JP2020187859A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2020187859A
JP2020187859A JP2019089979A JP2019089979A JP2020187859A JP 2020187859 A JP2020187859 A JP 2020187859A JP 2019089979 A JP2019089979 A JP 2019089979A JP 2019089979 A JP2019089979 A JP 2019089979A JP 2020187859 A JP2020187859 A JP 2020187859A
Authority
JP
Japan
Prior art keywords
heat
battery
pack
heat insulating
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019089979A
Other languages
Japanese (ja)
Inventor
隼也 坂本
Junya Sakamoto
隼也 坂本
悠史 近藤
Yuji Kondo
悠史 近藤
信司 鈴木
Shinji Suzuki
信司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2019089979A priority Critical patent/JP2020187859A/en
Priority to PCT/JP2020/016958 priority patent/WO2020230528A1/en
Publication of JP2020187859A publication Critical patent/JP2020187859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/282Lids or covers for the racks or secondary casings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a battery pack capable of inhibiting heat transfer to adjoining secondary cells.SOLUTION: A battery module 30 of a battery pack 10 is constituted by placing multiple secondary cells 31 in a parallel direction Y, and includes a heat insulation sheet 41 placed between the secondary cells 31 adjoining in the parallel direction Y. The heat insulation sheet 41 has a metal foil 42, and a ceramic type heat insulation material layer 43 carried on both sides of the metal foil 42. The heat insulation material layer 43 of the heat insulation sheet 41 is in contact with battery cases 32 adjoining in the parallel direction Y. A pack case 11 includes a heat absorption layer 22 facing a housing space S in the upper wall 20. The heat absorption layer 22 absorbs radiation emitted from above a thermal runaway secondary cell 31.SELECTED DRAWING: Figure 2

Description

本発明は、電池モジュールと、電池モジュールを収容するパックケースを有する電池パックに関する。 The present invention relates to a battery module and a battery pack having a pack case for accommodating the battery module.

EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、原動機となる電動機への供給電力を蓄える蓄電装置としてリチウムイオン電池などの二次電池が複数搭載されている。複数の二次電池は、それら複数の二次電池を並設した状態で接続した電池モジュールとして電池パックのパックケースに収容されている。また、各二次電池の電池ケースには、正極及び負極の積層体である電極組立体、及び電解液が収容されている。 Vehicles such as EVs (Electric Vehicles) and PHVs (Plug in Hybrid Vehicles) are equipped with a plurality of secondary batteries such as lithium-ion batteries as storage devices for storing the power supplied to the electric motor as the prime mover. The plurality of secondary batteries are housed in the pack case of the battery pack as a battery module in which the plurality of secondary batteries are connected side by side. Further, the battery case of each secondary battery contains an electrode assembly which is a laminated body of a positive electrode and a negative electrode, and an electrolytic solution.

二次電池では、正極と負極との内部短絡や、過充放電などによって、電極組立体の一部が発熱し、この電極組立体の発熱反応が制御不能に繰り返される状態、所謂熱暴走に陥ることがある。熱暴走の発生した二次電池の熱が、並設方向に隣り合う二次電池に伝わることを抑制するため、並設される二次電池同士の間には断熱材が配置されている(例えば特許文献1参照)。 In a secondary battery, a part of the electrode assembly generates heat due to an internal short circuit between the positive electrode and the negative electrode, overcharging and discharging, and the exothermic reaction of the electrode assembly is repeated uncontrollably, resulting in so-called thermal runaway. Sometimes. In order to prevent the heat of the secondary batteries in which thermal runaway has occurred from being transferred to the secondary batteries adjacent to each other in the parallel direction, a heat insulating material is arranged between the secondary batteries arranged side by side (for example). See Patent Document 1).

特開2018−206605号公報Japanese Unexamined Patent Publication No. 2018-20606

ところが、二次電池が熱暴走したときに、その熱暴走した二次電池に隣り合う二次電池への熱伝導の抑制には改善の余地がある。
本発明の目的は、二次電池が熱暴走したときに、隣り合う二次電池への熱伝導を抑制できる電池パックを提供することにある。
However, when the secondary battery has a thermal runaway, there is room for improvement in suppressing heat conduction to the secondary battery adjacent to the thermal runaway secondary battery.
An object of the present invention is to provide a battery pack capable of suppressing heat conduction to adjacent secondary batteries when the secondary battery has a thermal runaway.

上記問題点を解決するための電池パックは、電池ケース内に電解液及び電極組立体が収容される二次電池を複数有する電池モジュールと、前記電池モジュールを収容する収容空間を有するパックケースと、を有する電池パックであって、前記電池モジュールは、複数の前記二次電池を並設方向に並設して構成されるとともに、前記並設方向に隣り合う前記二次電池の間に配置される断熱シートを備え、前記断熱シートは、金属箔又はカーボンシート製の基材と、当該基材の両面に担持されたセラミック系の断熱材層とを有し、前記断熱材層は前記並設方向に隣り合う前記電池ケースに接触しており、前記パックケースは、前記収容空間に面する熱吸収層を前記パックケースの上壁に備え、前記熱吸収層は、前記二次電池の上部から放出される輻射を吸収することを要旨とする。 Battery packs for solving the above problems include a battery module having a plurality of secondary batteries in which an electrolytic solution and an electrode assembly are housed in the battery case, a pack case having a storage space for storing the battery module, and a pack case. The battery module is configured by arranging a plurality of the secondary batteries side by side in the parallel arrangement direction, and is arranged between the secondary batteries adjacent to each other in the parallel arrangement direction. A heat insulating sheet is provided, and the heat insulating sheet has a base material made of a metal foil or a carbon sheet and a ceramic-based heat insulating material layer supported on both sides of the base material, and the heat insulating material layer is arranged in the parallel direction. The pack case is in contact with the battery case adjacent to the battery case, the pack case is provided with a heat absorbing layer facing the accommodation space on the upper wall of the pack case, and the heat absorbing layer is discharged from the upper part of the secondary battery. The gist is to absorb the emitted radiation.

これによれば、電池モジュールのいずれかの二次電池に熱暴走が発生すると、熱暴走した二次電池の熱は、伝導熱として、熱暴走していない二次電池に向けて並設方向に伝わろうとするが、断熱シートの断熱材層によって、熱暴走していない二次電池に伝導熱が伝わることが抑制される。また、熱暴走した二次電池の熱は、輻射熱として、熱暴走していない二次電池に向けて伝わろうとするが、断熱シートの基材によって反射又は吸収され、熱暴走していない二次電池に輻射熱が伝わることが抑制される。 According to this, when a thermal runaway occurs in any of the secondary batteries of the battery module, the heat of the secondary battery that has undergone thermal runaway is used as conduction heat in a parallel direction toward the secondary battery that has not undergone thermal runaway. Although it tries to be transmitted, the heat insulating material layer of the heat insulating sheet suppresses the conduction heat from being transferred to the secondary battery that is not in thermal runaway. Further, the heat of the secondary battery that has undergone thermal runaway tries to be transferred to the secondary battery that has not undergone thermal runaway as radiant heat, but is reflected or absorbed by the base material of the heat insulating sheet, and the secondary battery that has not undergone thermal runaway. The transfer of radiant heat to the battery is suppressed.

断熱シートによって反射又は吸収されなかった輻射熱を含め、熱暴走した二次電池の上面からは輻射が生じるが、輻射は上壁の熱吸収層に衝突した際に、当該熱吸収層に輻射熱となって吸収され、上壁によって反射する輻射を減らすことができる。その結果、熱暴走した二次電池から生じた輻射が、上壁によって反射して他の二次電池に衝突して輻射熱となることが抑制される。したがって、断熱シートと熱吸収層の併用によって、熱暴走した二次電池から並設方向に隣り合う二次電池への熱伝導を抑制できる。 Radiation is generated from the upper surface of the secondary battery that has run away due to heat, including radiant heat that is not reflected or absorbed by the heat insulating sheet, but when the radiation collides with the heat absorption layer on the upper wall, it becomes radiant heat to the heat absorption layer. It can reduce the radiation that is absorbed and reflected by the upper wall. As a result, it is suppressed that the radiation generated from the thermal runaway secondary battery is reflected by the upper wall and collides with another secondary battery to become radiant heat. Therefore, by using the heat insulating sheet and the heat absorbing layer together, it is possible to suppress heat conduction from the secondary battery having a thermal runaway to the adjacent secondary batteries in the parallel direction.

また、電池パックについて、前記上壁は外壁面に放熱部を備えていてもよい。
これによれば、上壁の熱吸収層によって吸収された輻射熱を放熱部によって大気へ放出でき、上壁の温度上昇を抑制できる。
Further, regarding the battery pack, the upper wall may be provided with a heat radiating portion on the outer wall surface.
According to this, the radiant heat absorbed by the heat absorption layer of the upper wall can be released to the atmosphere by the heat radiating portion, and the temperature rise of the upper wall can be suppressed.

本発明によれば、隣り合う二次電池への熱伝導を抑制できる。 According to the present invention, heat conduction to adjacent secondary batteries can be suppressed.

電池パック全体を示す断面図。Sectional drawing which shows the whole battery pack. 電池パックを示す部分拡大断面図。Partially enlarged cross-sectional view showing the battery pack. 電池パックを示す斜視図。The perspective view which shows the battery pack. 二次電池を示す斜視図。The perspective view which shows the secondary battery. 作用を説明する断面図。Sectional drawing explaining operation.

以下、電池パックを具体化した一実施形態を図1〜図5にしたがって説明する。
図1又は図2に示すように、電池パック10は、四角箱状のパックケース11と、パックケース11の内部に収容された電池モジュール30を有している。
Hereinafter, an embodiment in which the battery pack is embodied will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1 or 2, the battery pack 10 has a square box-shaped pack case 11 and a battery module 30 housed inside the pack case 11.

パックケース11は、上部に開口する四角箱状のケース本体12と、ケース本体12の開口部を閉塞する上壁20と、を有する。パックケース11は、内部に収容空間Sを備える。収容空間Sは、ケース本体12と上壁20によって区画されている。 The pack case 11 has a square box-shaped case body 12 that opens at the top, and an upper wall 20 that closes the opening of the case body 12. The pack case 11 includes a storage space S inside. The storage space S is partitioned by a case body 12 and an upper wall 20.

パックケース11のケース本体12及び上壁20は鉄鋼製である。上壁20は、鉄鋼製の金属素地21と、金属素地21の表面を被覆する熱吸収層22とを備える。熱吸収層22は、金属素地21の表面を覆う酸化皮膜、所謂、黒皮である。このため、上壁20の熱吸収層22は黒色である。また、熱吸収層22は、収容空間Sに面している。また、金属素地21は、鋳造によって形成されており、金属素地21の表面は、図示しないが粗面であり、凹凸状である。このため、金属素地21の凹凸表面を被覆する熱吸収層22も凹凸状である。 The case body 12 and the upper wall 20 of the pack case 11 are made of steel. The upper wall 20 includes a metal base 21 made of steel and a heat absorption layer 22 that covers the surface of the metal base 21. The heat absorption layer 22 is an oxide film covering the surface of the metal substrate 21, a so-called black skin. Therefore, the heat absorption layer 22 of the upper wall 20 is black. Further, the heat absorption layer 22 faces the accommodation space S. Further, the metal base 21 is formed by casting, and the surface of the metal base 21 is rough and uneven, although not shown. Therefore, the heat absorption layer 22 that covers the uneven surface of the metal base 21 is also uneven.

また、上壁20は、外壁面24を備える。上壁20は、外壁面24よりも上方に突出する放熱部としての放熱フィン25を複数備える。複数の放熱フィン25によって、上壁20の外壁面24側での表面積が広げられ、電池モジュール30の放熱性能が高められている。 Further, the upper wall 20 includes an outer wall surface 24. The upper wall 20 includes a plurality of heat radiating fins 25 as heat radiating portions projecting above the outer wall surface 24. The plurality of heat radiating fins 25 increase the surface area of the upper wall 20 on the outer wall surface 24 side, and enhance the heat radiating performance of the battery module 30.

図3に示すように、本実施形態では、各放熱フィン25は円柱状である。なお、放熱フィン25は角柱状でもよいし、楕円柱状でもよい。要は、放熱フィン25の形状は円柱状に限定されず、任意に変更してもよい。 As shown in FIG. 3, in the present embodiment, each heat radiation fin 25 is cylindrical. The heat radiation fin 25 may be prismatic or elliptical. In short, the shape of the heat radiation fin 25 is not limited to the columnar shape, and may be arbitrarily changed.

図1に示すように、電池モジュール30は、並設方向Yに並べられる複数の二次電池31と、並設方向Yに隣り合う二次電池31の間に配置される断熱シート41を有する。電池モジュール30は、並設方向Yの両端の二次電池31の外側に配置されるエンドプレート26と、一対のエンドプレート26を貫通するボルト27と、ボルト27に螺合されるナット28とを備える。一対のエンドプレート26を貫通したボルト27にナット28を螺合することにより、複数の二次電池31は、並設方向Yに拘束されている。 As shown in FIG. 1, the battery module 30 has a plurality of secondary batteries 31 arranged in the parallel direction Y and a heat insulating sheet 41 arranged between the secondary batteries 31 adjacent to each other in the parallel direction Y. The battery module 30 has an end plate 26 arranged outside the secondary batteries 31 at both ends in the parallel direction Y, a bolt 27 penetrating the pair of end plates 26, and a nut 28 screwed into the bolt 27. Be prepared. By screwing the nut 28 into the bolt 27 penetrating the pair of end plates 26, the plurality of secondary batteries 31 are constrained in the parallel direction Y.

図4に示すように、二次電池31はリチウムイオン二次電池である。二次電池31は、電池ケース32を備える。二次電池31の電池ケース32は、扁平な四角箱状である。複数の二次電池31は、パックケース11の長手方向に、電池ケース32の厚さ方向が沿うように並べられている。よって、パックケース11の長手方向と二次電池31の並設方向Yとが一致する。なお、複数の二次電池31は並列接続されていてもよいし、直列接続されていてもよい。 As shown in FIG. 4, the secondary battery 31 is a lithium ion secondary battery. The secondary battery 31 includes a battery case 32. The battery case 32 of the secondary battery 31 has a flat square box shape. The plurality of secondary batteries 31 are arranged so that the thickness direction of the battery case 32 is aligned with the longitudinal direction of the pack case 11. Therefore, the longitudinal direction of the pack case 11 and the parallel direction Y of the secondary battery 31 coincide with each other. The plurality of secondary batteries 31 may be connected in parallel or may be connected in series.

電池ケース32には電極組立体31a及び図示しない電解液が収容されている。電極組立体31aは正極と負極を備えている。電池ケース32は、電極組立体31aを収容する有底箱状の電池ケース本体33と、電池ケース本体33の開口部を閉塞する板状の蓋部34とから構成されている。蓋部34には、接続端子35が設けられている。接続端子35は、図示しない導電部材を介して電極組立体31aに電気的に接続されている。 The battery case 32 contains an electrode assembly 31a and an electrolytic solution (not shown). The electrode assembly 31a includes a positive electrode and a negative electrode. The battery case 32 is composed of a bottomed box-shaped battery case main body 33 that houses the electrode assembly 31a, and a plate-shaped lid portion 34 that closes the opening of the battery case main body 33. The lid 34 is provided with a connection terminal 35. The connection terminal 35 is electrically connected to the electrode assembly 31a via a conductive member (not shown).

図2に示すように、断熱シート41は、基材としての金属箔42と、金属箔42の両面に担持された断熱材層43を有する3層構造である。各断熱シート41の断熱材層43は、並設方向Yに隣り合う二次電池31の電池ケース32外面に接触している。各断熱材層43は、電池ケース32の外面と熱的に結合されている。 As shown in FIG. 2, the heat insulating sheet 41 has a three-layer structure having a metal foil 42 as a base material and a heat insulating material layer 43 supported on both sides of the metal foil 42. The heat insulating material layer 43 of each heat insulating sheet 41 is in contact with the outer surface of the battery case 32 of the secondary batteries 31 adjacent to each other in the parallel direction Y. Each insulation layer 43 is thermally coupled to the outer surface of the battery case 32.

本実施形態では、金属箔42はアルミニウム箔である。金属箔42の表面粗さRzは、0より大きく6μm以下である。なお、表面粗さRzは、金属箔42の表面を粗さ計で測定した粗さ曲線の一部を基準長さで抜き出し、最も高い部分(最大山高さ)と最も深い部分(最大谷深さ)の和の値で算出する。断熱シート41の金属箔42は、上記二次電池31が熱暴走したときに生じる輻射を反射する。 In this embodiment, the metal foil 42 is an aluminum foil. The surface roughness Rz of the metal foil 42 is greater than 0 and 6 μm or less. For the surface roughness Rz, a part of the roughness curve measured by a roughness meter on the surface of the metal foil 42 is extracted with a reference length, and the highest part (maximum mountain height) and the deepest part (maximum valley depth) are extracted. ) Is calculated by the sum value. The metal foil 42 of the heat insulating sheet 41 reflects the radiation generated when the secondary battery 31 has a thermal runaway.

断熱材層43は、セラミック系断熱材によって形成されている。セラミック系断熱材としては、例えば、シリカポーラス材が挙げられる。断熱材層43は、熱暴走した二次電池31の熱を遮断し、並設方向Yに隣り合う二次電池31への伝熱を抑制する。 The heat insulating material layer 43 is formed of a ceramic heat insulating material. Examples of the ceramic heat insulating material include a silica porous material. The heat insulating material layer 43 cuts off the heat of the secondary battery 31 that has run away from heat, and suppresses heat transfer to the secondary batteries 31 adjacent to each other in the parallel direction Y.

次に、電池パック10の作用を記載する。
二次電池31では、正極と負極との内部短絡や、過充放電などによって、電極組立体31aの一部が発熱し、この電極組立体31aの発熱反応が制御不能に繰り返される状態、所謂、熱暴走に陥ることがある。図5のドットハッチングで示す二次電池31が熱暴走した状態では、二次電池31の温度は自発的に上昇し続ける。
Next, the operation of the battery pack 10 will be described.
In the secondary battery 31, a part of the electrode assembly 31a generates heat due to an internal short circuit between the positive electrode and the negative electrode, overcharging and discharging, and the exothermic reaction of the electrode assembly 31a is repeated uncontrollably, so-called. You may fall into a thermal runaway. When the secondary battery 31 shown by dot hatching in FIG. 5 is in a state of thermal runaway, the temperature of the secondary battery 31 continues to rise spontaneously.

熱暴走した二次電池31の熱は、伝導熱として並設方向Yに隣り合う二次電池31に向かう。なお、以下の説明において、熱暴走した二次電池31に対し並設方向Yに隣り合う二次電池31を他の二次電池31Aと記載する。 The heat of the secondary battery 31 that has run away from heat goes to the secondary battery 31 adjacent to each other in the parallel direction Y as conduction heat. In the following description, the secondary battery 31 adjacent to the thermal runaway secondary battery 31 in the parallel direction Y will be referred to as another secondary battery 31A.

断熱シート41の断熱材層43の金属箔42により、伝導熱が他の二次電池31Aに伝わることが抑制される。また、熱暴走した二次電池31の熱は、輻射熱として他の二次電池31Aに向かうが、輻射熱は断熱シート41の金属箔42によって反射され、他の二次電池31Aに輻射熱が伝わることが抑制される。 The metal foil 42 of the heat insulating material layer 43 of the heat insulating sheet 41 suppresses the transfer of conduction heat to the other secondary battery 31A. Further, the heat of the secondary battery 31 that has run away from heat goes to another secondary battery 31A as radiant heat, but the radiant heat is reflected by the metal foil 42 of the heat insulating sheet 41, and the radiant heat may be transmitted to the other secondary battery 31A. It is suppressed.

断熱シート41の金属箔42によって反射された輻射熱を含め、熱暴走した二次電池31の上面からは、輻射として電磁波が生じるが、輻射は上壁20の熱吸収層22に衝突した際に、当該熱吸収層22に輻射熱となって吸収される。その結果、熱暴走した二次電池31から生じた輻射が、上壁20によって反射される量を減らし、反射した輻射によって他の二次電池31Aに輻射熱が伝わることが抑制される。したがって、熱暴走した二次電池31に隣接する他の二次電池31Aが熱暴走することを抑制できる。 Electromagnetic waves are generated as radiation from the upper surface of the secondary battery 31 that has run away due to heat, including the radiant heat reflected by the metal foil 42 of the heat insulating sheet 41. When the radiation collides with the heat absorption layer 22 of the upper wall 20, the radiation is generated. It is absorbed as radiant heat by the heat absorption layer 22. As a result, the amount of radiation generated from the thermal runaway secondary battery 31 is reduced by the upper wall 20, and the reflected radiation suppresses the transfer of radiant heat to the other secondary battery 31A. Therefore, it is possible to suppress the thermal runaway of another secondary battery 31A adjacent to the thermal runaway secondary battery 31.

上記実施形態によれば、以下のような効果を得ることができる。
(1)電池パック10は、並設方向Yに隣り合う二次電池31同士の間に断熱シート41を備えるとともに、パックケース11の上壁20に熱吸収層22を備える。断熱シート41の金属箔42により輻射熱を反射しつつ、断熱材層43により伝導熱を遮断して、並設方向Yに隣り合う二次電池31に熱暴走した二次電池31の熱が伝わることを抑制できる。さらに、断熱シート41によって反射された輻射熱は、熱暴走した二次電池31の上面から輻射として放出されるが、熱吸収層22によって輻射熱として吸収され、上壁20によって反射する輻射を減らすことができる。したがって、断熱シート41と熱吸収層22を併用することで、熱暴走した二次電池31の熱が、並設方向Yに隣り合う二次電池31に伝わることを抑制でき、熱暴走することを抑制できる。
According to the above embodiment, the following effects can be obtained.
(1) The battery pack 10 is provided with a heat insulating sheet 41 between secondary batteries 31 adjacent to each other in the parallel direction Y, and a heat absorbing layer 22 is provided on the upper wall 20 of the pack case 11. While the metal foil 42 of the heat insulating sheet 41 reflects the radiant heat, the heat insulating material layer 43 blocks the conduction heat, and the heat of the secondary battery 31 that has run away from heat is transferred to the secondary battery 31 adjacent to the parallel direction Y. Can be suppressed. Further, the radiant heat reflected by the heat insulating sheet 41 is emitted as radiant heat from the upper surface of the secondary battery 31 which has run away from heat, but is absorbed as radiant heat by the heat absorption layer 22, and the radiant heat reflected by the upper wall 20 can be reduced. it can. Therefore, by using the heat insulating sheet 41 and the heat absorption layer 22 together, it is possible to suppress the heat of the secondary battery 31 which has undergone thermal runaway from being transferred to the secondary batteries 31 adjacent to each other in the parallel direction Y, and the thermal runaway can be prevented. Can be suppressed.

(2)電池パック10は、パックケース11の上壁20に複数の放熱フィン25を備える。このため、熱吸収層22によって吸収した輻射熱を放熱フィン25によって大気に放出しやすくなり、上壁20の温度上昇を抑制できる。 (2) The battery pack 10 is provided with a plurality of heat radiation fins 25 on the upper wall 20 of the pack case 11. Therefore, the radiant heat absorbed by the heat absorption layer 22 is easily released to the atmosphere by the heat radiation fins 25, and the temperature rise of the upper wall 20 can be suppressed.

(3)断熱シート41の基材としてアルミニウム箔製の金属箔42を用い、その金属箔42の表面粗さを0より大きくし、6μm以下とした。このため、金属箔42により、輻射熱を反射しやすくしている。 (3) A metal foil 42 made of aluminum foil was used as the base material of the heat insulating sheet 41, and the surface roughness of the metal foil 42 was made larger than 0 to 6 μm or less. Therefore, the metal foil 42 makes it easy to reflect radiant heat.

本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○ 断熱シート41の基材は、金属箔42の代わりにカーボンシートを用いてもよい。このように構成した場合、熱暴走した二次電池31の熱は、伝導熱として並設方向Yに隣り合う、熱暴走していない二次電池31に向けて伝わっていくが、断熱シート41の断熱材層43によって、熱暴走していない二次電池31に伝導熱が伝わることが抑制される。また、熱暴走した二次電池31の熱は、輻射熱として並設方向Yに隣り合う、熱暴走していない二次電池31に向けて伝わっていくが、断熱シート41のカーボンシートによって吸収され、熱暴走していない二次電池31に輻射熱が伝わることが抑制される。
The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
○ As the base material of the heat insulating sheet 41, a carbon sheet may be used instead of the metal foil 42. In this configuration, the heat of the secondary battery 31 that has undergone thermal runaway is transferred as conduction heat to the secondary battery 31 that is adjacent to the side-by-side direction Y and is not thermal runaway, but the heat insulating sheet 41 The heat insulating material layer 43 suppresses the transfer of conductive heat to the secondary battery 31 that is not in thermal runaway. Further, the heat of the secondary battery 31 that has undergone thermal runaway is transmitted as radiant heat to the secondary battery 31 that is adjacent to the side-by-side direction Y and is not thermal runaway, but is absorbed by the carbon sheet of the heat insulating sheet 41. The transfer of radiant heat to the secondary battery 31 that is not in thermal runaway is suppressed.

○ 熱吸収層22は、上壁20以外に設けてもよく、ケース本体12の内壁面に設けてもよい。
○ 熱吸収層22は、金属素地21の表面に塗装によって黒色の被膜を形成して構成してもよい。被膜としては、カチオン系塗料としてのエポキシ樹脂を主成分とする塗料であってもよいし、アクリル樹脂を主成分とする塗料であってもよい。
○ The heat absorption layer 22 may be provided on a wall surface other than the upper wall 20 or on the inner wall surface of the case body 12.
○ The heat absorption layer 22 may be formed by forming a black film on the surface of the metal substrate 21 by painting. The coating film may be a paint containing an epoxy resin as a main component as a cationic paint, or a paint containing an acrylic resin as a main component.

○ 金属素地21の表面は凹凸状でなく、平坦面であってもよい。
次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(1)前記パックケースは金属製であり、前記熱吸収層は、金属素地の表面を覆う酸化皮膜である。
○ The surface of the metal base 21 may be a flat surface rather than an uneven surface.
Next, the technical idea that can be grasped from the above embodiment and another example will be added below.
(1) The pack case is made of metal, and the heat absorption layer is an oxide film covering the surface of a metal substrate.

(2)前記熱吸収層は黒色である。
(3)前記熱吸収層は前記金属素地の全面を覆う。
(2) The heat absorption layer is black.
(3) The heat absorption layer covers the entire surface of the metal substrate.

S…収容空間、Y…並設方向、10…電池パック、11…パックケース、20…上壁、22…熱吸収層、24…外壁面、25…放熱部としての放熱フィン、30…電池モジュール、31…二次電池、31a…電極組立体、32…電池ケース、41…断熱シート、42…基材としての金属箔、43…断熱材層。 S ... storage space, Y ... parallel direction, 10 ... battery pack, 11 ... pack case, 20 ... upper wall, 22 ... heat absorption layer, 24 ... outer wall surface, 25 ... heat radiation fin as heat dissipation part, 30 ... battery module , 31 ... secondary battery, 31a ... electrode assembly, 32 ... battery case, 41 ... heat insulating sheet, 42 ... metal foil as a base material, 43 ... heat insulating material layer.

Claims (2)

電池ケース内に電解液及び電極組立体が収容される二次電池を複数有する電池モジュールと、
前記電池モジュールを収容する収容空間を有するパックケースと、を有する電池パックであって、
前記電池モジュールは、複数の前記二次電池を並設方向に並設して構成されるとともに、前記並設方向に隣り合う前記二次電池の間に配置される断熱シートを備え、
前記断熱シートは、金属箔又はカーボンシート製の基材と、当該基材の両面に担持されたセラミック系の断熱材層とを有し、
前記断熱材層は前記並設方向に隣り合う前記電池ケースに接触しており、
前記パックケースは、前記収容空間に面する熱吸収層を前記パックケースの上壁に備え、前記熱吸収層は、前記二次電池の上部から放出される輻射を吸収することを特徴とする電池パック。
A battery module having a plurality of secondary batteries in which an electrolytic solution and an electrode assembly are housed in a battery case, and
A battery pack having a pack case having a storage space for accommodating the battery module and a battery pack having a storage space.
The battery module is configured by arranging a plurality of the secondary batteries side by side in a parallel arrangement direction, and includes a heat insulating sheet arranged between the secondary batteries adjacent to each other in the parallel arrangement direction.
The heat insulating sheet has a base material made of a metal foil or a carbon sheet, and a ceramic-based heat insulating material layer supported on both sides of the base material.
The heat insulating material layer is in contact with the battery cases adjacent to each other in the parallel direction.
The pack case is provided with a heat absorption layer facing the accommodation space on the upper wall of the pack case, and the heat absorption layer absorbs radiation emitted from the upper part of the secondary battery. pack.
前記上壁は外壁面に放熱部を備える請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the upper wall is provided with a heat radiating portion on the outer wall surface.
JP2019089979A 2019-05-10 2019-05-10 Battery pack Pending JP2020187859A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019089979A JP2020187859A (en) 2019-05-10 2019-05-10 Battery pack
PCT/JP2020/016958 WO2020230528A1 (en) 2019-05-10 2020-04-17 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089979A JP2020187859A (en) 2019-05-10 2019-05-10 Battery pack

Publications (1)

Publication Number Publication Date
JP2020187859A true JP2020187859A (en) 2020-11-19

Family

ID=73221946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089979A Pending JP2020187859A (en) 2019-05-10 2019-05-10 Battery pack

Country Status (2)

Country Link
JP (1) JP2020187859A (en)
WO (1) WO2020230528A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191467A1 (en) * 2022-03-31 2023-10-05 주식회사 엘지에너지솔루션 Battery module with enhanced safety
DE102023113528A1 (en) 2022-05-26 2023-11-30 Toyota Jidosha Kabushiki Kaisha Battery pack and vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419391B (en) * 2009-12-25 2013-12-11 Ind Tech Res Inst Protection structure for preventing thermal dissipation and thermal runaway diffusion in battery system
CN105742755B (en) * 2016-04-08 2018-04-10 中国科学技术大学 A kind of composite plate for being radiated for battery system and preventing thermal runaway from propagating
CN108054460B (en) * 2016-11-29 2021-03-05 北京科易动力科技有限公司 Heat absorption and heat insulation structure of battery module
JP6885791B2 (en) * 2017-06-05 2021-06-16 積水化学工業株式会社 Thermal runaway prevention sheet
WO2020013120A1 (en) * 2018-07-09 2020-01-16 三洋電機株式会社 Battery system, electric vehicle equipped with battery system, and electricity storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191467A1 (en) * 2022-03-31 2023-10-05 주식회사 엘지에너지솔루션 Battery module with enhanced safety
DE102023113528A1 (en) 2022-05-26 2023-11-30 Toyota Jidosha Kabushiki Kaisha Battery pack and vehicle

Also Published As

Publication number Publication date
WO2020230528A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
KR102082384B1 (en) Battery Pack Comprising Metallic Pack Case and Thermal Conduction Member
EP3154103B1 (en) Battery module including a housing floor with integrated cooling
US9865904B2 (en) Battery cell of improved cooling efficiency
KR102184753B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
KR101201742B1 (en) Battery module
JP6217987B2 (en) Assembled battery
JP5617940B2 (en) Square lithium ion secondary battery
US20220093986A1 (en) Battery Module
KR20130137299A (en) Battery module having structure of improved stability and high cooling efficiency
KR102360159B1 (en) Battery module
JP6375779B2 (en) Battery pack heat dissipation structure
JP2012123983A (en) Secondary battery expansion restricting structure and secondary battery provided with the same
WO2020230528A1 (en) Battery pack
JP2010186715A (en) Heat radiation structure of battery pack, and battery pack
KR102308017B1 (en) Cylindrical Secondary Battery having Hollow portion filled with Thermal Conductive Resin
KR20150000725A (en) Battery Module Employed with Battery Cell Case Having Heat Dissipation Part
US20240297394A1 (en) Battery pack having thermal diffusion prevention structure between battery modules
JP2012119137A (en) Battery module
KR101658589B1 (en) Battery Module Having Metal Printed Circuit Board
JP6094404B2 (en) Power storage device and power storage device module
KR20220035770A (en) A battery pack with thermal propagation prevention structure between battery modules
KR102683482B1 (en) Battery Pack
JP6730119B2 (en) Vehicle battery pack
JP2010287487A (en) Secondary battery
KR20220082297A (en) Battery module and battery pack including the same