JP2020190011A - Flame splay method - Google Patents

Flame splay method Download PDF

Info

Publication number
JP2020190011A
JP2020190011A JP2019095440A JP2019095440A JP2020190011A JP 2020190011 A JP2020190011 A JP 2020190011A JP 2019095440 A JP2019095440 A JP 2019095440A JP 2019095440 A JP2019095440 A JP 2019095440A JP 2020190011 A JP2020190011 A JP 2020190011A
Authority
JP
Japan
Prior art keywords
discharge conduit
carrier gas
sectional area
injection
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019095440A
Other languages
Japanese (ja)
Other versions
JP6619901B1 (en
Inventor
本田 和寛
Kazuhiro Honda
和寛 本田
松延 健一
Kenichi Matsunobu
健一 松延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2019095440A priority Critical patent/JP6619901B1/en
Application granted granted Critical
Publication of JP6619901B1 publication Critical patent/JP6619901B1/en
Priority to CN202080028968.9A priority patent/CN113677441A/en
Priority to PCT/JP2020/019480 priority patent/WO2020235493A1/en
Publication of JP2020190011A publication Critical patent/JP2020190011A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

To provide a flame spray method capable of suppressing reduction of adhesion, abrasion of a discharge conduit, and generation of a back fire in a case of a large amount of injection.SOLUTION: In a flame spray method for forming a fire resistant composition by burning a mixture of a raw material powder including a fire resistant powder and a combustible powder and a combustion supporting carrier gas, a flow rate of a carrier gas ejecting from an ejection nozzle 32 of an ejector 30 is 30 (Nm3/h) or more, a flow speed of the carrier gas ejecting from the ejection nozzle 32 is 602 (m/s) or more and 1180 (m/s) or less, a flow speed of the mixture in a conduit of a discharge conduit 33 is 63 (m/s) or more and 283 (m/s) or less, and a cross sectional area ratio of an ejection port 41 of ejection means 40 and a straight part of the discharge conduit 33 (a cross sectional area of the ejection port of the ejection means/a cross sectional area of the straight part of the discharge conduit) is 1 or more and 4 or less.SELECTED DRAWING: Figure 1

Description

本発明は、テルミット溶射法による溶射方法に関する。 The present invention relates to a thermal spraying method by the thermite thermal spraying method.

従来、テルミット溶射法により耐火組成物を形成する溶射装置として、耐火性粉体(耐火性骨材)と可燃性粉体(例えば、金属粉末)とを含む原料粉体を、支燃性のキャリアガス(酸素ガス)によって搬送し噴射して燃焼(着火溶融)することで耐火組成物を形成する溶射装置が知られている(例えば、特許文献1)。
具体的に特許文献1には、キャリアガスを噴出ノズルによりエジェクター内に噴出し、エジェクター内で原料粉体とキャリアガスとを混合し、混合した混合物を搬送経路の導管(吐出導管)に沿って下流側に導き、噴射手段により混合物を噴射し、噴射した混合物を燃焼させて耐火組成物を形成する技術が記載されている。
Conventionally, as a thermal spraying device for forming a fire-resistant composition by the thermite spraying method, a raw material powder containing a fire-resistant powder (fire-resistant aggregate) and a flammable powder (for example, a metal powder) is used as a flammable carrier. There is known a thermal spraying device that forms a fireproof composition by transporting it with a gas (oxygen gas), injecting it, and burning it (ignition melting) (for example, Patent Document 1).
Specifically, in Patent Document 1, a carrier gas is ejected into an ejector by an ejection nozzle, a raw material powder and a carrier gas are mixed in the ejector, and the mixed mixture is passed along a conduit (discharge conduit) of a transport path. A technique is described in which a mixture is guided to the downstream side, a mixture is injected by an injection means, and the injected mixture is burned to form a fireproof composition.

特許第5814699号公報Japanese Patent No. 5814699

このような溶射技術においては、目的とする耐火組成物を効率的かつ迅速に形成するために、耐火組成物の元になる原料粉体の噴射量を多く噴射(大量噴射)することが必要である。しかし、本発明者らが特許文献1の溶射装置を用いて大量噴射の試験を行ったところ、以下の(1)から(3)の問題があることがわかった。
(1)大量噴射を行う場合、必然的に噴射量が多くなるので、リバウンドロスにより、被施工面に対する原料粉体の付着性(以下、単に「付着性」という。)が低下する。
(2)大量噴射を行う場合、混合物が搬送経路の導管(吐出導管)に接触する頻度も高くなり、吐出導管が摩耗する。
(3)大量噴射を行うために、噴射手段の噴射口の断面積を大きくすると、噴射口から噴射される混合物の流速が低くなり、逆火(混合物の搬送方向と逆方向へ発火が進む現象)を生じる危険性が高くなる。
なお、本発明において「大量噴射」とは、原料粉体の噴射量が概ね100kg/h以上のことをいう。
In such a thermal spraying technique, in order to efficiently and quickly form the target refractory composition, it is necessary to inject a large amount of the raw material powder that is the source of the refractory composition (mass injection). is there. However, when the present inventors conducted a mass injection test using the thermal spraying apparatus of Patent Document 1, it was found that there were the following problems (1) to (3).
(1) When a large amount of injection is performed, the injection amount is inevitably large, so that the rebound loss reduces the adhesiveness of the raw material powder to the surface to be constructed (hereinafter, simply referred to as "adhesiveness").
(2) When a large amount of injection is performed, the frequency of contact of the mixture with the conduit (discharge conduit) of the transport path increases, and the discharge conduit wears.
(3) When the cross-sectional area of the injection port of the injection means is increased in order to perform a large amount of injection, the flow velocity of the mixture injected from the injection port becomes low, and a flashback (a phenomenon in which ignition proceeds in the direction opposite to the transport direction of the mixture). ) Is increased.
In the present invention, "mass injection" means that the injection amount of the raw material powder is approximately 100 kg / h or more.

そこで本発明が解決しようとする課題は、大量噴射を行う場合において、付着性の低下、吐出導管の摩耗及び逆火の発生を抑制できる溶射方法を提供することにある。 Therefore, an object to be solved by the present invention is to provide a thermal spraying method capable of suppressing a decrease in adhesiveness, wear of a discharge conduit, and occurrence of flashback in the case of mass injection.

本発明者らが試験及び検討を重ねた結果、「キャリアガスの流量」、「噴出ノズルから噴出されるキャリアガスの流速」、「吐出導管の流路内の混合物の流速」及び「噴射手段の噴射口と吐出導管のストレート部の断面積の比(噴射手段の噴射口の断面積/吐出導管のストレート部の断面積)」の4つのパラメータが前記課題を解決するために特に重要なパラメータであることを知見し、これらのパラメータの適切な範囲を特定することで本発明を完成するに至った。 As a result of repeated tests and studies by the present inventors, "flow rate of carrier gas", "flow rate of carrier gas ejected from the ejection nozzle", "flow velocity of the mixture in the flow path of the discharge conduit" and "injection means". The four parameters of the ratio of the cross-sectional area of the straight portion of the injection port to the discharge conduit (cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit) are particularly important parameters for solving the above-mentioned problems. The present invention has been completed by finding out that there is a certain value and specifying an appropriate range of these parameters.

すなわち、本発明の一観点によれば、次の溶射方法が提供される。
耐火性粉体及び可燃性粉体を含む原料粉体と、支燃性のキャリアガスとを混合した混合物を噴射し燃焼させて耐火組成物を形成する溶射装置を用いる溶射方法において、
前記原料粉体の噴射量は100kg/h以上であり、
前記溶射装置は、
前記原料粉体を貯蔵し当該原料粉体を払い出す払出口を有する貯蔵手段と、
加圧されたキャリアガスの流れにより前記払出口から前記原料粉体を吸入し、前記キャリアガスと前記原料粉体とを混合し前記混合物とするエジェクターと、
前記エジェクターにより生成された前記混合物を噴射する噴射手段とを備え、
前記エジェクターは、
前記払出口に連通する内部空間を有する容器部と、
加圧された前記キャリアガスを先端から前記内部空間に噴出する噴出ノズルと、
前記内部空間に一端が連通し前記混合物を流路に沿って前記一端から他端へ導く吐出導管とを備え、
前記キャリアガスの流量は30(Nm/h)以上であり、
前記噴出ノズルから噴出されるキャリアガスの流速は602(m/s)以上1180(m/s)以下であり、
前記吐出導管の流路内の混合物の流速は63(m/s)以上283(m/s)以下であり、
前記噴射手段の噴射口と前記吐出導管のストレート部の断面積の比(前記噴射手段の噴射口の断面積/前記吐出導管のストレート部の断面積)は1以上4以下であることを特徴とする溶射方法。
That is, according to one aspect of the present invention, the following thermal spraying method is provided.
In a thermal spraying method using a thermal spraying device that forms a thermal spray composition by injecting and burning a mixture of a raw material powder containing a fire-resistant powder and a flammable powder and a flammable carrier gas.
The injection amount of the raw material powder is 100 kg / h or more, and
The thermal spraying device
A storage means having an outlet for storing the raw material powder and discharging the raw material powder,
An ejector that sucks the raw material powder from the outlet by the flow of the pressurized carrier gas and mixes the carrier gas and the raw material powder to obtain the mixture.
It comprises an injection means for injecting the mixture produced by the ejector.
The ejector
A container portion having an internal space communicating with the outlet and
An ejection nozzle that ejects the pressurized carrier gas from the tip into the internal space,
It is provided with a discharge conduit having one end communicating with the internal space and guiding the mixture from one end to the other along a flow path.
The flow rate of the carrier gas is 30 (Nm 3 / h) or more.
The flow velocity of the carrier gas ejected from the ejection nozzle is 602 (m / s) or more and 1180 (m / s) or less.
The flow velocity of the mixture in the flow path of the discharge conduit is 63 (m / s) or more and 283 (m / s) or less.
The ratio of the cross-sectional area of the injection port of the injection means to the straight portion of the discharge conduit (cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit) is 1 or more and 4 or less. Thermal spraying method.

本発明によれば、大量噴射を行う場合において、付着性の低下、吐出導管の摩耗及び逆火の発生を抑制できる。 According to the present invention, when a large amount of injection is performed, it is possible to suppress a decrease in adhesiveness, wear of the discharge conduit, and occurrence of flashback.

本発明の溶射方法に用いる溶射装置の一例を示す概念図(断面図)。The conceptual diagram (cross-sectional view) which shows an example of the thermal spraying apparatus used for the thermal spraying method of this invention.

図1に、本発明の溶射方法に用いる溶射装置の一例を概念的に示している。
この溶射装置は、原料粉体10を貯蔵する貯蔵手段としてのホッパー20と、エジェクター30と、噴射手段40とを備える。
FIG. 1 conceptually shows an example of a thermal spraying apparatus used in the thermal spraying method of the present invention.
This thermal spraying device includes a hopper 20, an ejector 30, and an injection means 40 as storage means for storing the raw material powder 10.

原料粉体10は、可燃性粉体(例えば、金属粉末)と耐火性粉体(耐火性骨材)とを含んでなる。
ホッパー20は、その底部に原料粉体10を払い出す払出口21を有する。
エジェクター30は、加圧されたキャリアガス(酸素ガス)の流れにより払出口21から原料粉体10を吸入し、キャリアガスと原料粉体10とを混合し混合物とする。
噴射手段(噴射ノズル)40は、エジェクター30の出側と水平移送管50及びゴムホース60を介して接続されており、エジェクター30により生成された前記混合物を先端の噴射口(ノズル孔)41から噴射する。なお、水平移送管50は省略することができ、エジェクター30の出側にゴムホース60を直接接続してもよい。
The raw material powder 10 contains a flammable powder (for example, a metal powder) and a refractory powder (a refractory aggregate).
The hopper 20 has a payout port 21 at the bottom thereof for discharging the raw material powder 10.
The ejector 30 sucks the raw material powder 10 from the outlet 21 by the flow of the pressurized carrier gas (oxygen gas), and mixes the carrier gas and the raw material powder 10 to form a mixture.
The injection means (injection nozzle) 40 is connected to the outlet side of the ejector 30 via the horizontal transfer pipe 50 and the rubber hose 60, and the mixture produced by the ejector 30 is injected from the injection port (nozzle hole) 41 at the tip. To do. The horizontal transfer pipe 50 can be omitted, and the rubber hose 60 may be directly connected to the outlet side of the ejector 30.

次に、エジェクター30の構成を詳細に説明する。エジェクター30は、ホッパー20底部の払出口21に連通する内部空間を有する容器部31と、加圧されたキャリアガスを先端から容器部31の内部空間に噴出する先細りの噴出ノズル32と、容器部31の内部空間に一端が連通し前記混合物を流路に沿って前記一端から他端へ導く吐出導管33とを備える。すなわち、容器部31の内部空間において、キャリアガスは、先細りの噴出ノズル32先端の噴出口(ノズル孔)から吐出導管33の一端(基端)に向けて高速で噴出し、それによって容器部31の内部空間を負圧(ここでは大気圧よりも低い圧力)にする。一方、容器部31の内部空間には垂直移送管70を介してホッパー20の払出口21が連通している。このためエジェクター30は、加圧されたキャリアガスの流れにより払出口21から原料粉体10を容器部31の内部空間に吸入し、噴出ノズル32先端の噴出口(ノズル孔)から噴出するキャリアガスと原料粉体10とが容器部31の内部空間にて混合され混合物となる。
なお、このエジェクター30において吐出導管33は、流路の断面積が一定のストレート部のみからなるが、ストレート部の入側及び出側に絞り部や拡張部を設けてもよい。
Next, the configuration of the ejector 30 will be described in detail. The ejector 30 includes a container portion 31 having an internal space communicating with the outlet 21 at the bottom of the hopper 20, a tapered ejection nozzle 32 that ejects pressurized carrier gas from the tip into the internal space of the container portion 31, and the container portion. The internal space of 31 is provided with a discharge conduit 33 having one end communicating with the internal space and guiding the mixture from one end to the other along a flow path. That is, in the internal space of the container portion 31, the carrier gas is ejected at high speed from the ejection port (nozzle hole) at the tip of the tapered ejection nozzle 32 toward one end (base end) of the discharge conduit 33, whereby the container portion 31 Make the internal space of the negative pressure (here, the pressure lower than the atmospheric pressure). On the other hand, the outlet 21 of the hopper 20 communicates with the internal space of the container portion 31 via a vertical transfer pipe 70. Therefore, the ejector 30 sucks the raw material powder 10 into the internal space of the container 31 from the discharge port 21 by the flow of the pressurized carrier gas, and ejects the raw material powder 10 from the ejection port (nozzle hole) at the tip of the ejection nozzle 32. And the raw material powder 10 are mixed in the internal space of the container portion 31 to form a mixture.
In the ejector 30, the discharge conduit 33 is composed of only a straight portion having a constant cross-sectional area of the flow path, but a throttle portion or an expansion portion may be provided on the entry side and the exit side of the straight portion.

ここで、このエジェクター30において、容器部31の内部空間は、吐出導管33側へ行くにつれて混合物の流路の断面積が減少する絞り部31aを有する。そして、この絞り部31a内の空間領域に噴出ノズル32の先端部(噴出口(ノズル孔))が位置している。このような構成とすることで、エジェクター効果を高めることができ、大量噴射を実現しやすくなる。 Here, in the ejector 30, the internal space of the container portion 31 has a throttle portion 31a in which the cross-sectional area of the flow path of the mixture decreases toward the discharge conduit 33 side. The tip portion (spout outlet (nozzle hole)) of the ejection nozzle 32 is located in the spatial region in the throttle portion 31a. With such a configuration, the ejector effect can be enhanced and a large amount of injection can be easily realized.

この溶射装置を使用して溶射する際には、まず、ホッパー20の払出口21から原料粉体10を払い出す(払出工程)。次いで、ホッパー20の払出口21に垂直移送管70を介して連通する内部空間を有するエジェクター30の容器部31に原料粉体10を導き(導入工程)、この導入工程により導かれた原料粉体10をエジェクター30におけるキャリアガスの流れにより吸入して(吸入工程)、原料粉体10とキャリアガスとを混合する(混合工程)。そして、混合工程により混合された混合物を、吐出導管33の流路に沿って搬送し(搬送工程)、その搬送された混合物を噴射手段40により噴射し(噴射工程)、噴射された混合物を燃焼させて耐火組成物を形成する(形成工程)。 When spraying using this thermal spraying device, first, the raw material powder 10 is dispensed from the outlet 21 of the hopper 20 (dispensing step). Next, the raw material powder 10 is guided to the container portion 31 of the ejector 30 having an internal space communicating with the outlet 21 of the hopper 20 via the vertical transfer pipe 70 (introduction step), and the raw material powder derived by this introduction step is guided. 10 is sucked by the flow of the carrier gas in the ejector 30 (suction step), and the raw material powder 10 and the carrier gas are mixed (mixing step). Then, the mixture mixed in the mixing step is conveyed along the flow path of the discharge conduit 33 (transportation step), the conveyed mixture is injected by the injection means 40 (injection step), and the injected mixture is burned. To form a refractory composition (forming step).

以上のようなエジェクター方式の溶射装置を用いる本発明の溶射方法は、以下の要件1〜4を満たすことを特徴とする。
要件1:キャリアガスの流量は30(Nm/h)以上70(Nm/h)以下であること。
要件2:噴出ノズルから噴出されるキャリアガスの流速は602(m/s)以上1180(m/s)以下であること。
要件3:吐出導管の流路内の混合物の流速は63(m/s)以上283(m/s)以下であること。
要件4:噴射手段の噴射口と吐出導管のストレート部の断面積の比(噴射手段の噴射口の断面積/吐出導管のストレート部の断面積)は1以上4以下であること。
The thermal spraying method of the present invention using the ejector type thermal spraying device as described above is characterized by satisfying the following requirements 1 to 4.
Requirement 1: The flow rate of the carrier gas is 30 (Nm 3 / h) or more and 70 (Nm 3 / h) or less.
Requirement 2: The flow velocity of the carrier gas ejected from the ejection nozzle is 602 (m / s) or more and 1180 (m / s) or less.
Requirement 3: The flow velocity of the mixture in the flow path of the discharge conduit is 63 (m / s) or more and 283 (m / s) or less.
Requirement 4: The ratio of the cross-sectional area of the injection port of the injection means to the straight portion of the discharge conduit (cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit) is 1 or more and 4 or less.

前記要件1に関し、キャリアガスの流量が30(Nm/h)未満であると、原料粉体の搬送能力が足りず、大量噴射を実現できない。一方、キャリアガスの流量の上限は、大量噴射の観点からは特に限定されないが、現実的には80(Nm/h)程度とすることができる。
キャリアガスの流量の好ましい範囲は、40(Nm/h)以上70(Nm/h)以下である。
なお、本発明において「キャリアガスの流量」とは噴出ノズルから噴出されるガスの流量のことをいう。すなわち、図1の溶射装置において噴出ノズル32以外の部分、例えばゴムホース60からキャリアガスと同成分のガス(酸素ガス)を導入することがあるが、噴出ノズル32以外の部分から導入されるガスの流量は、「キャリアガスの流量」には含まれないものとする。
Regarding the above requirement 1, if the flow rate of the carrier gas is less than 30 (Nm 3 / h), the transport capacity of the raw material powder is insufficient and a large amount of injection cannot be realized. On the other hand, the upper limit of the flow rate of the carrier gas is not particularly limited from the viewpoint of mass injection, but can be practically set to about 80 (Nm 3 / h).
The preferable range of the flow rate of the carrier gas is 40 (Nm 3 / h) or more and 70 (Nm 3 / h) or less.
In the present invention, the "flow rate of carrier gas" refers to the flow rate of gas ejected from the ejection nozzle. That is, in the spraying device of FIG. 1, a gas (oxygen gas) having the same component as the carrier gas may be introduced from a portion other than the ejection nozzle 32, for example, a rubber hose 60, but the gas introduced from the portion other than the ejection nozzle 32 The flow rate shall not be included in the "carrier gas flow rate".

前記要件2に関し、噴出ノズルから噴出されるキャリアガスの流速(以下、単に「キャリアガスの流速」という。)が602(m/s)未満であると、十分なエジェクター効果が得られず、大量噴射を実現できない。一方、キャリアガスの流速が1180(m/s)超であると、大量噴射は可能であるが、キャリアガスの流速が速くなることで原料粉体の搬送流速が速くなり、吐出導管内の摩耗が大きくなる。
キャリアガスの流速の好ましい範囲は、699(m/s)以上1148(m/s)以下である。
なお、キャリアガスの流速は、噴出ノズルの噴出口(ノズル孔)の断面積とキャリアガスの流量とから計算により求めることができる。
Regarding the above requirement 2, if the flow velocity of the carrier gas ejected from the ejection nozzle (hereinafter, simply referred to as “carrier gas flow velocity”) is less than 602 (m / s), a sufficient ejector effect cannot be obtained and a large amount is obtained. Injection cannot be realized. On the other hand, if the flow velocity of the carrier gas exceeds 1180 (m / s), a large amount of injection is possible, but the flow velocity of the carrier gas becomes faster, so that the flow velocity of the raw material powder becomes faster, and the wear in the discharge conduit becomes faster. Becomes larger.
The preferable range of the flow velocity of the carrier gas is 699 (m / s) or more and 1148 (m / s) or less.
The flow velocity of the carrier gas can be calculated from the cross-sectional area of the ejection port (nozzle hole) of the ejection nozzle and the flow rate of the carrier gas.

前記要件3に関し、吐出導管の流路内の混合物の流速が63(m/s)未満であると、エジェクターによる原料粉体の吸入量が足りなくなり、大量噴射を実現できない。一方、吐出導管の流路内の混合物の流速が283(m/s)超であると、吐出導管内の摩耗が生じやすい。
吐出導管の流路内の混合物の流速の好ましい範囲は、72(m/s)以上172(m/s)以下である。
なお、吐出導管の流路内の混合物の流速は、吐出導管のストレート部の断面積とキャリアガスの流量とから計算により求めることができる。
Regarding the above requirement 3, if the flow velocity of the mixture in the flow path of the discharge conduit is less than 63 (m / s), the amount of the raw material powder sucked by the ejector becomes insufficient, and a large amount of injection cannot be realized. On the other hand, if the flow velocity of the mixture in the flow path of the discharge conduit exceeds 283 (m / s), wear in the discharge conduit is likely to occur.
The preferred range of the flow velocity of the mixture in the flow path of the discharge conduit is 72 (m / s) or more and 172 (m / s) or less.
The flow velocity of the mixture in the flow path of the discharge conduit can be calculated from the cross-sectional area of the straight portion of the discharge conduit and the flow rate of the carrier gas.

要件4に関し、噴射手段の噴射口と吐出導管のストレート部の断面積の比(「噴射手段の噴射口の断面積/吐出導管のストレート部の断面積」、以下、単に「断面積比」という。)が1未満であると、噴射手段の噴射口から噴射される混合物の流速が大きくなりすぎて、リバウンドロスにより付着性が低下する。また、噴射手段の噴射口における圧損が大きくなるので、混合物の噴射量が低下して、大量噴射を実現できない。一方、断面積比が4超であると、噴射手段の噴射口から噴射される混合物の流速が小さくなりすぎて、逆火を生じやすい。
断面積比の好ましい範囲は、1.4以上2.3以下である。
なお、「噴射手段の噴射口の断面積」とは噴射口の開口面積のことであり、噴射口が複数ある場合は、全ての噴射口の開口面積の合計とする。また、「吐出導管のストレート部の断面積」とは、吐出導管の流路方向に直交する断面における、吐出導管のストレート部の断面積のことである。
図1の溶射装置では、噴射手段40の噴射口41、吐出導管33(ストレート部)の断面はいずれも円形としたが、楕円形や矩形など円形以外の形状とすることもできる。すなわち、噴射手段の噴射口、吐出導管のストレート部がいずれの形状であっても、断面積比が要件4に規定の範囲内であればよい。
Regarding Requirement 4, the ratio of the cross-sectional area of the injection port of the injection means to the straight portion of the discharge conduit (“cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit”, hereinafter simply referred to as “cross-sectional area ratio”. If it is less than 1, the flow velocity of the mixture injected from the injection port of the injection means becomes too large, and the adhesiveness is lowered due to the rebound loss. Further, since the pressure loss at the injection port of the injection means becomes large, the injection amount of the mixture decreases, and a large amount of injection cannot be realized. On the other hand, when the cross-sectional area ratio is more than 4, the flow velocity of the mixture injected from the injection port of the injection means becomes too small, and a flashback is likely to occur.
The preferable range of the cross-sectional area ratio is 1.4 or more and 2.3 or less.
The "cross-sectional area of the injection port of the injection means" is the opening area of the injection port, and when there are a plurality of injection ports, it is the total of the opening areas of all the injection ports. Further, the "cross-sectional area of the straight portion of the discharge conduit" is the cross-sectional area of the straight portion of the discharge conduit in the cross section orthogonal to the flow path direction of the discharge conduit.
In the thermal spraying device of FIG. 1, the cross section of the injection port 41 and the discharge conduit 33 (straight portion) of the injection means 40 is circular, but it may be a shape other than a circular shape such as an ellipse or a rectangle. That is, regardless of the shape of the injection port of the injection means and the straight portion of the discharge conduit, the cross-sectional area ratio may be within the range specified in Requirement 4.

以上のとおり、本発明の溶射方法は前記要件1〜4を全て満たすことで、大量噴射を行う場合において、付着性の低下、吐出導管の摩耗及び逆火の発生を抑制できる。 As described above, the thermal spraying method of the present invention can suppress the decrease in adhesiveness, the wear of the discharge conduit, and the occurrence of flashback in the case of mass injection by satisfying all of the above requirements 1 to 4.

図1の溶射装置にて表1に示す各溶射条件にて溶射試験を行い、それぞれ噴射量(kg/h)、付着性、吐出導管の摩耗、及び逆火の有無について評価を行い、これらの評価結果に基づき総合評価を行った。なお、溶射試験では、耐火性粉体としてシリカ(SiO):85質量%と可燃性粉体として金属Si:15質量%とからなる原料粉体を用い、0.5MPaのキャリアガス(酸素ガス)を流すことで原料粉体(混合物)を噴射した。
前記各評価項目の評価方法は、以下のとおりである。
A thermal spraying test was conducted with the thermal spraying device shown in FIG. 1 under each thermal spraying condition shown in Table 1, and the injection amount (kg / h), adhesion, wear of the discharge conduit, and the presence or absence of flashback were evaluated, and these were evaluated. A comprehensive evaluation was performed based on the evaluation results. In the spray test, a raw material powder composed of silica (SiO 2 ): 85% by mass as a fire-resistant powder and metallic Si: 15% by mass as a flammable powder was used, and a carrier gas (oxygen gas) of 0.5 MPa was used. ) Was flown to inject the raw material powder (mixture).
The evaluation method for each of the evaluation items is as follows.

<噴射量(kg/h)>
ホッパー20に貯蔵されている原料粉体の重量減少率から噴射量(kg/h)を求めた。噴射量が100(kg/h)以上の場合、大量噴射を実現できるとして○(良)、100kg/h未満の場合、大量噴射を実現できないとして×(不可)とした。
<Injection amount (kg / h)>
The injection amount (kg / h) was determined from the weight reduction rate of the raw material powder stored in the hopper 20. When the injection amount was 100 (kg / h) or more, it was evaluated as ◯ (good) because a large amount of injection could be realized, and when it was less than 100 kg / h, it was evaluated as × (impossible) because a large amount of injection could not be realized.

<付着性>
原料粉体の総噴射量(kg)と常温下でのリバウンドロス(kg)から、原料粉体の付着率を求め、比較例1の付着率を100として指数化して評価した。具体的には、付着率(指数)が110超を○(良)、100超110以下を△(可)、100以下を×(不可)とした。
<Adhesiveness>
The adhesion rate of the raw material powder was obtained from the total injection amount (kg) of the raw material powder and the rebound loss (kg) at room temperature, and the adhesion rate of Comparative Example 1 was set as 100 and evaluated. Specifically, the adhesion rate (index) of more than 110 was evaluated as ◯ (good), more than 100 and less than 110 was evaluated as Δ (possible), and 100 or less was evaluated as × (impossible).

<吐出導管の摩耗>
溶射試験後、吐出導管の摩耗状態を目視で観察し、○、△、×の3段階で相対評価した。すなわち、○、△、×の順で吐出導管の摩耗量が小さいということである。
<Wear of discharge conduit>
After the thermal spraying test, the wear state of the discharge conduit was visually observed, and a relative evaluation was made on a scale of ◯, Δ, and ×. That is, the amount of wear of the discharge conduit is smaller in the order of ◯, Δ, and ×.

<逆火の有無>
溶射試験を繰り返し100回行い、逆火の発生が0回の場合を○(良)、1回の場合を△(可)、2回以上の場合を×(不可)とした。
<Presence or absence of flashback>
The thermal spraying test was repeated 100 times, and the case where the flashback occurred 0 times was evaluated as ◯ (good), the case of 1 time was evaluated as Δ (possible), and the case of 2 times or more was evaluated as × (impossible).

<総合評価>
前記各評価が全て○の場合を○(良)、×はないが少なくとも一つ△がある場合を△(可)、少なくとも一つ×がある場合を×(不可)とした。
<Comprehensive evaluation>
When all the evaluations were ○, it was evaluated as ○ (good), when there was no × but there was at least one △, it was evaluated as Δ (possible), and when there was at least one ×, it was evaluated as × (impossible).

Figure 2020190011
Figure 2020190011

表1に示す実施例1〜7は、いずれも本発明の前記要件1〜4を全て満たすもので、噴射量、付着性、吐出導管の摩耗及び逆火の有無の評価に×(不可)はなく、総合評価も○(良)又は△(可)であり、良好な結果が得られた。 Examples 1 to 7 shown in Table 1 satisfy all of the above requirements 1 to 4 of the present invention, and x (impossible) is in the evaluation of injection amount, adhesiveness, wear of discharge conduit and presence or absence of flashback. The overall evaluation was ○ (good) or △ (possible), and good results were obtained.

これに対して、比較例1はキャリアガスの流量が少ない例で、原料粉体の搬送能力が足りず、大量噴射を実現できなかった。 On the other hand, Comparative Example 1 is an example in which the flow rate of the carrier gas is small, and the transport capacity of the raw material powder is insufficient, so that a large amount of injection cannot be realized.

比較例2はキャリアガスの流速が低い例で、十分なエジェクター効果が得られず、大量噴射を実現できなかった。
一方、比較例3はキャリアガスの流速が高い例で、吐出導管の摩耗量が大きくなった。
Comparative Example 2 is an example in which the flow velocity of the carrier gas is low, and a sufficient ejector effect cannot be obtained, so that a large amount of injection cannot be realized.
On the other hand, Comparative Example 3 is an example in which the flow velocity of the carrier gas is high, and the amount of wear of the discharge conduit is large.

比較例4は吐出導管の流路内の混合物の流速が低い例で、エジェクターによる原料粉体の吸入量が足りなくなり、大量噴射を実現できなかった。
一方、比較例5は吐出導管の流路内の混合物の流速が高い例で、吐出導管の摩耗量が大きくなった。
Comparative Example 4 is an example in which the flow velocity of the mixture in the flow path of the discharge conduit is low, and the amount of the raw material powder sucked by the ejector is insufficient, so that a large amount of injection cannot be realized.
On the other hand, Comparative Example 5 is an example in which the flow velocity of the mixture in the flow path of the discharge conduit is high, and the amount of wear of the discharge conduit is large.

比較例6は断面積比が小さい例で、噴射手段40の噴射口41から噴射される混合物の流速が大きくなりすぎて、リバウンドロスにより付着性が低下した。また、噴射手段40の噴射口41における圧損が大きくなった結果、噴射量が低下して大量噴射を実現できなかった。
一方、比較例7は断面積比が大きい例で、噴射手段40の噴射口41から噴射される混合物の流速が小さくなり、逆火が発生しやすくなった。
Comparative Example 6 is an example in which the cross-sectional area ratio is small, and the flow velocity of the mixture injected from the injection port 41 of the injection means 40 becomes too large, and the adhesiveness is lowered due to the rebound loss. Further, as a result of the large pressure loss at the injection port 41 of the injection means 40, the injection amount is reduced and a large amount of injection cannot be realized.
On the other hand, Comparative Example 7 is an example in which the cross-sectional area ratio is large, and the flow velocity of the mixture injected from the injection port 41 of the injection means 40 becomes small, so that flashback is likely to occur.

10 原料粉体
20 ホッパー(貯蔵手段)
21 払出口
30 エジェクター
31 容器部
31a 絞り部
32 噴出ノズル
33 吐出導管
40 噴射手段(噴射ノズル)
41 噴射口(ノズル孔)
50 水平移送管
50a ライニング層
60 ゴムホース
70 垂直移送管
10 Raw material powder 20 Hopper (storage means)
21 Outlet 30 Ejector 31 Container part 31a Squeezing part 32 Ejection nozzle 33 Discharge conduit 40 Injecting means (injection nozzle)
41 Injection port (nozzle hole)
50 Horizontal transfer pipe 50a Lining layer 60 Rubber hose 70 Vertical transfer pipe

以上のようなエジェクター方式の溶射装置を用いる本発明の溶射方法は、以下の要件1〜4を満たすことを特徴とする。
要件1:キャリアガスの流量は30(Nm/h)以上であること。
要件2:噴出ノズルから噴出されるキャリアガスの流速は602(m/s)以上1180(m/s)以下であること。
要件3:吐出導管の流路内の混合物の流速は63(m/s)以上283(m/s)以下であること。
要件4:噴射手段の噴射口と吐出導管のストレート部の断面積の比(噴射手段の噴射口の断面積/吐出導管のストレート部の断面積)は1以上4以下であること。
The thermal spraying method of the present invention using the ejector type thermal spraying device as described above is characterized by satisfying the following requirements 1 to 4.
Requirement 1: the flow rate of the carrier gas is 30 (Nm 3 / h) it is on than.
Requirement 2: The flow velocity of the carrier gas ejected from the ejection nozzle is 602 (m / s) or more and 1180 (m / s) or less.
Requirement 3: The flow velocity of the mixture in the flow path of the discharge conduit is 63 (m / s) or more and 283 (m / s) or less.
Requirement 4: The ratio of the cross-sectional area of the injection port of the injection means to the straight portion of the discharge conduit (cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit) is 1 or more and 4 or less.

Claims (3)

耐火性粉体及び可燃性粉体を含む原料粉体と、支燃性のキャリアガスとを混合した混合物を噴射し燃焼させて耐火組成物を形成する溶射装置を用いる溶射方法において、
前記原料粉体の噴射量は100kg/h以上であり、
前記溶射装置は、
前記原料粉体を貯蔵し当該原料粉体を払い出す払出口を有する貯蔵手段と、
加圧されたキャリアガスの流れにより前記払出口から前記原料粉体を吸入し、前記キャリアガスと前記原料粉体とを混合し前記混合物とするエジェクターと、
前記エジェクターにより生成された前記混合物を噴射する噴射手段とを備え、
前記エジェクターは、
前記払出口に連通する内部空間を有する容器部と、
加圧された前記キャリアガスを先端から前記内部空間に噴出する噴出ノズルと、
前記内部空間に一端が連通し前記混合物を流路に沿って前記一端から他端へ導く吐出導管とを備え、
前記キャリアガスの流量は30(Nm/h)以上であり、
前記噴出ノズルから噴出されるキャリアガスの流速は602(m/s)以上1180(m/s)以下であり、
前記吐出導管の流路内の混合物の流速は63(m/s)以上283(m/s)以下であり、
前記噴射手段の噴射口と前記吐出導管のストレート部の断面積の比(前記噴射手段の噴射口の断面積/前記吐出導管のストレート部の断面積)は1以上4以下であることを特徴とする溶射方法。
In a thermal spraying method using a thermal spraying device that forms a thermal spray composition by injecting and burning a mixture of a raw material powder containing a fire-resistant powder and a flammable powder and a flammable carrier gas.
The injection amount of the raw material powder is 100 kg / h or more, and
The thermal spraying device
A storage means having an outlet for storing the raw material powder and discharging the raw material powder,
An ejector that sucks the raw material powder from the outlet by the flow of the pressurized carrier gas and mixes the carrier gas and the raw material powder to obtain the mixture.
It comprises an injection means for injecting the mixture produced by the ejector.
The ejector
A container portion having an internal space communicating with the outlet and
An ejection nozzle that ejects the pressurized carrier gas from the tip into the internal space,
It is provided with a discharge conduit having one end communicating with the internal space and guiding the mixture from one end to the other along a flow path.
The flow rate of the carrier gas is 30 (Nm 3 / h) or more.
The flow velocity of the carrier gas ejected from the ejection nozzle is 602 (m / s) or more and 1180 (m / s) or less.
The flow velocity of the mixture in the flow path of the discharge conduit is 63 (m / s) or more and 283 (m / s) or less.
The ratio of the cross-sectional area of the injection port of the injection means to the straight portion of the discharge conduit (cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit) is 1 or more and 4 or less. Thermal spraying method.
前記容器部の内部空間は、前記吐出導管側へ行くにつれて混合物の流路の断面積が減少する絞り部を有し、
前記絞り部内の空間領域に前記噴出ノズルの先端部が位置している、請求項1に記載の溶射方法。
The internal space of the container portion has a throttle portion in which the cross-sectional area of the flow path of the mixture decreases toward the discharge conduit side.
The thermal spraying method according to claim 1, wherein the tip end portion of the ejection nozzle is located in a spatial region in the throttle portion.
前記キャリアガスの流量は40(Nm/h)以上70(Nm/h)以下であり
前記キャリアガスの流速は699(m/s)以上1148(m/s)以下であり、
前記吐出導管の流路内の混合物の流速は72(m/s)以上172(m/s)以下であり、
前記噴射手段の噴射口と前記吐出導管のストレート部の断面積の比(前記噴射手段の噴射口の断面積/前記吐出導管のストレート部の断面積)は1.4以上2.3以下である、請求項1又は2に記載の溶射方法。
The flow rate of the carrier gas is 40 (Nm 3 / h) or more and 70 (Nm 3 / h) or less, and the flow velocity of the carrier gas is 699 (m / s) or more and 1148 (m / s) or less.
The flow velocity of the mixture in the flow path of the discharge conduit is 72 (m / s) or more and 172 (m / s) or less.
The ratio of the cross-sectional area of the injection port of the injection means to the straight portion of the discharge conduit (cross-sectional area of the injection port of the injection means / cross-sectional area of the straight portion of the discharge conduit) is 1.4 or more and 2.3 or less. , The thermal spraying method according to claim 1 or 2.
JP2019095440A 2019-05-21 2019-05-21 Thermal spraying method Active JP6619901B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019095440A JP6619901B1 (en) 2019-05-21 2019-05-21 Thermal spraying method
CN202080028968.9A CN113677441A (en) 2019-05-21 2020-05-15 Thermal spraying method
PCT/JP2020/019480 WO2020235493A1 (en) 2019-05-21 2020-05-15 Thermal spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095440A JP6619901B1 (en) 2019-05-21 2019-05-21 Thermal spraying method

Publications (2)

Publication Number Publication Date
JP6619901B1 JP6619901B1 (en) 2019-12-11
JP2020190011A true JP2020190011A (en) 2020-11-26

Family

ID=68836062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095440A Active JP6619901B1 (en) 2019-05-21 2019-05-21 Thermal spraying method

Country Status (3)

Country Link
JP (1) JP6619901B1 (en)
CN (1) CN113677441A (en)
WO (1) WO2020235493A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230750A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Metallo-thermic powder
JPH0260802B2 (en) * 1981-01-22 1990-12-18 Furantsu Puratsuseru Baanbaumashiinen Ind Gmbh
JP2013043141A (en) * 2011-08-25 2013-03-04 Kurosaki Harima Corp Thermal spraying apparatus, thermal spraying method and thermal spraying material
JP2014124583A (en) * 2012-12-26 2014-07-07 Shinagawa Refractories Co Ltd Device and method for transporting powder and granular material
JP2014176820A (en) * 2013-03-15 2014-09-25 Shinagawa Refractories Co Ltd Thermal spray coater
JP2015113490A (en) * 2013-12-11 2015-06-22 黒崎播磨株式会社 Spray coating apparatus
JP2015143393A (en) * 2013-12-25 2015-08-06 Jfeスチール株式会社 Thermal spray repair method for furnace wall
JP2015143394A (en) * 2013-12-25 2015-08-06 Jfeスチール株式会社 Thermal spray repair method for furnace wall
JP2017019699A (en) * 2015-07-13 2017-01-26 品川リフラクトリーズ株式会社 Thermal spray material
JP2017025394A (en) * 2015-07-27 2017-02-02 黒崎播磨株式会社 Thermal spray construction method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230750A (en) * 1979-08-15 1980-10-28 Eutectic Corporation Metallo-thermic powder
JPH0260802B2 (en) * 1981-01-22 1990-12-18 Furantsu Puratsuseru Baanbaumashiinen Ind Gmbh
JP2013043141A (en) * 2011-08-25 2013-03-04 Kurosaki Harima Corp Thermal spraying apparatus, thermal spraying method and thermal spraying material
JP2014124583A (en) * 2012-12-26 2014-07-07 Shinagawa Refractories Co Ltd Device and method for transporting powder and granular material
JP2014176820A (en) * 2013-03-15 2014-09-25 Shinagawa Refractories Co Ltd Thermal spray coater
JP2015113490A (en) * 2013-12-11 2015-06-22 黒崎播磨株式会社 Spray coating apparatus
JP2015143393A (en) * 2013-12-25 2015-08-06 Jfeスチール株式会社 Thermal spray repair method for furnace wall
JP2015143394A (en) * 2013-12-25 2015-08-06 Jfeスチール株式会社 Thermal spray repair method for furnace wall
JP2017019699A (en) * 2015-07-13 2017-01-26 品川リフラクトリーズ株式会社 Thermal spray material
JP2017025394A (en) * 2015-07-27 2017-02-02 黒崎播磨株式会社 Thermal spray construction method

Also Published As

Publication number Publication date
CN113677441A (en) 2021-11-19
JP6619901B1 (en) 2019-12-11
WO2020235493A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
KR101524095B1 (en) Thermal-spraying device, thermal-spraying method, and thermal-spraying material
FI107131B (en) Method and apparatus for forming a refractory mass
CN102131941B (en) Process for producing sintered ore and sintering machine
TW470776B (en) Method for introducing gas into a liquid
US4911955A (en) Forming refractory masses
KR100478024B1 (en) Apparatus and method for providing both powder and gas to a liquid
JP2013044033A (en) Thermal spraying apparatus
JP5476815B2 (en) Heating and refining method using compound lance in vacuum degassing equipment
JP6560802B1 (en) Thermal spraying method
WO2020235493A1 (en) Thermal spraying method
JP5767689B2 (en) Thermal spray equipment
US5100594A (en) Ceramic repair
JP3189729B2 (en) Thermal spray equipment for refractory repair and repair method by thermal spraying of refractory
JP5699453B2 (en) Sintering machine and method for producing sintered ore
JP4915905B2 (en) Thermal spray equipment
JP4911164B2 (en) Sintering machine and method for producing sintered ore
US4311278A (en) Nozzle injection unit
TWI835687B (en) Spraying device and blasting materials
JPH09248497A (en) Method and apparatus for flame spraying of refractory
JP3171530U (en) Thermal spray equipment
TW202406632A (en) Spraying apparatus and spraying material
JP2014124583A (en) Device and method for transporting powder and granular material
JP5660343B2 (en) Thermal spray equipment
JP2010107154A (en) Sintering machine
JP2010078303A (en) Sintering machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190606

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250