JP2020189324A - Structure manufacturing system and manufacturing method - Google Patents

Structure manufacturing system and manufacturing method Download PDF

Info

Publication number
JP2020189324A
JP2020189324A JP2019097063A JP2019097063A JP2020189324A JP 2020189324 A JP2020189324 A JP 2020189324A JP 2019097063 A JP2019097063 A JP 2019097063A JP 2019097063 A JP2019097063 A JP 2019097063A JP 2020189324 A JP2020189324 A JP 2020189324A
Authority
JP
Japan
Prior art keywords
bead
unit
robot
cooling gas
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019097063A
Other languages
Japanese (ja)
Other versions
JP7160759B2 (en
Inventor
正俊 飛田
Masatoshi Hida
正俊 飛田
藤井 達也
Tatsuya Fujii
達也 藤井
山田 岳史
Takeshi Yamada
岳史 山田
伸志 佐藤
Shinji Sato
伸志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019097063A priority Critical patent/JP7160759B2/en
Publication of JP2020189324A publication Critical patent/JP2020189324A/en
Application granted granted Critical
Publication of JP7160759B2 publication Critical patent/JP7160759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Radiation Pyrometers (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

To provide a structure manufacturing system capable of efficiently extracting internal defect candidates of a bead and manufacturing a structure of high quality, and a manufacturing method.SOLUTION: A structure molding system 10 includes: a bead formation robot 20 forming a bead 25 on a base material 23; a gas supply robot 30 supplying cooling gas for a surface of the bead 25; a track design part 62 for creating movement tracks of a welding torch 21 and a cooling gas nozzle 31; a control part 65 controlling the bead formation robot 20 and the gas supply robot 30; a temperature measurement part 40 for outputting a surface temperature distribution of the bead 25; and a defect evaluation part 64 for extracting a region surrounded by a part whose temperature gradient is larger than a threshold from the surface temperature distribution of the bead 25 as an internal defect candidate.SELECTED DRAWING: Figure 1

Description

本発明は、構造体の製造システム及び製造方法に関し、より詳細には、溶加材を溶融および固化してなるビードを積層して形成される構造体の製造システム及び製造方法に関する。 The present invention relates to a structure manufacturing system and a manufacturing method, and more particularly to a structure manufacturing system and a manufacturing method formed by laminating beads formed by melting and solidifying a filler metal.

近年、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、さらにはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、該溶融金属を積層させることで造形物を作製する。特に、アークを用いた積層造形方法は、レーザと比較して入熱量が多く、造形効率(単位時間当たりの盛量)が高い。 In recent years, there has been an increasing need for modeling using a 3D printer as a means of production, and research and development are being promoted toward the practical application of modeling using metal materials. A 3D printer for modeling a metal material uses a laser, an electron beam, or a heat source such as an arc to melt a metal powder or a metal wire, and laminates the molten metal to produce a modeled object. In particular, the laminated modeling method using an arc has a larger amount of heat input and higher modeling efficiency (amount of buildup per unit time) than a laser.

このような造形物を造形する技術として、溶加材を供給する溶接トーチを移動させることで、溶接金属を積層させて金型などの造形物を造形する溶接技術が知られている(例えば、特許文献1参照)。 As a technique for forming such a shaped object, a welding technique is known in which a welding metal is laminated by moving a welding torch that supplies a filler material to form a shaped object such as a mold (for example,). See Patent Document 1).

また、溶接部および溶接部近傍の温度分布データを温度センサで測定して、予め記憶されている既知のデータと比較し、溶接部の良否を判定する溶接部検査方法が知られている(例えば、特許文献2参照)。 Further, there is known a welded portion inspection method in which temperature distribution data of a welded portion and the vicinity of the welded portion is measured by a temperature sensor and compared with known data stored in advance to determine the quality of the welded portion (for example). , Patent Document 2).

特開2000−15363号公報Japanese Unexamined Patent Publication No. 2000-15363 特開平6−34564号公報Japanese Unexamined Patent Publication No. 6-34564

ところで、アークを用いた積層造形法により造形される造形物においても、ブローホールや割れといった溶接欠陥を検出することが望まれている。特に、内部欠陥は、外部から目視で確認することができないため、非破壊で検出することが望まれている。
特許文献2に記載の鋼板の溶接部検査方法は、積層造形法について考慮されておらず、また、良好な溶接部の場合のデータを予め用意する必要があり、種々の形状を持つ積層造形物毎に実施するには、非常に煩雑となる。
By the way, it is desired to detect welding defects such as blow holes and cracks even in a modeled object formed by additive manufacturing method using an arc. In particular, since internal defects cannot be visually confirmed from the outside, it is desired to detect them non-destructively.
The method for inspecting a welded portion of a steel sheet described in Patent Document 2 does not consider the layered manufacturing method, and it is necessary to prepare data in the case of a good welded portion in advance, and the layered model having various shapes. It would be very complicated to carry out each time.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、ビードの内部欠陥候補を効率よく抽出して、高品質の構造体を製作可能な構造体の製造システム及び製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a structure manufacturing system and manufacturing method capable of efficiently extracting internal defect candidates of beads and manufacturing a high-quality structure. To provide.

したがって、本発明の上記目的は、下記(1)の構造体の製造システム、及び下記(2)の構造体の製造方法により達成される。
(1) 母材上に、溶接トーチを用いて溶加材を溶融および固化してなるビードを形成するビード形成ロボットと、
前記ビード形成ロボットによって前記母材上に形成された前記ビードの表面に前記ビードを冷却する冷却ガスを供給するガス供給部を有するガス供給ロボットと、
前記母材上に前記ビードが積層されてなる構造体を製造するための、前記溶接トーチの移動軌道および前記ガス供給部の移動軌道を作成する軌道設計部と、
前記軌道設計部で作成された前記移動軌道に基づいて前記ビード形成ロボットおよび前記ガス供給ロボットを制御する制御部と、
前記構造体の製造中に前記冷却ガスが供給されたビードに対して表面温度を計測して前記ビードの表面温度分布を出力する温度計測部と、
前記ビードの表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する欠陥評価部と、
を備える構造体の製造システム。
(2) (1)に記載の構造体の製造システムを備え、母材上にビードが積層されてなる構造体を製造する、構造体の製造方法であって、
前記軌道設計部で作成された前記移動軌道に基づいて、前記ビード形成ロボットの前記溶接トーチを用いて、前記母材上に溶加材を溶融および固化してなるビードを形成する工程と、
前記軌道設計部で作成された前記移動軌道に基づいて、前記ビード形成ロボットのガス供給部によって、前記母材上に形成された前記ビードの表面に前記ビードを冷却する冷却ガスを供給する工程と、
前記温度計測部によって、前記構造体の製造中に前記冷却ガスが供給されたビードに対して表面温度を計測して前記ビードの表面温度分布を出力する工程と、
前記欠陥評価部によって、前記ビードの表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する工程と、
を備える構造体の製造方法。
Therefore, the above object of the present invention is achieved by the following (1) structure manufacturing system and the following (2) structure manufacturing method.
(1) A bead forming robot that forms a bead formed by melting and solidifying a filler metal on a base metal using a welding torch.
A gas supply robot having a gas supply unit for supplying a cooling gas for cooling the bead to the surface of the bead formed on the base material by the bead forming robot.
A track design section for creating a moving track of the welding torch and a moving track of the gas supply section for manufacturing a structure in which the beads are laminated on the base material.
A control unit that controls the bead forming robot and the gas supply robot based on the moving trajectory created by the trajectory design unit.
A temperature measuring unit that measures the surface temperature of the bead to which the cooling gas is supplied during the manufacture of the structure and outputs the surface temperature distribution of the bead.
A defect evaluation unit that extracts a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value as an internal defect candidate from the surface temperature distribution of the bead.
Structure manufacturing system.
(2) A method for manufacturing a structure, which comprises the structure manufacturing system according to (1) and manufactures a structure in which beads are laminated on a base material.
A step of forming a bead formed by melting and solidifying a filler metal on the base metal using the welding torch of the bead forming robot based on the moving track created by the track design unit.
Based on the moving track created by the track design section, the gas supply section of the bead forming robot supplies a cooling gas for cooling the bead to the surface of the bead formed on the base material. ,
A step of measuring the surface temperature of the bead to which the cooling gas is supplied by the temperature measuring unit and outputting the surface temperature distribution of the bead during the manufacture of the structure.
A step of extracting a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value from the surface temperature distribution of the bead as an internal defect candidate by the defect evaluation unit.
A method of manufacturing a structure comprising.

本発明の構造体の製造システム及び製造方法によれば、ビードの内部欠陥候補を効率よく抽出して、高品質の構造体を製作できる。 According to the structure manufacturing system and manufacturing method of the present invention, internal defect candidates of beads can be efficiently extracted to manufacture a high-quality structure.

本発明に係る構造体の製造システムの概念図である。It is a conceptual diagram of the manufacturing system of the structure which concerns on this invention.

以下、本発明の実施形態に係る構造体の製造システム及び製造方法を図面に基づいて詳細に説明する。
図1に示すように、構造体の製造システム10は、ビード形成ロボット20と、ガス供給ロボット30と、温度計測部40と、形状計測部50と、コントローラ60と、を備える。
Hereinafter, the manufacturing system and manufacturing method of the structure according to the embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the structure manufacturing system 10 includes a bead forming robot 20, a gas supply robot 30, a temperature measuring unit 40, a shape measuring unit 50, and a controller 60.

ビード形成ロボット20は、多関節ロボットであり、先端軸に設けた溶接トーチ21には、溶加材Mが連続供給可能に支持される。溶接トーチ21の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。 The bead forming robot 20 is an articulated robot, and the filler metal M is continuously supplied to the welding torch 21 provided on the tip shaft. The position and posture of the welding torch 21 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

溶接トーチ21は、溶加材Mを保持しつつ、溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けられた、不図示の繰り出し機構により、溶加材供給部22から溶接トーチ21に送給される。また、溶接トーチ21には、シールドガスノズルが設けられ、不図示のガス供給装置から供給されるシールドガスをシールドガスノズルから噴出させる。そして、後述する軌道設計部62が作成する溶接トーチ21の移動軌道に基づいて、溶接トーチ21を移動しつつ、連続送給される溶加材Mを溶融及び凝固させて、母材23上に溶加材Mの溶融凝固体である線状のビード25を積層して構造体Wを形成する。
なお、アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗式電極式のいずれであっても良く、作製する構造体Wに応じて適宜選定される。
The welding torch 21 generates an arc from the tip of the filler metal M while holding the filler metal M. The filler metal M is fed from the filler metal supply unit 22 to the welding torch 21 by a feeding mechanism (not shown) attached to a robot arm or the like. Further, the welding torch 21 is provided with a shield gas nozzle, and the shield gas supplied from a gas supply device (not shown) is ejected from the shield gas nozzle. Then, based on the moving trajectory of the welding torch 21 created by the trajectory design unit 62 described later, the filler metal M continuously fed is melted and solidified while moving the welding torch 21, and is placed on the base metal 23. The linear bead 25, which is a molten solidified body of the filler metal M, is laminated to form the structure W.
The arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, depending on the structure W to be manufactured. Selected as appropriate.

ガス供給ロボット30は、多関節ロボットであり、先端軸にはガス供給部である冷却ガスノズル31が取り付けられている。冷却ガスノズル31は、後述する軌道設計部62が作成する冷却ガスノズル31の移動軌道に基づいて移動しつつ、ビード形成ロボット20により形成されたビード25の表面に冷却ガスを吹き付けてビード25を冷却する。冷却ガスは、特に限定されず、エアや炭酸ガス、Arガスなどが使用できる。また、冷却ガスは、シールドガスと同じガスを使用してもよい。 The gas supply robot 30 is an articulated robot, and a cooling gas nozzle 31 which is a gas supply unit is attached to the tip shaft. The cooling gas nozzle 31 moves based on the moving trajectory of the cooling gas nozzle 31 created by the trajectory design unit 62, which will be described later, and blows cooling gas onto the surface of the bead 25 formed by the bead forming robot 20 to cool the bead 25. .. The cooling gas is not particularly limited, and air, carbon dioxide gas, Ar gas and the like can be used. Further, as the cooling gas, the same gas as the shield gas may be used.

温度計測部40は、構造体Wの製造中に、冷却ガスが供給されたビード25に対して、ビード25の表面温度を連続して計測して、ビード25の表面温度分布を出力する。温度計測部40は、造形されたビード25の表面温度を測定可能であれば特に限定されず、接触式の測定センサでも使用可能であるが、ビード25は高温であることから、赤外線サーモグラフィや赤外線カメラなどの非接触式の測定センサが望ましい。赤外線サーモグラフィや赤外線カメラは、一度に広範囲の領域の温度検出が可能であり、好ましい。 During the production of the structure W, the temperature measuring unit 40 continuously measures the surface temperature of the bead 25 with respect to the bead 25 to which the cooling gas is supplied, and outputs the surface temperature distribution of the bead 25. The temperature measuring unit 40 is not particularly limited as long as it can measure the surface temperature of the molded bead 25, and can be used with a contact type measuring sensor. However, since the bead 25 has a high temperature, infrared thermography or infrared rays can be used. A non-contact measurement sensor such as a camera is desirable. Infrared thermography and infrared cameras are preferable because they can detect the temperature in a wide range at once.

形状計測部50は、ビード25の表面形状を測定するものであり、一般的に用いられている光走行時間法(TOF法)や光切断法が使用可能である。 The shape measuring unit 50 measures the surface shape of the bead 25, and a generally used optical traveling time method (TOF method) or optical cutting method can be used.

コントローラ60は、CAD/CAM部61と、軌道設計部62と、データ保存部63と、欠陥評価部64と、制御部65を備える。 The controller 60 includes a CAD / CAM unit 61, a trajectory design unit 62, a data storage unit 63, a defect evaluation unit 64, and a control unit 65.

CAD/CAM部61は、作製しようとする構造体Wの形状データを作成した後、構造体Wを複数の層に分割して各層の形状を表す層形状データを生成する。軌道設計部62は、生成された層形状データに基づいて溶接トーチ21及び冷却ガスノズル31の各移動軌道を生成する。 After creating the shape data of the structure W to be manufactured, the CAD / CAM unit 61 divides the structure W into a plurality of layers to generate layer shape data representing the shape of each layer. The track design unit 62 generates each moving track of the welding torch 21 and the cooling gas nozzle 31 based on the generated layer shape data.

データ保存部63は、CAD/CAM部61で生成された層形状データや、軌道設計部62が作成した溶接トーチ21及び冷却ガスノズル31の移動軌道を記憶する。さらに、データ保存部63は、溶接トーチ21及び冷却ガスノズル31の移動軌道を、後述する欠陥評価部64により検出された内部欠陥候補と関連付けてログ情報として記憶する。 The data storage unit 63 stores the layer shape data generated by the CAD / CAM unit 61 and the moving trajectories of the welding torch 21 and the cooling gas nozzle 31 created by the track design unit 62. Further, the data storage unit 63 stores the moving trajectories of the welding torch 21 and the cooling gas nozzle 31 as log information in association with the internal defect candidates detected by the defect evaluation unit 64, which will be described later.

欠陥評価部64は、温度計測部40から出力されたビード25の表面温度分布から温度勾配が所定の閾値より大きい部分で囲まれた領域内に欠陥があると推定し、内部欠陥候補として抽出する。 The defect evaluation unit 64 estimates from the surface temperature distribution of the bead 25 output from the temperature measurement unit 40 that there is a defect in the region surrounded by a portion where the temperature gradient is larger than a predetermined threshold value, and extracts it as an internal defect candidate. ..

制御部65は、データ保存部63に記憶された層形状データ、溶接トーチ21及び冷却ガスノズル31の各移動軌道に基づく駆動プログラムを実行して、ビード形成ロボット20及びガス供給ロボット30を駆動する。具体的には、ビード形成ロボット20は、コントローラ60からの指令により、軌道設計部62が作成した溶接トーチ21の移動軌道に基づいて、溶接トーチ21を移動させ、母材23上にビード25を積層する。また同時に、ガス供給ロボット30は、コントローラ60からの指令により、軌道設計部62が作成した冷却ガスノズル31の移動軌道に基づいて、冷却ガスノズル31を移動させて生成直後のビード25を冷却する。 The control unit 65 executes a drive program based on the layer shape data stored in the data storage unit 63 and the moving trajectories of the welding torch 21 and the cooling gas nozzle 31 to drive the bead forming robot 20 and the gas supply robot 30. Specifically, the bead forming robot 20 moves the welding torch 21 based on the moving trajectory of the welding torch 21 created by the trajectory design unit 62 in response to a command from the controller 60, and the bead 25 is placed on the base metal 23. Laminate. At the same time, the gas supply robot 30 moves the cooling gas nozzle 31 based on the moving trajectory of the cooling gas nozzle 31 created by the trajectory design unit 62 in response to a command from the controller 60 to cool the bead 25 immediately after generation.

次に、本実施形態の作用を説明する。構造体の製造システム10は、先ず、CAD/CAM部61が作成した構造体Wの層形状データに基づいて、軌道設計部62が溶接トーチ21及び冷却ガスノズル31のそれぞれの移動軌道を生成する。そして、制御部65が、溶接トーチ21を移動軌道に基づいて移動させ、溶加材Mを溶融及び凝固させて、母材23上に溶加材Mの溶融凝固体である線状のビード25を積層して形成する。 Next, the operation of this embodiment will be described. In the structure manufacturing system 10, first, the track design section 62 generates the moving tracks of the welding torch 21 and the cooling gas nozzle 31 based on the layer shape data of the structure W created by the CAD / CAM section 61. Then, the control unit 65 moves the welding torch 21 based on the moving trajectory to melt and solidify the filler metal M, and the linear bead 25 which is a molten solidified body of the filler metal M is placed on the base metal 23. Are laminated to form.

また同時に制御部65は、軌道設計部62が生成した冷却ガスノズル31の移動軌道に基づいて冷却ガスノズル31を移動させて、高温状態のビード25の表面に冷却ガス吹きつけて冷却する。 At the same time, the control unit 65 moves the cooling gas nozzle 31 based on the moving trajectory of the cooling gas nozzle 31 generated by the track design unit 62, and blows cooling gas onto the surface of the bead 25 in a high temperature state to cool the bead 25.

このように、ビード形成ロボット20とガス供給ロボット30が協働して、ビード25の形成とビード25の冷却とを2台のロボットで分担して行うことで、1台のロボットが、溶接トーチ21と冷却ガスノズル31を交換して同様の動作を行う場合と比較して、生産性が大幅に向上する。さらにビード25を冷却することで、次層のビード25の積層開始時間(パス間時間)を短縮することができ、これによっても造形効率が向上する。 In this way, the bead forming robot 20 and the gas supply robot 30 cooperate with each other to form the bead 25 and cool the bead 25 by two robots, so that one robot can perform the welding torch. Compared with the case where the 21 and the cooling gas nozzle 31 are replaced and the same operation is performed, the productivity is significantly improved. Further, by cooling the bead 25, the stacking start time (inter-pass time) of the bead 25 of the next layer can be shortened, which also improves the molding efficiency.

次いで、冷却ガスで冷却された後のビード25に対して温度計測部40が、ビード25の表面温度を連続して計測して、ビード25の表面温度分布を出力する。ビード25の表面温度は、欠陥がある領域と欠陥がない領域では熱伝導率が異なるため冷却速度が異なり、欠陥がある領域と欠陥がない領域の境界では、温度勾配が大きくなる。 Next, the temperature measuring unit 40 continuously measures the surface temperature of the bead 25 with respect to the bead 25 after being cooled by the cooling gas, and outputs the surface temperature distribution of the bead 25. The surface temperature of the bead 25 differs in the cooling rate because the thermal conductivity is different between the defective region and the non-defect region, and the temperature gradient becomes large at the boundary between the defective region and the non-defect region.

欠陥評価部64は、ビード25の表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する。例えば、ビード25の内部にブローホールやスラグ巻き込みなどの内部欠陥がある領域は、冷却ガスにより急速に冷却されるのに対して、内部欠陥がない領域では、熱量を保持するビード25の質量が大きく冷め難いので、ビード25の表面温度に温度差ができる。欠陥評価部64は、この温度差に基づいて内部欠陥候補を抽出する。 The defect evaluation unit 64 extracts a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value from the surface temperature distribution of the bead 25 as an internal defect candidate. For example, a region having internal defects such as blow holes and slag entrainment inside the bead 25 is rapidly cooled by the cooling gas, whereas in a region without internal defects, the mass of the bead 25 holding the amount of heat is increased. Since it is large and difficult to cool, there is a temperature difference in the surface temperature of the bead 25. The defect evaluation unit 64 extracts internal defect candidates based on this temperature difference.

ビード25の表面温度分布から抽出された内部欠陥候補は、軌道設計部62が作成した溶接トーチ21及び冷却ガスノズル31の移動軌道と関連付けてログ情報としてデータ保存部63に保存される。このログ情報は、今後の軌道計画の見直しなどに活用される。
また、制御部65は、内部欠陥候補の部分に対して、ガウジングなどの処理を行うようにしてもよい。
The internal defect candidates extracted from the surface temperature distribution of the bead 25 are stored in the data storage unit 63 as log information in association with the moving trajectories of the welding torch 21 and the cooling gas nozzle 31 created by the track design unit 62. This log information will be used for reviewing future orbit plans.
Further, the control unit 65 may perform processing such as gouging on the portion of the internal defect candidate.

上記のように、ビード25の表面温度分布から抽出された内部欠陥候補は、表面の割れ、クラックなどの外部欠陥である可能性がある。そこで、形状計測部50が、光走行時間法(TOF法)や光切断法などの手法によりビード25の表面形状を計測してビード25の表面の凹形状領域または凸形状領域を抽出する。 As described above, the internal defect candidates extracted from the surface temperature distribution of the bead 25 may be external defects such as surface cracks and cracks. Therefore, the shape measuring unit 50 measures the surface shape of the bead 25 by a method such as an optical traveling time method (TOF method) or an optical cutting method, and extracts a concave region or a convex region on the surface of the bead 25.

次いで、欠陥評価部64が、抽出された凹形状領域または凸形状領域と内部欠陥候補の位置とを照合し、両者の位置が重複する場合は、内部欠陥候補を外部欠陥候補に修正する。これにより、内部欠陥候補と外部欠陥候補を明確に判別でき、内部欠陥候補の検出精度が向上する。抽出された外部欠陥候補については、溶接の後工程で修正することができる。また、内部欠陥候補については、溶接条件を変更するなどの欠陥防止対策に役立たせることができる。 Next, the defect evaluation unit 64 collates the extracted concave or convex region with the position of the internal defect candidate, and if both positions overlap, the internal defect candidate is corrected to the external defect candidate. As a result, the internal defect candidate and the external defect candidate can be clearly discriminated, and the detection accuracy of the internal defect candidate is improved. The extracted external defect candidates can be corrected in the post-welding process. Further, the internal defect candidates can be used for defect prevention measures such as changing the welding conditions.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。 The present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like.

例えば、冷却ガスノズル31は、冷却ガスとともに浸透探傷試験剤の吹きつけを行うようにしてもよい。浸透探傷試験剤は、赤色や蛍光の浸透性のよい検査液であり、ビード25の表面に塗布し、毛細管現象や知覚現象を利用して拡大した像にして、ビード25の表面の外部欠陥を目視で検出することができる。また、この外部欠陥は、内部欠陥候補と照合して検出されてもよい。 For example, the cooling gas nozzle 31 may spray the penetrant inspection agent together with the cooling gas. The penetrant inspection agent is a red or fluorescent test solution with good permeability, and is applied to the surface of the bead 25 to create a magnified image by utilizing the capillary phenomenon and the perceptual phenomenon to remove external defects on the surface of the bead 25. It can be detected visually. Further, this external defect may be detected by collating with the internal defect candidate.

以上の通り、本明細書には次の事項が開示されている。
(1) 母材上に、溶接トーチを用いて溶加材を溶融および固化してなるビードを形成するビード形成ロボットと、
前記ビード形成ロボットによって前記母材上に形成された前記ビードの表面に前記ビードを冷却する冷却ガスを供給するガス供給部を有するガス供給ロボットと、
前記母材上に前記ビードが積層されてなる構造体を製造するための、前記溶接トーチの移動軌道および前記ガス供給部の移動軌道を作成する軌道設計部と、
前記軌道設計部で作成された前記移動軌道に基づいて前記ビード形成ロボットおよび前記ガス供給ロボットを制御する制御部と、
前記構造体の製造中に前記冷却ガスが供給されたビードに対して表面温度を計測して前記ビードの表面温度分布を出力する温度計測部と、
前記ビードの表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する欠陥評価部と、
を備える構造体の製造システム。
この構成によれば、ビードに内部欠陥のない高品質の構造体を製造効率よく製作することができる。
As described above, the following matters are disclosed in this specification.
(1) A bead forming robot that forms a bead formed by melting and solidifying a filler metal on a base metal using a welding torch.
A gas supply robot having a gas supply unit for supplying a cooling gas for cooling the bead to the surface of the bead formed on the base material by the bead forming robot.
A track design section for creating a moving track of the welding torch and a moving track of the gas supply section for manufacturing a structure in which the beads are laminated on the base material.
A control unit that controls the bead forming robot and the gas supply robot based on the moving trajectory created by the trajectory design unit.
A temperature measuring unit that measures the surface temperature of the bead to which the cooling gas is supplied during the manufacture of the structure and outputs the surface temperature distribution of the bead.
A defect evaluation unit that extracts a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value as an internal defect candidate from the surface temperature distribution of the bead.
Structure manufacturing system.
According to this configuration, it is possible to efficiently manufacture a high-quality structure having no internal defects in the bead.

(2) 前記軌道設計部が作成した前記移動軌道と前記内部欠陥候補とを関連付けしてログ情報として保存するデータ保存部を、
さらに備える(1)に記載の構造体の製造システム。
この構成によれば、ログ情報を今後の軌道計画の見直しなどに活用できる。
(2) A data storage unit that associates the moving trajectory created by the trajectory design unit with the internal defect candidate and stores it as log information.
The structure manufacturing system according to (1).
According to this configuration, the log information can be used for reviewing the orbit plan in the future.

(3) 前記ガス供給部は、前記冷却ガスとともに浸透探傷試験剤の吹きつけを行う、
(1)又は(2)に記載の構造体の製造システム。
この構成によれば、ビードの表面側に形成された外部欠陥を目視で容易に検出することが可能となる。
(3) The gas supply unit sprays the penetrant inspection agent together with the cooling gas.
The structure manufacturing system according to (1) or (2).
According to this configuration, external defects formed on the surface side of the bead can be easily detected visually.

(4) 前記構造体の製造中に前記冷却ガスが供給された前記ビードの表面形状を計測する形状計測部を、
さらに備える(1)〜(3)のいずれかに記載の構造体の製造システム。
この構成によれば、ビードの表面の凹形状領域または凸形状領域を抽出することができる。
(4) A shape measuring unit that measures the surface shape of the bead to which the cooling gas is supplied during the manufacture of the structure.
The structure manufacturing system according to any one of (1) to (3).
According to this configuration, a concave region or a convex region on the surface of the bead can be extracted.

(5) 前記形状計測部により得られた表面形状測定結果から前記ビードの表面の凹形状領域または凸形状領域を抽出し、前記凹形状領域または前記凸形状領域と前記内部欠陥候補の位置とを照合し、
前記凹形状領域または前記凸形状領域と前記内部欠陥候補の位置とが重複する場合は前記内部欠陥候補を外部欠陥候補に修正する、
(4)に記載の構造体の製造システム。
この構成によれば、内部欠陥候補と外部欠陥候補を判別することができ、内部欠陥候補の検出精度が向上する。
(5) A concave or convex region on the surface of the bead is extracted from the surface shape measurement result obtained by the shape measuring unit, and the concave or convex region and the position of the internal defect candidate are determined. Collate and
When the concave region or the convex region and the position of the internal defect candidate overlap, the internal defect candidate is corrected to the external defect candidate.
The structure manufacturing system according to (4).
According to this configuration, the internal defect candidate and the external defect candidate can be discriminated, and the detection accuracy of the internal defect candidate is improved.

(6) (1)〜(5)のいずれかに記載の構造体の製造システムを備え、母材上にビードが積層されてなる構造体を製造する、構造体の製造方法であって、
前記軌道設計部で作成された前記移動軌道に基づいて、前記ビード形成ロボットの前記溶接トーチを用いて、前記母材上に溶加材を溶融および固化してなるビードを形成する工程と、
前記軌道設計部で作成された前記移動軌道に基づいて、前記ビード形成ロボットのガス供給部によって、前記母材上に形成された前記ビードの表面に前記ビードを冷却する冷却ガスを供給する工程と、
前記温度計測部によって、前記構造体の製造中に前記冷却ガスが供給されたビードに対して表面温度を計測して前記ビードの表面温度分布を出力する工程と、
前記欠陥評価部によって、前記ビードの表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する工程と、
を備える構造体の製造方法。
この構成によれば、ビードに内部欠陥のない高品質の構造体を製造効率よく製作することができる。
(6) A method for manufacturing a structure, comprising the structure manufacturing system according to any one of (1) to (5), and manufacturing a structure in which beads are laminated on a base material.
A step of forming a bead formed by melting and solidifying a filler metal on the base metal using the welding torch of the bead forming robot based on the moving track created by the track design unit.
Based on the moving track created by the track design section, the gas supply section of the bead forming robot supplies a cooling gas for cooling the bead to the surface of the bead formed on the base material. ,
A step of measuring the surface temperature of the bead to which the cooling gas is supplied by the temperature measuring unit and outputting the surface temperature distribution of the bead during the manufacture of the structure.
A step of extracting a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value from the surface temperature distribution of the bead as an internal defect candidate by the defect evaluation unit.
A method of manufacturing a structure comprising.
According to this configuration, it is possible to efficiently manufacture a high-quality structure having no internal defects in the bead.

10 構造体の製造システム
20 ビード形成ロボット
21 溶接トーチ
23 母材
25 ビード
30 ガス供給ロボット
31 冷却ガスノズル(ガス供給部)
40 温度計測部
50 形状計測部
62 軌道設計部
63 データ保存部
64 欠陥評価部
65 制御部
M 溶加材
W 構造体
10 Structure manufacturing system 20 Bead forming robot 21 Welding torch 23 Base material 25 Bead 30 Gas supply robot 31 Cooling gas nozzle (gas supply unit)
40 Temperature measurement unit 50 Shape measurement unit 62 Track design unit 63 Data storage unit 64 Defect evaluation unit 65 Control unit M filler metal W structure

Claims (6)

母材上に、溶接トーチを用いて溶加材を溶融および固化してなるビードを形成するビード形成ロボットと、
前記ビード形成ロボットによって前記母材上に形成された前記ビードの表面に前記ビードを冷却する冷却ガスを供給するガス供給部を有するガス供給ロボットと、
前記母材上に前記ビードが積層されてなる構造体を製造するための、前記溶接トーチの移動軌道および前記ガス供給部の移動軌道を作成する軌道設計部と、
前記軌道設計部で作成された前記移動軌道に基づいて前記ビード形成ロボットおよび前記ガス供給ロボットを制御する制御部と、
前記構造体の製造中に前記冷却ガスが供給されたビードに対して表面温度を計測して前記ビードの表面温度分布を出力する温度計測部と、
前記ビードの表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する欠陥評価部と、
を備える構造体の製造システム。
A bead forming robot that forms a bead formed by melting and solidifying a filler metal on a base metal using a welding torch.
A gas supply robot having a gas supply unit for supplying a cooling gas for cooling the bead to the surface of the bead formed on the base material by the bead forming robot.
A track design section for creating a moving track of the welding torch and a moving track of the gas supply section for manufacturing a structure in which the beads are laminated on the base material.
A control unit that controls the bead forming robot and the gas supply robot based on the moving trajectory created by the trajectory design unit.
A temperature measuring unit that measures the surface temperature of the bead to which the cooling gas is supplied during the manufacture of the structure and outputs the surface temperature distribution of the bead.
A defect evaluation unit that extracts a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value as an internal defect candidate from the surface temperature distribution of the bead.
Structure manufacturing system.
前記軌道設計部が作成した前記移動軌道と前記内部欠陥候補とを関連付けしてログ情報として保存するデータ保存部を、
さらに備える請求項1に記載の構造体の製造システム。
A data storage unit that associates the moving trajectory created by the trajectory design unit with the internal defect candidate and saves it as log information.
The structure manufacturing system according to claim 1.
前記ガス供給部は、前記冷却ガスとともに浸透探傷試験剤の吹きつけを行う、
請求項1又は2に記載の構造体の製造システム。
The gas supply unit sprays the penetrant inspection agent together with the cooling gas.
The structure manufacturing system according to claim 1 or 2.
前記構造体の製造中に前記冷却ガスが供給された前記ビードの表面形状を計測する形状計測部を、
さらに備える請求項1〜3のいずれか1項に記載の構造体の製造システム。
A shape measuring unit that measures the surface shape of the bead to which the cooling gas is supplied during the manufacture of the structure.
The structure manufacturing system according to any one of claims 1 to 3.
前記形状計測部により得られた表面形状測定結果から前記ビードの表面の凹形状領域または凸形状領域を抽出し、前記凹形状領域または前記凸形状領域と前記内部欠陥候補の位置とを照合し、
前記凹形状領域または前記凸形状領域と前記内部欠陥候補の位置とが重複する場合は前記内部欠陥候補を外部欠陥候補に修正する、
請求項4に記載の構造体の製造システム。
A concave region or a convex region on the surface of the bead is extracted from the surface shape measurement result obtained by the shape measuring unit, and the concave region or the convex region is collated with the position of the internal defect candidate.
When the concave region or the convex region and the position of the internal defect candidate overlap, the internal defect candidate is corrected to the external defect candidate.
The structure manufacturing system according to claim 4.
請求項1〜5のいずれか1項に記載の構造体の製造システムを備え、母材上にビードが積層されてなる構造体を製造する、構造体の製造方法であって、
前記軌道設計部で作成された前記移動軌道に基づいて、前記ビード形成ロボットの前記溶接トーチを用いて、前記母材上に溶加材を溶融および固化してなるビードを形成する工程と、
前記軌道設計部で作成された前記移動軌道に基づいて、前記ビード形成ロボットのガス供給部によって、前記母材上に形成された前記ビードの表面に前記ビードを冷却する冷却ガスを供給する工程と、
前記温度計測部によって、前記構造体の製造中に前記冷却ガスが供給されたビードに対して表面温度を計測して前記ビードの表面温度分布を出力する工程と、
前記欠陥評価部によって、前記ビードの表面温度分布から温度勾配が予め定めた閾値より大きい部分で囲まれた領域を内部欠陥候補として抽出する工程と、
を備える構造体の製造方法。
A method for manufacturing a structure, comprising the structure manufacturing system according to any one of claims 1 to 5, and manufacturing a structure in which beads are laminated on a base material.
A step of forming a bead formed by melting and solidifying a filler metal on the base metal using the welding torch of the bead forming robot based on the moving track created by the track design unit.
Based on the moving track created by the track design section, the gas supply section of the bead forming robot supplies a cooling gas for cooling the bead to the surface of the bead formed on the base material. ,
A step of measuring the surface temperature of the bead to which the cooling gas is supplied by the temperature measuring unit and outputting the surface temperature distribution of the bead during the manufacture of the structure.
A step of extracting a region surrounded by a portion whose temperature gradient is larger than a predetermined threshold value from the surface temperature distribution of the bead as an internal defect candidate by the defect evaluation unit.
A method of manufacturing a structure comprising.
JP2019097063A 2019-05-23 2019-05-23 STRUCTURE MANUFACTURING SYSTEM AND MANUFACTURING METHOD Active JP7160759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019097063A JP7160759B2 (en) 2019-05-23 2019-05-23 STRUCTURE MANUFACTURING SYSTEM AND MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097063A JP7160759B2 (en) 2019-05-23 2019-05-23 STRUCTURE MANUFACTURING SYSTEM AND MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2020189324A true JP2020189324A (en) 2020-11-26
JP7160759B2 JP7160759B2 (en) 2022-10-25

Family

ID=73454201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097063A Active JP7160759B2 (en) 2019-05-23 2019-05-23 STRUCTURE MANUFACTURING SYSTEM AND MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP7160759B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834569A (en) * 2021-02-22 2021-05-25 上海展湾信息科技有限公司 Method and equipment for detecting welding air holes in real time
CN114040531A (en) * 2021-09-29 2022-02-11 赛赫智能设备(上海)股份有限公司 Online heat treatment method based on variable-frequency microwave device
WO2022163328A1 (en) * 2021-01-29 2022-08-04 株式会社神戸製鋼所 Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
CN115446422A (en) * 2022-10-19 2022-12-09 沈阳航空航天大学 Online control system and control method for temperature between electric arc additive layers
WO2023281963A1 (en) * 2021-07-09 2023-01-12 株式会社神戸製鋼所 Fault-monitoring device, fault-monitoring method, welding assistance system, and welding system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527345A (en) * 1975-07-08 1977-01-20 Hitachi Ltd Welding equipment
JP2002035937A (en) * 2000-07-31 2002-02-05 Shimizu Corp Device and method for controlling weld inter-pass temperature
US20160144452A1 (en) * 2014-11-21 2016-05-26 Product Innovation & Engineering, LLC System and method for detecting a defect in a workpiece undergoing material processing by an energy point source
US9835114B1 (en) * 2017-06-06 2017-12-05 The United States Of America As Represented By The Administrator Of Nasa Freeform deposition method for coolant channel closeout
JP2018518394A (en) * 2015-06-12 2018-07-12 マテリアライズ・ナムローゼ・フエンノートシャップMaterialise Nv System and method for verifying consistency in additive manufacturing by means of thermal imaging
WO2018140919A1 (en) * 2017-01-30 2018-08-02 Siemens Aktiengesellschaft Method of additive manufacturing of components
US20190118300A1 (en) * 2017-08-25 2019-04-25 Massachusetts Institute Of Technology Sensing and Control of Additive Manufacturing Processes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527345A (en) * 1975-07-08 1977-01-20 Hitachi Ltd Welding equipment
JP2002035937A (en) * 2000-07-31 2002-02-05 Shimizu Corp Device and method for controlling weld inter-pass temperature
US20160144452A1 (en) * 2014-11-21 2016-05-26 Product Innovation & Engineering, LLC System and method for detecting a defect in a workpiece undergoing material processing by an energy point source
JP2018518394A (en) * 2015-06-12 2018-07-12 マテリアライズ・ナムローゼ・フエンノートシャップMaterialise Nv System and method for verifying consistency in additive manufacturing by means of thermal imaging
WO2018140919A1 (en) * 2017-01-30 2018-08-02 Siemens Aktiengesellschaft Method of additive manufacturing of components
US9835114B1 (en) * 2017-06-06 2017-12-05 The United States Of America As Represented By The Administrator Of Nasa Freeform deposition method for coolant channel closeout
US20190118300A1 (en) * 2017-08-25 2019-04-25 Massachusetts Institute Of Technology Sensing and Control of Additive Manufacturing Processes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163328A1 (en) * 2021-01-29 2022-08-04 株式会社神戸製鋼所 Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
CN112834569A (en) * 2021-02-22 2021-05-25 上海展湾信息科技有限公司 Method and equipment for detecting welding air holes in real time
WO2023281963A1 (en) * 2021-07-09 2023-01-12 株式会社神戸製鋼所 Fault-monitoring device, fault-monitoring method, welding assistance system, and welding system
CN114040531A (en) * 2021-09-29 2022-02-11 赛赫智能设备(上海)股份有限公司 Online heat treatment method based on variable-frequency microwave device
CN115446422A (en) * 2022-10-19 2022-12-09 沈阳航空航天大学 Online control system and control method for temperature between electric arc additive layers

Also Published As

Publication number Publication date
JP7160759B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP7160759B2 (en) STRUCTURE MANUFACTURING SYSTEM AND MANUFACTURING METHOD
US11554438B2 (en) Method and apparatus for manufacturing layered model
JP6825109B2 (en) Three-dimensional laminated modeling device, three-dimensional laminated modeling method, and three-dimensional laminated modeling object
US11945031B2 (en) Laminated molded object production method and production device
JP6978350B2 (en) Work posture adjustment method, model manufacturing method and manufacturing equipment
WO2022038961A1 (en) System for manufacturing laminate molded product, method for manufacturing laminate molded product, and program for manufacturing laminate molded product
JP2018162500A (en) Method and system for producing lamination molding
JP7193423B2 (en) Laminate-molded article manufacturing method
WO2022038960A1 (en) Method for manufacturing multi-layer molded article
JP7010722B2 (en) Manufacturing method and manufacturing equipment for laminated shaped objects
JP2019081187A (en) Method for manufacturing laminated shaped object
JP2021016885A (en) Lamination planning method for laminate molded object, manufacturing method and manufacturing apparatus for laminate molded object
JP7355701B2 (en) Additive manufacturing method
JP2020082287A (en) Welding robot
JP7189110B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
WO2022163328A1 (en) Manufacturing-log monitoring device, manufactured-object production system, and manufacturing-log monitoring method
JP2020189322A (en) Laminate modeled product manufacturing method and laminate modeled product
WO2022264776A1 (en) Method for creating addition plan
JP7473508B2 (en) Method for evaluating molded object and method for manufacturing molded object
JP2023041373A (en) Impurity removal method, and method for manufacturing shaped article using the same
KR102627095B1 (en) Automatic nondestructive testing system for 3D printers using eddy current flaw detection method
JP2023167321A (en) Method for monitoring weld bead, apparatus for monitoring weld bead, and program
JP2022018466A (en) Manufacturing method of laminated modeled object
OUESLATI et al. Multi-sensor in process monitoring for WAAM: Detection of process instability in electrical signals
Thukaram Robot based 3D welding for jet engine blade repair and rapid prototyping of small components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221013

R150 Certificate of patent or registration of utility model

Ref document number: 7160759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150