have the same specifications. Therefore, when the crankshaft is in a predetermined reference position (reference vertical position, reference longitudinal orientation, reference longitudinal position and reference longitudinal angle), the magnetizing coil Depending on the cross-sectional shape at each longitudinal position of the crankshaft and the dimensions of the magnetizing coil so that the overlapping regions inside the group approach the cross section of the part of the crankshaft at the position where the magnetizing coil group is located. Even if the moving direction and the amount of movement of each magnetizing coil constituting the magnetizing coil group are determined in advance, if the position in the longitudinal direction of the crank shaft and the angle around the longitudinal direction deviate from the reference position, each of the determined magnetizing coils There is a risk that the moving direction and amount of movement will be inappropriate. In the above description, the case where the long material is a crankshaft has been taken as an example, but the length is magnetized while being placed on a pedestal or the like, and the position in the longitudinal direction and the angle around the longitudinal direction may vary. This is a problem common to scale materials.

上記の問題を解決するには、好ましくは、前記駆動手段には、前記長尺材が基準位置にあるときに、前記磁化コイル群の内部の互いに重複する領域が、前記磁化コイル群が配置された位置での前記長尺材の部位の断面に近づくように決められた、前記磁化コイル群を構成する各磁化コイルの移動方向及び移動量が予め記憶されており、前記長尺材を磁化する際の、前記基準位置に対する前記長尺材の長手方向の位置ずれ量と、前記基準位置に対する前記長尺材の長手方向周りのずれ角度とを検出する検出手段を更に備え、前記駆動手段は、前記記憶された前記各磁化コイルの移動方向及び移動量と、前記検出手段によって検出した前記長尺材の位置ずれ量及びずれ角度とに基づき、前記各磁化コイルの実際の移動方向及び移動量を決定して、前記各磁化コイルを移動させる。 In order to solve the above problem, preferably, when the long member is in the reference position, the driven means is arranged with the magnetized coil group in a region overlapping each other inside the magnetized coil group. The moving direction and the amount of movement of each magnetizing coil constituting the magnetizing coil group, which is determined to approach the cross section of the portion of the long material at the above position, are stored in advance, and the long material is magnetized. Further, the driving means further includes a detecting means for detecting the amount of displacement of the long member in the longitudinal direction with respect to the reference position and the deviation angle of the elongated member in the longitudinal direction with respect to the reference position. Based on the stored movement direction and movement amount of each magnetizing coil and the positional deviation amount and deviation angle of the long member detected by the detection means, the actual movement direction and movement amount of each magnetizing coil are determined. After determining, each of the magnetized coils is moved.

上記の好ましい構成において、「基準位置」とは、基準となる鉛直方向の位置、基準となる長手方向の向き、基準となる長手方向の位置及び基準となる長手方向周りの角度を意味する。「前記基準位置に対する前記長尺材の長手方向の位置ずれ量」とは、基準となる長手方向の位置に対する長尺材の長手方向の位置ずれ量を意味する。「前記基準位置に対する前記長尺材の長手方向周りのずれ角度」とは、基準となる長手方向周りの角度に対する長尺材の長手方向周りのずれ角度を意味する。
上記の好ましい構成によれば、検出手段によって、基準位置に対する長尺材の長手方向の位置ずれ量と、基準位置に対する長尺材の長手方向周りのずれ角度とが検出される。したがい、駆動手段は、記憶された各磁化コイルの移動方向及び移動量(長尺材が基準位置にあるときに、磁化コイル群の内部の互いに重複する領域が、磁化コイル群が配置された位置での長尺材の部位の断面に近づくように決められた、磁化コイル群を構成する各磁化コイルの移動方向及び移動量)と、検出手段によって検出した長尺材の位置ずれ量及びずれ角度とに基づき、各磁化コイルの実際の移動方向及び移動量を決定することができる。換言すれば、長尺材が基準位置にあるときに適切な各磁化コイルの移動方向及び移動量(駆動手段に予め記憶された各磁化コイルの移動方向及び移動量)を、検出手段によって検出した長尺材の位置ずれ量及びずれ角度とに基づき補正して、実際に磁化する際の長尺材の位置(長尺材の長手方向の位置及び長手方向周りの角度)に応じた適切な各磁化コイルの移動方向及び移動量を決定することができる。そして、駆動手段が、決定した各磁化コイルの実際の移動方向及び移動量に基づき、各磁化コイルを移動させることで、たとえ長尺材が基準位置からずれたとしても、充填率を高めて、十分な磁化性能を得ることが可能である。
In the above preferred configuration, the "reference position" means a reference vertical position, a reference longitudinal orientation, a reference longitudinal position and a reference longitudinal angle. The "amount of displacement of the long material in the longitudinal direction with respect to the reference position" means an amount of displacement of the long material in the longitudinal direction with respect to a reference position in the longitudinal direction. "The deviation angle of the long material around the longitudinal direction with respect to the reference position" means the deviation angle of the long material around the longitudinal direction with respect to the reference angle around the longitudinal direction.
According to the above preferred configuration, the detection means detects the amount of displacement of the long material in the longitudinal direction with respect to the reference position and the angle of deviation of the elongated material with respect to the reference position in the longitudinal direction. Therefore, the driving means is the stored moving direction and moving amount of each magnetizing coil (when the long member is in the reference position, the overlapping region inside the magnetizing coil group is the position where the magnetizing coil group is arranged. The moving direction and the amount of movement of each magnetizing coil constituting the magnetizing coil group determined to approach the cross section of the part of the long material in Based on the above, the actual moving direction and moving amount of each magnetizing coil can be determined. In other words, when the long member is in the reference position, the appropriate moving direction and moving amount of each magnetizing coil (moving direction and moving amount of each magnetizing coil stored in advance in the driving means) are detected by the detecting means. Corrected based on the amount of misalignment and the misalignment angle of the long material, and appropriate for each position of the long material (position in the longitudinal direction and angle around the longitudinal direction) when actually magnetizing. The moving direction and the amount of movement of the magnetizing coil can be determined. Then, the driving means moves each magnetizing coil based on the determined actual moving direction and moving amount of each magnetizing coil, so that even if the long material deviates from the reference position, the filling rate is increased. It is possible to obtain sufficient magnetization performance.

好ましくは、前記長尺材は、クランクシャフトであり、前記磁化コイル群は、第1磁化コイル、第2磁化コイル及び第3磁化コイルの3個の磁化コイルからなり、前記クランクシャフトのカウンタウェイトの断面を四角形で近似して、前記四角形の4つの辺のうち、長い方から順に3つの辺を、第1辺、第2辺及び第3辺とし、前記磁化コイル群が前記カウンタウェイトに配置された場合、前記駆動手段は、前記第1磁化コイルが前記第1辺の両端に近接するように前記第1磁化コイルを移動させ、前記第2磁化コイルが前記第2辺の両端に近接するように前記第2磁化コイルを移動させ、前記第3磁化コイルが前記第3辺の両端に近接するように前記第3磁化コイルを移動させる。 Preferably, the long material is a crank shaft, and the magnetizing coil group is composed of three magnetizing coils, a first magnetizing coil, a second magnetizing coil, and a third magnetizing coil, and is a counter weight of the crank shaft. The cross section is approximated by a quadrangle, and of the four sides of the quadrangle, three sides are set as the first side, the second side, and the third side in order from the longest side, and the magnetizing coil group is arranged on the counter weight. In this case, the driving means moves the first magnetizing coil so that the first magnetizing coil is close to both ends of the first side, so that the second magnetizing coil is close to both ends of the second side. The second magnetizing coil is moved to the surface, and the third magnetizing coil is moved so that the third magnetizing coil is close to both ends of the third side.

長尺材がクランクシャフトである場合に、クランクシャフトのカウンタウェイトの断面は、台形等の四角形で近似できる場合が多い。上記の好ましい構成によれば、磁化コイル群を構成する3個の磁化コイル(第1〜第3磁化コイル)を、四角形の4つの辺のうち長い方から順に3つの辺(第1〜第3辺)の両端に近接するように移動させることで、充填率を高めることが可能である。
なお、上記の好ましい構成において、「近接するように・・・移動」とは、接触するように移動させる場合と、磁化コイルの絶縁性を確保できるように、接触する位置から僅かな距離だけ離れた位置に移動させる場合との双方を含む概念である。
When the long material is a crankshaft, the cross section of the counterweight of the crankshaft can often be approximated by a quadrangle such as a trapezoid. According to the above preferable configuration, the three magnetizing coils (first to third magnetizing coils) constituting the magnetizing coil group are arranged on three sides (first to third) in order from the longest of the four sides of the quadrangle. It is possible to increase the filling rate by moving it so that it is close to both ends of the side).
In the above-mentioned preferable configuration, "moving so as to be close to each other" means that the magnetizing coil is moved so as to be in contact with each other and the magnetized coil is separated from the contacting position by a small distance so as to secure the insulating property. It is a concept that includes both the case of moving to a certain position.

本発明によれば、長手方向の位置によって断面の大きさや断面中心の位置が異なる長尺材であっても十分な磁化性能を得ることが可能である。 According to the present invention, it is possible to obtain sufficient magnetization performance even for a long material whose cross-sectional size and cross-sectional center position differ depending on the position in the longitudinal direction.

本発明の第1実施形態に係る磁化装置の概略構成を模式的に示す図である。It is a figure which shows typically the schematic structure of the magnetization device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る磁化装置の概略構成を模式的に示す図である。It is a figure which shows typically the schematic structure of the magnetization device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る磁化装置が備える検出手段の概略構成を模式的に示す図である。It is a figure which shows typically the schematic structure of the detection means included in the magnetization device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る磁化装置が備える検出手段の概略構成を模式的に示す図である。It is a figure which shows typically the schematic structure of the detection means included in the magnetization device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る磁化装置が備える検出手段の変形例の概略構成を模式的に示す図である。It is a figure which shows typically the schematic structure of the modification of the detection means provided in the magnetization device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る磁化コイル群が長尺材のカウンタウェイトに配置された場合における各磁化コイルの移動方向及び移動量を説明する正面図である。It is a front view explaining the moving direction and the moving amount of each magnetizing coil when the magnetizing coil group which concerns on 3rd Embodiment of this invention is arranged in the counterweight of a long material. 磁化コイルが複数回巻きコイルの場合の磁化コイル群の好ましい構成を模式的に示す図である。It is a figure which shows typically the preferable structure of the magnetizing coil group when the magnetizing coil is a multi-turn coil. 本発明の効果を有限要素解析によるシミュレーションで評価した条件及び結果を示す図である。It is a figure which shows the condition and the result which evaluated the effect of this invention by the simulation by the finite element analysis.

以下、添付図面を適宜参照しつつ、本発明の実施形態に係る磁化装置について説明する。 Hereinafter, the magnetization device according to the embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.

<第1実施形態>
図1は、本発明の第1実施形態に係る磁化装置の概略構成を模式的に示す図である。図1(a)は、長尺材S1(図1に示す例では鉄道車両用の車軸)の長手方向(X方向)に直交する方向(Y方向)から見た磁化装置100全体を示す側面図である。図1(b)は、長尺材S1の長手方向から見た磁化コイル群10の一の状態を示す正面図である。図1(c)は、長尺材S1の長手方向から見た他の状態の磁化コイル群10を示す正面図である。
<First Embodiment>
FIG. 1 is a diagram schematically showing a schematic configuration of a magnetization device according to the first embodiment of the present invention. FIG. 1A is a side view showing the entire magnetization device 100 as viewed from a direction (Y direction) orthogonal to the longitudinal direction (X direction) of the long member S1 (in the example shown in FIG. 1 the axle for a railroad vehicle). Is. FIG. 1B is a front view showing one state of the magnetized coil group 10 seen from the longitudinal direction of the long member S1. FIG. 1C is a front view showing the magnetized coil group 10 in another state as seen from the longitudinal direction of the long member S1.

図1に示すように、第1実施形態に係る磁化装置100は、複数の磁化コイル1(図1に示す例では3個の磁化コイル1a、1b、1c)を備える。図1に示す各磁化コイル1は、1回巻きの円形コイルであり、互いに同一の寸法である。複数の磁化コイル1は、長尺材S1の長手方向に沿って並べて配置され、長尺材S1の全長を挿通可能な寸法を有する。具体的には、図1に示す長尺材S1は長手方向の位置によって断面の外径が異なる車軸であるため、磁化コイル1の内径D2は、長尺材S1の各断面の最大外径D1よりも大きくなっている。そして、図1(a)に示すように、初期状態では、長尺材S1の中心(中心軸)と、複数の磁化コイル1の中心(中心軸)とが合致した状態になっている。 As shown in FIG. 1, the magnetizing device 100 according to the first embodiment includes a plurality of magnetizing coils 1 (three magnetizing coils 1a, 1b, 1c in the example shown in FIG. 1). Each magnetized coil 1 shown in FIG. 1 is a one-turn circular coil and has the same dimensions as each other. The plurality of magnetizing coils 1 are arranged side by side along the longitudinal direction of the long member S1 and have a size capable of inserting the entire length of the long member S1. Specifically, since the long member S1 shown in FIG. 1 is an axle whose cross-sectional outer diameter differs depending on the position in the longitudinal direction, the inner diameter D2 of the magnetizing coil 1 is the maximum outer diameter D1 of each cross section of the long member S1. Is bigger than. Then, as shown in FIG. 1A, in the initial state, the center (central axis) of the long member S1 and the center (central axis) of the plurality of magnetizing coils 1 are in a state of matching.

各磁化コイル1は電源(図示せず)と接続されており、電源から各磁化コイル1に対して同じ方向(時計回り方向又は反時計回り方向)に流れる直流電流又は同期した交流電流が通電される。磁化装置100を長尺材S1の磁粉探傷・漏洩磁束探傷に用いる場合には、各磁化コイル1に直流電流又は交流電流が通電され、誘導加熱に用いる場合には、各磁化コイル1に直流電流が通電される。電源は磁化コイル1毎に設けてもよい(すなわち、3個の電源を設けてもよい)し、各磁化コイル1を直列接続して、その両端に1つの電源を接続してもよい。電源を磁化コイル1毎に設け、且つ、各磁化コイル1に交流電流を通電する場合には、各電源の出力を同期させる同期回路が設けられる。
なお、第1実施形態の各磁化コイル1には、支持棒11が取り付けられており、各磁化コイル1は、この支持棒11によって後述の駆動手段2(2軸ステージ21)に支持されている。
Each magnetizing coil 1 is connected to a power source (not shown), and a direct current or a synchronized alternating current flowing in the same direction (clockwise or counterclockwise) is energized from the power source to each magnetizing coil 1. To. When the magnetizing device 100 is used for magnetic particle flaw detection / leakage magnetic flux flaw detection of the long material S1, a direct current or an alternating current is applied to each magnetizing coil 1, and when it is used for induction heating, a direct current is applied to each magnetizing coil 1. Is energized. The power source may be provided for each magnetizing coil 1 (that is, three power sources may be provided), or each magnetizing coil 1 may be connected in series and one power source may be connected to both ends thereof. When a power source is provided for each magnetized coil 1 and an alternating current is applied to each magnetized coil 1, a synchronization circuit for synchronizing the output of each power source is provided.
A support rod 11 is attached to each magnetized coil 1 of the first embodiment, and each magnetized coil 1 is supported by the drive means 2 (2-axis stage 21) described later by the support rod 11. ..

第1実施形態に係る磁化装置100は、複数の磁化コイル1を長尺材S1の長手方向に直交する平面(YZ平面)内で任意の方向に移動させる駆動手段2を備える。
第1実施形態の駆動手段2は、各磁化コイル1に一端が取り付けられた支持棒11の他端が可動部(図示せず)に取り付けられた2軸ステージ21と、2軸ステージ21に電気的に接続され、2軸ステージ21を駆動するためのプログラムがインストールされたコンピュータ22とを具備する。
The magnetization device 100 according to the first embodiment includes a driving means 2 for moving a plurality of magnetizing coils 1 in an arbitrary direction in a plane (YZ plane) orthogonal to the longitudinal direction of the long member S1.
In the driving means 2 of the first embodiment, the biaxial stage 21 in which the other end of the support rod 11 to which one end is attached to each magnetizing coil 1 is attached to a movable portion (not shown) and the biaxial stage 21 are electrically connected. The computer 22 is connected to the computer 22 and has a program for driving the 2-axis stage 21 installed.

2軸ステージ21は、固定部(図示せず)及び固定部に対して移動する可動部(図示せず)を有する。2軸ステージ21は、コンピュータ22から送信された制御信号に応じて、可動部を固定部に対してY方向及びZ方向の2軸方向に移動させる。Y方向及びZ方向の移動量を制御することにより、可動部に取り付けられた支持棒11、ひいては支持棒11に取り付けられた磁化コイル1がYZ平面内で任意の方向に移動することになる。 The biaxial stage 21 has a fixed portion (not shown) and a movable portion (not shown) that moves with respect to the fixed portion. The two-axis stage 21 moves the movable portion in the two-axis directions of the Y direction and the Z direction with respect to the fixed portion in response to the control signal transmitted from the computer 22. By controlling the amount of movement in the Y direction and the Z direction, the support rod 11 attached to the movable portion and the magnetizing coil 1 attached to the support rod 11 move in an arbitrary direction in the YZ plane.

コンピュータ22には、長尺材S1の各長手方向の位置での断面(長尺材S1の長手方向に直交するYZ平面内の断面)の形状(断面の大きさ(外径)や断面中心の位置)や磁化コイル1の寸法が予め記憶されている。コンピュータ22は、記憶された長尺材S1の断面形状や磁化コイル1の寸法等に応じて、各磁化コイル1のYZ平面内での適切な移動方向や移動量を算出し、これを制御信号として2軸ステージ21に送信する。 The computer 22 has a shape (cross section size (outer diameter) of the long member S1 and a cross section in the YZ plane orthogonal to the longitudinal direction of the long member S1) at each position in the longitudinal direction. The position) and the dimensions of the magnetized coil 1 are stored in advance. The computer 22 calculates an appropriate movement direction and movement amount of each magnetizing coil 1 in the YZ plane according to the stored cross-sectional shape of the long member S1 and the dimensions of the magnetizing coil 1, and calculates this as a control signal. Is transmitted to the 2-axis stage 21.

また、第1実施形態に係る磁化装置100は、複数の磁化コイル1に対して長尺材S1を長手方向(矢符Vの向き)に相対的に搬送する搬送手段(図示せず)を備える。搬送手段としては、静止する(長尺材S1の長手方向について静止する)磁化コイル1に対して長尺材S1の方をその長手方向に搬送する搬送ローラ等や、静止する長尺材S1に対して磁化コイル1の方を長尺材S1の長手方向に移動させる1軸ステージ等を例示できる。
なお、長尺材S1の相対的な搬送速度は、図示しない所定のセンサ(例えば、搬送ローラに取り付けられたエンコーダ等)によって測定され、コンピュータ22に入力される。
Further, the magnetization device 100 according to the first embodiment includes a conveying means (not shown) for conveying the long member S1 relative to a plurality of magnetizing coils 1 in the longitudinal direction (direction of arrow V). .. As the transporting means, a transport roller or the like that transports the long material S1 in the longitudinal direction with respect to the magnetizing coil 1 that is stationary (stationary in the longitudinal direction of the long material S1), or a stationary long material S1. On the other hand, a uniaxial stage or the like in which the magnetizing coil 1 is moved in the longitudinal direction of the long member S1 can be exemplified.
The relative transfer speed of the long member S1 is measured by a predetermined sensor (for example, an encoder attached to a transfer roller) (not shown) and input to the computer 22.

以下、上記の構成を有する第1実施形態に係る磁化装置100の動作について説明する。
第1実施形態では、搬送手段が長尺材S1を長手方向に相対的に搬送している過程で、駆動手段2が複数の磁化コイル1を移動させる。具体的には、搬送手段によって長尺材S1の先端(長尺材S1の搬送方向下流側の端。図1(a)の右側の端)が磁化コイル1の配置された位置に到達するまでの間に、駆動手段2が初期状態の複数の磁化コイル1の移動を開始し、長尺材S1が磁化コイル1に挿通されて、長尺材S1の後端(長尺材S1の搬送方向上流側の端。図1(a)の左側の端)が磁化コイル1から抜けるまでの間において、断面の外径が異なる部位が到達するタイミングで、駆動手段2が複数の磁化コイル1を移動させる。複数の磁化コイル1への直流電流又は交流電流の通電も同様に、長尺材S1の先端が磁化コイル1の配置された位置に到達するまでの間に開始され、長尺材S1の後端が磁化コイル1から抜けるまで継続される。
Hereinafter, the operation of the magnetization device 100 according to the first embodiment having the above configuration will be described.
In the first embodiment, the driving means 2 moves the plurality of magnetizing coils 1 in the process in which the conveying means conveys the long member S1 relatively in the longitudinal direction. Specifically, until the tip of the long member S1 (the end on the downstream side in the transport direction of the long member S1; the right end in FIG. 1A) reaches the position where the magnetizing coil 1 is arranged by the conveying means. In the meantime, the driving means 2 starts the movement of the plurality of magnetizing coils 1 in the initial state, the long member S1 is inserted into the magnetizing coil 1, and the rear end of the long member S1 (the transport direction of the long member S1). The drive means 2 moves the plurality of magnetized coils 1 at the timing when the portions having different outer diameters of the cross section arrive until the upstream end (the left end in FIG. 1A) comes out of the magnetized coil 1. Let me. Similarly, energization of a direct current or an alternating current to the plurality of magnetizing coils 1 is started until the tip of the long member S1 reaches the position where the magnetizing coil 1 is arranged, and the rear end of the long member S1. Continues until is removed from the magnetized coil 1.

より具体的には、駆動手段2は、長尺材S1の長手方向から見た場合に、複数の磁化コイル1のうち連続して配置された3個以上の磁化コイル1(図1に示す例では3個の磁化コイル1a、1b、1c)からなる磁化コイル群10の内部の互いに重複する領域12が、磁化コイル群10が配置された位置での長尺材S1の部位の断面に近づくように、複数の磁化コイル1を移動させる。第1実施形態の磁化コイル群10は、3個の磁化コイル1a、1b、1cからなる1組の磁化コイル群10である。 More specifically, when viewed from the longitudinal direction of the long member S1, the driving means 2 includes three or more magnetized coils 1 (example shown in FIG. 1) that are continuously arranged among the plurality of magnetized coils 1. Then, the region 12 that overlaps each other inside the magnetizing coil group 10 composed of the three magnetizing coils 1a, 1b, 1c) approaches the cross section of the portion of the long member S1 at the position where the magnetizing coil group 10 is arranged. A plurality of magnetizing coils 1 are moved. The magnetized coil group 10 of the first embodiment is a set of magnetized coil groups 10 composed of three magnetized coils 1a, 1b, and 1c.

図1(b)に示すように、最大外径を有する長尺材S1の部位の断面Saが磁化コイル群10が配置された位置に到達する場合には、駆動手段2は、磁化コイル群10を構成する各磁化コイル1a、1b、1cを、これらの中心が合致した初期状態の位置に移動させる。これにより、磁化コイル群10の内部の互いに重複する領域(図1(b)においてハッチングを施した領域)12が、磁化コイル群10が配置された位置での長尺材S1の部位の断面Saに近づくことになる。 As shown in FIG. 1B, when the cross section Sa of the portion of the long member S1 having the maximum outer diameter reaches the position where the magnetizing coil group 10 is arranged, the driving means 2 uses the magnetizing coil group 10 The magnetizing coils 1a, 1b, and 1c constituting the above are moved to the positions in the initial state where their centers are aligned. As a result, the region (the region hatched in FIG. 1B) 12 inside the magnetized coil group 10 that overlaps with each other is the cross section Sa of the portion of the long member S1 at the position where the magnetized coil group 10 is arranged. Will approach.

一方、図1(c)に示すように、断面Saよりも外径の小さな長尺材S1の部位の断面Sbが磁化コイル群10が配置された位置に到達する場合には、駆動手段2は、磁化コイル群10を構成する各磁化コイル1a、1b、1cを、磁化コイル群10の内部の互いに重複する領域12(図1(c)においてハッチングを施した領域)が小さくなるように移動させる。具体的には、駆動手段2は、長尺材S1の長手方向から見た場合に、磁化コイル群10を構成する各磁化コイル1の中心が磁化コイル群10が配置された位置での長尺材S1の部位の断面Sbの中心に一致するように磁化コイル群10を移動させた後、この状態(図1(c)において破線で示す状態)から、磁化コイル群10を構成する磁化コイル1の数に応じて長尺材S1の周方向に略等角度で分割された方向に磁化コイル群10を構成する各磁化コイル1を移動させる。第1実施形態では、磁化コイル群10を構成する磁化コイル1の数は3個であるため、駆動手段2は、略120°の角度で分割された矢符A、B及びCの方向に各磁化コイル1a、1b、1cを移動させることになる。これにより、磁化コイル群10の内部の互いに重複する領域12が、磁化コイル群10が配置された位置での長尺材S1の部位の断面Sbに近づくことになる。 On the other hand, as shown in FIG. 1C, when the cross section Sb of the portion of the long member S1 having an outer diameter smaller than the cross section Sa reaches the position where the magnetized coil group 10 is arranged, the driving means 2 , The magnetizing coils 1a, 1b, and 1c constituting the magnetizing coil group 10 are moved so that the overlapping regions 12 (hatched regions in FIG. 1C) inside the magnetizing coil group 10 become smaller. .. Specifically, the driving means 2 is long at a position where the magnetizing coil group 10 is arranged at the center of each magnetizing coil 1 constituting the magnetizing coil group 10 when viewed from the longitudinal direction of the long member S1. After moving the magnetizing coil group 10 so as to coincide with the center of the cross section Sb of the portion of the material S1, from this state (the state shown by the broken line in FIG. 1C), the magnetizing coil 1 constituting the magnetizing coil group 10 Each magnetizing coil 1 constituting the magnetizing coil group 10 is moved in a direction divided at substantially equal angles in the circumferential direction of the long member S1 according to the number of the members. In the first embodiment, since the number of magnetizing coils 1 constituting the magnetizing coil group 10 is 3, the driving means 2 is provided in the directions of the arrows A, B, and C divided at an angle of approximately 120 °. The magnetizing coils 1a, 1b and 1c will be moved. As a result, the overlapping regions 12 inside the magnetizing coil group 10 approach the cross section Sb of the portion of the long member S1 at the position where the magnetizing coil group 10 is arranged.

なお、前述のように、各磁化コイル1の適切な移動方向や移動量は、駆動手段2のコンピュータ22によって算出される。具体的には、コンピュータ22は、入力された長尺材S1の相対的な搬送速度と、予め記憶された長尺材S1の各長手方向の位置での断面の形状とに基づき、磁化コイル群10が配置された位置に到達する長尺材S1の部位の断面の形状を順次算出し、この断面の形状と、予め記憶された磁化コイル1の寸法とに基づき、各磁化コイル1の適切な移動方向や移動量を順次算出する。 As described above, the appropriate moving direction and moving amount of each magnetizing coil 1 are calculated by the computer 22 of the driving means 2. Specifically, the computer 22 is based on the input relative transfer speed of the long member S1 and the shape of the cross section of the long member S1 stored in advance at each longitudinal position. The shape of the cross section of the portion of the long member S1 that reaches the position where 10 is arranged is sequentially calculated, and the appropriate shape of each magnetizing coil 1 is calculated based on the shape of this cross section and the size of the magnetizing coil 1 stored in advance. The movement direction and movement amount are calculated sequentially.

以上に説明した第1実施形態に係る磁化装置100によれば、長尺材S1の長手方向(X方向)から見た場合に、磁化コイル群10の内部の互いに重複する領域12が長尺材S1の断面よりもやや大きくなるように、磁化コイル群10を構成する各磁化コイル1の内面がそれぞれ長尺材S1の外面に近づくことになる。
したがい、磁化コイル群10の内部の互いに重複する領域12を基準にした充填率が高まることで、十分な磁化性能を得ることが可能である。第1実施形態に係る磁化装置100によれば、十分な磁化性能を得ることができるため、長尺材S1の磁粉探傷・漏洩磁束探傷に用いる場合には、きずの検出性能が低下するおそれがない。また、長尺材S1の誘導加熱に用いる場合には、加熱性能が低下するおそれがない。
また、第1実施形態に係る磁化装置100によれば、1組の磁化コイル群10で長尺材S1の全長を磁化することが可能である。
According to the magnetization device 100 according to the first embodiment described above, when viewed from the longitudinal direction (X direction) of the long member S1, the overlapping regions 12 inside the magnetizing coil group 10 are the long member. The inner surface of each magnetizing coil 1 constituting the magnetizing coil group 10 approaches the outer surface of the long member S1 so as to be slightly larger than the cross section of S1.
Therefore, it is possible to obtain sufficient magnetization performance by increasing the filling rate based on the mutually overlapping regions 12 inside the magnetized coil group 10. According to the magnetization device 100 according to the first embodiment, sufficient magnetization performance can be obtained. Therefore, when the long member S1 is used for magnetic particle flaw detection and leakage flux flaw detection, the flaw detection performance may deteriorate. Absent. Further, when it is used for induction heating of the long material S1, there is no possibility that the heating performance is deteriorated.
Further, according to the magnetization device 100 according to the first embodiment, it is possible to magnetize the entire length of the long member S1 with a set of magnetizing coil groups 10.

<第2実施形態>
次に、本発明の第2実施形態に係る磁化装置について説明する。第2実施形態に係る磁化装置が備える構成要素において、第1実施形態に係る磁化装置100が備える構成要素と同様の機能を果たす構成要素には同一の符号を付して重複する説明を適宜省略し、主として第1実施形態と異なる部分について説明する。
図2は、本発明の第2実施形態に係る磁化装置100Aの概略構成を模式的に示す図である。具体的には、図2は、長尺材S2(図2に示す例ではクランクシャフト)の長手方向(X方向)に直交する方向(Y方向)から見た磁化装置100A全体を示す側面図である。図2(a)は、各磁化コイル群10が初期状態である場合を示す側面図である。図2(b)は、各磁化コイル群10が移動した後の状態を示す側面図である。なお、図2では、長尺材S2を透視した状態で図示している。また、図2では、図1と異なり、磁化装置100Aが備える駆動手段2及び支持棒11の図示を省略している。さらに、図2では、長尺材S2の長手方向から見た正面図の図示を省略している。第2実施形態の磁化コイル群10も、第1実施形態と同様に3個の磁化コイル1からなる。ただし、第2実施形態の磁化コイル群10は、複数組(図2に示す例では9組)設けられている。
<Second Embodiment>
Next, the magnetization device according to the second embodiment of the present invention will be described. In the components included in the magnetization device according to the second embodiment, the components having the same functions as the components included in the magnetization device 100 according to the first embodiment are designated by the same reference numerals, and duplicate description is appropriately omitted. Then, mainly the parts different from the first embodiment will be described.
FIG. 2 is a diagram schematically showing a schematic configuration of a magnetization device 100A according to a second embodiment of the present invention. Specifically, FIG. 2 is a side view showing the entire magnetization device 100A seen from a direction (Y direction) orthogonal to the longitudinal direction (X direction) of the long member S2 (crankshaft in the example shown in FIG. 2). is there. FIG. 2A is a side view showing the case where each magnetized coil group 10 is in the initial state. FIG. 2B is a side view showing a state after each magnetizing coil group 10 has moved. In addition, in FIG. 2, the long member S2 is shown in a transparent state. Further, in FIG. 2, unlike FIG. 1, the driving means 2 and the support rod 11 included in the magnetization device 100A are not shown. Further, in FIG. 2, the front view of the long member S2 as viewed from the longitudinal direction is omitted. The magnetized coil group 10 of the second embodiment is also composed of three magnetized coils 1 as in the first embodiment. However, a plurality of sets (9 sets in the example shown in FIG. 2) of the magnetized coil group 10 of the second embodiment are provided.

図2に示すように、第2実施形態に係る磁化装置100Aも3個以上の複数の磁化コイル1(図2に示す例では27個の磁化コイル1)を備える。図2に示す各磁化コイル1は、1回巻きの円形コイルであり、互いに同一の寸法である。複数の磁化コイル1は、長尺材S2の長手方向に沿って並べて配置され、長尺材S2の全長を挿通可能な寸法を有する。具体的には、図2に示す長尺材S2は長手方向の位置によって断面の大きさや断面中心の位置が異なるクランクシャフトであるため、磁化コイル1の内径は、長尺材S2の各断面を長手方向に投影した投影断面を囲むことが可能な大きさを有する。そして、図2(a)に示すように、初期状態では、長尺材S2の中心(中心軸)と、複数の磁化コイル1の中心(中心軸)とが合致した状態になっている。
各磁化コイル1は電源(図示せず)と接続されており、電源から各磁化コイル1に対して同じ方向に流れる直流電流又は同期した交流電流が通電される。
第2実施形態に係る磁化装置100Aが備える駆動手段2(図示せず)も、第1実施形態と同様に、2軸ステージ21(図示せず)とコンピュータ22(図示せず)とを備える。第2実施形態のコンピュータ22は、インストールされている2軸ステージ21を駆動するためのプログラムが第1実施形態とは異なるため、第2実施形態に係る磁化装置100Aの動作は第1実施形態に係る磁化装置100の動作と異なるものとなる。
As shown in FIG. 2, the magnetization device 100A according to the second embodiment also includes a plurality of magnetizing coils 1 (27 magnetizing coils 1 in the example shown in FIG. 2). Each magnetized coil 1 shown in FIG. 2 is a one-turn circular coil and has the same dimensions as each other. The plurality of magnetizing coils 1 are arranged side by side along the longitudinal direction of the long member S2, and have a size capable of inserting the entire length of the long member S2. Specifically, since the long member S2 shown in FIG. 2 is a crankshaft in which the size of the cross section and the position of the center of the cross section differ depending on the position in the longitudinal direction, the inner diameter of the magnetized coil 1 is the cross section of the long member S2. It has a size that can surround the projected cross section projected in the longitudinal direction. Then, as shown in FIG. 2A, in the initial state, the center (central axis) of the long member S2 and the center (central axis) of the plurality of magnetizing coils 1 are in a state of matching.
Each magnetized coil 1 is connected to a power source (not shown), and a direct current or a synchronized alternating current flowing in the same direction is energized from the power source to each magnetized coil 1.
The driving means 2 (not shown) included in the magnetization device 100A according to the second embodiment also includes a two-axis stage 21 (not shown) and a computer 22 (not shown) as in the first embodiment. Since the program for driving the installed 2-axis stage 21 of the computer 22 of the second embodiment is different from that of the first embodiment, the operation of the magnetization device 100A according to the second embodiment is the same as that of the first embodiment. The operation is different from that of the magnetization device 100.

以下、上記の構成を有する第2実施形態に係る磁化装置100Aの動作について説明する。第2実施形態では、複数の磁化コイル1の全てに長尺材S2が挿通した後、複数の磁化コイル1を移動させる。具体的には、図2(a)に示すように、長尺材S2の中心と複数の磁化コイル1の中心とが合致した初期状態で、搬送手段(図示せず)によって長尺材S2を複数の磁化コイル1の全てに挿通させる。搬送手段によって長尺材S2をその長手方向にどれだけ搬送するかは、長尺材S2の長さと複数の磁化コイル1の配置位置とによって決定可能である。
この後、図2(b)に示すように、駆動手段2(図示せず)は、長尺材S2の長手方向から見た場合に、各磁化コイル群10の内部の互いに重複する領域が、各磁化コイル群10が配置された位置での長尺材S2の部位の断面に近づくように、複数の磁化コイル1を移動させる。
Hereinafter, the operation of the magnetization device 100A according to the second embodiment having the above configuration will be described. In the second embodiment, after the long member S2 is inserted through all of the plurality of magnetizing coils 1, the plurality of magnetizing coils 1 are moved. Specifically, as shown in FIG. 2A, in the initial state where the center of the long member S2 and the center of the plurality of magnetizing coils 1 are aligned, the long member S2 is moved by a conveying means (not shown). It is inserted through all of the plurality of magnetizing coils 1. How much the long member S2 is conveyed in the longitudinal direction by the conveying means can be determined by the length of the long member S2 and the arrangement position of the plurality of magnetizing coils 1.
After that, as shown in FIG. 2B, in the driving means 2 (not shown), when viewed from the longitudinal direction of the long member S2, the regions overlapping each other inside each magnetized coil group 10 are formed. The plurality of magnetized coils 1 are moved so as to approach the cross section of the portion of the long member S2 at the position where each magnetized coil group 10 is arranged.

なお、第2実施形態に係る磁化装置100Aも、第1実施形態に係る磁化装置100と同様に、駆動手段2は、例えば、長尺材S2の長手方向から見た場合に、磁化コイル群10を構成する各磁化コイル1の中心が磁化コイル群10が配置された位置での長尺材S2の部位の断面の中心に一致するように磁化コイル群10を移動させた後、この状態から磁化コイル群10を構成する磁化コイル1の数に応じて長尺材S2の周方向に略等角度で分割された方向に磁化コイル群10を構成する各磁化コイル1を移動させる。第2実施形態でも、磁化コイル群10を構成する磁化コイル1の数は3個であるため、駆動手段2は、略120°の角度で分割された方向に各磁化コイル1を移動させることになる。これにより、磁化コイル群10の内部の互いに重複する領域12が、磁化コイル群10が配置された位置での長尺材S2の部位の断面に近づくことになる。 In the magnetizing device 100A according to the second embodiment, similarly to the magnetizing device 100 according to the first embodiment, the driving means 2 is, for example, the magnetizing coil group 10 when viewed from the longitudinal direction of the long member S2. After moving the magnetizing coil group 10 so that the center of each magnetizing coil 1 constituting the above coincides with the center of the cross section of the portion of the long member S2 at the position where the magnetizing coil group 10 is arranged, the magnetizing coil group 10 is magnetized from this state. Each magnetizing coil 1 constituting the magnetizing coil group 10 is moved in a direction divided at substantially equal angles in the circumferential direction of the long member S2 according to the number of magnetizing coils 1 constituting the coil group 10. Also in the second embodiment, since the number of the magnetizing coils 1 constituting the magnetizing coil group 10 is 3, the driving means 2 decides to move each magnetizing coil 1 in the direction divided at an angle of about 120 °. Become. As a result, the overlapping regions 12 inside the magnetized coil group 10 approach the cross section of the portion of the long member S2 at the position where the magnetized coil group 10 is arranged.

また、第2実施形態でも、各磁化コイル1の適切な移動方向や移動量は、駆動手段2(図示せず)のコンピュータ22(図示せず)によって算出される。具体的には、コンピュータ22は、予め記憶された長尺材S1の各長手方向の位置での断面の形状と、予め記憶された磁化コイル1の寸法とに基づき、各磁化コイル1の適切な移動方向や移動量を算出する。 Further, also in the second embodiment, the appropriate moving direction and moving amount of each magnetizing coil 1 are calculated by the computer 22 (not shown) of the driving means 2 (not shown). Specifically, the computer 22 is suitable for each magnetizing coil 1 based on the shape of the cross section of the long member S1 stored in advance at each longitudinal position and the size of the magnetizing coil 1 stored in advance. Calculate the movement direction and movement amount.

以上に説明した第2実施形態に係る磁化装置100Aによっても、長尺材S2の長手方向(X方向)から見た場合に、磁化コイル群10の内部の互いに重複する領域が長尺材S2の断面よりもやや大きくなるように、磁化コイル群10を構成する各磁化コイル1の内面がそれぞれ長尺材S2の外面に近づくことになる。
したがい、磁化コイル群10の内部の互いに重複する領域を基準にした充填率が高まることで、十分な磁化性能を得ることが可能である。第2実施形態に係る磁化装置100Aによれば、十分な磁化性能を得ることができるため、長尺材S2の磁粉探傷・漏洩磁束探傷に用いる場合には、きずの検出性能が低下するおそれがない。また、長尺材S2の誘導加熱に用いる場合には、加熱性能が低下するおそれがない。
また、第2実施形態に係る磁化装置100Aによれば、第1実施形態に係る磁化装置100に比べて、必要な磁化コイル群10の数が増えるものの、長尺材S2を長手方向に相対的に搬送している過程で複数の磁化コイル1を移動させる必要がないため、磁化コイル1を移動させる制御が容易であるという利点を有する。
Even with the magnetizing device 100A according to the second embodiment described above, when viewed from the longitudinal direction (X direction) of the long member S2, the overlapping regions inside the magnetizing coil group 10 are the long member S2. The inner surface of each magnetizing coil 1 constituting the magnetizing coil group 10 approaches the outer surface of the long member S2 so as to be slightly larger than the cross section.
Therefore, it is possible to obtain sufficient magnetization performance by increasing the filling rate based on the mutually overlapping regions inside the magnetized coil group 10. According to the magnetization device 100A according to the second embodiment, sufficient magnetization performance can be obtained, so that when used for magnetic particle flaw detection and leakage flux flaw detection of the long material S2, the flaw detection performance may deteriorate. Absent. Further, when it is used for induction heating of the long material S2, there is no possibility that the heating performance is deteriorated.
Further, according to the magnetization device 100A according to the second embodiment, although the number of magnetizing coil groups 10 required increases as compared with the magnetization device 100 according to the first embodiment, the long member S2 is relatively relative to the longitudinal direction. Since it is not necessary to move the plurality of magnetized coils 1 in the process of transporting the magnetized coils 1, there is an advantage that the control of moving the magnetized coils 1 is easy.

<第3実施形態>
次に、本発明の第3実施形態に係る磁化装置について説明する。第3実施形態に係る磁化装置は、検出手段を備える点が第2実施形態に係る磁化装置100Aと異なる。以下、第3実施形態に係る磁化装置が備える構成要素において、第2実施形態に係る磁化装置100Aが備える構成要素と同様の機能を果たす構成要素には同一の符号を付して重複する説明を適宜省略し、主として第2実施形態と異なる部分について説明する。
図3及び図4は、本発明の第3実施形態に係る磁化装置100Bが備える検出手段3の概略構成を模式的に示す図である。図3(a)は、検出手段3の概略構成を示す斜視図であり、長尺材S3(図3及び図4に示す例ではクランクシャフト)が基準位置にある状態を示している。図3(b)は、図3(a)に示す検出手段3が具備する撮像手段31によって撮像した撮像画像の一例を示す。図4(a)は、検出手段3の概略構成を示す斜視図であり、長尺材S3が基準位置からずれた状態を示している。図4(b)は、図4(a)に示す検出手段3が具備する撮像手段31によって撮像した撮像画像の一例を示す。なお、図3及び図4では、磁化装置100Bが備える磁化コイル群10(磁化コイル1)(図2参照)、2軸ステージ21(図1参照)及び支持棒11(図1参照)の図示を省略している。
第3実施形態に係る磁化装置100Bが備える磁化コイル群10も、第2実施形態と同様に3個の磁化コイル1(長尺材S3の長手方向(X方向)に沿って並べて配置され、長尺材S3の全長を挿通可能な互いに同一寸法の1回巻きの円形コイル)からなり、複数組設けられている。各磁化コイル1は電源(図示せず)と接続されており、電源から各磁化コイル1に対して同じ方向に流れる直流電流又は同期した交流電流が通電される。第3実施形態の駆動手段2が備えるコンピュータ22には、第2実施形態と同様に、2軸ステージ21を駆動するためのプログラムがインストールされている。さらに、第3実施形態のコンピュータ22には、検出手段3が具備する撮像手段31によって撮像した撮像画像に対して画像処理を施すためのプログラムもインストールされており、検出手段3としての機能も有する。
<Third Embodiment>
Next, the magnetization device according to the third embodiment of the present invention will be described. The magnetization device according to the third embodiment is different from the magnetization device 100A according to the second embodiment in that it includes a detection means. Hereinafter, in the components included in the magnetization device according to the third embodiment, the components having the same functions as the components included in the magnetization device 100A according to the second embodiment are designated by the same reference numerals and will be duplicated. The parts that are different from the second embodiment will be mainly described by omitting them as appropriate.
3 and 4 are diagrams schematically showing a schematic configuration of a detection means 3 included in the magnetization device 100B according to the third embodiment of the present invention. FIG. 3A is a perspective view showing a schematic configuration of the detection means 3, and shows a state in which the long member S3 (crankshaft in the examples shown in FIGS. 3 and 4) is in the reference position. FIG. 3B shows an example of an captured image captured by the imaging means 31 included in the detecting means 3 shown in FIG. 3A. FIG. 4A is a perspective view showing a schematic configuration of the detection means 3, showing a state in which the long member S3 is deviated from the reference position. FIG. 4B shows an example of an captured image captured by the imaging means 31 included in the detecting means 3 shown in FIG. 4A. In addition, in FIGS. 3 and 4, the magnetizing coil group 10 (magnetizing coil 1) (see FIG. 2) and the biaxial stage 21 (see FIG. 1) and the support rod 11 (see FIG. 1) included in the magnetizing device 100B are shown. It is omitted.
The magnetizing coil group 10 included in the magnetizing device 100B according to the third embodiment is also arranged side by side along the longitudinal direction (X direction) of the three magnetizing coils 1 (long member S3) as in the second embodiment. It is composed of a single-turn circular coil having the same dimensions as each other and capable of inserting the entire length of the scale member S3), and a plurality of sets are provided. Each magnetized coil 1 is connected to a power source (not shown), and a direct current or a synchronized alternating current flowing in the same direction is energized from the power source to each magnetized coil 1. Similar to the second embodiment, a program for driving the two-axis stage 21 is installed in the computer 22 included in the driving means 2 of the third embodiment. Further, the computer 22 of the third embodiment also has a program installed for performing image processing on the captured image captured by the imaging means 31 included in the detecting means 3, and also has a function as the detecting means 3. ..

図3及び図4に示すように、第3実施形態に係る磁化装置100Bは、検出手段3を備える。図3及び図4に示す例では、検出手段3は、撮像手段31と、コンピュータ22とを備える。撮像手段31は、長尺材S3の一方の端部(具体的には、クランクシャフトの最も一方の端部側に位置するジャーナルSJ及びカウンタウェイトSC)を長尺材S3の長手方向から撮像可能な位置に設置されている。コンピュータ22は、撮像手段31によって撮像した撮像画像に対して所定の画像処理を施す。そして、検出手段3は、長尺材S3を磁化する際(例えば、長尺材S3が図4(a)に示す位置にあるとき)の、基準位置(図3(a)に示す長尺材S3の位置)に対する長尺材S3の長手方向(X方向)の位置ずれ量Δlと、基準位置に対する長尺材S3の長手方向周りのずれ角度Δθとを検出するように構成されている。以下、検出手段3による位置ずれ量Δl及びずれ角度Δθの検出方法の一例について説明する。 As shown in FIGS. 3 and 4, the magnetization device 100B according to the third embodiment includes a detection means 3. In the example shown in FIGS. 3 and 4, the detecting means 3 includes an imaging means 31 and a computer 22. The imaging means 31 can image one end of the long material S3 (specifically, the journal SJ and the counterweight SC located on the onemost end side of the crankshaft) from the longitudinal direction of the long material S3. It is installed in a suitable position. The computer 22 performs predetermined image processing on the captured image captured by the imaging means 31. Then, when the long member S3 is magnetized (for example, when the long member S3 is at the position shown in FIG. 4A), the detecting means 3 has a reference position (the long member shown in FIG. 3A). It is configured to detect the amount of misalignment Δl of the long member S3 in the longitudinal direction (X direction) with respect to the position of S3) and the deviation angle Δθ around the longitudinal direction of the long member S3 with respect to the reference position. Hereinafter, an example of a method for detecting the displacement amount Δl and the displacement angle Δθ by the detection means 3 will be described.

長尺材S3(クランクシャフト)は、コンベア等の搬送手段によって、一対の受台4、5の設置位置まで搬送され、受台4、5に載置される。そして、図3(a)に示すように長尺材S3が基準位置にあるときに撮像手段31によって撮像された図3(b)に示す撮像画像が、コンピュータ22に入力される。コンピュータ22には、長尺材S3の設計仕様等に基づき、基準位置にある長尺材S3の各長手方向の位置での断面(長尺材S3の長手方向に直交するYZ平面内の断面)の形状(断面の大きさや断面中心の位置)が予め記憶されている。コンピュータ22は、例えば、この記憶された長尺材S3の各長手方向の位置での断面の形状のうち、カウンタウェイトSCの断面形状を抽出し、入力された撮像画像のうち、前記抽出したカウンタウェイトSCの断面形状の近傍に位置する画素領域に対してエッジ検出等の公知の画像処理を施して、カウンタウェイトSCの外縁を抽出し、この抽出した基準位置でのカウンタウェイトSCの外縁の座標を記憶する。
一方、図4(a)に示すように長尺材S3が磁化される際に撮像手段31によって撮像された図4(b)に示す撮像画像が、コンピュータ22に入力される。コンピュータ22は、長尺材S3が基準位置にある場合について前述したのと同様に、例えば、入力された撮像画像のうち、前記抽出したカウンタウェイトSCの断面形状の近傍に位置する画素領域に対してエッジ検出等の公知の画像処理を施して、カウンタウェイトSCの外縁を抽出する。そして、この抽出したカウンタウェイトSCの外縁の座標と、前述のように記憶した基準位置でのカウンタウェイトSCの外縁の座標とに基づき、図4(b)に示すように、基準位置に対する長尺材S3の長手方向周りのずれ角度Δθを算出する。具体的には、コンピュータ22は、例えば、記憶した基準位置でのカウンタウェイトSCの外縁を回転移動させて、抽出したカウンタウェイトSCの外縁とマッチングさせる。そして、コンピュータ22が、最も高いマッチングスコアが得られたときの回転移動の回転角度をずれ角度Δθとして特定することが考えられる。
The long member S3 (crankshaft) is conveyed to the installation positions of the pair of pedestals 4 and 5 by a conveying means such as a conveyor, and is placed on the pedestals 4 and 5. Then, as shown in FIG. 3A, the captured image shown in FIG. 3B captured by the imaging means 31 when the long member S3 is in the reference position is input to the computer 22. The computer 22 has a cross section at each longitudinal position of the long member S3 at the reference position based on the design specifications of the long member S3 (cross section in the YZ plane orthogonal to the longitudinal direction of the long member S3). Shape (size of cross section and position of center of cross section) is stored in advance. The computer 22 extracts, for example, the cross-sectional shape of the counter weight SC from the cross-sectional shapes of the stored long member S3 at each longitudinal position, and the extracted counter from the input captured images. A known image process such as edge detection is performed on a pixel region located near the cross-sectional shape of the weight SC to extract the outer edge of the counter weight SC, and the coordinates of the outer edge of the counter weight SC at the extracted reference position. Remember.
On the other hand, as shown in FIG. 4A, the captured image shown in FIG. 4B captured by the imaging means 31 when the long member S3 is magnetized is input to the computer 22. In the same manner as described above for the case where the long member S3 is in the reference position, the computer 22 refers to, for example, the pixel region located in the vicinity of the cross-sectional shape of the extracted counterweight SC in the input captured image. The outer edge of the counter weight SC is extracted by performing known image processing such as edge detection. Then, based on the coordinates of the outer edge of the extracted counterweight SC and the coordinates of the outer edge of the counterweight SC at the reference position stored as described above, as shown in FIG. 4B, the length with respect to the reference position is long. The deviation angle Δθ around the longitudinal direction of the material S3 is calculated. Specifically, the computer 22 rotates, for example, the outer edge of the counterweight SC at the stored reference position to match the outer edge of the extracted counterweight SC. Then, it is conceivable that the computer 22 specifies the rotation angle of the rotational movement when the highest matching score is obtained as the deviation angle Δθ.

また、コンピュータ22は、例えば、長尺材S3の設計仕様等に基づき予め記憶された長尺材S3の各長手方向の位置での断面の形状のうち、ジャーナルSJの断面形状を抽出し、図3(b)に示す撮像画像のうち、前記抽出したジャーナルSJの断面形状の近傍に位置する画素領域に対してエッジ検出等の公知の画像処理を施して、ジャーナルSJの外縁を抽出し、この抽出した基準位置でのジャーナルSJの外縁の座標を記憶する。
一方、コンピュータ22は、長尺材S3が基準位置にある場合について前述したのと同様に、例えば、図4(b)に示す撮像画像のうち、前記抽出したジャーナルSJの断面形状の近傍に位置する画素領域に対してエッジ検出等の公知の画像処理を施して、ジャーナルSJの外縁を抽出する。そして、この抽出したジャーナルSJの外縁の座標から求まるジャーナルSJの端面の大きさ(面積)と、前述のように記憶した基準位置でのジャーナルSJの外縁の座標から求まるジャーナルSJの端面の大きさ(面積)とに基づき、基準位置に対する長尺材S3の長手方向の位置ずれ量Δlを算出する。すなわち、磁化される際の長尺材S3が撮像手段3から遠ざかるように長手方向にその位置がずれれば、ジャーナルSJの端面の大きさは基準位置での大きさよりも小さくなり、撮像手段3に近づくように長手方向にその位置がずれれば、ジャーナルSJの端面の大きさは基準位置での大きさよりも大きくなることを利用して、位置ずれ量Δlを算出することができる。
Further, the computer 22 extracts, for example, the cross-sectional shape of the journal SJ from the cross-sectional shapes of the long-length member S3 stored in advance based on the design specifications of the long-length member S3 at each position in the longitudinal direction. Of the captured images shown in 3 (b), the outer edge of the journal SJ is extracted by performing known image processing such as edge detection on the pixel region located near the cross-sectional shape of the extracted journal SJ. The coordinates of the outer edge of the journal SJ at the extracted reference position are stored.
On the other hand, the computer 22 is located near the cross-sectional shape of the extracted journal SJ in the captured image shown in FIG. 4B, for example, in the same manner as described above for the case where the long member S3 is in the reference position. The outer edge of the journal SJ is extracted by performing known image processing such as edge detection on the pixel region to be processed. Then, the size (area) of the end face of the journal SJ obtained from the coordinates of the outer edge of the extracted journal SJ and the size of the end face of the journal SJ obtained from the coordinates of the outer edge of the journal SJ at the reference position stored as described above. Based on (area), the amount of misalignment Δl of the long member S3 in the longitudinal direction with respect to the reference position is calculated. That is, if the position of the long member S3 to be magnetized shifts in the longitudinal direction so as to move away from the imaging means 3, the size of the end face of the journal SJ becomes smaller than the size at the reference position, and the imaging means 3 If the position shifts in the longitudinal direction so as to approach, the size of the end face of the journal SJ becomes larger than the size at the reference position, and the position shift amount Δl can be calculated.

上記のようにして検出(算出)された位置ずれ量Δl及びずれ角度Δθは、コンピュータ22に記憶される。
一方、コンピュータ22には、長尺材S3が図3(a)に示す基準位置にあるときに、磁化コイル群10の内部の互いに重複する領域が、磁化コイル群10が配置された位置での長尺材S3の部位の断面に近づくように決められた、磁化コイル群10を構成する各磁化コイル1の移動方向及び移動量が予め記憶されている。この具体的な内容については後述する。
そして、駆動手段2(2軸ステージ21及びコンピュータ22)は、コンピュータ22に記憶された各磁化コイル1の移動方向及び移動量と、検出手段3によって検出した長尺材S3の位置ずれ量Δl及びずれ角度Δθとに基づき、各磁化コイル1の実際の移動方向及び移動量を決定して、各磁化コイル1を移動させる。換言すれば、駆動手段2は、長尺材S3が基準位置にあるときに適切な各磁化コイル1の移動方向及び移動量(コンピュータ22に予め記憶された各磁化コイル1の移動方向及び移動量)を、検出手段3によって検出した長尺材S3の位置ずれ量Δl及びずれ角度Δθとに基づき補正して、実際に磁化する際の長尺材S3の位置(長尺材S3の長手方向の位置及び長手方向周りの角度)に応じた適切な各磁化コイル1の移動方向及び移動量を決定する。そして、駆動手段2が、決定した各磁化コイル1の実際の移動方向及び移動量に基づき、各磁化コイル1を移動させる。これにより、たとえ長尺材S3が想定している基準位置からずれたとしても、充填率を高めて、十分な磁化性能を得ることが可能である。
The position shift amount Δl and the shift angle Δθ detected (calculated) as described above are stored in the computer 22.
On the other hand, in the computer 22, when the long member S3 is in the reference position shown in FIG. 3A, the overlapping regions inside the magnetizing coil group 10 are located at the positions where the magnetizing coil group 10 is arranged. The moving direction and the amount of movement of each magnetizing coil 1 constituting the magnetizing coil group 10 determined to approach the cross section of the portion of the long member S3 are stored in advance. The specific contents will be described later.
Then, the driving means 2 (two-axis stage 21 and the computer 22) has the moving direction and the moving amount of each magnetizing coil 1 stored in the computer 22, and the misalignment amount Δl of the long member S3 detected by the detecting means 3. The actual moving direction and moving amount of each magnetizing coil 1 are determined based on the deviation angle Δθ, and each magnetizing coil 1 is moved. In other words, the driving means 2 provides an appropriate moving direction and moving amount of each magnetizing coil 1 when the long member S3 is in the reference position (moving direction and moving amount of each magnetizing coil 1 stored in advance in the computer 22). ) Is corrected based on the displacement amount Δl and the displacement angle Δθ of the long member S3 detected by the detecting means 3, and the position of the long member S3 when actually magnetized (in the longitudinal direction of the long member S3). An appropriate moving direction and moving amount of each magnetizing coil 1 are determined according to the position and the angle around the longitudinal direction. Then, the driving means 2 moves each magnetizing coil 1 based on the determined actual moving direction and moving amount of each magnetizing coil 1. As a result, even if the long member S3 deviates from the assumed reference position, it is possible to increase the filling rate and obtain sufficient magnetization performance.

長尺材S3が一対の受台4、5の設置位置まで搬送され、受台4、5に載置されてからの第3実施形態に係る磁化装置100Bの動作を纏めると、以下の(1)〜(5)のようになる。
(1)検出手段3によって、長尺材S3の位置ずれ量Δl及びずれ角度Δθを検出する。
(2)固定クランプ6が降下し、長尺材S3の他方の端部側(図4(a)の右側)に位置するジャーナルを固定クランプ6及び受台5の間で挟持(クランプ)する。
(3)受台5が退避(例えば、降下)し、固定クランプ6及び受台5によって、長尺材S3を片持ち支持する。
(4)磁化コイル群10を構成する各磁化コイル1の中心(中心軸)と、長尺材S3の中心(中心軸)とが合致した状態で、長尺材S3の一方の端部側(図4(a)の左側)から磁化コイル群10に長尺材S3を挿通させる。
(5)駆動手段2が、予め記憶された各磁化コイル1の移動方向及び移動量(長尺材S3が基準位置にあるときに、磁化コイル群10の内部の互いに重複する領域が、磁化コイル群10が配置された位置での長尺材S3の部位の断面に近づくように決められた、磁化コイル群10を構成する各磁化コイル1の移動方向及び移動量)と、検出手段3によって検出した長尺材S3の位置ずれ量Δl及びずれ角度Δθとに基づき、各磁化コイル1の実際の移動方向及び移動量を決定して、決定した各磁化コイル1の実際の移動方向及び移動量に基づき、各磁化コイル1を移動させる。
The operation of the magnetization device 100B according to the third embodiment after the long member S3 is transported to the installation positions of the pair of pedestals 4 and 5 and placed on the pedestals 4 and 5 can be summarized as follows (1). ) ~ (5).
(1) The detection means 3 detects the displacement amount Δl and the displacement angle Δθ of the long member S3.
(2) The fixed clamp 6 is lowered, and the journal located on the other end side (right side of FIG. 4A) of the long member S3 is clamped between the fixed clamp 6 and the pedestal 5.
(3) The pedestal 5 retracts (for example, descends), and the long member S3 is cantilevered and supported by the fixed clamp 6 and the pedestal 5.
(4) One end side (central axis) of the long member S3 in a state where the center (central axis) of each magnetized coil 1 constituting the magnetized coil group 10 and the center (central axis) of the long member S3 are aligned. The long member S3 is inserted into the magnetizing coil group 10 from the left side of FIG. 4A).
(5) The moving direction and the amount of movement of each magnetizing coil 1 stored in advance by the driving means 2 (when the long member S3 is at the reference position, the overlapping regions inside the magnetizing coil group 10 are the magnetizing coils. Detected by the detection means 3 and the moving direction and amount of movement of each magnetizing coil 1 constituting the magnetizing coil group 10 determined to approach the cross section of the portion of the long member S3 at the position where the group 10 is arranged. Based on the positional deviation amount Δl and the deviation angle Δθ of the long member S3, the actual moving direction and moving amount of each magnetizing coil 1 are determined, and the actual moving direction and moving amount of each determined magnetizing coil 1 is obtained. Based on this, each magnetizing coil 1 is moved.

なお、第3実施形態では、長尺材S3が撮像手段3から遠ざかるように長手方向にその位置がずれれば、ジャーナルSJの端面の大きさは基準位置での大きさよりも小さくなり、撮像手段3に近づくように長手方向にその位置がずれれば、ジャーナルSJの端面の大きさは基準位置での大きさよりも大きくなることを利用して、検出手段3が位置ずれ量Δlを検出する場合を例に挙げて説明したが、本発明はこれに限るものではない。位置ずれ量Δlをより高精度に検出する必要がある場合には、三角測量の原理を用いた方法で検出することも可能である。 In the third embodiment, if the position of the long member S3 shifts in the longitudinal direction so as to move away from the imaging means 3, the size of the end face of the journal SJ becomes smaller than the size at the reference position, and the imaging means When the detection means 3 detects the misalignment amount Δl by utilizing the fact that the size of the end face of the journal SJ becomes larger than the size at the reference position if the position shifts in the longitudinal direction so as to approach 3. However, the present invention is not limited to this. When it is necessary to detect the amount of misalignment Δl with higher accuracy, it is also possible to detect it by a method using the principle of triangulation.

図5は、本発明の第3実施形態に係る磁化装置100Bが備える検出手段3の変形例の概略構成を模式的に示す図である。図5(a)は、検出手段3の概略構成を示す平面図であり、長尺材S3が基準位置にある状態を示している。図5(b)は、図5(a)に示す検出手段3が具備する撮像手段31によって撮像した撮像画像のうちジャーナルSJに相当する画素領域の一例を示す。図5(c)は、検出手段3の概略構成を示す平面図であり、長尺材S3が基準位置からずれた状態を示している。図5(d)は、図5(c)に示す検出手段3が具備する撮像手段31によって撮像した撮像画像のうちジャーナルSJに相当する画素領域の一例を示す。なお、図5(d)に示す破線は、図5(b)に示すレーザ光Lに相当する画素領域を図示したものであり、実際には撮像されない。
図5に示すように、変形例に係る検出手段3は、撮像手段31と、コンピュータ22(図5には図示せず)とに加え、レーザ光源32を備える。レーザ光源32は、その光軸が撮像手段31の視軸に対して角度φだけ傾き、出射したレーザ光LがジャーナルSJの端面(好ましくは、基準位置にある長尺材S3のジャーナルSJの端面の中心)に照射されるように配置されている。
FIG. 5 is a diagram schematically showing a schematic configuration of a modified example of the detection means 3 included in the magnetization device 100B according to the third embodiment of the present invention. FIG. 5A is a plan view showing a schematic configuration of the detection means 3, showing a state in which the long member S3 is in a reference position. FIG. 5B shows an example of a pixel region corresponding to the journal SJ in the captured image captured by the imaging means 31 included in the detecting means 3 shown in FIG. 5A. FIG. 5C is a plan view showing a schematic configuration of the detection means 3, and shows a state in which the long member S3 is deviated from the reference position. FIG. 5D shows an example of a pixel region corresponding to the journal SJ in the captured image captured by the imaging means 31 included in the detecting means 3 shown in FIG. 5C. The broken line shown in FIG. 5D illustrates the pixel region corresponding to the laser beam L shown in FIG. 5B, and is not actually imaged.
As shown in FIG. 5, the detecting means 3 according to the modified example includes a laser light source 32 in addition to the imaging means 31 and the computer 22 (not shown in FIG. 5). The optical axis of the laser light source 32 is tilted by an angle φ with respect to the visual axis of the imaging means 31, and the emitted laser light L is the end face of the journal SJ (preferably the end face of the journal SJ of the long member S3 at the reference position). It is arranged so that it illuminates the center of the).

変形例に係る検出手段3が備えるコンピュータ22には、図5(a)に示すように長尺材S3が基準位置にあるときに撮像手段31によって撮像された図5(b)に示すような画素領域を含む撮像画像が入力される。コンピュータ22は、入力された撮像画像に対して2値化等の公知の画像処理を施して、周囲よりも輝度値が大きくなるレーザ光Lに相当する画素領域を抽出し、この抽出したレーザ光Lに相当する画素領域の座標(中心座標)を算出して記憶する。
一方、図5(c)に示すように長尺材S3が磁化される際に撮像手段31によって撮像された図5(d)に示す撮像画像が、コンピュータ22に入力される。コンピュータ22は、入力された撮像画像に対して2値化等の公知の画像処理を施して、周囲よりも輝度値が大きくなるレーザ光Lに相当する画素領域を抽出し、この抽出したレーザ光Lに相当する画素領域の座標(中心座標)を算出する。そして、この抽出したレーザ光Lに相当する画素領域の座標と、前述のように記憶した基準位置でのレーザ光Lに相当する画素領域の座標との距離d(図5(d)参照)を算出する。距離dが実寸(距離dに対応する画素数×画素分解能)だとすれば、図5(c)に示すように、位置ずれ量Δlは、幾何学的に、Δl=d/tanφによって算出可能である。
As shown in FIG. 5 (a), the computer 22 included in the detection means 3 according to the modified example is captured by the imaging means 31 when the long member S3 is in the reference position as shown in FIG. 5 (a). An captured image including a pixel area is input. The computer 22 performs known image processing such as binarization on the input captured image, extracts a pixel region corresponding to the laser beam L whose brightness value is larger than that of the surroundings, and extracts the extracted laser beam. The coordinates (center coordinates) of the pixel area corresponding to L are calculated and stored.
On the other hand, as shown in FIG. 5C, the captured image shown in FIG. 5D captured by the imaging means 31 when the long member S3 is magnetized is input to the computer 22. The computer 22 performs known image processing such as binarization on the input captured image, extracts a pixel region corresponding to the laser beam L whose brightness value is larger than that of the surroundings, and extracts the extracted laser beam. The coordinates (center coordinates) of the pixel area corresponding to L are calculated. Then, the distance d (see FIG. 5D) between the coordinates of the pixel region corresponding to the extracted laser beam L and the coordinates of the pixel region corresponding to the laser beam L at the reference position stored as described above is set. calculate. Assuming that the distance d is the actual size (the number of pixels corresponding to the distance d × the pixel resolution), as shown in FIG. 5C, the displacement amount Δl can be geometrically calculated by Δl = d / tanφ. Is.

以下、コンピュータ22に予め記憶された、長尺材S3が図3(a)に示す基準位置にあるときの磁化コイル群10を構成する各磁化コイル1の移動方向及び移動量について説明する。
図6は、磁化コイル群10が長尺材S3のカウンタウェイトSCに配置された場合における各磁化コイル1の移動方向及び移動量を説明する正面図である。
図6(a)に示すように、初期状態では、長尺材S3の中心(中心軸)と、各磁化コイル1の中心(中心軸)とが合致した状態になっている。ここで、磁化コイル1aを第1磁化コイル、磁化コイル1bを第2磁化コイル、磁化コイル1cを第3磁化コイルとする。また、カウンタウェイトSCの断面を四角形(図6に示す例では台形)で近似して、四角形の4つの辺のうち、長い方から順に3つの辺を、第1辺SC1、第2辺SC2及び第3辺SC3とする(ただし、図6に示す例では、SC1=SC2)。
Hereinafter, the moving direction and the moving amount of each magnetizing coil 1 constituting the magnetizing coil group 10 when the long member S3 is in the reference position shown in FIG. 3A, which is stored in advance in the computer 22, will be described.
FIG. 6 is a front view for explaining the moving direction and the moving amount of each magnetizing coil 1 when the magnetizing coil group 10 is arranged on the counterweight SC of the long member S3.
As shown in FIG. 6A, in the initial state, the center (central axis) of the long member S3 and the center (central axis) of each magnetizing coil 1 are aligned. Here, the magnetizing coil 1a is the first magnetizing coil, the magnetizing coil 1b is the second magnetizing coil, and the magnetizing coil 1c is the third magnetizing coil. Further, the cross section of the counter weight SC is approximated by a quadrangle (trapezoid in the example shown in FIG. 6), and three of the four sides of the quadrangle are arranged in order from the longest side, the first side SC1, the second side SC2, and the second side SC2. The third side is SC3 (however, in the example shown in FIG. 6, SC1 = SC2).

図6(a)に示す状態から、駆動手段2が、第1磁化コイル1aが第1辺SC1の両端に近接するように第1磁化コイル1aを移動させ、第2磁化コイル1bが第2辺SC2の両端に近接するように第2磁化コイル1bを移動させ、第3磁化コイル1cが第3辺SC3の両端に近接するように第3磁化コイル1cを移動させれば、磁化コイル群10の内部の互いに重複する領域を基準にした充填率を高めることが可能である。
各磁化コイル1a〜1cがそれぞれ各辺SC1〜SC3の両端に近接するように移動させる態様としては、図6(b)に示すように、各磁化コイル1a〜1cがそれぞれ各辺SC1〜SC3の両端に接触するように移動させる態様や、図6(c)に示すように、磁化コイル1a〜1cの絶縁性を確保できるように、接触する位置から僅かな距離だけ離れた位置に移動させる態様が考えられる。図6(c)に示す態様の場合は、図6(b)に示す各磁化コイル1a〜1cをそれぞれ各辺SC1〜SC3の垂直二等分線の方向に沿って僅かな距離だけ離れた位置に移動させればよい。
From the state shown in FIG. 6A, the driving means 2 moves the first magnetizing coil 1a so that the first magnetizing coil 1a is close to both ends of the first side SC1, and the second magnetizing coil 1b is on the second side. If the second magnetized coil 1b is moved so as to be close to both ends of the SC2 and the third magnetized coil 1c is moved so that the third magnetized coil 1c is close to both ends of the third side SC3, the magnetized coil group 10 It is possible to increase the filling rate based on the areas that overlap each other inside.
As a mode in which the magnetizing coils 1a to 1c are moved so as to be close to both ends of the sides SC1 to SC3, as shown in FIG. 6B, the magnetizing coils 1a to 1c are each of the sides SC1 to SC3. A mode in which the magnetized coils are moved so as to be in contact with both ends, or a mode in which the magnetized coils 1a to 1c are moved to a position slightly away from the contacting position so as to secure the insulating property as shown in FIG. 6 (c). Can be considered. In the case of the embodiment shown in FIG. 6 (c), the magnetized coils 1a to 1c shown in FIG. 6 (b) are separated from each other by a short distance along the direction of the perpendicular bisector of each side SC1 to SC3. You can move it to.

コンピュータ22には、磁化コイル群10が基準位置にある長尺材S3のカウンタウェイトSCに配置された場合において、図6(a)に示す初期状態の各磁化コイル1を図6(b)や図6(c)に示す状態にするために必要となる各磁化コイル1の移動方向及び移動量が予め記憶されている。
なお、磁化コイル群10が長尺材S3のジャーナルSJ等の断面円形の部位に配置された場合には、第2実施形態と同様に、駆動手段2は、略120°の角度で分割された方向に各磁化コイル1を移動させることになるため、これに必要な各磁化コイル1の移動方向及び移動量が予め記憶されることになる。
In the computer 22, when the magnetized coil group 10 is arranged on the counter weight SC of the long member S3 at the reference position, each magnetized coil 1 in the initial state shown in FIG. 6 (a) is shown in FIG. 6 (b). The moving direction and the amount of movement of each magnetizing coil 1 required for the state shown in FIG. 6C are stored in advance.
When the magnetized coil group 10 is arranged at a portion having a circular cross section such as the journal SJ of the long member S3, the driving means 2 is divided at an angle of approximately 120 ° as in the second embodiment. Since each magnetizing coil 1 is moved in the direction, the moving direction and the amount of movement of each magnetizing coil 1 required for this are stored in advance.

以上に説明した第1〜第3実施形態では、磁化コイル1が1回巻きのコイルである場合を例に挙げて説明したが、磁化コイル1として複数回巻きのコイルを用いることも可能である。磁化コイル1が複数回巻きのコイルである場合、磁化コイル群10を構成する複数回巻きの磁化コイル1を、長尺材S1〜S3の長手方向に沿って単純に並べて配置する(長尺材S1〜S3の長手方向に沿って互いに重複する部分を有さないように配置する)ことも可能である。
しかしながら、好ましくは、磁化コイル群10を構成する磁化コイル1が、長尺材S1〜S3、の長手方向に沿って互いに重複する部分を有するように配置される。具体的には、磁化コイル1の導線間に空隙を設けた構造とし、一方の磁化コイル1の導線間に他方の磁化コイル1の導線が位置するように各磁化コイル1が配置される。
In the first to third embodiments described above, the case where the magnetizing coil 1 is a one-turn coil has been described as an example, but it is also possible to use a multi-turn coil as the magnetizing coil 1. .. When the magnetizing coil 1 is a coil with a plurality of turns, the magnetizing coils 1 having a plurality of turns constituting the magnetizing coil group 10 are simply arranged side by side along the longitudinal direction of the long members S1 to S3 (long members). It is also possible to arrange them along the longitudinal direction of S1 to S3 so as not to have overlapping portions with each other).
However, preferably, the magnetizing coils 1 constituting the magnetizing coil group 10 are arranged so as to have portions overlapping each other along the longitudinal direction of the long members S1 to S3. Specifically, each magnetizing coil 1 is arranged so that a gap is provided between the conducting wires of the magnetizing coil 1 and the conducting wire of the other magnetizing coil 1 is located between the conducting wires of one magnetizing coil 1.

図7は、磁化コイル1が複数回巻きコイルの場合の磁化コイル群10の好ましい構成を模式的に示す図である。図7(a)は、磁化コイル群10の一の状態及び他の状態を示す斜視図である。図7(b)は、長尺材S1〜S3の長手方向(X方向)から見た磁化コイル群10の一の状態を示す正面図である。図7(c)は、長尺材S1〜S3の長手方向から見た磁化コイル群10の他の状態を示す正面図である。なお、図7では、長尺材S1〜S3の図示を省略している。図7に示すように、磁化コイル群10を構成する3個の磁化コイル1は、長尺材S1〜S3の長手方向(X方向)に沿って互いに重複する部分を有する。 FIG. 7 is a diagram schematically showing a preferable configuration of the magnetized coil group 10 when the magnetized coil 1 is a multi-turn coil. FIG. 7A is a perspective view showing one state and the other state of the magnetized coil group 10. FIG. 7B is a front view showing one state of the magnetized coil group 10 as seen from the longitudinal direction (X direction) of the long members S1 to S3. FIG. 7C is a front view showing another state of the magnetized coil group 10 seen from the longitudinal direction of the long members S1 to S3. In FIG. 7, the long members S1 to S3 are not shown. As shown in FIG. 7, the three magnetizing coils 1 constituting the magnetizing coil group 10 have portions overlapping each other along the longitudinal direction (X direction) of the long members S1 to S3.

図7(a)の右図及び図7(c)に示す状態では、3個の磁化コイル1は、これらの中心が合致した状態の位置に移動している。これにより、磁化コイル群10の内部の互いに重複する領域12が最も大きくなり、長尺材S1〜S3の断面の大きな部位を囲むことが可能である。
図7(a)の左図及び図7(b)に示す状態では、3個の磁化コイル1は、磁化コイル群10の内部の互いに重複する領域12が小さくなるように移動している。これにより、長尺材S1〜S3の断面の小さな部位における磁化コイル1の充填率を高めることが可能である。
図7に示す好ましい構成によれば、長尺材S1〜S3の長手方向に沿って互いに重複する部分では、複数回巻きの磁化コイル1を長尺材S1〜S3の長手方向に沿って単純に並べて配置する場合に比べて磁化コイル1の充填率が高まるため、磁化性能を十分に高めることが可能である。
In the state shown on the right side of FIG. 7A and FIG. 7C, the three magnetizing coils 1 are moved to the positions where their centers are aligned. As a result, the regions 12 that overlap each other inside the magnetized coil group 10 become the largest, and it is possible to surround a large portion of the cross section of the long members S1 to S3.
In the state shown on the left side of FIG. 7A and FIG. 7B, the three magnetizing coils 1 are moved so that the overlapping regions 12 inside the magnetizing coil group 10 become smaller. Thereby, it is possible to increase the filling rate of the magnetized coil 1 in the small portion of the cross section of the long members S1 to S3.
According to the preferred configuration shown in FIG. 7, at the portion where the long members S1 to S3 overlap each other along the longitudinal direction, the magnetized coil 1 wound a plurality of times is simply mounted along the longitudinal direction of the long members S1 to S3. Since the filling rate of the magnetizing coils 1 is higher than when they are arranged side by side, it is possible to sufficiently improve the magnetization performance.

なお、第1実施形態では、磁化装置100を適用する長尺材S1として車軸を例に挙げたが、本発明はこれに限るものではなく、クランクシャフトに適用することも可能である。また、鋼管や棒鋼に適用することも可能である。また、第2実施形態及び第3実施形態では、磁化装置100A、100Bを適用する長尺材S2、S3としてクランクシャフトを例に挙げたが、本発明はこれに限るものではなく、車軸に適用することも可能である。また、鋼管や棒鋼に適用することも可能である。 In the first embodiment, the axle is taken as an example as the long member S1 to which the magnetization device 100 is applied, but the present invention is not limited to this, and can be applied to a crankshaft. It can also be applied to steel pipes and steel bars. Further, in the second embodiment and the third embodiment, the crankshaft is taken as an example as the long members S2 and S3 to which the magnetization devices 100A and 100B are applied, but the present invention is not limited to this and is applied to the axle. It is also possible to do. It can also be applied to steel pipes and steel bars.

また、第1実施形態〜第3実施形態では、磁化コイル1が円形コイルである場合を例に挙げたが、本発明はこれに限るものではなく、磁化コイル1として矩形コイルを用いることも可能である。
さらに、第1実施形態〜第3実施形態では、磁化コイル群10が3個の磁化コイル1から構成される場合を例に挙げたが、本発明はこれに限るものではなく、磁化コイル群10を4個以上の磁化コイル1から構成することも可能である。また、磁化コイル群10を2個の磁化コイル1から構成することも可能である。
Further, in the first to third embodiments, the case where the magnetizing coil 1 is a circular coil has been given as an example, but the present invention is not limited to this, and a rectangular coil can be used as the magnetizing coil 1. Is.
Further, in the first to third embodiments, the case where the magnetized coil group 10 is composed of three magnetized coils 1 has been described as an example, but the present invention is not limited to this, and the magnetized coil group 10 is not limited to this. Can be composed of four or more magnetized coils 1. It is also possible to configure the magnetized coil group 10 from two magnetized coils 1.

以下、本発明において、磁化コイル群10の内部の互いに重複する領域を小さくする(磁化コイル群10が配置された位置での長尺材の部位の断面に近づくように、複数の磁化コイル1を移動させる)ことの効果を有限要素解析によるシミュレーションで評価した結果の一例について説明する。 Hereinafter, in the present invention, the plurality of magnetizing coils 1 are provided so as to reduce the overlapping regions inside the magnetizing coil group 10 (so as to approach the cross section of the long member portion at the position where the magnetizing coil group 10 is arranged). An example of the result of evaluating the effect of (moving) by simulation by finite element analysis will be described.

図8は、上記シミュレーションの条件及び結果を示す図である。図8(a)は、シミュレーションに用いたモデルの概要を示す。図8(b)は、図8(a)に示すモデルを用いたシミュレーションによって算出した長尺材(棒鋼)の磁束密度を表すコンター図を示す。図8(c)は、図8(a)に示す磁化コイル1又は磁化コイル群10が配置された位置での長尺材の部位(長尺材の長手方向中心)の断面における磁束密度を表す。図8(a)の左図に示すモデルを用いたシミュレーションによって算出した結果を図8(b)及び図8(c)の左図に示している。図8(a)の中図に示すモデルを用いたシミュレーションによって算出した結果を図8(b)及び図8(c)の中図に示している。図8(a)の右図に示すモデルを用いたシミュレーションによって算出した結果を図8(b)及び図8(c)の右図に示している。なお、図8(b)及び(c)は、実際には、磁束密度の大きさに応じた色で色分け表示されている。 FIG. 8 is a diagram showing the conditions and results of the above simulation. FIG. 8A shows an outline of the model used in the simulation. FIG. 8B shows a contour diagram showing the magnetic flux density of the long material (steel bar) calculated by the simulation using the model shown in FIG. 8A. FIG. 8C shows the magnetic flux density in the cross section of the portion of the long member (center in the longitudinal direction of the long member) at the position where the magnetized coil 1 or the magnetized coil group 10 shown in FIG. 8A is arranged. .. The results calculated by the simulation using the model shown in the left figure of FIG. 8 (a) are shown in the left figures of FIGS. 8 (b) and 8 (c). The results calculated by the simulation using the model shown in the middle figure of FIG. 8 (a) are shown in the middle figures of FIGS. 8 (b) and 8 (c). The results calculated by simulation using the model shown in the right figure of FIG. 8 (a) are shown in the right figures of FIGS. 8 (b) and 8 (c). Note that FIGS. 8 (b) and 8 (c) are actually color-coded according to the magnitude of the magnetic flux density.

図8(a)の左図に示すモデルは、磁化コイル1が、長さが72mmで外径が60mmで内径が40mmの1回巻きコイルであり、磁化コイル1に通電する電流が、1000Aである。起磁力は、1000A×1ターン=1000ATになる。図8(a)の中図に示すモデルは、磁化コイル1が、長さが72mmで外径が100mmで内径が80mmの1回巻きコイルであり、磁化コイル1に通電する電流が、1000Aである。起磁力は、1000A×1ターン=1000ATになる。図8(a)の右図に示すモデルは、各磁化コイル1が、長さが72mmで外径が100mmで内径が80mmの6回巻きコイルであり、各磁化コイル1に通電する電流が、55.56Aである。磁化コイル群10は3個の磁化コイル1から構成され、各磁化コイル1の中心を長尺材の中心から120°の角度で分割された方向にそれぞれ35mm偏心させて配置している。起磁力は、55.56A×18ターン=1000ATになる。長尺材の外径は、図8(a)に示す何れのモデルの場合も20mmとした。 In the model shown on the left side of FIG. 8A, the magnetizing coil 1 is a one-turn coil having a length of 72 mm, an outer diameter of 60 mm, and an inner diameter of 40 mm, and the current energizing the magnetizing coil 1 is 1000 A. is there. The magnetomotive force is 1000A x 1 turn = 1000AT. In the model shown in the middle diagram of FIG. 8A, the magnetizing coil 1 is a one-turn coil having a length of 72 mm, an outer diameter of 100 mm, and an inner diameter of 80 mm, and the current energizing the magnetizing coil 1 is 1000 A. is there. The magnetomotive force is 1000A x 1 turn = 1000AT. In the model shown on the right side of FIG. 8A, each magnetized coil 1 is a 6-turn coil having a length of 72 mm, an outer diameter of 100 mm, and an inner diameter of 80 mm, and the current energizing each magnetized coil 1 is increased. It is 55.56A. The magnetizing coil group 10 is composed of three magnetizing coils 1, and the center of each magnetizing coil 1 is arranged with an eccentricity of 35 mm in each direction divided at an angle of 120 ° from the center of the long member. The magnetomotive force is 55.56A x 18 turns = 1000AT. The outer diameter of the long material was 20 mm in all the models shown in FIG. 8 (a).

上記のように、起磁力を同一にした条件でシミュレーションした結果、図8(a)の左図に示すモデルの長尺材の長手方向中心の断面における磁束密度(図8(c)の左図)が最も大きく、次に、図8(a)の右図に示すモデルの長尺材の長手方向中心の断面における磁束密度(図8(c)の右図)が大きく、図8(a)の中図に示すモデルの長尺材の長手方向中心の断面における磁束密度(図8(c)の中図)が最も小さかった。
したがい、同じ寸法(外径100mm)の磁化コイル1を用いる場合、図8(a)〜図8(c)の右図に示す本発明のように、磁化コイル群10の内部の互いに重複する領域を小さくする(磁化コイル群10が配置された位置での長尺材の部位の断面に近づくように、複数の磁化コイル1を移動させる)ことで、充填率が高まり、磁束密度を大きくできることが分かる。
As a result of simulating under the condition that the magnetomotive force is the same as described above, the magnetic flux density in the cross section of the long member of the model shown in the left figure of FIG. 8 (a) in the longitudinal direction (the left figure of FIG. 8 (c)). ) Is the largest, followed by the magnetic flux density in the cross section of the long member of the model shown in the right figure of FIG. 8 (a) at the center in the longitudinal direction (right figure of FIG. 8 (c)), and FIG. 8 (a). The magnetic flux density (middle figure of FIG. 8C) in the cross section of the long member of the model shown in the middle figure in the longitudinal direction was the smallest.
Therefore, when the magnetizing coils 1 having the same dimensions (outer diameter 100 mm) are used, the regions overlapping each other inside the magnetizing coil group 10 as shown in the right figure of FIGS. 8 (a) to 8 (c). By reducing the size (moving the plurality of magnetized coils 1 so as to approach the cross section of the part of the long material at the position where the magnetized coil group 10 is arranged), the filling rate can be increased and the magnetic flux density can be increased. I understand.

1、1a、1b、1c・・・磁化コイル
10・・・磁化コイル群
11・・・支持棒
12・・・互いに重複する領域
2・・・駆動手段
21・・・2軸ステージ
22・・・コンピュータ
100、100A、100B・・・磁化装置
S1、S2、S3・・・長尺材
Sa、Sb・・・断面
1, 1a, 1b, 1c ... Magnetized coil 10 ... Magnetized coil group 11 ... Support rod 12 ... Areas overlapping each other 2 ... Drive means 21 ... 2-axis stage 22 ... Computer 100, 100A, 100B ... Magnetizing devices S1, S2, S3 ... Long material Sa, Sb ... Cross section

Claims (7)

長尺材の長手方向に沿って並べて配置され、前記長尺材の全長を挿通可能な寸法を有する複数の磁化コイルと、
前記複数の磁化コイルを前記長尺材の長手方向に直交する平面内で任意の方向に移動させる駆動手段と、を備え、
前記駆動手段は、前記長尺材の長手方向から見た場合に、前記複数の磁化コイルのうち連続して配置されたN(N≧2)個の磁化コイルからなる磁化コイル群の内部の互いに重複する領域が、前記磁化コイル群が配置された位置での前記長尺材の部位の断面に近づくように、前記複数の磁化コイルを移動させる、
ことを特徴とする磁化装置。
A plurality of magnetized coils arranged side by side along the longitudinal direction of the long member and having a size capable of inserting the entire length of the long member.
A driving means for moving the plurality of magnetizing coils in an arbitrary direction in a plane orthogonal to the longitudinal direction of the long member is provided.
The driving means are mutually arranged inside a group of magnetized coils composed of N (N ≧ 2) magnetized coils arranged continuously among the plurality of magnetized coils when viewed from the longitudinal direction of the long member. The plurality of magnetized coils are moved so that the overlapping region approaches the cross section of the portion of the long member at the position where the magnetized coil group is arranged.
A magnetizing device characterized by that.
前記駆動手段は、前記長尺材の長手方向から見た場合に、前記磁化コイル群を構成する各磁化コイルの中心が前記磁化コイル群が配置された位置での前記長尺材の部位の断面の中心に一致した状態から、前記磁化コイル群を構成する磁化コイルの数に応じて前記長尺材の周方向に略等角度で分割された方向に前記磁化コイル群を構成する各磁化コイルを移動させる、
ことを特徴とする請求項1に記載の磁化装置。
When viewed from the longitudinal direction of the long material, the driving means is a cross section of a portion of the long material at a position where the center of each magnetizing coil constituting the magnetizing coil group is arranged. From the state corresponding to the center of the above, each of the magnetizing coils constituting the magnetizing coil group is divided in a direction divided at substantially equal angles in the circumferential direction of the long material according to the number of the magnetizing coils constituting the magnetizing coil group. Move,
The magnetization device according to claim 1, wherein the magnetization device.
前記複数の磁化コイルは、それぞれ複数回巻きのコイルであり、
前記磁化コイル群を構成する磁化コイルは、前記長尺材の長手方向に沿って互いに重複する部分を有する、
ことを特徴とする請求項1又は2に記載の磁化装置。
Each of the plurality of magnetized coils is a coil wound a plurality of times.
The magnetizing coils constituting the magnetizing coil group have portions overlapping each other along the longitudinal direction of the long member.
The magnetization device according to claim 1 or 2, wherein the magnetization device.
前記複数の磁化コイルに対して前記長尺材を長手方向に相対的に搬送する搬送手段を備え、
前記駆動手段は、前記搬送手段が前記長尺材を長手方向に相対的に搬送している過程で、前記複数の磁化コイルを移動させる、
ことを特徴とする請求項1から3の何れかに記載の磁化装置。
A transport means for transporting the long material relative to the plurality of magnetized coils in the longitudinal direction is provided.
The driving means moves the plurality of magnetizing coils in the process in which the transporting means relatively transports the long material in the longitudinal direction.
The magnetization device according to any one of claims 1 to 3, wherein the magnetization device is characterized by the above.
前記駆動手段は、前記複数の磁化コイルの全てに前記長尺材が挿通した後、前記複数の磁化コイルを移動させる、
ことを特徴とする請求項1から3の何れかに記載の磁化装置。
The driving means moves the plurality of magnetizing coils after the long material is inserted into all of the plurality of magnetizing coils.
The magnetization device according to any one of claims 1 to 3, wherein the magnetization device is characterized by the above.
前記駆動手段には、前記長尺材が基準位置にあるときに、前記磁化コイル群の内部の互いに重複する領域が、前記磁化コイル群が配置された位置での前記長尺材の部位の断面に近づくように決められた、前記磁化コイル群を構成する各磁化コイルの移動方向及び移動量が予め記憶されており、
前記長尺材を磁化する際の、前記基準位置に対する前記長尺材の長手方向の位置ずれ量と、前記基準位置に対する前記長尺材の長手方向周りのずれ角度とを検出する検出手段を更に備え、
前記駆動手段は、前記記憶された前記各磁化コイルの移動方向及び移動量と、前記検出手段によって検出した前記長尺材の位置ずれ量及びずれ角度とに基づき、前記各磁化コイルの実際の移動方向及び移動量を決定して、前記各磁化コイルを移動させる、
ことを特徴とする請求項5に記載の磁化装置。
In the driving means, when the long member is in the reference position, the overlapping regions inside the magnetized coil group are cross-sections of the portion of the long member at the position where the magnetized coil group is arranged. The moving direction and the amount of movement of each magnetizing coil constituting the magnetizing coil group determined to approach the above are stored in advance.
Further, a detection means for detecting the amount of displacement of the long material in the longitudinal direction with respect to the reference position when magnetizing the long material and the deviation angle of the long material around the longitudinal direction with respect to the reference position. Prepare,
The driving means actually moves the magnetized coils based on the stored moving direction and moving amount of the magnetized coils and the displacement amount and the shifting angle of the long member detected by the detecting means. The direction and the amount of movement are determined to move each of the magnetized coils.
The magnetization device according to claim 5, characterized in that.
前記長尺材は、クランクシャフトであり、
前記磁化コイル群は、第1磁化コイル、第2磁化コイル及び第3磁化コイルの3個の磁化コイルからなり、
前記クランクシャフトのカウンタウェイトの断面を四角形で近似して、前記四角形の4つの辺のうち、長い方から順に3つの辺を、第1辺、第2辺及び第3辺とし、前記磁化コイル群が前記カウンタウェイトに配置された場合、前記駆動手段は、前記第1磁化コイルが前記第1辺の両端に近接するように前記第1磁化コイルを移動させ、前記第2磁化コイルが前記第2辺の両端に近接するように前記第2磁化コイルを移動させ、前記第3磁化コイルが前記第3辺の両端に近接するように前記第3磁化コイルを移動させる、
ことを特徴とする請求項1から6の何れかに記載の磁化装置。
The long material is a crankshaft and
The magnetized coil group includes three magnetized coils, a first magnetized coil, a second magnetized coil, and a third magnetized coil.
The cross section of the counter weight of the crank shaft is approximated by a quadrangle, and three of the four sides of the quadrangle are designated as the first side, the second side, and the third side in order from the longest side. Is arranged on the counter weight, the driving means moves the first magnetizing coil so that the first magnetizing coil approaches both ends of the first side, and the second magnetizing coil moves the second magnetizing coil. The second magnetizing coil is moved so as to be close to both ends of the side, and the third magnetizing coil is moved so that the third magnetizing coil is close to both ends of the third side.
The magnetization device according to any one of claims 1 to 6, characterized in that.
JP2020069904A 2019-05-17 2020-04-08 magnetization device Active JP7381891B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019093812 2019-05-17
JP2019093812 2019-05-17

Publications (2)

Publication Number Publication Date
JP2020190549A true JP2020190549A (en) 2020-11-26
JP7381891B2 JP7381891B2 (en) 2023-11-16

Family

ID=73453607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069904A Active JP7381891B2 (en) 2019-05-17 2020-04-08 magnetization device

Country Status (1)

Country Link
JP (1) JP7381891B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193643A (en) 1998-12-24 2000-07-14 Daido Steel Co Ltd Hot eddy current flaw detecting method and flaw detection device
JP2001074699A (en) 1999-09-01 2001-03-23 Daido Steel Co Ltd Flaw detecting apparatus
JP5233909B2 (en) 2009-08-25 2013-07-10 トヨタ自動車株式会社 Eddy current type inspection apparatus and eddy current type inspection method
JP6623555B2 (en) 2015-05-26 2019-12-25 日本製鉄株式会社 Induction heating device

Also Published As

Publication number Publication date
JP7381891B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US4471658A (en) Electromagnetic acoustic transducer
JP2681673B2 (en) AC leakage magnetic flux flaw detector for plane flaw detection
JP2007309690A (en) Flaw detection method and flaw detector
JP2020190549A (en) Magnetization device
JP6634629B2 (en) Eddy current flaw detector
Wu et al. Analysis of the eddy-current effect in the Hi-speed axial MFL testing for steel pipe
Sun et al. A new detection sensor for wire rope based on open magnetization method
JP2007187566A (en) Method and device for detecting missing magnetic metal member
EP3081932B1 (en) Apparatus and method of inspecting defect of steel plate
JP3394653B2 (en) Magnetization inspection method and apparatus
KR20140117983A (en) Apparatus for detecting defect of rolled coil
JP7035602B2 (en) Magnetic sensor and magnetic sensor connector equipped with it
US10151729B2 (en) Apparatus and method for detection of imperfections by detecting changes in flux of a magnetized body
KR101315391B1 (en) A nondestructive welding quality total inspection system and a inspection method thereof using an electromagnetic induction sensor
CN107144628A (en) A kind of electromechanical detection method based on defect and magnetic leakage field source Yu active probe magnetic source
JPH06174696A (en) Magnetizer for detecting flaw using magnetic powder
JP2013185951A (en) Magnetic flaw detection probe
JPH0868778A (en) Leakage magnetic flux flaw detector
US4835470A (en) Magnetizer having a main electromagnet and leakage flux reducing auxiliary electromagnets for magnetographic inspection
JP2020201114A (en) Eddy current flaw detection device and method
JP7020564B2 (en) Passenger conveyor handrail tension body inspection device
JP7061791B2 (en) Wire rope flaw detection inspection method
JPS6122250A (en) Electromagnetic ultrasonic flaw detection method and apparatus
JP2011180011A (en) Non-destructive inspection method of metal thin plate, and non-destructive inspection device therefor
JP2005041676A (en) Magnetic marking method and check system of article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7381891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151