JP2020190045A - Nonwoven fabric manufacturing method - Google Patents

Nonwoven fabric manufacturing method Download PDF

Info

Publication number
JP2020190045A
JP2020190045A JP2019094792A JP2019094792A JP2020190045A JP 2020190045 A JP2020190045 A JP 2020190045A JP 2019094792 A JP2019094792 A JP 2019094792A JP 2019094792 A JP2019094792 A JP 2019094792A JP 2020190045 A JP2020190045 A JP 2020190045A
Authority
JP
Japan
Prior art keywords
coating
woven fabric
base material
roll
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019094792A
Other languages
Japanese (ja)
Other versions
JP7297526B2 (en
Inventor
太一 新津
Taichi Niitsu
太一 新津
正洋 谷口
Masahiro Taniguchi
正洋 谷口
華 鈴木
Hana Suzuki
華 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019094792A priority Critical patent/JP7297526B2/en
Publication of JP2020190045A publication Critical patent/JP2020190045A/en
Application granted granted Critical
Publication of JP7297526B2 publication Critical patent/JP7297526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To provide a nonwoven fabric manufacturing method that can homogenize a coating amount of a functional agent.SOLUTION: A nonwoven fabric manufacturing method has a process to sandwich a nonwoven fabric base material between a roll circumferential surface of a transfer cylinder that transfers a coating liquid containing a functional agent and a roll circumferential surface of an impression cylinder that applies printing pressure to coat the surface of the nonwoven fabric base material with the functional agent. In the process, the printing pressure of 210 kPa or higher is applied to the nonwoven fabric base material and warp of the transfer cylinder and the impression cylinder during pushing-in is corrected to reduce the difference of push-in amount in a roll axis direction of the coating end and the coating center portion.SELECTED DRAWING: Figure 1

Description

本発明は、不織布の製造方法に関する。 The present invention relates to a method for producing a non-woven fabric.

近年、吸収性物品や清掃シートなど様々な物品において、その目的に応じた機能剤を含んだ不織布が用いられている。例えば、吸収性物品においては、親水化剤やスキンケア剤等を塗工した不織布が表面シートなどとして用いられる。また、清掃シートにおいては、洗浄剤やワックス等を塗工した不織布が用いられる。
このような機能剤を不織布基材に塗工するための技術も開発されている。例えば、特許文献1には、ポリオレフィン系繊維に親水性の繊維処理剤を塗工した後に不織布化する技術が記載されている。また、親水化剤をポリオレフィン樹脂に配合し、溶融紡糸した親水性ポリオレフィン系繊維を用いて不織布化することが記載されている。また、これとは別に、原料不織布を機能剤の塗液に浸漬する技術が知られている。
In recent years, in various articles such as absorbent articles and cleaning sheets, non-woven fabrics containing a functional agent according to the purpose have been used. For example, in an absorbent article, a non-woven fabric coated with a hydrophilic agent, a skin care agent, or the like is used as a surface sheet or the like. Further, in the cleaning sheet, a non-woven fabric coated with a cleaning agent, wax or the like is used.
Techniques for applying such a functional agent to a non-woven fabric substrate have also been developed. For example, Patent Document 1 describes a technique of applying a hydrophilic fiber treatment agent to a polyolefin fiber and then forming it into a non-woven fabric. Further, it is described that a hydrophilic agent is blended with a polyolefin resin to form a non-woven fabric using melt-spun hydrophilic polyolefin fibers. In addition to this, a technique of immersing a raw material non-woven fabric in a coating liquid of a functional agent is known.

特開2000−80559号公報Japanese Unexamined Patent Publication No. 2000-80559

上記の機能剤を有する不織布においては、物品の性能を十分に発揮させる観点から、前記機能剤が不織布表面に均質に塗工されていることが求められる。しかし、特許文献1に記載の発明のように、予め繊維に機能剤を含有させて不織布化した場合、得られた不織布においては、繊維密度分布(地合いの粗密)に応じた機能剤の塗工ムラが生じることがある。この機能剤のムラは、原料不織布を機能剤の塗液に浸漬した場合でも生じ得る。
また、機能剤の機能を不織布表面で発揮させる場合、必要量を不織布表面に存在させることが求められる。しかし、上記のような従来技術では厚み方向に機能剤が拡散してしまい塗工量の均質化の制御が難しかった。
ここでいう塗工量の均質化とは、塗工量変動の抑制と、塗工幅方向における塗工量分布の発生の抑制とを同時に実現することをいう。なお、「塗工量変動」は同一塗工条件におけるバラつきの大きさを意味し、「塗工量分布」は塗工量の平均値の分布を意味する。幅方向とは、不織布の製造方法において、不織布の搬送方向(機械流れ方向)に直交する方向であり、塗工ロールのロール軸方向及び不織布の幅方向に一致する。前記搬送方向はMD方向(Machine Direction)とも言い、前記幅方向はCD方向(Cross Direction)とも言う。
In the non-woven fabric having the above-mentioned functional agent, it is required that the functional agent is uniformly coated on the surface of the non-woven fabric from the viewpoint of fully exerting the performance of the article. However, as in the invention described in Patent Document 1, when the fibers are preliminarily contained with a functional agent to form a non-woven fabric, the obtained non-woven fabric is coated with the functional agent according to the fiber density distribution (roughness of texture). Unevenness may occur. This unevenness of the functional agent can occur even when the raw material non-woven fabric is immersed in the coating liquid of the functional agent.
Further, when the function of the functional agent is exerted on the surface of the non-woven fabric, it is required that the required amount is present on the surface of the non-woven fabric. However, in the conventional technique as described above, it is difficult to control the homogenization of the coating amount because the functional agent diffuses in the thickness direction.
The homogenization of the coating amount referred to here means that the fluctuation of the coating amount and the occurrence of the coating amount distribution in the coating width direction are suppressed at the same time. The "coating amount fluctuation" means the magnitude of variation under the same coating conditions, and the "coating amount distribution" means the distribution of the average value of the coating amount. The width direction is a direction orthogonal to the transport direction (machine flow direction) of the non-woven fabric in the method for manufacturing the non-woven fabric, and coincides with the roll axis direction of the coating roll and the width direction of the non-woven fabric. The transport direction is also referred to as an MD direction (Machine Direction), and the width direction is also referred to as a CD direction (Cross Direction).

本発明は、機能剤の塗工量を均質化できる不織布の製造方法に関する。 The present invention relates to a method for producing a non-woven fabric capable of homogenizing the amount of a functional agent applied.

本発明は、機能剤を含んだ塗液を転写する転写胴のロール周面と印圧を付与する圧胴のロール周面との間に不織布基材を挟んで、該不織布基材の表面に前記機能剤を塗工する工程を備え、該工程において、前記不織布基材に対し、210kPa以上の印圧を付与し、かつ、押込み時における前記転写胴及び前記圧胴のたわみを補正し、ロール軸方向における塗工端部と塗工中央部の押込み量の差を抑える、不織布の製造方法を提供する。
また、本発明は、機能剤を含んだ塗液を転写する転写胴のロール周面と印圧を付与する圧胴のロール周面との間に不織布基材を挟んで、該不織布基材の表面に前記機能剤を塗工する塗工部を備え、該塗工部は、前記不織布基材に対し、210kPa以上の印圧を付与し、かつ、押込み時における前記転写胴及び前記圧胴のたわみの補正機構によって、該補正機構によってロール軸方向における塗工端部と塗工中央部の押込み量の差を抑えて、前記塗工を行う、不織布の製造装置を提供する。
In the present invention, a non-woven fabric base material is sandwiched between a roll peripheral surface of a transfer cylinder that transfers a coating liquid containing a functional agent and a roll peripheral surface of an impression cylinder that applies printing pressure, and is placed on the surface of the non-woven fabric base material. A step of applying the functional agent is provided, and in the step, a printing pressure of 210 kPa or more is applied to the non-woven fabric base material, and the deflection of the transfer cylinder and the impression cylinder at the time of pressing is corrected, and a roll is provided. Provided is a method for producing a non-woven fabric, which suppresses the difference in the amount of pushing in between the coating end portion and the coating center portion in the axial direction.
Further, in the present invention, the non-woven fabric base material is sandwiched between the roll peripheral surface of the transfer cylinder for transferring the coating liquid containing the functional agent and the roll peripheral surface of the impression cylinder for applying the printing pressure. The surface is provided with a coating portion for applying the functional agent, and the coating portion applies a printing pressure of 210 kPa or more to the non-woven fabric base material, and the transfer cylinder and the impression cylinder at the time of pushing. Provided is a non-woven fabric manufacturing apparatus capable of performing the coating by suppressing a difference in the amount of pushing between the coating end portion and the coating center portion in the roll axis direction by the deflection correction mechanism.

本発明の不織布の製造方法によれば、機能剤の塗工量を均質化した不織布を製造することができる。 According to the method for producing a non-woven fabric of the present invention, it is possible to produce a non-woven fabric in which the amount of the functional agent applied is homogenized.

(A)は本発明の不織布の製造方法に用いられる製造装置における塗工部の好ましい一実施形態を示す概略構成図であり、(B)は(A)に示す転写胴(版胴)のロール表面側の部分を示す一部拡大断面図である。(A) is a schematic block diagram which shows a preferable embodiment of the coating part in the manufacturing apparatus used in the manufacturing method of the nonwoven fabric of this invention, (B) is the roll of the transfer cylinder (plate cylinder) shown in (A). It is a partially enlarged sectional view which shows the part on the surface side. (A)はエアスルー不織布基材の厚みと圧縮応力(印圧)との関係を示すグラフであり、(B)はスパンボンド不織布基材の厚みと圧縮応力との関係を示すグラフであり、(C)は紙基材と圧縮応力との関係を示すグラフである。(A) is a graph showing the relationship between the thickness of the air-through non-woven fabric base material and compressive stress (printing pressure), and (B) is a graph showing the relationship between the thickness of the spunbonded non-woven fabric base material and compressive stress. C) is a graph showing the relationship between the paper substrate and the compressive stress. (A)は塗工対象の基材を挟み込まずに行う圧縮テストの説明図であり、(B)は塗工対象の基材を挟み込んで行う圧縮テストの説明図である。(A) is an explanatory diagram of a compression test performed without sandwiching the base material to be coated, and (B) is an explanatory diagram of a compression test performed by sandwiching the base material to be coated. 塗工対象の基材を配さずに図3(A)の方法にて測定した結果、並びに、図2(A)、(B)及び(C)において用いた塗工対象の基材に対して図3(B)の方法にて測定した結果のロール押込み量と印圧との関係を示すグラフである。As a result of measurement by the method of FIG. 3 (A) without arranging the base material to be coated, and to the base material to be coated used in FIGS. 2 (A), (B) and (C). 3 is a graph showing the relationship between the roll pressing amount and the printing pressure as a result of measurement by the method of FIG. 3B. 図2(A)、(B)及び(C)において用いた塗工対象の基材に対して枚葉塗工装置を用いて塗工を行った結果の印圧と塗工量との関係を示すグラフである。The relationship between the printing pressure and the coating amount as a result of coating the base material to be coated used in FIGS. 2 (A), (B) and (C) using the single-wafer coating apparatus is shown. It is a graph which shows. 図5において得た結果から、印圧と塗工量の変動係数との関係を示すグラフである。From the result obtained in FIG. 5, it is a graph which shows the relationship between the printing pressure and the coefficient of variation of the coating amount. (A)は、図2(A)において用いた塗工対象の基材(エアスルー不織布基材)に対して、図5で用いた枚葉塗工装置を用い、アニロックスロールをハニカム800Lpiとハニカム1800Lpiとの2種類にて塗工を行った結果の印圧と塗工量との関係を示すグラフであり、(B)は(A)において得た結果から、印圧と塗工量の変動係数との関係を示すグラフである。In (A), the sheet-fed coating apparatus used in FIG. 5 was used for the base material (air-through non-woven fabric base material) to be coated used in FIG. 2 (A), and the anilox rolls were made into honeycomb 800 Lpi and honeycomb 1800 Lpi. It is a graph which shows the relationship between the printing pressure and the coating amount as a result of performing coating with two types of coating, and (B) is a coefficient of variation of printing pressure and coating amount from the result obtained in (A). It is a graph which shows the relationship with. (A)は、図2(A)において用いた塗工対象の基材(エアスルー不織布基材)に対して、図5で用いた枚葉塗工装置を用い、塗液を変えて塗工を行った結果の印圧と塗工量との関係を示すグラフであり、(B)は(A)において得た結果から、印圧と塗工量の変動係数との関係を示すグラフである。In (A), the base material (air-through non-woven fabric base material) to be coated used in FIG. 2 (A) is coated by using the single-wafer coating apparatus used in FIG. 5 and changing the coating liquid. It is a graph which shows the relationship between the printing pressure and the coating amount of the result, and (B) is the graph which shows the relationship between the printing pressure and the coefficient of variation of the coating amount from the result obtained in (A). (A)は転写胴と圧胴とが接触する位置を示す一部拡大側面図であり、(B)は(A)の位置から食い込んだ位置を示す一部拡大側面図である。(A) is a partially enlarged side view showing a position where the transfer cylinder and the impression cylinder are in contact with each other, and (B) is a partially enlarged side view showing a position where the transfer cylinder and the impression cylinder are in contact with each other. 図1に示す塗工部について、圧胴、転写胴及びアニロックスロールの配置と押込み荷重の方向を模式的に示す平面図である。It is a top view which shows typically the arrangement of the impression cylinder, the transfer cylinder and the anilox roll, and the direction of the pushing load about the coating part shown in FIG. 図10に示す配置において、ロール軸端部における押込み荷重によって、転写胴にロール軸方向たわみが生じた状態を模式的に示す平面図である。FIG. 10 is a plan view schematically showing a state in which the transfer cylinder is bent in the roll axis direction due to the pushing load at the end of the roll shaft in the arrangement shown in FIG. (A)は転写胴のロール軸方向(CD方向)における実押込み量の分布を示すグラフであり、(B)は転写胴のロール軸方向(CD方向)における機能剤の塗工量分布を示すグラフであり、(C)は転写胴1と圧胴2との間の実押込み量と塗工量との関係を算出して示すグラフである。(A) is a graph showing the distribution of the actual pushing amount in the roll axis direction (CD direction) of the transfer cylinder, and (B) shows the coating amount distribution of the functional agent in the roll axis direction (CD direction) of the transfer cylinder. It is a graph, and (C) is a graph which calculates and shows the relationship between the actual pushing amount and the coating amount between the transfer cylinder 1 and the impression cylinder 2. 図11に示す配置において、たわみ補正ロールを配置する態様を模式的に示す平面図である。It is a top view which shows typically the mode of arranging the deflection correction roll in the arrangement shown in FIG. 本発明の不織布の製造方法に用いられる製造装置における塗工部の別の好ましい一実施形態を示す概略構成図である。It is a schematic block diagram which shows another preferable embodiment of the coating part in the manufacturing apparatus used in the manufacturing method of the nonwoven fabric of this invention.

以下、本発明の不織布の製造方法について、その好ましい実施形態に基づき図面を参照しながら説明する。 Hereinafter, the method for producing a nonwoven fabric of the present invention will be described based on the preferred embodiment thereof with reference to the drawings.

まず、本発明において、機能剤を塗工する対象の不織布基材(以下、原料不織布ともいう。)は、通常用いられる種々の製造装置を用いて、種々の方法によって製造することができる。例えば、繊維ウェブを形成した後に繊維同士を結合させて不織布化する方法、溶融樹脂をノズルから射出して直接不織布化する紡糸直結型の方法が挙げられる。繊維ウェブにおける繊維同士の結合は、通常用いられる種々の方法によって行うことができる。例えば、ケミカルボンドディング、サーマルボンディング、メカニカルボンディング等の結合方法が挙げられる。ケミカルボンディングは、接着剤(バインダー)を用いる方法であり、例えば乾式パルプを用いたエアレイド不織布が挙げられる。サーマルボンディングには、カレンダー法、エアスルー法があり、いずれも熱融着性繊維を用いる。エアスルー法によって得られる不織布をエアスルー不織布という。メカニカルボンディングには、ニードルパンチ法、水流交絡法がある。また、前述の紡糸直結型の方法によって得られた不織布としては、スパンボンド不織布、メルトブローン不織布などがある。前記のエアスルー不織布は肌触りが柔らかく圧縮性が高い。また、エアスルー不織布は、繊維ウェブの形成の坪量の設定などによって嵩高く厚みのあるものとすることができる。一方、スパンボンド不織布は強度や耐摩耗性に優れており、エアスルー不織布に比べて剛性があり、圧縮性が低い。 First, in the present invention, the non-woven fabric base material to be coated with the functional agent (hereinafter, also referred to as raw material non-woven fabric) can be manufactured by various methods using various commonly used manufacturing devices. For example, a method of forming a fiber web and then binding the fibers to form a non-woven fabric, and a spinning direct-coupled method of injecting a molten resin from a nozzle to directly form a non-woven fabric can be mentioned. Bonding of fibers to each other in the fiber web can be performed by various commonly used methods. Examples thereof include bonding methods such as chemical bonding, thermal bonding, and mechanic bonding. Chemical bonding is a method using an adhesive (binder), and examples thereof include air-laid non-woven fabrics using dry pulp. Thermal bonding includes a calendar method and an air-through method, both of which use heat-sealing fibers. The non-woven fabric obtained by the air-through method is called an air-through non-woven fabric. Mechanic carboning includes a needle punching method and a water flow confounding method. Further, examples of the non-woven fabric obtained by the above-mentioned direct spinning method include spunbonded non-woven fabrics and melt-blown non-woven fabrics. The air-through non-woven fabric is soft to the touch and highly compressible. Further, the air-through nonwoven fabric can be made bulky and thick by setting the basis weight for forming the fiber web. On the other hand, the spunbonded non-woven fabric has excellent strength and abrasion resistance, is more rigid than the air-through non-woven fabric, and has low compressibility.

上記のように機能剤を塗工する不織布基材としては、種々のものが対象になり、該不織布基材の坪量及び厚みも様々ものとすることができる。例えば、吸収性物品用の不織布を製造する場合、不織布基材の坪量は、9g/m以上が好ましく、15g/m以上がより好ましく、また、80g/m以下が好ましく、45g/m以下がより好ましい。
また、吸収性物品用の不織布を製造する場合、210kPa荷重下での不織布基材の厚みを315kPa荷重下での不織布基材の厚みで割った値は、1.05以上が好ましく、1.08以上がより好ましく、1.1以上が更に好ましく、また、1.25以下が好ましく、1.2以下がより好ましく、1.16以下が更に好ましい。140kPa荷重下での不織布基材の厚みを210kPa荷重下での不織布基材の厚みで割った値は、1.02以上が好ましく、1.05以上がより好ましく、1.08以上が更に好ましく、また、1.25以下が好ましく、1.18以下がより好ましく、1.15以下が更に好ましい。140kPa荷重下での不織布基材の厚みを315kPa荷重下での不織布基材の厚みで割った値は、1.05以上が好ましく、1.1以上がより好ましく、1.2以上が更に好ましく、また、1.4以下が好ましく、1.35以下がより好ましく、1.32以下が更に好ましい。
As the non-woven fabric base material to which the functional agent is applied as described above, various materials are targeted, and the basis weight and thickness of the non-woven fabric base material can also be various. For example, when producing a nonwoven fabric for an absorbent article, the basis weight of the nonwoven fabric base material is preferably 9 g / m 2 or more, more preferably 15 g / m 2 or more, and preferably 80 g / m 2 or less, preferably 45 g / m 2. More preferably m 2 or less.
When producing a non-woven fabric for an absorbent article, the value obtained by dividing the thickness of the non-woven fabric base material under a load of 210 kPa by the thickness of the non-woven fabric base material under a load of 315 kPa is preferably 1.05 or more, preferably 1.08. The above is more preferable, 1.1 or more is further preferable, 1.25 or less is preferable, 1.2 or less is more preferable, and 1.16 or less is further preferable. The value obtained by dividing the thickness of the non-woven fabric base material under a load of 140 kPa by the thickness of the non-woven fabric base material under a load of 210 kPa is preferably 1.02 or more, more preferably 1.05 or more, still more preferably 1.08 or more. Further, 1.25 or less is preferable, 1.18 or less is more preferable, and 1.15 or less is further preferable. The value obtained by dividing the thickness of the non-woven fabric base material under a load of 140 kPa by the thickness of the non-woven fabric base material under a load of 315 kPa is preferably 1.05 or more, more preferably 1.1 or more, still more preferably 1.2 or more. Further, 1.4 or less is preferable, 1.35 or less is more preferable, and 1.32 or less is further preferable.

本発明において、上記の不織布基材に対して、下記に示す方法によって機能剤を塗工する。ここで言う「機能剤」は、不織布が組み込まれる物品において期待される機能を備えた剤を言う。例えば、吸収性物品の表面シートに適用される不織布では、親水化剤やスキンケア剤、液膜開裂剤等が挙げられる。また、清掃シートに適用される不織布では、洗浄剤やワックス等が挙げられる。 In the present invention, the functional agent is applied to the above-mentioned non-woven fabric base material by the method shown below. The term "functional agent" as used herein refers to an agent having the expected functions in an article in which a non-woven fabric is incorporated. For example, in the non-woven fabric applied to the surface sheet of an absorbent article, a hydrophilic agent, a skin care agent, a liquid film cleaving agent and the like can be mentioned. Further, examples of the non-woven fabric applied to the cleaning sheet include cleaning agents and waxes.

図1(A)及び(B)は、本発明の不織布の製造方法に用いられる製造装置における塗工部(塗工装置)10Aの好ましい一実施形態を示している。本実施形態の不織布の製造方法においては、通常用いられる製造装置を用いて不織布基材8を形成し、塗工部10Aにおいて、該不織布基材の表面に機能剤を含む塗液を均質に塗工する。なお、本発明においては、図1(A)及び(B)に示す塗工部による塗工方法に限定されるものではなく、転写胴と圧胴とによって、印圧を特定の範囲に制御して塗工する方法及び塗工部を適宜用いることができる。 1A and 1B show a preferred embodiment of a coating unit (coating apparatus) 10A in the manufacturing apparatus used in the method for producing a nonwoven fabric of the present invention. In the method for producing a non-woven fabric of the present embodiment, the non-woven fabric base material 8 is formed by using a commonly used manufacturing apparatus, and a coating liquid containing a functional agent is uniformly applied to the surface of the non-woven fabric base material in the coating portion 10A. To work. It should be noted that the present invention is not limited to the coating method by the coating portion shown in FIGS. 1A and 1B, and the printing pressure is controlled within a specific range by the transfer cylinder and the impression cylinder. The method of coating and the coating portion can be appropriately used.

塗工部10Aは、機能液を含んだ塗液を保持して転写する転写胴1と印圧を付与する圧胴2とを有する。転写胴1と圧胴2とは対向配置されて回転自在にされている。これにより、転写胴1のロール周面と圧胴2のロール周面との間に不織布基材(原料不織布)8を挟んで、該不織布基材8の表面に機能剤を塗工する。塗工された不織布基材8は、転写胴1及び圧胴2の回転に合わせて後工程へと送り出される。このようにして、塗工部10Aでは、機能液を含んだ塗液の塗工工程を行う。 The coating unit 10A has a transfer cylinder 1 that holds and transfers the coating liquid containing the functional liquid, and an impression cylinder 2 that applies printing pressure. The transfer cylinder 1 and the impression cylinder 2 are arranged to face each other and are rotatable. As a result, the non-woven fabric base material (raw non-woven fabric) 8 is sandwiched between the roll peripheral surface of the transfer cylinder 1 and the roll peripheral surface of the impression cylinder 2, and the functional agent is applied to the surface of the non-woven fabric base material 8. The coated non-woven fabric base material 8 is sent to a subsequent process in accordance with the rotation of the transfer cylinder 1 and the impression cylinder 2. In this way, the coating unit 10A performs the coating process of the coating liquid containing the functional liquid.

転写胴1は、フレキソ塗工方式においては版胴であり、シリンダー本体11の表面にクッションテープ12を介して塗工版13を備えている。塗工版(フレキソ版)13は、ゴムや合成樹脂などの柔軟で弾性を有する素材からなり、転写胴1の柔らかいロール周面をなしている。転写胴1は、ロール周面の塗工版13に、機能剤の塗液を保持する凸部14を複数有する。圧胴2は、金属等の剛性の素材からなり、転写胴1の柔らかいロール周面に対して圧力を加える。圧胴2の加圧によって、転写胴1のロール周面に保持する塗液を不織布基材8に安定的に塗工することができる。なお、シリンダー本体11及び圧胴2の表面は平滑であることが好ましく、具体的には、表面の算術平均粗さRaが6.3μmよりも小さいことが好ましい。また、転写胴1、圧胴2及び後述のアニロックスロール3以外に用いられるロール(例えば、基材の搬送に用いられるフリーロール、駆動ロール等。図示せず。)は、算術平均粗さRaが6.3um以下であることが好ましい。 The transfer cylinder 1 is a plate cylinder in the flexographic coating method, and is provided with a coating plate 13 on the surface of the cylinder body 11 via a cushion tape 12. The coating plate (flexographic plate) 13 is made of a flexible and elastic material such as rubber or synthetic resin, and forms a soft roll peripheral surface of the transfer cylinder 1. The transfer cylinder 1 has a plurality of convex portions 14 for holding the coating liquid of the functional agent on the coating plate 13 on the peripheral surface of the roll. The impression cylinder 2 is made of a rigid material such as metal, and applies pressure to the soft roll peripheral surface of the transfer cylinder 1. By pressurizing the impression cylinder 2, the coating liquid held on the roll peripheral surface of the transfer cylinder 1 can be stably applied to the non-woven fabric base material 8. The surfaces of the cylinder body 11 and the impression cylinder 2 are preferably smooth, and specifically, the arithmetic mean roughness Ra of the surfaces is preferably smaller than 6.3 μm. Further, the rolls used other than the transfer cylinder 1, the impression cylinder 2, and the anilox roll 3 described later (for example, a free roll used for transporting a base material, a drive roll, etc., not shown) have an arithmetic average roughness Ra. It is preferably 6.3 um or less.

また、塗工部10Aは、転写胴1に接触するように配置され回転自在にされたアニロックスロール3と、アニロックスロール3に塗液を供給する塗液チャンバ4とを有する。アニロックスロール3は、ロール周面に複数の凹状のセルを有する。アニロックスロール3のロール周面は、塗液チャンバ4の塗液に漬かるようにして回転し、前記凹状のセルに塗液を満たす。その際、アニロックスロール3の表面にドクターブレード(図示せず)を押し当てて余分な塗液を掻き落とす。次いで、アニロックスロール3は、凹状のセルにある塗液を転写胴1の塗工版13の凸部14に転写するようにしている。 Further, the coating unit 10A has an anilox roll 3 arranged so as to come into contact with the transfer cylinder 1 and rotatably formed, and a coating chamber 4 for supplying the coating liquid to the anilox roll 3. The anilox roll 3 has a plurality of concave cells on the peripheral surface of the roll. The roll peripheral surface of the anilox roll 3 is rotated so as to be immersed in the coating liquid of the coating liquid chamber 4, and the concave cell is filled with the coating liquid. At that time, a doctor blade (not shown) is pressed against the surface of the Anilox roll 3 to scrape off excess coating liquid. Next, the Anilox roll 3 transfers the coating liquid in the concave cell to the convex portion 14 of the coating plate 13 of the transfer cylinder 1.

本実施形態の不織布の製造方法において、図1の塗工部10Aを用い、不織布基材8に対する印圧を特定の範囲に制御して、不織布基材8に機能剤を含む塗液を塗工する。
従来、紙やフィルムなどの塗工対象物に対しては、フレキソを代表とする、印圧でインクを転写する印刷方式が一般的に用いられてきた。該方式においては、紙等の表面に触れる程度の低印圧で塗工することが行われる。このような低印圧条件はキスタッチ条件と呼ばれる。キスタッチ条件は、従来の、紙やフィルムなどの圧縮応力(印圧)によって版と印刷面の真実接触面積や毛管力が変化し難い塗工対象物に対して76.2μm程度の微弱の押込みを加える印圧であるとされる。これは、下記(印圧の特定方法)に基づいて測定したところ、140kPa程度の印圧に相当すると考えられる。このような低印圧による塗工では、塗工対象物の表面に塗液を載せるような転写の仕方になる。従来、印刷用の粘度の高いインクでも、インクの移行量は版と印刷面の表面張力差と、真実接触面積や毛管力で決定されるため、圧縮応力によって版と印刷面の真実接触面積や毛管力が変化し難い塗工対象物に対しては、目的の印刷面が形成されていた。
しかし、不織布基材を塗工対象とする場合、不織布基材が紙等よりも圧縮性の高い素材であることから、上記のような従来の印刷の方式では、版と塗工面の真実接触面積や毛管力のムラに起因する塗工量変動が生じてしまい、不織布表面全体で機能剤の機能を均質に十分に発揮させることが難しい。
In the method for producing a non-woven fabric of the present embodiment, the coating part 10A of FIG. 1 is used to control the printing pressure on the non-woven fabric base material 8 within a specific range, and the non-woven fabric base material 8 is coated with a coating liquid containing a functional agent. To do.
Conventionally, a printing method of transferring ink by printing pressure, typified by flexography, has been generally used for objects to be coated such as paper and film. In this method, coating is performed with a low printing pressure that touches the surface of paper or the like. Such a low printing pressure condition is called a kiss touch condition. The kiss-touch condition is that a weak pressing of about 76.2 μm is applied to the object to be coated, where the true contact area and capillary force between the plate and the printed surface are difficult to change due to the conventional compressive stress (printing pressure) of paper or film. It is said to be the printing pressure to be applied. This is considered to correspond to a printing pressure of about 140 kPa as measured based on the following (method for specifying the printing pressure). In such a low printing pressure coating, the transfer method is such that the coating liquid is placed on the surface of the object to be coated. Conventionally, even with high-viscosity ink for printing, the amount of ink transfer is determined by the surface tension difference between the plate and the printing surface, the true contact area and the capillary force, so the compressive stress determines the true contact area between the plate and the printing surface. The target printed surface was formed on the object to be coated, in which the capillary force was difficult to change.
However, when the non-woven fabric base material is to be coated, since the non-woven fabric base material is a material having higher compressibility than paper or the like, in the conventional printing method as described above, the true contact area between the plate and the coated surface It is difficult to uniformly and sufficiently exert the function of the functional agent on the entire surface of the non-woven fabric because the coating amount fluctuates due to the unevenness of the capillary force and the coating amount.

例えば、図2(A)に示す繊度1.3dtexの鞘型複合繊維(芯:ポリエチレンテレフタレート樹脂繊維、鞘:ポリエチレン樹脂繊維)を用いた坪量21g/mのエアスルー不織布(以下、不織布基材E1という)の厚みは、1kPaの圧縮応力下で569μmであるのに対し、140kPaの圧縮応力下で82μm、210kPaの圧縮応力下で72μm、315kPaの圧縮応力下で63μmまで変化する。図2(B)に示す坪量17g/mのTorayAdvancedMaterialsKorea社製のポリプロピレンスパンボンド不織布SF−max(商品名)(以下、不織布基材E2という)の厚みは、1kPaの圧縮応力下で148μmであるのに対し、140kPaの圧縮応力で71μm、210kPaの圧縮応力下で65μm、315kPaの圧縮応力下で59μmまで変化する。
一方、図2(C)に示す坪量64g/mの三菱製紙株式会社製のコピー用紙G80A4W(商品名)(以下、紙基材C1という)の厚みは、1kPaの圧縮応力下で66μmであり、140kPaの圧縮応力下で63μm、210kPaの圧縮応力下で63μm、315kPaの圧縮応力下で62μmと凡そ変化しない。
これらのことを考慮すると、不織布基材8は圧縮性の高い基材であり、圧縮応力によって版と塗工面の真実接触面積や毛管力が変化しやすい基材であると言える。
For example, an air-through non-woven fabric having a basis weight of 21 g / m 2 using a sheath-type composite fiber (core: polyethylene terephthalate resin fiber, sheath: polyethylene resin fiber) having a fineness of 1.3 dtex shown in FIG. 2 (A) (hereinafter, non-woven fabric base material). The thickness of (E1) is 569 μm under a compressive stress of 1 kPa, whereas it changes to 82 μm under a compressive stress of 140 kPa, 72 μm under a compressive stress of 210 kPa, and 63 μm under a compressive stress of 315 kPa. The thickness of polypropylene spunbonded non-woven fabric SF-max (trade name) (hereinafter referred to as non-woven fabric base material E2) manufactured by Toray Advanced Materials Korea, which has a basis weight of 17 g / m 2 shown in FIG. 2 (B), is 148 μm under a compressive stress of 1 kPa. On the other hand, it changes to 71 μm under a compressive stress of 140 kPa, 65 μm under a compressive stress of 210 kPa, and 59 μm under a compressive stress of 315 kPa.
On the other hand, the thickness of the copy paper G80A4W (trade name) (hereinafter referred to as paper base material C1) manufactured by Mitsubishi Paper Mills Limited with a basis weight of 64 g / m 2 shown in FIG. 2 (C) is 66 μm under a compressive stress of 1 kPa. There is almost no change of 63 μm under a compressive stress of 140 kPa, 63 μm under a compressive stress of 210 kPa, and 62 μm under a compressive stress of 315 kPa.
Considering these facts, it can be said that the non-woven fabric base material 8 is a base material having high compressibility, and the true contact area between the plate and the coated surface and the capillary force are easily changed by compressive stress.

これに対し、本発明においては、不織布基材8に機能剤を定量塗工する手段としてフレキソ等の印圧で塗液を転写する方式を用い、圧縮性の高い不織布基材8の塗工面(不織布表面)に対し、210kPa以上の印圧を付与する。従来では通常行わない高い印圧を付与することで、塗工版13と不織布基材8の塗工面の真実接触面積や毛管力のムラの影響を受けにくくして、機能剤を含む塗液を不織布基材の表面に塗工する。これにより、不織布基材8に対する機能剤を含む塗液の塗工量変動を抑えることができる。 On the other hand, in the present invention, as a means for quantitatively applying the functional agent to the non-woven fabric base material 8, a method of transferring the coating liquid by a printing pressure such as flexography is used, and the coated surface of the non-woven fabric base material 8 having high compressibility ( A printing pressure of 210 kPa or more is applied to the surface of the non-woven fabric). By applying a high printing pressure, which is not normally performed in the past, the coating liquid containing the functional agent can be applied by making it less susceptible to the true contact area of the coated surface of the coating plate 13 and the non-woven fabric base material 8 and uneven capillary force. Apply to the surface of the non-woven fabric substrate. As a result, it is possible to suppress fluctuations in the coating amount of the coating liquid containing the functional agent on the nonwoven fabric base material 8.

前述の塗工量変動の抑制は、不織布基材8に同一の印圧を付与して、複数の塗工または、連続塗工中の基材を断続的に取得する中において、不織布基材8の表面の塗工領域における塗工量の変動係数が小さいことを意味する。具体的には、塗工量分布の変動係数が6%以下であることを言う。また、塗工量は製造された不織布における塗液に含まれる機能剤の量によって判断される。この塗工量の変動係数の測定方法は、下記の方法によってなされる。 The above-mentioned suppression of the variation in the coating amount is performed by applying the same printing pressure to the non-woven fabric base material 8 to intermittently acquire a base material during a plurality of coatings or continuous coating. It means that the coefficient of variation of the coating amount in the coating area on the surface of the surface is small. Specifically, it means that the coefficient of variation of the coating amount distribution is 6% or less. The coating amount is determined by the amount of the functional agent contained in the coating liquid in the produced nonwoven fabric. The method for measuring the coefficient of variation of the coating amount is as follows.

(塗工量の変動係数の測定方法)
(1)塗工量は、
200cm以下の塗工前後の不織布の質量差測定
または、
塗工後不織布の質量と、塗工後不織布の塗工された剤を溶剤で抽出した後の不織布を乾燥させた不織布の質量差または、塗工剤が複数成分から成る場合でも、抽出液を液体クロマトグラフィーを用いて、抽出物を分離、単離することで得られる質量比を上記抽出前後の質量差に掛けあわせた数値を、塗工面積で除すこと
によって算出できる。
(2)塗工量の変動係数は、n=10以上の母集団に対して算出した塗工量の標準偏差を平均値で除すことによって算出できる。
(Measuring method of coefficient of variation of coating amount)
(1) The amount of coating is
Measurement of mass difference of non-woven fabric before and after coating of 200 cm 2 or less, or
The difference between the mass of the non-woven fabric after coating and the mass of the non-woven fabric obtained by extracting the coated agent of the non-woven fabric after coating with a solvent or drying the non-woven fabric after coating, or even when the coating agent consists of multiple components, the extract is used. It can be calculated by multiplying the mass ratio obtained by separating and isolating the extract using liquid chromatography by the mass difference before and after the extraction, and dividing by the coating area.
(2) The coefficient of variation of the coating amount can be calculated by dividing the standard deviation of the coating amount calculated for a population of n = 10 or more by the average value.

(印圧の測定方法)
不織布基材8に加える印圧は、下記の圧縮テストによって測定することができる。
まず、図3(A)に示すように、台71の上に、転写胴1が備えるクッションテープ12及び塗工版13を載置し固定する。塗工版13の上に押込み板72、更に押込み板72の上にロードセル73を載置する。このとき、塗工版13と押込み板72との間には塗工対象の基材を挟み込まない。上記の台71は転写胴1が備えるシリンダー本体11と同素材とし、押込み板72は圧胴2と同素材とする。
次いで、76.2μm(キスタッチ条件)の押込み量にて圧縮し、これに対応する圧縮荷重をロードセル73にて測定し、圧縮材料の断面積で割ることでキスタッチ条件の圧縮応力を測定できる。また、圧縮開始時点の座標を原点に設定する。なお、紙等の圧縮性の小さい基材は、塗工版13と押込み板72との間に挟み込んでも挟み込まなくても、測定結果にほぼ違いは生じないと考えられる。そのため、上記の測定によって得られるキスタッチ条件に対応する圧縮応力は、紙等の圧縮性の小さい基材に対してキスタッチ条件にて押込みをした場合の印圧に相当するとみなすことができる。
上記原点を保持したまま、図3(B)に示すように、塗工対象の基材を塗工版13と押込み板72との間に挟み込み、押込み量とこれに対応する圧縮荷重を測定し、圧縮材料の断面積で割ることで圧縮応力を測定する。この測定における押し込み量を、実際の塗工で塗工条件の管理に用いるロール押し込み量と読み替えると、圧縮応力は塗工対象の基材に加えられる印圧に相当する。つまり、塗工対象の基材毎に、塗工時に加えられる印圧を定量することが可能となる。
(Measuring method of printing pressure)
The printing pressure applied to the non-woven fabric base material 8 can be measured by the following compression test.
First, as shown in FIG. 3A, the cushion tape 12 and the coating plate 13 included in the transfer cylinder 1 are placed and fixed on the table 71. The push-in plate 72 is placed on the coating plate 13, and the load cell 73 is placed on the push-in plate 72. At this time, the base material to be coated is not sandwiched between the coating plate 13 and the pressing plate 72. The base 71 is made of the same material as the cylinder body 11 included in the transfer cylinder 1, and the push plate 72 is made of the same material as the impression cylinder 2.
Next, compression is performed with a pushing amount of 76.2 μm (kiss touch condition), the corresponding compressive load is measured by the load cell 73, and the compressive stress under the kiss touch condition can be measured by dividing by the cross-sectional area of the compressed material. Also, the coordinates at the start of compression are set as the origin. It is considered that there is almost no difference in the measurement results of a base material having low compressibility such as paper, whether or not it is sandwiched between the coating plate 13 and the pressing plate 72. Therefore, the compressive stress corresponding to the kiss-touch condition obtained by the above measurement can be regarded as corresponding to the printing pressure when the substrate having low compressibility such as paper is pressed under the kiss-touch condition.
While holding the origin, as shown in FIG. 3B, the base material to be coated is sandwiched between the coating plate 13 and the pressing plate 72, and the pressing amount and the corresponding compressive load are measured. , The compressive stress is measured by dividing by the cross-sectional area of the compression material. When the indentation amount in this measurement is read as the roll indentation amount used for managing the coating conditions in the actual coating, the compressive stress corresponds to the printing pressure applied to the base material to be coated. That is, it is possible to quantify the printing pressure applied at the time of coating for each substrate to be coated.

前記(印圧の測定方法)にて特定される押込み量と印圧との対応関係は、例えば図4に示すような関係が見られる。図4の系列Aは、塗工対象の基材を配さずに、図3(A)の方法にて測定した結果を示す。図4の系列B〜Cはそれぞれ、図2(A)、(B)及び(C)において用いた不織布基材E1、不織布基材E2及び紙基材C1に対して、図3(B)の方法にて測定した結果を示す。図4の各系列の測定は下記の装置条件にて行った。
(装置条件)
クッションテープ12:「E1020H」(商品名、住友スリーエム株式会社製、厚み0.5mm)
塗工版13:「DSF」(商品名、旭化成イーマテリアルズ株式会社製、厚み1.7mm、ショアA硬度62°)
As for the correspondence between the pressing amount and the printing pressure specified in the above (method for measuring the printing pressure), for example, the relationship shown in FIG. 4 can be seen. Series A in FIG. 4 shows the results of measurement by the method of FIG. 3 (A) without arranging the base material to be coated. The series B to C in FIG. 4 are shown in FIG. 3 (B) with respect to the non-woven fabric base material E1, the non-woven fabric base material E2 and the paper base material C1 used in FIGS. 2 (A), (B) and (C), respectively. The result measured by the method is shown. The measurement of each series in FIG. 4 was performed under the following device conditions.
(Device conditions)
Cushion tape 12: "E1020H" (trade name, manufactured by Sumitomo 3M Ltd., thickness 0.5 mm)
Coating version 13: "DSF" (trade name, manufactured by Asahi Kasei E-Materials Co., Ltd., thickness 1.7 mm, shore A hardness 62 °)

図4の系列B及び系列Cと系列Dとの対比から分かるとおり、不織布基材では紙の場合に比べて、同じ印圧であってもより大きな押込み量が加わる。これは、前述のとおり、不織布基材が紙と比較して圧縮性の高い基材であることによる。 As can be seen from the comparison between the series B and the series C and the series D in FIG. 4, a larger pressing amount is applied to the non-woven fabric base material even if the printing pressure is the same, as compared with the case of paper. This is because, as described above, the non-woven fabric base material has higher compressibility than paper.

図4にて示すように圧縮性の高い不織布基材に対して、下記に示す枚葉塗工装置(小型印刷機)で不織布基材に塗工を試みると、(1)印圧を高めるほど塗工量が増えること、(2)印圧を高めると塗工量変動が安定することが確認された。このことからも、不織布基材への機能剤の塗工において塗工量変動の抑制は一定以上の印圧を付与することによって実現できることが分かる。 As shown in FIG. 4, when the non-woven fabric base material having high compressibility is attempted to be coated with the non-woven fabric base material (small printing machine) shown below, (1) the printing pressure is increased. It was confirmed that the coating amount increased and (2) the fluctuation of the coating amount became stable when the printing pressure was increased. From this, it can be seen that in the coating of the functional agent on the non-woven fabric base material, the suppression of the fluctuation in the coating amount can be realized by applying a printing pressure of a certain level or more.

上記の枚葉塗工装置を用いた塗工は、下記の条件にて行った。
(i)基材条件
基材:前述の不織布基材E1、不織布基材E2、紙基材C1
各基材はCD幅70mm×MD長さ200mmとし、各基材の塗工領域はCD幅60mm×MD長さ200mm(全面塗工)とした。なお、MD長さとは、MD方向の長さである。CD幅とは、CD方向の長さである。
(ii)装置条件
塗工装置10A:卓上フレキソ印刷機 FLEXIPROOF100(商品名、RK Print Coat Instruments Ltd.社製)
クッションテープ12:「E1020H」(商品名、住友スリーエム株式会社製、厚み0.5mm)
塗工版13:「DSF」(商品名、旭化成イーマテリアルズ株式会社製、厚み1.7mm、ショアA硬度62°)
アニロックスロール3:ハニカム800Lpi(3.0cc/m)の彫刻仕様
塗工速度:70m/min
(iii)塗液
ポリエーテル変性シリコーン「KF−6015」(商品名、信越化学株式会社製) 塗液の粘度:温度25℃において130mPa・sec
The coating using the above single-wafer coating apparatus was performed under the following conditions.
(I) Base material conditions Base material: Non-woven fabric base material E1, non-woven fabric base material E2, paper base material C1 described above
Each base material had a CD width of 70 mm × MD length of 200 mm, and the coating area of each base material had a CD width of 60 mm × MD length of 200 mm (whole surface coating). The MD length is the length in the MD direction. The CD width is the length in the CD direction.
(Ii) Equipment conditions Coating equipment 10A: Desktop flexographic printing machine FLEXIPROOF100 (trade name, manufactured by RK Print Coat Instruments Ltd.)
Cushion tape 12: "E1020H" (trade name, manufactured by Sumitomo 3M Ltd., thickness 0.5 mm)
Coating version 13: "DSF" (trade name, manufactured by Asahi Kasei E-Materials Co., Ltd., thickness 1.7 mm, shore A hardness 62 °)
Anilox Roll 3: Honeycomb 800Lpi (3.0cc / m 2 ) engraving specifications Coating speed: 70m / min
(Iii) Coating liquid Polyether-modified silicone "KF-6015" (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) Viscosity of coating liquid: 130 mPa · sec at a temperature of 25 ° C.

上記条件のもと、不織布基材E1、不織布基材E2及び紙基材C1に対し、印圧を変えて塗液の塗工量(平均値)を測定した。塗工量は、N=10にて、塗工前後の基材質量差を印刷領域面積(60mm×200mm)で除して算出した値の平均値とした。この結果は、下記表1及び図5に示される。
また、N=10の母集団に対して算出した塗工量の標準偏差を平均値で除すことによって算出得られた値を塗工量の変動係数とした。この結果は、下記表2及び図6に示される。
Under the above conditions, the coating amount (average value) of the coating liquid was measured by changing the printing pressure on the nonwoven fabric base material E1, the nonwoven fabric base material E2, and the paper base material C1. The coating amount was an average value calculated by dividing the difference in mass of the base material before and after coating by the printed area (60 mm × 200 mm) at N = 10. The results are shown in Table 1 and FIG. 5 below.
Further, the value calculated by dividing the standard deviation of the coating amount calculated for the population of N = 10 by the average value was used as the coefficient of variation of the coating amount. The results are shown in Table 2 and FIG. 6 below.

表1及び図5に示すとおり、紙基材C1(−▲−)は印圧を高めても塗工量が実質一定であったのに対し、不織布基材E1(エアスルー不織布、−◆−)及び不織布基材E2(スパンボンド不織布、−■−)は印圧を高めるほど塗工量が増えた。
また、表2及び図6に示すとおり、紙基材C1(−▲−)は印圧を高めても塗工量の変動係数に変化が無かったのに対し、不織布基材E1(エアスルー不織布、−◆−)及び不織布基材E2(スパンボンド不織布、−■−)は印圧を高めるほど塗工量の変動係数が低くなり安定化した。
以上のとおり、不織布基材への機能剤の塗工においては、一定以上の高い印圧、すなわち、210kPa以上の印圧を付与することで塗工量変動を効果的に抑制して良好な塗工をすることができる。
As shown in Table 1 and FIG. 5, the coating amount of the paper base material C1 (-▲-) was substantially constant even when the printing pressure was increased, whereas the non-woven fabric base material E1 (air-through non-woven fabric,-◆-). And the non-woven fabric base material E2 (spun-bonded non-woven fabric, − ■ −) increased the coating amount as the printing pressure was increased.
Further, as shown in Table 2 and FIG. 6, the paper base material C1 (-▲-) did not change the coefficient of variation of the coating amount even when the printing pressure was increased, whereas the non-woven fabric base material E1 (air-through non-woven fabric, -◆-) and the non-woven fabric base material E2 (spun-bonded non-woven fabric,-■-) became stable as the coefficient of variation of the coating amount decreased as the printing pressure increased.
As described above, in the coating of the functional agent on the non-woven fabric base material, by applying a printing pressure higher than a certain level, that is, a printing pressure of 210 kPa or more, fluctuations in the coating amount are effectively suppressed and good coating is performed. Can work.

このような傾向は、下記表3及び図7に示す塗液の量、表4及び図8に示す塗液の種類(粘度や親水性等の物性)によらずに生じるものであることが分かる。 It can be seen that such a tendency occurs regardless of the amount of the coating liquid shown in Tables 3 and 7 below and the type of coating liquid (physical properties such as viscosity and hydrophilicity) shown in Tables 4 and 8. ..

例えば、表3及び図7では、不織布基材E1(エアスルー不織布)に対して、下記のとおりに塗液の量を変え、表1及び図5の塗工量の測定、表2及び図6の塗工量の変動係数の測定と同じ条件で測定した結果を示す。
「−◆−」にて示す系列:アニロックスロール ハニカム800Lpi(3.0cc/m
「−■−」にて示す系列:アニロックスロール ハニカム1800Lpi(1.3cc/m
表3(A)及び図7(A)が示すように、いずれの塗液の量であっても、不織布基材E1に対する塗工量は印圧を高めるほど塗工量が増えていた。また、表3(B)及び図7(B)が示すように、いずれの塗液の量であっても、印圧を高めるほど不織布基材E1に対する塗工量の変動係数が低くなり安定化した。
For example, in Tables 3 and 7, the amount of the coating liquid was changed as follows with respect to the nonwoven fabric base material E1 (air-through nonwoven fabric), and the coating amounts of Tables 1 and 5 were measured, and Tables 2 and 6 showed. The results of measurement under the same conditions as the measurement of the coefficient of variation of the coating amount are shown.
Series indicated by "-◆-": Anilox Roll Honeycomb 800Lpi (3.0cc / m 2 )
Series indicated by "-■-": Anilox roll honeycomb 1800 Lpi (1.3 cc / m 2 )
As shown in Table 3 (A) and FIG. 7 (A), the coating amount on the non-woven fabric base material E1 increased as the printing pressure was increased, regardless of the amount of the coating liquid. Further, as shown in Table 3 (B) and FIG. 7 (B), the coefficient of variation of the coating amount on the non-woven fabric base material E1 becomes lower and stabilized as the printing pressure is increased regardless of the amount of the coating liquid. did.

また、例えば、表4及び図8では、不織布基材E1(エアスルー不織布)に対して、塗工する機能剤を下記のとおりに変え、表1及び図5の塗工量の測定、表2及び図6の塗工量の変動係数の測定と同じ条件で測定した結果を示す。
「−◆−」にて示す系列:上述のポリエーテル変性シリコーン「KF−6015」
「−■−」にて示す系列:「FZ−2203i」(商品名、東レ・ダウコーニング株式会社製)、塗液の粘度:温度25℃にて4731mPa・sec
[−▲−]にて示す系列:脱イオン水で50質量%に希釈したグリセリン、塗液の粘度:温度20℃にて6mPa・sec
表4(A)及び図8(A)が示すように、いずれの塗液であっても、不織布基材E1に対する塗工量は印圧を高めるほど塗工量が増えていた。また、表4(B)及び図8(B)が示すように、いずれの塗液であっても、印圧を高めるほど不織布基材E1に対する塗工量の変動係数が低くなり安定化した。
Further, for example, in Tables 4 and 8, the functional agent to be coated on the nonwoven fabric base material E1 (air-through nonwoven fabric) is changed as follows, and the coating amount in Tables 1 and 5 is measured, Table 2 and FIG. The result of measurement under the same conditions as the measurement of the coefficient of variation of the coating amount in FIG. 6 is shown.
Series indicated by "-◆-": The above-mentioned polyether-modified silicone "KF-6015"
Series indicated by "-■-": "FZ-2203i" (trade name, manufactured by Toray Dow Corning Co., Ltd.), viscosity of coating liquid: 4731 mPa · sec at a temperature of 25 ° C.
Series indicated by [-▲-]: Glycerin diluted to 50% by mass with deionized water, viscosity of coating solution: 6 mPa · sec at a temperature of 20 ° C.
As shown in Table 4 (A) and FIG. 8 (A), the coating amount on the non-woven fabric base material E1 increased as the printing pressure was increased, regardless of which coating solution was used. Further, as shown in Table 4 (B) and FIG. 8 (B), the coefficient of variation of the coating amount on the non-woven fabric base material E1 became lower and stabilized as the printing pressure was increased in any of the coating liquids.

以上のとおり、本発明においては、印圧で塗液を転写する方式を用いて、圧縮性の高い不織布基材8の塗工面(不織布表面)に対し210kPa以上の印圧を付与ながら機能剤を塗工する。これにより、不織布基材8に対する機能剤を含む塗液の塗工量変動を抑えることができる。さらに塗工量変動の抑制の精度を高める観点から、不織布基材8に260kPa以上の印圧を加えることが好ましく、315kPa以上の印圧を加えることがより好ましく、500kPa以上の印圧を加えることが更に好ましく、700kPa以上の印圧を加えることが特に好ましい。これにより、不織布基材8の条件に拘らず、塗工量のバラつきがより好適に抑えられて安定化する。 As described above, in the present invention, the functional agent is applied while applying a printing pressure of 210 kPa or more to the coated surface (nonwoven fabric surface) of the highly compressible non-woven fabric base material 8 by using a method of transferring the coating liquid by printing pressure. Paint. As a result, it is possible to suppress fluctuations in the coating amount of the coating liquid containing the functional agent on the nonwoven fabric base material 8. Further, from the viewpoint of improving the accuracy of suppressing fluctuations in the coating amount, it is preferable to apply a printing pressure of 260 kPa or more, more preferably 315 kPa or more, and a printing pressure of 500 kPa or more is applied to the non-woven fabric base material 8. Is more preferable, and it is particularly preferable to apply a printing pressure of 700 kPa or more. As a result, regardless of the conditions of the non-woven fabric base material 8, the variation in the coating amount is more preferably suppressed and stabilized.

一方で、幅を持った塗工装置では、塗工量変動を抑制するために高印圧を付与すると、塗工ロール(図1における転写胴1)にたわみが生じてしまう。そのため、幅方向に塗工量分布が生じることが避けられない。実際に、1900mm幅塗工を行うと、ロールのたわみによって整理される塗工量分布が幅方向に生じていた。広幅塗工においては、塗工量変動を抑える以前に、そもそも、塗工量分布を管理できないことが課題となる。
これに対し、本発明においては、前述の高印圧の付与によって塗工量変動の抑制を行うと同時に、たわみを補正しながら塗工を行うことにより塗工量分布を抑える。これにより、機能剤の塗工量の均質化を実現できる。
以下、上記の高印圧の付与とたわみの発生及びその補正について、図1(A)及び(B)に示した塗工部(塗工装置)10Aに基づき更に説明する。
On the other hand, in a coating device having a width, if a high printing pressure is applied in order to suppress fluctuations in the coating amount, the coating roll (transfer cylinder 1 in FIG. 1) is bent. Therefore, it is inevitable that a coating amount distribution will occur in the width direction. In fact, when the 1900 mm width coating was performed, the coating amount distribution arranged by the deflection of the roll was generated in the width direction. In wide-width coating, it is a problem that the coating amount distribution cannot be managed in the first place before the fluctuation of the coating amount is suppressed.
On the other hand, in the present invention, the coating amount fluctuation is suppressed by applying the above-mentioned high printing pressure, and at the same time, the coating amount distribution is suppressed by performing the coating while correcting the deflection. As a result, it is possible to homogenize the coating amount of the functional agent.
Hereinafter, the application of the high printing pressure, the occurrence of the deflection, and the correction thereof will be further described with reference to the coating unit (coating apparatus) 10A shown in FIGS. 1A and 1B.

本実施形態の塗工部(塗工装置)10Aにおいては、転写胴1と圧胴2との間における押込みによって不織布基材への印圧210kPa以上を付与する。なお、印圧は印刷基材の圧縮特性に基づき一意に定まる。そのため、押し込み量の管理=印圧管理ととらえることができる。その際、前述の(印圧の測定方法)を参酌する。
転写胴1と圧胴2との間における押込み量は、図9(A)及び(B)に示す方法によって設定することができる。すなわち、まず、転写胴1と圧胴2とを接線方向(図9(A)及び(B)における矢印Vの方向)から観察し、両者のロール周面を接触させて、光の漏れ出しが無くなった基準位置Pを±0(ゼロ)とする。基準位置Pから、ロールに荷重を加え、転写胴1のクッションテープ12及び塗工版13が変形しながら周面が食い込んだ位置Gとして設定する。食い込んだ位置Gは、基準位置Pからのプラスの値で示される。この食い込みは、圧胴1を軸固定した状態で、版胴1の押込み荷重又は版胴1とアニロックスロール2の両方の押込み荷重を圧胴1に向けて掛けることで行う。
なお、図9(B)に示す転写胴1と圧胴2との間における押込み量は、転写胴1及び圧胴2のロール軸端部の位置にて測定するものであり、ロール軸端部における押込み量である。このロール軸端部における押込み量は、設定押込み量ということができる。
In the coating unit (coating apparatus) 10A of the present embodiment, a printing pressure of 210 kPa or more is applied to the non-woven fabric base material by pressing between the transfer cylinder 1 and the impression cylinder 2. The printing pressure is uniquely determined based on the compression characteristics of the printing substrate. Therefore, it can be regarded as the management of the pushing amount = the printing pressure management. At that time, the above-mentioned (method for measuring printing pressure) is taken into consideration.
The pushing amount between the transfer cylinder 1 and the impression cylinder 2 can be set by the methods shown in FIGS. 9A and 9B. That is, first, the transfer cylinder 1 and the impression cylinder 2 are observed from the tangential direction (the direction of the arrow V in FIGS. 9A and 9B), and the peripheral surfaces of the rolls of both are brought into contact with each other to cause light leakage. The missing reference position P is set to ± 0 (zero). A load is applied to the roll from the reference position P, and the position G is set as the peripheral surface bites into the cushion tape 12 and the coating plate 13 of the transfer cylinder 1 while being deformed. The biting position G is indicated by a positive value from the reference position P. This biting is performed by applying the pushing load of the plate cylinder 1 or the pushing load of both the plate cylinder 1 and the Anilox roll 2 toward the impression cylinder 1 with the impression cylinder 1 shaft-fixed.
The amount of pushing between the transfer cylinder 1 and the impression cylinder 2 shown in FIG. 9B is measured at the positions of the roll shaft ends of the transfer cylinder 1 and the impression cylinder 2, and is measured at the roll shaft end. It is the amount of pushing in. The pushing amount at the end of the roll shaft can be called a set pushing amount.

設定押込み量(転写胴1と圧胴2との間の設定押込み量、転写胴1とアニロックスロール3との間の設定押込み量)は、転写胴1、圧胴2及びアニロックスロール3の素材、特に、転写胴1のクッションテープ12及び塗工版13の圧縮特性を加味して、図9(A)及び(B)の方法によって、適宜決定される。なお、アニロックスロール3と転写胴1との間の押込み量は、図9(A)及び(B)の圧胴2をアニロックスロール3に代えて同様の方法によって測定することができる。 The set push-in amount (the set push-in amount between the transfer cylinder 1 and the impression cylinder 2 and the set push-in amount between the transfer cylinder 1 and the anilox roll 3) is the material of the transfer cylinder 1, the impression cylinder 2 and the anilox roll 3. In particular, it is appropriately determined by the methods of FIGS. 9 (A) and 9 (B) in consideration of the compression characteristics of the cushion tape 12 and the coating plate 13 of the transfer cylinder 1. The amount of pushing between the anilox roll 3 and the transfer cylinder 1 can be measured by the same method in place of the impression cylinder 2 of FIGS. 9A and 9B in place of the anilox roll 3.

本実施形態において、転写胴1と圧胴2とを食い込んだ位置Gに配置して行う設定押込み量によって、該設定押し込み量に従う押し込み荷重が生じる。例えば図10に示すように、転写胴1のロール軸端部において、圧胴2に対する転写胴1の設定押込み量に従って押込み荷重W1が生じる。また、前記荷重W1に加えて、アニロックスロール3のロール軸端部において、転写胴1に対するアニロックスロール3の設定押込み量に従って押込み荷重W3が生じる。押込み荷重W1及びW3は、転写胴1、アニロックスロール3の圧胴2に対する押込み方向を同軸で水平として算出される。具体的には、圧胴2を軸固定し、転写胴1、更にはアニロックスロール3それぞれの両端の軸受センター(支持点)91A、91Bに対して荷重をかけ、フレーム長L全体(各ロールの軸受センター間)で圧胴2の方向に押込む。この押込み荷重は、サーボモータとボールネジによる位置決め制御によってなされ(図示せず)、メカニカルロス無しとみなすと下記式(1)に基づき算出することができる。具体的には、転写胴1の押込み荷重W1は、転写胴1に接続されたサーボモータのモータ定格トルク(ロールの両端に独立した押込みを付与するモータが存在する場合はその合計値)、該サーボモータのサーボアンプの負荷率(ロールの両端に独立した押込みを付与するモータが存在する場合はその平均値)、ボールねじのリードに基づき、下記式(1)に基づき算出できる。同様に、アニロックスロール3の押込み荷重W3は、アニロックスロール3に接続されたサーボモータのモータ定格トルク(ロールの両端に独立した押込みを付与するモータが存在する場合はその合計値)、該サーボモータのサーボアンプの負荷率(ロールの両端に独立した押込みを付与するモータが存在する場合はその平均値)、ボールねじのリードに基づき、下記式(1)に基づき算出できる。 In the present embodiment, the set pushing amount performed by arranging the transfer cylinder 1 and the impression cylinder 2 at the biting position G generates a pushing load according to the set pushing amount. For example, as shown in FIG. 10, at the end of the roll shaft of the transfer cylinder 1, a pressing load W1 is generated according to the set pressing amount of the transfer cylinder 1 with respect to the impression cylinder 2. Further, in addition to the load W1, a pushing load W3 is generated at the end of the roll shaft of the anilox roll 3 according to the set pushing amount of the anilox roll 3 with respect to the transfer cylinder 1. The indentation loads W1 and W3 are calculated assuming that the indentation directions of the transfer cylinder 1 and the anilox roll 3 with respect to the impression cylinder 2 are coaxial and horizontal. Specifically, the impression cylinder 2 is fixed to the shaft, a load is applied to the bearing centers (support points) 91A and 91B at both ends of the transfer cylinder 1 and the Anilox roll 3, respectively, and the entire frame length L (of each roll) is applied. Push in the direction of the impression cylinder 2 (between the bearing centers). This pushing load is performed by positioning control by a servomotor and a ball screw (not shown), and can be calculated based on the following equation (1) assuming that there is no mechanical loss. Specifically, the indentation load W1 of the transfer cylinder 1 is the motor rated torque of the servomotor connected to the transfer cylinder 1 (the total value if there is a motor that imparts independent indentation to both ends of the roll). It can be calculated based on the following equation (1) based on the load factor of the servo amplifier of the servo motor (the average value if there is a motor that applies independent pushing to both ends of the roll) and the lead of the ball screw. Similarly, the indentation load W3 of the anilox roll 3 is the motor rated torque of the servomotor connected to the anilox roll 3 (the total value if there is a motor that imparts independent indentation to both ends of the roll), and the servomotor. It can be calculated based on the following equation (1) based on the load factor of the servo amplifier (the average value if there is a motor that applies independent pushing to both ends of the roll) and the lead of the ball screw.

本実施形態においては、塗工部10Aの塗工工程において、上記のロール軸端部における設定押込み量の制御と共に、押込み時における転写胴1及び圧胴2のたわみを補正する。これにより、ロール軸方向Xにおける塗工端部131A、131Bと塗工中央部132との押込み量の差を抑える。この塗工端部131A及び131Bと塗工中央部132とは、図10に示すように、転写胴1の表面を構成する塗工版13の位置を示している。
図10に示すように、設定押込み量に従う押込み荷重W1+W3により、圧胴2と転写胴1との間の不織布基材8に押込みを付与する。転写胴1の荷重W1、アニロックスロール3の荷重W3を圧胴1に印加し、圧胴2から同等の荷重応力が加えられる。しかし、ロール軸端部において210kPa以上の印圧に相当する高い押込みを加える場合、図11に示すように、転写胴1のロール軸方向Xに分布を持ったたわみ、すなわち押し込み量の分布が生じることがある。これでは、転写胴1のロール軸方向において荷重が均等に加わらない。具体的には、転写胴1及び圧胴2が、塗工幅(版幅)Mの中で、塗工中央部132付近において、たわみを生じ、塗工端部131A及び131Bよりも荷重が低下して、押込み量が不十分になることがある。すなわち、上記のたわみによって、塗工中央部132のシリンダー本体11と圧胴2との距離(K1)が、塗工端部131A及び131Bのシリンダー本体11と圧胴2との距離(K2)よりも大きく開く(K1>K2)ことがある。この、たわんだ状態における押込み量を、前述の図9(A)及び(B)に基づく設定押込み量(軸端部における設定値)に対して、実押込み量と言う。
この実押込み量は、塗工端部131A及び131Bと塗工中央部132では異なる。塗工端部131A及び131Bでは、不織布基材8に所望の値に近い押込み量を付与して、所望の印圧に相当する押込み荷重W1+W3を発生させることができる。しかし、塗工中央部132では、前述の転写胴1のシリンダー本体11と圧胴2との間のたわみが大きいために、押込み荷重W1+W3が塗工端部131A及び131Bのようには伝わらない。そのため、塗工版13及びクッションテープ12に対する圧胴2の食い込みが不十分となり、不織布基材8に所望の印圧を付与できなくなる。このような現象は、フレーム長L、特に、塗工幅(版幅)Mが長くなる程生じやすくなる。実際の不織布の製造方法においては、数メートル単位(例えば2mや3m)の塗工幅(版幅)Mのものを使用する。そのため、たわみ現象は、キスタッチよりも大きな押込みを行う塗工工程においては、機能剤の塗工量の均質化を実現する観点からは看過できないものとなる。
In the present embodiment, in the coating process of the coating unit 10A, the set pressing amount at the end of the roll shaft is controlled, and the deflection of the transfer cylinder 1 and the impression cylinder 2 at the time of pressing is corrected. As a result, the difference in the pushing amount between the coating end portions 131A and 131B and the coating center portion 132 in the roll axial direction X is suppressed. As shown in FIG. 10, the coating end portions 131A and 131B and the coating central portion 132 indicate the positions of the coating plates 13 constituting the surface of the transfer cylinder 1.
As shown in FIG. 10, the non-woven fabric base material 8 between the impression cylinder 2 and the transfer cylinder 1 is pressed by the pressing load W1 + W3 according to the set pressing amount. The load W1 of the transfer cylinder 1 and the load W3 of the anilox roll 3 are applied to the impression cylinder 1, and the same load stress is applied from the impression cylinder 2. However, when a high indentation corresponding to a printing pressure of 210 kPa or more is applied at the end of the roll shaft, as shown in FIG. 11, a deflection having a distribution in the roll axis direction X of the transfer cylinder 1, that is, a distribution of the indentation amount occurs. Sometimes. In this case, the load is not evenly applied in the roll axis direction of the transfer cylinder 1. Specifically, the transfer cylinder 1 and the impression cylinder 2 are bent in the vicinity of the coating center portion 132 in the coating width (plate width) M, and the load is lower than that of the coating end portions 131A and 131B. Therefore, the pushing amount may be insufficient. That is, due to the above deflection, the distance (K1) between the cylinder body 11 of the coating central portion 132 and the impression cylinder 2 is larger than the distance (K2) between the cylinder body 11 of the coating ends 131A and 131B and the impression cylinder 2. May open wide (K1> K2). The pushing amount in the bent state is referred to as an actual pushing amount with respect to the set pushing amount (set value at the shaft end) based on FIGS. 9A and 9B described above.
This actual pushing amount differs between the coating end portions 131A and 131B and the coating central portion 132. At the coated end portions 131A and 131B, a pressing amount close to a desired value can be applied to the non-woven fabric base material 8 to generate a pressing load W1 + W3 corresponding to a desired printing pressure. However, in the coating central portion 132, the pushing load W1 + W3 is not transmitted as in the coating end portions 131A and 131B because the deflection between the cylinder body 11 of the transfer cylinder 1 and the impression cylinder 2 is large. Therefore, the impression cylinder 2 does not sufficiently bite into the coating plate 13 and the cushion tape 12, and the desired printing pressure cannot be applied to the non-woven fabric base material 8. Such a phenomenon is more likely to occur as the frame length L, particularly the coating width (plate width) M becomes longer. In the actual method for producing a non-woven fabric, a non-woven fabric having a coating width (plate width) of several meters (for example, 2 m or 3 m) is used. Therefore, the deflection phenomenon cannot be overlooked from the viewpoint of achieving homogenization of the coating amount of the functional agent in the coating process in which the pressing is larger than the kiss touch.

例えば、図12(A)及び(B)に示すように、塗工幅(版幅)Mを1900mmとしてエアスルー不織布に塗液を塗工した例でもこの現象が見られる。転写胴1と圧胴2との間の設定押込み量(ロール軸端部における押込み量)をどの値にしても、転写胴1と圧胴2との間の実押込み量は、塗工端部131A及び131Bにおいて塗工中央部132よりも大きく、これに応じて、塗工量も変化している。すなわち、塗工幅(版幅)が大きくなる程、不織布基材8の幅方向における塗工量分布が生じることが分かる。
本結果は転写胴1と圧胴2の押込みによって付与される不織布基材8への印圧が幅方向に異なることで生じるものである。そのため、上記のたわみを補正することによって、ロール軸方向Xの押込み量の差が抑えられて、不織布基材8への印圧が均等化される。これにより、不織布基材8の幅方向における塗工量の分布を抑えることができる。また、前述の表1及び図5において示したように、印圧を高めるほど塗工量が増える特徴がある。この特徴の基、たわみを補正しながら印圧を高めることで、塗工量分布を抑えながらより大きな塗工量の塗工を実現できる。すなわち、塗工量をより大きくしても塗工量の均質化(塗工量変動と塗工量分布の抑制)を実現できる。
For example, as shown in FIGS. 12A and 12B, this phenomenon is also observed in an example in which a coating liquid is applied to an air-through non-woven fabric with a coating width (plate width) M of 1900 mm. Regardless of the set pushing amount (pushing amount at the end of the roll shaft) between the transfer cylinder 1 and the impression cylinder 2, the actual pushing amount between the transfer cylinder 1 and the impression cylinder 2 is the coating end. In 131A and 131B, it is larger than the coating central portion 132, and the coating amount also changes accordingly. That is, it can be seen that as the coating width (plate width) increases, the coating amount distribution in the width direction of the nonwoven fabric base material 8 occurs.
This result is caused by the fact that the printing pressure applied to the non-woven fabric base material 8 by pressing the transfer cylinder 1 and the impression cylinder 2 differs in the width direction. Therefore, by correcting the above-mentioned deflection, the difference in the pressing amount in the roll axial direction X is suppressed, and the printing pressure on the non-woven fabric base material 8 is equalized. As a result, the distribution of the coating amount in the width direction of the nonwoven fabric base material 8 can be suppressed. Further, as shown in Table 1 and FIG. 5 described above, there is a feature that the coating amount increases as the printing pressure is increased. Based on this feature, by increasing the printing pressure while correcting the deflection, it is possible to realize a coating with a larger coating amount while suppressing the coating amount distribution. That is, even if the coating amount is increased, the coating amount can be homogenized (variation in the coating amount and suppression of the coating amount distribution).

上記の図12(A)及び(B)に示すグラフは下記の条件にて行った結果である。
(i)基材条件
繊度1.3dtexの芯鞘型複合繊維(芯:ポリエチレンテレフタレート樹脂繊維、鞘:ポリエチレン樹脂繊維)を用いた坪量18g/mのエアスルー不織布基材(ロール原反)、不織布基材のCD幅:2000mm
(ii)塗液
ポリエーテル変性シリコーン「KF−6015」
(iii)装置条件
転写胴1と圧胴2との間の設定押込み量
:50μm、150μm、250μm、350μm、450μm
転写胴1とアニロックスロール3との間の設定押込み量
:250μm
転写胴1の塗工幅(版幅)M:1900mm
塗工速度:76m/min
基材不織布8に付与したテンション:25N/m
クッションテープ12:「Tesa softprint52222PV1」(商品名、テサテープ株式会社製、厚み0.5mm)
塗工版13:「FLEXCEL NX−H」(商品名、コダック社製、厚み1.7mm、ショアA硬度62°)
アニロックスロール3:ハニカム700Lpi(3.5cc/m
各ロールのフレーム長L、ロール外径及びロール内径:表5
The graphs shown in FIGS. 12 (A) and 12 (B) above are the results obtained under the following conditions.
(I) Base material conditions An air-through non-woven fabric base material (roll raw fabric) having a basis weight of 18 g / m 2 using a core-sheath type composite fiber (core: polyethylene terephthalate resin fiber, sheath: polyethylene resin fiber) having a fineness of 1.3 dtex, CD width of non-woven fabric base material: 2000 mm
(Ii) Coating liquid Polyether-modified silicone "KF-6015"
(Iii) Device conditions Set pushing amount between the transfer cylinder 1 and the impression cylinder 2: 50 μm, 150 μm, 250 μm, 350 μm, 450 μm
Set push-in amount between transfer cylinder 1 and Anilox roll 3: 250 μm
Coating width (plate width) of transfer cylinder 1 M: 1900 mm
Coating speed: 76m / min
Tension applied to the base non-woven fabric 8: 25 N / m
Cushion tape 12: "Tesa softprint 52222PV1" (trade name, manufactured by Tesa Tape Co., Ltd., thickness 0.5 mm)
Coating plate 13: "FLEXCEL NX-H" (trade name, manufactured by Kodak, thickness 1.7 mm, shore A hardness 62 °)
Anilox Roll 3: Honeycomb 700Lpi (3.5cc / m 2 )
Frame length L of each roll, roll outer diameter and roll inner diameter: Table 5

また、図12(C)に示すグラフは、図12(A)及び(B)の上記条件のもと、アニロックスロール3の設定押込み量を100μm、250μm、350μm、450μmにしたときの、転写胴1と圧胴2との間の実押込み量と塗工量との関係を示す。ここでは、版幅1900mmで等分布荷重が付与されると仮定してたわみを計算し、不織布基材8の幅方向の塗工量分布を、たわみを考慮した転写胴1の実押込み量にて塗工量との関係を示した。このことからも、たわみを低減することで幅方向の塗工量分布を小さくできることが分かる。 Further, the graph shown in FIG. 12 (C) shows a transfer cylinder when the set pushing amount of Anilox Roll 3 is set to 100 μm, 250 μm, 350 μm, and 450 μm under the above conditions of FIGS. 12 (A) and 12 (B). The relationship between the actual pushing amount and the coating amount between 1 and the impression cylinder 2 is shown. Here, the deflection is calculated on the assumption that an evenly distributed load is applied with a plate width of 1900 mm, and the coating amount distribution in the width direction of the non-woven fabric base material 8 is determined by the actual pressing amount of the transfer cylinder 1 in consideration of the deflection. The relationship with the coating amount was shown. From this, it can be seen that the coating amount distribution in the width direction can be reduced by reducing the deflection.

上記のたわみ量の算出は、転写胴1、圧胴2及びアニロックスロール3を、部分的な等分布荷重を受ける両端単純支持はりとみなし、断面2次モーメントによるはりのたわみ計算に則って行う。算出において、押込み荷重W1+W3、フレーム長L、ロール外径及びロール内径、並びに、転写胴1のシリンダー本体11、圧胴2及びアニロックスロール3の縦弾性係数(ヤング率)等を加味する。押込み荷重W1+W3は、前述の式(1)に基づいて算出することができる。なお、上記の算出においては、ロール形状を外径がロール外径、内径がロール内径、長さがフレーム長Lであるパイプ形状と近似させ、さらに、塗工幅(版幅)Mで等分布荷重が付与されるとみなす。
たわみ補正にあたっては、まず、たわみ量を算出する。次いで、該たわみによる圧胴2と転写胴1との間の間隙分布を小さくするように、たわみ補正を行う。すなわち、塗工中央部132のシリンダー本体11と圧胴2との距離(K1)と塗工端部131A及び131Bのシリンダー本体11と圧胴2との距離(K2)との差(K1−K2)を小さくするように、たわみ補正を行う。
The above calculation of the amount of deflection is performed according to the calculation of the deflection of the beam by the moment of inertia of area, assuming that the transfer cylinder 1, the impression cylinder 2, and the anilox roll 3 are simple support beams at both ends that receive a partially evenly distributed load. In the calculation, the indentation load W1 + W3, the frame length L, the roll outer diameter and the roll inner diameter, and the longitudinal elastic modulus (Young's modulus) of the cylinder body 11, the impression cylinder 2 and the anilox roll 3 of the transfer cylinder 1 are taken into consideration. The indentation load W1 + W3 can be calculated based on the above equation (1). In the above calculation, the roll shape is approximated to the pipe shape in which the outer diameter is the roll outer diameter, the inner diameter is the roll inner diameter, and the length is the frame length L, and further, the roll shape is evenly distributed by the coating width (plate width) M. It is considered that a load is applied.
In the deflection correction, first, the amount of deflection is calculated. Next, the deflection is corrected so as to reduce the gap distribution between the impression cylinder 2 and the transfer cylinder 1 due to the deflection. That is, the difference (K1-K2) between the distance (K1) between the cylinder body 11 of the coating center 132 and the impression cylinder 2 and the distance (K2) between the cylinder body 11 of the coating ends 131A and 131B and the impression cylinder 2 ) Is reduced so that the deflection is corrected.

(幅方向における塗工量分布の測定方法)
上記の幅方向における塗工量の分布は、幅方向に任意の位置からサンプリングした不織布に対して(塗工量の変動係数の測定方法)によって測定することができる。
(Measuring method of coating amount distribution in the width direction)
The distribution of the coating amount in the width direction can be measured with respect to the non-woven fabric sampled from an arbitrary position in the width direction (measurement method of the coefficient of variation of the coating amount).

これを実現する補正機構としては、種々のものが挙げられる。その中でも、たわみ補正ロール方式、ロールクロッシング方式、クラウンロール方式、熱膨張補正方式から選ばれる少なくとも1種の方式を採用することが好ましい。 Various correction mechanisms can be mentioned as the correction mechanism for realizing this. Among them, it is preferable to adopt at least one method selected from the deflection correction roll method, the roll crossing method, the crown roll method, and the thermal expansion correction method.

たわみ補正ロール方式は、図13に示すようにたわみ補正ロール6を圧胴2に設置して、押込み荷重W1+W3と対向する方向に、補正押込み荷重W6を付与する。具体的には、圧胴2の転写胴1とは反対側において、塗工中央部132に対応する位置にたわみ補正ロール6を設置する。たわみ補正ロール6は、圧胴2側から転写胴1及びアニロックスロール3に向かう方向に補正押込み荷重W6を付与して、塗工中央部132におけるたわみを補正する。これにより、塗工中央部132における転写胴1と圧胴2との間の押込み量を回復させ、塗工端部131A及び131Bにおける押込み量との差を抑え、ゼロに近づけるように制御する。 In the deflection correction roll method, as shown in FIG. 13, the deflection correction roll 6 is installed on the impression cylinder 2, and the correction indentation load W6 is applied in the direction facing the indentation load W1 + W3. Specifically, the deflection correction roll 6 is installed at a position corresponding to the coating central portion 132 on the side of the impression cylinder 2 opposite to the transfer cylinder 1. The deflection correction roll 6 applies a correction pushing load W6 in the direction from the impression cylinder 2 side toward the transfer cylinder 1 and the anilox roll 3 to correct the deflection in the coating central portion 132. As a result, the pushing amount between the transfer cylinder 1 and the impression cylinder 2 at the coating central portion 132 is restored, the difference between the pushing amount at the coating end portions 131A and 131B is suppressed, and the pushing amount is controlled to approach zero.

ロールクロッシング方式では、転写胴1及び圧胴2の中心を結ぶ線を軸として、いずれか一方を僅かに回転させる。クラウンロール方式では、転写胴1及び圧胴2の少なくともいずれか一方について、塗工中央部132付近のロール径を、塗工端部131A及び131B付近のロール径よりも大きくする。また、熱膨張補正方式では、転写胴1及び圧胴2の少なくとのいずれか一方について、胴内部に熱媒を流し、塗工中央部132付近での発熱量を塗工端部131A及び131B付近での発熱量よりも大きくする。
これらによって、塗工中央部132において確実に所望の押込み量が生じるようにし、塗工端部131A及び131Bにおける押込み量との差を抑え、ゼロに近づけるように制御する。
In the roll crossing method, one of the transfer cylinders 1 and the impression cylinder 2 is slightly rotated about a line connecting the centers. In the crown roll method, for at least one of the transfer cylinder 1 and the impression cylinder 2, the roll diameter near the coating center portion 132 is made larger than the roll diameter near the coating end portions 131A and 131B. Further, in the thermal expansion correction method, a heat medium is passed through the inside of the cylinder for either one of the transfer cylinder 1 and the small amount of the impression cylinder 2, and the amount of heat generated in the vicinity of the coating central portion 132 is measured at the coating end portions 131A and 131B. Make it larger than the amount of heat generated in the vicinity.
As a result, a desired pushing amount is surely generated at the coating central portion 132, the difference between the pushing amount at the coating end portions 131A and 131B is suppressed, and the pushing amount is controlled to approach zero.

本実施形態において、上記のようにして、塗工端部131A及び131Bと塗工中央部132との間の押込み量の差をできるだけ小さくすることによって、基材不織布8に対する幅方向における塗工量分布を抑えることができる。この観点から、圧胴2と転写胴1との間の間隙分布、すなわち、塗工中央部132のシリンダー本体11と圧胴2との距離(K1)と塗工端部131A及び131Bのシリンダー本体11と圧胴2との距離(K2)との差(K1−K2)は、50μm以下とすることが好ましく、35μm以下とすることがより好ましく、25μm以下とすることが更に好ましい。 In the present embodiment, as described above, the amount of coating in the width direction with respect to the base non-woven fabric 8 is made by minimizing the difference in the amount of pushing between the coating end portions 131A and 131B and the coating central portion 132. The distribution can be suppressed. From this point of view, the gap distribution between the impression cylinder 2 and the transfer cylinder 1, that is, the distance (K1) between the cylinder body 11 of the coating central portion 132 and the impression cylinder 2, and the cylinder bodies of the coating ends 131A and 131B. The difference (K1-K2) between the distance 11 and the impression cylinder 2 (K2) is preferably 50 μm or less, more preferably 35 μm or less, and further preferably 25 μm or less.

以上のとおり、本実施形態において、210kPa以上の高印圧とたわみの補正によって、圧縮特性の高い不織布基材8に対する機能剤の塗工量の均質化を実現(塗工量変動の抑制と、塗工幅方向における塗工量分布の発生の抑制とを同時に実現)することができる。 As described above, in the present embodiment, by correcting the high printing pressure of 210 kPa or more and the deflection, it is possible to homogenize the coating amount of the functional agent on the non-woven fabric base material 8 having high compression characteristics (suppression of coating amount fluctuation and It is possible to simultaneously suppress the occurrence of coating amount distribution in the coating width direction).

本発明においては、前述の図1に示すフレキソ塗工方式に限定されることなく、転写胴1及び圧胴2によって押込み量を好適に制御して、不織布基材8に機能剤を均質に塗工できるものを適宜採用できる。例えば、転写胴1として、凸版ではなく、凹版や平版、孔版の塗工版を備えた版胴を用いてもよい。また、版胴と圧胴との間に、ブランケット胴を介在させて、このブランケット胴を転写胴1として用いてもよい。 In the present invention, the pushing amount is appropriately controlled by the transfer cylinder 1 and the impression cylinder 2 without being limited to the flexographic coating method shown in FIG. 1, and the functional agent is uniformly applied to the non-woven fabric base material 8. Anything that can be worked on can be adopted as appropriate. For example, as the transfer cylinder 1, a plate cylinder provided with an intaglio plate, a planographic plate, or a stencil coating plate may be used instead of the letterpress plate. Further, a blanket cylinder may be interposed between the plate cylinder and the impression cylinder, and this blanket cylinder may be used as the transfer cylinder 1.

上記の他の実施形態として、図14に示すような、ダイレクトグラビア塗工方式の塗工部10Bが挙げられる。塗工部10Bにおいては、凹版を備えた版胴(グラビア胴)が転写胴1となる。この場合の転写胴1は、周面が塗液チャンバ4の塗液に漬かるようにして回転して塗液をすくい取り保持する。塗液を保持した転写胴1は、そのまま回転して、不織布基材8を挟んで圧胴1と接触し、不織布基材8に所望の押込みを付与しながら塗液を塗工する。 As another embodiment described above, a coating unit 10B of a direct gravure coating method as shown in FIG. 14 can be mentioned. In the coating unit 10B, the plate cylinder (gravure cylinder) provided with the intaglio is the transfer cylinder 1. In this case, the transfer cylinder 1 rotates so that the peripheral surface is immersed in the coating liquid of the coating liquid chamber 4, and scoops and holds the coating liquid. The transfer cylinder 1 holding the coating liquid rotates as it is, comes into contact with the impression cylinder 1 with the non-woven fabric base material 8 sandwiched between them, and applies the coating liquid while applying a desired push to the non-woven fabric base material 8.

これらの種々の実施形態においても、図1に示す実施形態と同様にして、転写胴1と圧胴2との間の印圧を好適に制御して、不織布基材の表面に均質に機能剤を塗工した不織布を精度よく製造することができる。また、塗工量を好適に制御して、不織布基材8の表面に必要量の塗液を均質に塗工することができる。 Also in these various embodiments, similarly to the embodiment shown in FIG. 1, the printing pressure between the transfer cylinder 1 and the impression cylinder 2 is suitably controlled, and the functional agent is homogeneously applied to the surface of the non-woven fabric base material. It is possible to accurately manufacture a non-woven fabric coated with. Further, the coating amount can be suitably controlled, and the required amount of coating liquid can be uniformly coated on the surface of the nonwoven fabric base material 8.

さらに、本発明の不織布の製造方法において、不織布基材8に付与する搬送方向のテンション、すなわち不織布基材の搬送中にMD方向に付与されるテンションを、塗液の塗工工程(塗工部10A)において、100N/m以下とすることが好ましく、30N/m以下とすることがより好ましく、5N/m以下とすることが更に好ましい。これにより、不織布基材8におけるネッキングの発生を抑えて、印圧を均一に受けることができ、機能剤の塗工量の均質化の精度をより高めることができる。 Further, in the method for producing a non-woven fabric of the present invention, the tension applied to the non-woven fabric base material 8 in the transport direction, that is, the tension applied in the MD direction during transport of the non-woven fabric base material is applied to the coating process (coating unit). In 10A), it is preferably 100 N / m or less, more preferably 30 N / m or less, and further preferably 5 N / m or less. As a result, the occurrence of necking in the non-woven fabric base material 8 can be suppressed, the printing pressure can be uniformly received, and the accuracy of homogenizing the coating amount of the functional agent can be further improved.

1 転写胴
2 圧胴
3 アニロックスロール
4 塗液チャンバ
6 たわみ補正ロール
8 不織布基材
10A、10B 塗工部
11 (転写胴の)シリンダー本体
12 (転写胴の)クッションテープ
13 (転写胴の)塗工版
14 (塗工版の)凸部
131A、131B (転写胴の)塗工端部
132 (転写胴の)塗工中央部
P 基準位置
H 離間位置
G 食い込んだ位置

1 Transfer cylinder 2 Impression cylinder 3 Anilox roll 4 Coating chamber 6 Deflection correction roll 8 Non-woven fabric base material 10A, 10B Coating part 11 (Transfer cylinder) Cylinder body 12 (Transfer cylinder) Cushion tape 13 (Transfer cylinder) coating Construction plate 14 (coating plate) convex portions 131A, 131B (transfer cylinder) coating end portion 132 (transfer cylinder) coating center portion P Reference position H Separation position G Biting position

Claims (9)

機能剤を含んだ塗液を転写する転写胴のロール周面と印圧を付与する圧胴のロール周面との間に不織布基材を挟んで、該不織布基材の表面に前記機能剤を塗工する工程を備え、該工程において、前記不織布基材に対し、210kPa以上の印圧を付与し、かつ、押込み時における前記転写胴及び前記圧胴のたわみを補正し、ロール軸方向における塗工端部と塗工中央部の押込み量の差を抑える、不織布の製造方法。 A non-woven fabric base material is sandwiched between the roll peripheral surface of the transfer cylinder for transferring the coating liquid containing the functional agent and the roll peripheral surface of the impression cylinder for applying the printing pressure, and the functional agent is applied to the surface of the non-woven fabric base material. A coating step is provided, in which a printing pressure of 210 kPa or more is applied to the non-woven fabric base material, and the deflection of the transfer cylinder and the impression cylinder at the time of pushing is corrected, and coating is performed in the roll axis direction. A method for manufacturing non-woven fabrics that suppresses the difference in the amount of pushing between the work end and the center of coating. 前記塗工が、フレキソ塗工方式またはダイレクトグラビア塗工方式である、請求項1記載の不織布の製造方法。 The method for producing a non-woven fabric according to claim 1, wherein the coating is a flexographic coating method or a direct gravure coating method. 前記補正として、たわみ補正ロール方式、ロールクロッシング方式、クラウンロール方式及び熱膨張補正方式から選ばれる少なくとも1種の方式を用いる、請求項1又は2記載の不織布の製造方法。 The method for producing a non-woven fabric according to claim 1 or 2, wherein at least one method selected from a deflection correction roll method, a roll crossing method, a crown roll method and a thermal expansion correction method is used as the correction. ロール軸方向の前記圧胴と前記転写胴の間隙分布を50μm以下に制御する、請求項1〜3のいずれか1項に記載の不織布の製造方法。 The method for producing a nonwoven fabric according to any one of claims 1 to 3, wherein the gap distribution between the impression cylinder and the transfer cylinder in the roll axis direction is controlled to 50 μm or less. 前記不織布基材に付与する搬送方向のテンションが、前記の塗工する工程において、100N/m以下である請求項1〜6のいずれか1項に記載の不織布の製造方法。 The method for producing a non-woven fabric according to any one of claims 1 to 6, wherein the tension applied to the non-woven fabric substrate in the transport direction is 100 N / m or less in the coating step. 機能剤を含んだ塗液を転写する転写胴のロール周面と印圧を付与する圧胴のロール周面との間に不織布基材を挟んで、該不織布基材の表面に前記機能剤を塗工する塗工部を備え、該塗工部は、前記不織布基材に対し、210kPa以上の印圧を付与し、かつ、押込み時における前記転写胴及び前記圧胴のたわみの補正機構によって、該補正機構によってロール軸方向における塗工端部と塗工中央部の押込み量の差を抑えて、前記塗工を行う、不織布の製造装置。 A non-woven fabric base material is sandwiched between the peripheral surface of the roll of the transfer cylinder for transferring the coating liquid containing the functional agent and the peripheral surface of the roll of the impression cylinder for applying the printing pressure, and the functional agent is applied to the surface of the non-woven fabric base material. A coating portion to be coated is provided, and the coating portion applies a printing pressure of 210 kPa or more to the non-woven fabric base material, and by a mechanism for correcting the deflection of the transfer cylinder and the impression cylinder at the time of pushing. A non-woven fabric manufacturing apparatus that performs the coating by suppressing the difference in the pushing amount between the coating end portion and the coating center portion in the roll axis direction by the correction mechanism. 前記塗工が、フレキソ塗工方式またはダイレクトグラビア塗工方式である、請求項6記載の不織布の製造装置。 The non-woven fabric manufacturing apparatus according to claim 6, wherein the coating is a flexographic coating method or a direct gravure coating method. 前記補正機構が、たわみ補正ロール方式、ロールクロッシング方式、クラウンロール方式及び熱膨張補正方式から選ばれる少なくとも1種の方式を用いる、請求項6又は7記載の不織布の製造装置。 The non-woven fabric manufacturing apparatus according to claim 6 or 7, wherein the correction mechanism uses at least one method selected from a deflection correction roll method, a roll crossing method, a crown roll method, and a thermal expansion correction method. 前記塗工部が、ロール軸方向の前記圧胴と前記転写胴の間隙分布を50μm以下に制御する、請求項6〜8のいずれか1項に記載の不織布の製造装置。

The non-woven fabric manufacturing apparatus according to any one of claims 6 to 8, wherein the coating unit controls the gap distribution between the impression cylinder and the transfer cylinder in the roll axis direction to 50 μm or less.

JP2019094792A 2019-05-20 2019-05-20 Nonwoven fabric manufacturing method Active JP7297526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094792A JP7297526B2 (en) 2019-05-20 2019-05-20 Nonwoven fabric manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094792A JP7297526B2 (en) 2019-05-20 2019-05-20 Nonwoven fabric manufacturing method

Publications (2)

Publication Number Publication Date
JP2020190045A true JP2020190045A (en) 2020-11-26
JP7297526B2 JP7297526B2 (en) 2023-06-26

Family

ID=73453403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094792A Active JP7297526B2 (en) 2019-05-20 2019-05-20 Nonwoven fabric manufacturing method

Country Status (1)

Country Link
JP (1) JP7297526B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125656A (en) * 1991-10-29 1993-05-21 Japan Vilene Co Ltd Method for controlling extent of squeeze of fibrous sheet and controller for extent of squeeze
JPH0643337U (en) * 1992-11-10 1994-06-07 東洋紡績株式会社 Roll deflection prevention device
JPH07505334A (en) * 1992-03-31 1995-06-15 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー roll gap controller
JPH09277698A (en) * 1996-04-17 1997-10-28 Voith Sulzer Papiermas Gmbh Manufacture and apparatus for paper web having cb layer
JP2004008946A (en) * 2002-06-07 2004-01-15 Fuji Photo Film Co Ltd Method and apparatus for applying gravure coating liquid
JP2008525190A (en) * 2004-12-29 2008-07-17 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for making a cleaning sheet
JP2011144485A (en) * 2010-01-18 2011-07-28 Tokai Senko Kk Method for impregnating woven/knitted fabric with chemical liquid, and apparatus for impregnating the chemical liquid in woven/knitted fabric to be used in the method
CN207846004U (en) * 2017-12-29 2018-09-11 山东康洁非织造布有限公司 The middle adjustable pressure roller of height on Nonwovens Line
CN207973899U (en) * 2018-03-05 2018-10-16 博路威机械江苏有限公司 The controllable roller of the double pressure area amounts of deflection of Y shape

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125656A (en) * 1991-10-29 1993-05-21 Japan Vilene Co Ltd Method for controlling extent of squeeze of fibrous sheet and controller for extent of squeeze
JPH07505334A (en) * 1992-03-31 1995-06-15 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー roll gap controller
JPH0643337U (en) * 1992-11-10 1994-06-07 東洋紡績株式会社 Roll deflection prevention device
JPH09277698A (en) * 1996-04-17 1997-10-28 Voith Sulzer Papiermas Gmbh Manufacture and apparatus for paper web having cb layer
JP2004008946A (en) * 2002-06-07 2004-01-15 Fuji Photo Film Co Ltd Method and apparatus for applying gravure coating liquid
JP2008525190A (en) * 2004-12-29 2008-07-17 スリーエム イノベイティブ プロパティズ カンパニー Method and apparatus for making a cleaning sheet
JP2011144485A (en) * 2010-01-18 2011-07-28 Tokai Senko Kk Method for impregnating woven/knitted fabric with chemical liquid, and apparatus for impregnating the chemical liquid in woven/knitted fabric to be used in the method
CN207846004U (en) * 2017-12-29 2018-09-11 山东康洁非织造布有限公司 The middle adjustable pressure roller of height on Nonwovens Line
CN207973899U (en) * 2018-03-05 2018-10-16 博路威机械江苏有限公司 The controllable roller of the double pressure area amounts of deflection of Y shape

Also Published As

Publication number Publication date
JP7297526B2 (en) 2023-06-26

Similar Documents

Publication Publication Date Title
JP6108738B2 (en) Keyless ink applicator
US8840238B2 (en) Systems and methods for ink-based digital printing using imaging member and image transfer member
JP2019188799A (en) Multilayer blanket
EP2586622B1 (en) Process for Digital Lithographic Printing
JP2015085691A (en) Imaging blanket with dispersed carbon and micro-texture surface
JP7297526B2 (en) Nonwoven fabric manufacturing method
JP2807464B2 (en) Printing plate and printing method
JP6151648B2 (en) Imaging member
JPH0475151B2 (en)
EP0747238B1 (en) Stencil sheet roll and a method for preparing the same
JPH01139297A (en) Ink stain prevention on roller surface of printing machine
WO2020235207A1 (en) Absorbent article package
US2134165A (en) Planographic printing plate
JP6045985B2 (en) System and method for facilitating oil supply in digital offset lithographic printing technology
JPS61144351A (en) Method for printing on corrugated cardboard sheet
JP4548750B2 (en) Manufacturing method of color filter
JPH06122186A (en) Blanket and production of color filter using blanket
JPH07329443A (en) Printing ink transfer material and printing method using the same
JP4738515B2 (en) Printing method and solvent absorber used therefor
JPH034395B2 (en)
JP5523032B2 (en) Silicone blanket
WO2010134120A1 (en) Printing device and printing method
JP4580485B2 (en) High-precision printing method and high-precision printing apparatus
JP2002504872A (en) Humidifying roller for printing press and method of manufacturing the same
JP2011126248A (en) Silicone bracket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R151 Written notification of patent or utility model registration

Ref document number: 7297526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151