JP2020187042A - Optical distance measurement device - Google Patents

Optical distance measurement device Download PDF

Info

Publication number
JP2020187042A
JP2020187042A JP2019092514A JP2019092514A JP2020187042A JP 2020187042 A JP2020187042 A JP 2020187042A JP 2019092514 A JP2019092514 A JP 2019092514A JP 2019092514 A JP2019092514 A JP 2019092514A JP 2020187042 A JP2020187042 A JP 2020187042A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving region
region
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019092514A
Other languages
Japanese (ja)
Inventor
林内 政人
Masato Rinnai
政人 林内
尾崎 憲幸
Noriyuki Ozaki
憲幸 尾崎
武廣 秦
Takehiro Hata
武廣 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019092514A priority Critical patent/JP2020187042A/en
Publication of JP2020187042A publication Critical patent/JP2020187042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a technique that allows an optical distance measurement device to efficiently receive incident light and disturbance light without increasing the number of components.SOLUTION: An optical distance measurement device 20 comprises a light reception unit 60 having a plurality of light reception regions La2, Lb2, Lc2, and Ld2 for receiving incident light and implementing light reception of the incident light in units of light reception region, and a light emission unit 40 for implementing light emission of the irradiation light so as to correspond exclusively to each light reception region. When the light reception unit receives the incident light in response to the emission of the irradiation light by the light emission unit, another different light reception region from one light reception region is turned on to enter into a light reception state during a period when the one light reception region corresponding to the emission of the irradiation light of the plurality of light reception regions is turned on to enter into the light reception state.SELECTED DRAWING: Figure 7

Description

本開示は、光測距装置に関する。 The present disclosure relates to an optical ranging device.

光を照射し、対象物で反射された反射光を受光素子で受光することで対象物までの距離を測定する光測距装置が知られている。このような光測距装置は、反射光とともにノイズとしての外乱光を同時に受光することがある。入射光を受光するための受光領域と、外乱光を受光するための受光領域とを個別に備え、入射光から外乱光の影響を取り除く光測距装置が知られている(例えば、特許文献1)。 There is known an optical ranging device that measures the distance to an object by irradiating light and receiving the reflected light reflected by the object with a light receiving element. Such an optical ranging device may simultaneously receive ambient light as noise together with reflected light. There is known an optical ranging device that separately provides a light receiving region for receiving incident light and a light receiving region for receiving ambient light to remove the influence of ambient light from the incident light (for example, Patent Document 1). ).

特開2016−176750号公報Japanese Unexamined Patent Publication No. 2016-176750

こうした光測距装置では、外乱光のみを検出する受光領域を備えるために部品点数が増加する。そこで、部品点数の増加を抑制しつつ、外乱光と入射光とを効率良く受光できる光測距装置が望まれていた。 In such an optical ranging device, the number of parts increases because it includes a light receiving region that detects only ambient light. Therefore, there has been a demand for an optical ranging device that can efficiently receive ambient light and incident light while suppressing an increase in the number of parts.

本開示は、以下の形態として実現することが可能である。 The present disclosure can be realized in the following forms.

本開示の一形態によれば、光測距装置(20)が提供される。この光測距装置は、入射光を受光するための複数の受光領域(La2,Lb2,Lc2,Ld2)を有し、前記受光領域のそれぞれを単位として前記入射光の受光を実行する受光部(60)と、前記受光領域のそれぞれに対応して排他的に照射光の照射を実行する発光部(40)と、を備える。前記発光部による前記照射光の照射に応じて前記受光部により前記入射光を受光する際に、前記複数の受光領域のうち前記照射光の照射に対応する一の受光領域をオンにして受光状態とする期間内に、前記一の受光領域とは異なる他の受光領域をオンにして受光状態とする。 According to one embodiment of the present disclosure, an optical ranging device (20) is provided. This optical ranging device has a plurality of light receiving regions (La2, Lb2, Lc2, Ld2) for receiving incident light, and a light receiving unit (La2, Lb2, Lc2, Ld2) that executes light reception of the incident light in each of the light receiving regions as a unit. 60) and a light emitting unit (40) that exclusively irradiates the irradiation light corresponding to each of the light receiving regions. When the incident light is received by the light receiving unit in response to the irradiation of the irradiation light by the light emitting unit, one of the plurality of light receiving regions corresponding to the irradiation of the irradiation light is turned on to receive the light receiving state. Within the period of the above, another light receiving area different from the one light receiving area is turned on to put the light receiving state.

この形態の光測距装置によれば、複数の受光領域のうち一の受光領域に入射光を受光させる期間内に、他の受光領域に外乱光を受光させる。一の受光領域に入射光を受光させる期間内に、他の受光領域に外乱光を受光させる制御をひとつの受光部が実行するので、部品点数を増加させることなく入射光と外乱光とを受光させることができるとともに、外乱光のみを受光させるための期間を設けることなく効率良く入射光と外乱光とを受光させることができる。 According to the optical ranging device of this form, the ambient light is received by the other light receiving regions within the period in which the incident light is received by one of the light receiving regions. Since one light receiving unit executes control to receive the ambient light in the other light receiving area within the period in which the incident light is received in one light receiving area, the incident light and the ambient light are received without increasing the number of parts. In addition, it is possible to efficiently receive the incident light and the disturbance light without providing a period for receiving only the disturbance light.

本開示は、光測距装置以外の種々の形態で実現することも可能である。例えば、光測距方法、光測距装置を搭載する車両、光測距装置を制御する制御方法等の形態で実現できる。 The present disclosure can also be realized in various forms other than the optical ranging device. For example, it can be realized in the form of an optical ranging method, a vehicle equipped with an optical ranging device, a control method for controlling the optical ranging device, and the like.

第1実施形態の光測距装置の概略構成図。The schematic block diagram of the optical ranging device of 1st Embodiment. 光学系を表す概略構成図。Schematic block diagram showing an optical system. 受光アレイの構成を模式的に示す説明図。The explanatory view which shows typically the structure of the light receiving array. 画素に含まれる受光素子の構成を模式的に示す説明図。Explanatory drawing which shows typically the structure of the light receiving element included in a pixel. SPAD演算部の概略構成図。Schematic configuration diagram of the SPAD calculation unit. 反射光に対応するピーク信号の検出方法を示す説明図。Explanatory drawing which shows the detection method of the peak signal corresponding to the reflected light. 外乱光と入射光の受光方法を示すタイミングチャート。A timing chart showing a method of receiving ambient light and incident light. 第2実施形態でのピーク信号の算出に用いられる外乱光と入射光との関係を示す説明図。The explanatory view which shows the relationship between the disturbance light and the incident light used for the calculation of the peak signal in 2nd Embodiment.

A.第1実施形態:
光測距装置20は、距離を光学的に測距する装置である。光測距装置20は、図1に示すように、測距のための照射光を射出して対象物からの反射光を受ける光学系30と、光学系30から得られた信号を処理するSPAD演算部100とを備える。光学系30は、照射光としてのレーザ光を射出する発光部40と、照射光を反射させて予め定められた領域に投射する投射部50と、対象物からの反射光や外乱光を含む入射光を受光するための受光部60とを備える。
A. First Embodiment:
The optical distance measuring device 20 is a device that optically measures a distance. As shown in FIG. 1, the optical ranging device 20 emits irradiation light for ranging and receives reflected light from an object, and a SPAD that processes a signal obtained from the optical system 30. It includes a calculation unit 100. The optical system 30 includes a light emitting unit 40 that emits laser light as irradiation light, a projection unit 50 that reflects the irradiation light and projects it onto a predetermined region, and incident light including reflected light and ambient light from an object. A light receiving unit 60 for receiving light is provided.

光学系30の詳細を図2に示す。本実施形態において、発光部40は、測距用のレーザ光を射出する半導体レーザ素子(以下、単にレーザ素子とも呼ぶ)41と、レーザ素子41の駆動回路を組み込んだ回路基板43と、レーザ素子41から射出されたレーザ光を平行光にするコリメートレンズ45とを備える。レーザ素子41は、いわゆる短パルスレーザを発振可能なレーザダイオードである。本実施形態において、レーザ素子41は、複数のレーザダイオードを鉛直方向に沿って配列させることにより矩形状のレーザ発光領域を構成する。レーザ素子41のレーザ光のパルス幅は、5nsec程度である。5nsecの短パルスを用いることで、測距の分解能を高めている。 Details of the optical system 30 are shown in FIG. In the present embodiment, the light emitting unit 40 includes a semiconductor laser element (hereinafter, also simply referred to as a laser element) 41 that emits a laser beam for distance measurement, a circuit board 43 incorporating a drive circuit of the laser element 41, and a laser element. It includes a collimating lens 45 that makes the laser beam emitted from 41 into parallel light. The laser element 41 is a laser diode capable of oscillating a so-called short pulse laser. In the present embodiment, the laser element 41 constitutes a rectangular laser emitting region by arranging a plurality of laser diodes along the vertical direction. The pulse width of the laser beam of the laser element 41 is about 5 nsec. By using a short pulse of 5 nsec, the resolution of distance measurement is improved.

投射部50は、いわゆる一次元スキャナによって構成される。投射部50は、ミラー54と、ロータリソレノイド58と、回転部56とによって構成される。ミラー54は、コリメートレンズ45により平行光とされたレーザ光を反射する。ロータリソレノイド58は、後述する制御部110からの制御信号Smを受けて、予め定められた角度範囲内で正転および逆転を繰り返す。回転部56は、ロータリソレノイド58によって駆動し、鉛直方向を軸方向とする回転軸で正転および逆転を繰り返し、ミラー54を水平方向に沿った一方向に走査させる。コリメートレンズ45を介してレーザ素子41から入射したレーザ光は、ミラー54によって反射され、ミラー54の回転により水平方向に沿って走査される。図1に、この照射光の走査範囲を測定範囲80として概念的に示した。 The projection unit 50 is composed of a so-called one-dimensional scanner. The projection unit 50 includes a mirror 54, a rotary solenoid 58, and a rotating unit 56. The mirror 54 reflects the laser beam that is collimated by the collimated lens 45. The rotary solenoid 58 receives a control signal Sm from the control unit 110, which will be described later, and repeats forward rotation and reverse rotation within a predetermined angle range. The rotating portion 56 is driven by the rotary solenoid 58, repeats forward rotation and reverse rotation on a rotating axis with the vertical direction as the axial direction, and scans the mirror 54 in one direction along the horizontal direction. The laser beam incident from the laser element 41 via the collimating lens 45 is reflected by the mirror 54 and scanned along the horizontal direction by the rotation of the mirror 54. FIG. 1 conceptually shows the scanning range of the irradiation light as the measurement range 80.

光測距装置20から出力されるレーザ光は、人や車などの対象物があると、その表面で乱反射し、その一部は反射光として投射部50のミラー54に戻ってくる。この反射光は、ミラー54で反射されて、外乱光とともに入射光として受光部60の受光レンズ61に入射し、受光レンズ61で集光されて受光アレイ65に入射する。 When there is an object such as a person or a car, the laser beam output from the optical ranging device 20 is diffusely reflected on the surface of the object, and a part of the laser beam returns to the mirror 54 of the projection unit 50 as reflected light. This reflected light is reflected by the mirror 54, is incident on the light receiving lens 61 of the light receiving unit 60 as incident light together with the ambient light, is collected by the light receiving lens 61, and is incident on the light receiving array 65.

次に、図3および図4を用いて受光アレイ65の構成について説明する。受光アレイ65は、複数の画素66を二次元配列することによって構成される。図3に示すように、受光アレイ65は、直線状に配列された受光領域La2,Lb2,Lc2,Ld2からなる複数の受光領域に区分される。発光部40は、投射部50を介して、各受光領域La2,Lb2,Lc2,Ld2に対応して排他的に照射光の照射を実行し、各受光領域La2,Lb2,Lc2,Ld2は、それぞれをひとつの単位として入射光の受光を実行する。 Next, the configuration of the light receiving array 65 will be described with reference to FIGS. 3 and 4. The light receiving array 65 is configured by arranging a plurality of pixels 66 in two dimensions. As shown in FIG. 3, the light receiving array 65 is divided into a plurality of light receiving regions including light receiving regions La2, Lb2, Lc2, and Ld2 arranged in a straight line. The light emitting unit 40 exclusively executes irradiation of the irradiation light corresponding to each light receiving region La2, Lb2, Lc2, Ld2 via the projection unit 50, and each light receiving region La2, Lb2, Lc2, Ld2 respectively. Is executed as one unit to receive the incident light.

図1には、各受光領域La2,Lb2,Lc2,Ld2に対応する照射光の照射方向に対応する照射領域La1,Lb1,Lc1,Ld1が測定範囲80内に概念的に示されている。例えば、測定範囲80の照射領域La1に照射光が照射された場合、受光領域La2の受光アレイ65がオンにされ、反射光を受光可能な受光状態とされる。同様に、照射領域Lb1には受光領域Lb2が対応し、照射領域Lc1には受光領域Lc2が対応し、照射領域Ld1には受光領域Ld2が対応する。このように、本実施形態の光測距装置20では、投射部50による照射光の各照射領域La1,Lb1,Lc1,Ld1への照射方向の制御と、各照射領域La1,Lb1,Lc1,Ld1に対応する受光領域La2,Lb2,Lc2,Ld2のON/OFFの制御とを対応付けて実行し、測定範囲80を順次に測距する。 In FIG. 1, the irradiation regions La1, Lb1, Lc1, Ld1 corresponding to the irradiation direction of the irradiation light corresponding to each light receiving region La2, Lb2, Lc2, Ld2 are conceptually shown in the measurement range 80. For example, when the irradiation region La1 in the measurement range 80 is irradiated with the irradiation light, the light receiving array 65 in the light receiving region La2 is turned on so that the reflected light can be received. Similarly, the irradiation region Lb1 corresponds to the light receiving region Lb2, the irradiation region Lc1 corresponds to the light receiving region Lc2, and the irradiation region Ld1 corresponds to the light receiving region Ld2. As described above, in the optical ranging device 20 of the present embodiment, the projection unit 50 controls the irradiation direction of the irradiation light to each irradiation region La1, Lb1, Lc1, Ld1 and each irradiation region La1, Lb1, Lc1, Ld1. The ON / OFF control of the light receiving regions La2, Lb2, Lc2, and Ld2 corresponding to the above is executed in association with each other, and the measurement range 80 is sequentially measured.

図4に、画素66の構成を示す。図4に示すように、画素66は、水平方向にH個、鉛直方向にV個となるように配列された複数の受光素子68で構成されている。本実施形態において、水平方向および鉛直方向においてそれぞれ5個の受光素子68で構成されるが一つの受光素子68であってもよく、任意の数で構成してもよい。受光素子68には、アバランシェフォトダイオード(APD)が用いられるが、PINフォトダイオードを用いてもよい。 FIG. 4 shows the configuration of the pixel 66. As shown in FIG. 4, the pixel 66 is composed of a plurality of light receiving elements 68 arranged so as to have H elements in the horizontal direction and V elements in the vertical direction. In the present embodiment, five light receiving elements 68 are formed in each of the horizontal direction and the vertical direction, but one light receiving element 68 may be used, or any number of light receiving elements 68 may be used. An avalanche photodiode (APD) is used as the light receiving element 68, but a PIN photodiode may also be used.

各受光素子68は、図4の等価回路に示すように、電源Vccと接地ラインとの間に直列にクエンチ抵抗器RqとアバランシェダイオードDaを接続し、その接続点の電圧を反転素子INVに入力し、電圧レベルの反転したデジタル信号に変換している。アンド回路SWの他方の入力の状態は、選択信号SCにより切り換えることができる。選択信号SCは、受光アレイ65のどの受光素子68からの信号を読み出すかを指定するのに用いられることから、アドレス信号とも呼ぶ。各受光素子68が光を受光するタイミングに合わせて、アドレス信号SCをハイレベルHにすれば、アンド回路SWの出力信号、つまり各受光素子68からの出力信号Soutは、アバランシェダイオードDaの状態を反映したデジタル信号となる。 As shown in the equivalent circuit of FIG. 4, each light receiving element 68 connects a quenching resistor Rq and an avalanche diode Da in series between the power supply Vcc and the ground line, and inputs the voltage at the connection point to the inverting element INV. Then, it is converted into a digital signal with the voltage level inverted. The state of the other input of the AND circuit SW can be switched by the selection signal SC. Since the selection signal SC is used to specify which light receiving element 68 of the light receiving array 65 to read, it is also called an address signal. If the address signal SC is set to high level H in accordance with the timing at which each light receiving element 68 receives light, the output signal of the AND circuit SW, that is, the output signal Sout from each light receiving element 68 changes the state of the avalanche diode Da. It becomes a reflected digital signal.

出力信号Soutは、照射光が走査範囲に存在する対象物OBJに反射して戻ってくる反射光や外乱光を含む入射光の受光により生じるパルス信号である。受光素子68が出力するパルス信号は、SPAD演算部100に入力される。 The output signal Sout is a pulse signal generated by receiving incident light including reflected light and ambient light in which the irradiation light is reflected by the object OBJ existing in the scanning range and returned. The pulse signal output by the light receiving element 68 is input to the SPAD calculation unit 100.

図5に、SPAD演算部100の詳細を示す。SPAD演算部100は、レーザ素子41が照射光パルスを出力した時点から受光素子68が反射光パルスを受け取るまでの時間Tfから、対象物OBJまでの距離を演算する。SPAD演算部100は、周知のマイクロプロセッサやメモリを備え、CPUが予め用意されたプログラムを実行することで、測距に必要な処理を行なう。SPAD演算部100は、ASIC(Application Specific Integrated Circuit)や、内部回路のプログラムが可能なFPGA(Field Programmable Gate Array)やCPLD(Complex Programmable Logic Device)といったプログラマブル論理回路などの集積回路にCPUやメモリを備える態様であってもよい。SPAD演算部100は、全体の制御を行なう制御部110の他、加算部120、ヒストグラム生成部130、ピーク検出部140、距離演算部150を備える。 FIG. 5 shows the details of the SPAD calculation unit 100. The SPAD calculation unit 100 calculates the distance from the time Tf from the time when the laser element 41 outputs the irradiation light pulse until the light receiving element 68 receives the reflected light pulse to the object OBJ. The SPAD calculation unit 100 is provided with a well-known microprocessor and memory, and the CPU executes a program prepared in advance to perform processing necessary for distance measurement. The SPAD calculation unit 100 adds a CPU and memory to an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or a programmable logic circuit such as an FPGA (Field Programmable Gate Array) or a CPLD (Complex Programmable Logic Device) capable of programming an internal circuit. It may be a mode to provide. The SPAD calculation unit 100 includes a control unit 110 that controls the entire system, an addition unit 120, a histogram generation unit 130, a peak detection unit 140, and a distance calculation unit 150.

加算部120は、受光アレイ65を構成する画素66に含まれる受光素子68の出力を加算する回路である。入射光パルスが一つの画素66に入射すると、画素66に含まれる各受光素子68が動作する。画素66を複数個のSPADから構成しているのは、SPADの特性による。SPADは、一つのフォトンが入射しただけでこれを検出することが可能であるが、対象物OBJからの限られた光によるSPADの検出は確率的なものにならざるを得ない。SPAD演算部100の加算部120は、確率的にしか入射光を検出し得ないSPADからの出力信号Soutを加算する。 The adder 120 is a circuit that adds the outputs of the light receiving elements 68 included in the pixels 66 constituting the light receiving array 65. When the incident light pulse is incident on one pixel 66, each light receiving element 68 included in the pixel 66 operates. The fact that the pixel 66 is composed of a plurality of SPADs depends on the characteristics of the SPAD. The SPAD can detect only one photon incident, but the detection of the SPAD by the limited light from the object OBJ must be probabilistic. The addition unit 120 of the SPAD calculation unit 100 adds the output signal Sout from the SPAD, which can detect the incident light only stochastically.

ヒストグラム生成部130は、加算部120の加算結果を複数回足し合せてヒストグラムを生成し、ピーク検出部140に出力する。ピーク検出部140は、ヒストグラム生成部130から入力された信号強度を解析して、反射光に対応する信号のピークの位置(時間)を検出する。図6に、反射光パルスに対応する信号のピークの検出方法を模式的に示した。 The histogram generation unit 130 adds the addition results of the addition unit 120 a plurality of times to generate a histogram, and outputs the histogram to the peak detection unit 140. The peak detection unit 140 analyzes the signal intensity input from the histogram generation unit 130 to detect the peak position (time) of the signal corresponding to the reflected light. FIG. 6 schematically shows a method of detecting a peak of a signal corresponding to a reflected light pulse.

図6に示す各グラフは、横軸を時間軸とし、縦軸を信号強度とするグラフである。上述したように、受光アレイ65の各受光領域La2,Lb2,Lc2,Ld2は、対象物OBJからの反射光を受光する際、ノイズとしての外乱光を含む入射光として受光する。ヒストグラム生成部130は、図6の左上に示す入射光に対応する信号(以下、入射信号とも呼ぶ)を含む信号強度のヒストグラムから、図6の左下に示す外乱光に対応する信号(以下、外乱信号とも呼ぶ)の信号強度の平均値を差し引く。この結果、図6の右側に示すように、入射光に含まれる反射光に対応する信号強度がピークとなって現れる。ピーク検出部140は、ヒストグラムの中で最も大きな度数の部分をピークと判断する。 Each graph shown in FIG. 6 is a graph in which the horizontal axis is the time axis and the vertical axis is the signal strength. As described above, each of the light receiving regions La2, Lb2, Lc2, and Ld2 of the light receiving array 65 receives the reflected light from the object OBJ as incident light including ambient light as noise. The histogram generation unit 130 uses a histogram of signal intensity including a signal corresponding to the incident light shown in the upper left of FIG. 6 (hereinafter, also referred to as an incident signal) to a signal corresponding to the disturbance light (hereinafter, disturbance) shown in the lower left of FIG. Subtract the average value of the signal strength (also called a signal). As a result, as shown on the right side of FIG. 6, the signal intensity corresponding to the reflected light contained in the incident light appears as a peak. The peak detection unit 140 determines that the portion having the highest frequency in the histogram is the peak.

ピーク検出部140によって反射光に対応する信号のピークが検出されると、距離演算部150は、照射光パルスが発光されてから、反射光パルスのピークまでの時間Tfを検出することで、対象物までの距離Dを検出する。検出された距離Dは、例えば、光測距装置20を搭載する運転支援装置に出力される。距離Dは、運転支援装置のほかに、光測距装置20を搭載するドローンや電車、船舶などの種々の移動体の制御装置に出力されてもよく、固定された測距装置として単独で用いられてもよい。 When the peak of the signal corresponding to the reflected light is detected by the peak detection unit 140, the distance calculation unit 150 detects the time Tf from the emission of the irradiation light pulse to the peak of the reflected light pulse, thereby detecting the target. The distance D to the object is detected. The detected distance D is output to, for example, a driving support device equipped with the optical distance measuring device 20. The distance D may be output to a control device for various moving objects such as a drone, a train, and a ship equipped with the optical distance measuring device 20 in addition to the driving support device, and is used alone as a fixed distance measuring device. May be done.

制御部110は、図5に示すように、発光部40の回路基板43に対してレーザ素子41の発光タイミングを決定する指令信号SLや、いずれの受光素子68をアクティブにするかを決定するアドレス信号SCの他、ヒストグラム生成部130に対するヒストグラムの生成タイミングを指示する信号Stや、投射部50のロータリソレノイド58に対する制御信号Smを出力する。制御部110が予め定めたタイミングでこれらの信号を出力することにより、SPAD演算部100は、測定範囲80に存在する対象物OBJを、その対象物OBJまでの距離Dと共に検出する。 As shown in FIG. 5, the control unit 110 has a command signal SL for determining the light emission timing of the laser element 41 with respect to the circuit board 43 of the light emitting unit 40, and an address for determining which light receiving element 68 is to be activated. In addition to the signal SC, the signal St instructing the histogram generation timing to the histogram generation unit 130 and the control signal Sm to the rotary solenoid 58 of the projection unit 50 are output. By outputting these signals at a predetermined timing by the control unit 110, the SPAD calculation unit 100 detects the object OBJ existing in the measurement range 80 together with the distance D to the object OBJ.

次に、図7のタイミングチャートを用いて、本実施形態の光測距装置20が実行する入射光と外乱光との受光方法について説明する。図7の最上段には、照射領域ごとの投射部50のON/OFF制御が示されている。それよりも下側には、受光アレイ65の各受光領域La2,Lb2,Lc2,Ld2のON/OFF制御が示されている。各受光領域La2,Lb2,Lc2,Ld2のON/OFF制御とは、受光領域La2,Lb2,Lc2,Ld2ごとに個別に受光状態と非受光状態とを切り換える制御のことを表し、制御部110によるアドレス信号SCが各受光領域La2,Lb2,Lc2,Ld2に属する受光素子68に選択的に入力されることによって実現される。横軸は、時間軸であり各部の制御において共通する。 Next, using the timing chart of FIG. 7, a method of receiving light of incident light and ambient light executed by the optical ranging device 20 of the present embodiment will be described. On the uppermost stage of FIG. 7, ON / OFF control of the projection unit 50 for each irradiation region is shown. Below that, ON / OFF control of each light receiving region La2, Lb2, Lc2, Ld2 of the light receiving array 65 is shown. The ON / OFF control of each light receiving region La2, Lb2, Lc2, Ld2 represents a control for individually switching between a light receiving state and a non-light receiving state for each light receiving region La2, Lb2, Lc2, Ld2, and is controlled by the control unit 110. This is realized by selectively inputting the address signal SC to the light receiving element 68 belonging to each light receiving region La2, Lb2, Lc2, Ld2. The horizontal axis is the time axis and is common to the control of each part.

図7の最上段には、投射部50による照射光の各照射領域La1,Lb1,Lc1,Ld1への照射方向の制御を示し、図7のそれよりも下側には、各照射領域La1,Lb1,Lc1,Ld1に対応する受光領域La2,Lb2,Lc2,Ld2のON/OFFの制御を示した。 The uppermost part of FIG. 7 shows the control of the irradiation direction of the irradiation light by the projection unit 50 to each irradiation area La1, Lb1, Lc1, Ld1, and below that of FIG. 7, each irradiation area La1, The ON / OFF control of the light receiving regions La2, Lb2, Lc2, and Ld2 corresponding to Lb1, Lc1, and Ld1 is shown.

本実施形態の光測距装置20では、受光領域La2,Lb2,Lc2,Ld2のうち一の受光領域が入射光を検出するためにオンにして受光状態にされる期間内に、他の受光領域もオンにして受光状態とする制御を行う。例えば、時間t1では、照射光の照射を照射領域La1に対応する受光領域La2をオンにして反射光を受光可能な受光状態とする期間内に、受光領域Lc2の受光領域もオンにして受光状態とする制御を行う。このとき、受光領域Lc2は、照射領域La1と対応付けられていないために、反射光よりも外乱光を多く受光し得ることになる。このように、本実施形態の光測距装置20では、一の受光領域に入射光を受光させる期間内に、他の受光領域が外乱光を多く受光するように制御する。このとき、反射光を受光させる一の受光領域と、同期間内に並行して外乱光を受光させる他の受光領域とは、互いに離間されていることが好ましい。外乱光を受光させる受光領域が反射光を受光させる受光領域に近いほど、外乱光とともにノイズとしての反射光を受光し得るからである。 In the optical ranging device 20 of the present embodiment, one of the light receiving regions La2, Lb2, Lc2, and Ld2 is turned on to detect the incident light, and the other light receiving region is put into the light receiving state within the period. Is also turned on to control the light reception state. For example, at time t1, the light receiving region of the light receiving region Lc2 is also turned on during the period in which the light receiving region La2 corresponding to the irradiation region La1 is turned on so that the reflected light can be received. Control is performed. At this time, since the light receiving region Lc2 is not associated with the irradiation region La1, it is possible to receive more ambient light than the reflected light. As described above, in the optical ranging device 20 of the present embodiment, the other light receiving regions are controlled so as to receive a large amount of ambient light within the period in which the incident light is received by one light receiving region. At this time, it is preferable that one light receiving region that receives reflected light and another light receiving region that receives ambient light in parallel during the same period are separated from each other. This is because the closer the light receiving region for receiving the ambient light is to the light receiving region for receiving the reflected light, the more the reflected light as noise can be received together with the ambient light.

本実施形態の光測距装置20は、各照射領域La1,Lb1,Lc1,Ld1をオンとするタイミングと、各照射領域La1〜Ld1に対応する受光領域La2〜Ld2をオンとするタイミングとが同時になるように制御する。これにより、制御部110が発光部40に指令信号SLを出力する時点、すなわち発光を指示する時点から、実際に発光部40のレーザ素子41が発光する時点までの期間(以下、「遅延期間」とも呼ぶ)も、各受光領域La2〜Ld2が受光状態とされる。 In the optical ranging device 20 of the present embodiment, the timing of turning on each irradiation region La1, Lb1, Lc1, Ld1 and the timing of turning on the light receiving regions La2 to Ld2 corresponding to each irradiation region La1 to Ld1 are simultaneously turned on. Control to be. As a result, a period from the time when the control unit 110 outputs the command signal SL to the light emitting unit 40, that is, the time when the laser element 41 of the light emitting unit 40 actually emits light (hereinafter, “delay period””. Also referred to as), each light receiving region La2 to Ld2 is in a light receiving state.

次に時間t2において、投射部50によって照射光が照射領域Lb1に照射されるとともに、受光領域Lb2をオンにして反射光を受光可能な受光状態とされるとともに、外乱光の受光のために受光領域Ld2もオンとする制御を行う。受光領域Lb2と受光領域Ld2とが組み合わされるのは、上述の受光領域La2と受光領域Lc2との関係と同様、受光領域Lb2と受光領域Ld2とが互いに離間した位置に配されることに基づく。 Next, at time t2, the irradiation light is irradiated to the irradiation region Lb1 by the projection unit 50, the light receiving region Lb2 is turned on to be in a light receiving state capable of receiving the reflected light, and the light is received to receive the ambient light. Control is performed so that the region Ld2 is also turned on. The combination of the light receiving region Lb2 and the light receiving region Ld2 is based on the fact that the light receiving region Lb2 and the light receiving region Ld2 are arranged at positions separated from each other, as in the relationship between the light receiving region La2 and the light receiving region Lc2 described above.

同様に時間t3において、制御部110は、照射領域Lc1に対応する受光領域Lc2をオンとするとともに、外乱光の受光のために受光領域La2をオンとする制御を行う。時間t4において、照射領域Ld1に対応する受光領域Ld2をオンとするとともに、外乱光の受光のために受光領域Lb2をオンとする制御を行う。時間t5以降では、時間t1から時間t5までの制御が繰り返される。 Similarly, at time t3, the control unit 110 controls to turn on the light receiving region Lc2 corresponding to the irradiation region Lc1 and to turn on the light receiving region La2 to receive the ambient light. At time t4, the light receiving region Ld2 corresponding to the irradiation region Ld1 is turned on, and the light receiving region Lb2 is turned on to receive the ambient light. After the time t5, the control from the time t1 to the time t5 is repeated.

次に、図7を用いて、本実施形態の光測距装置20によって実行される反射光の信号強度の算出方法について説明する。上述したように、SPAD演算部100は、入射信号の信号強度のヒストグラムから外乱信号の信号強度の平均値を差し引くことにより、反射光に対応するピークを検出する。図7に、反射光のピーク検出に用いられる外乱信号と入射信号との関係を、方向D11,D12,D13,D14によって概念的に表した。 Next, a method of calculating the signal intensity of the reflected light executed by the optical ranging device 20 of the present embodiment will be described with reference to FIG. 7. As described above, the SPAD calculation unit 100 detects the peak corresponding to the reflected light by subtracting the average value of the signal strength of the disturbance signal from the histogram of the signal strength of the incident signal. In FIG. 7, the relationship between the disturbance signal and the incident signal used for peak detection of the reflected light is conceptually represented by the directions D11, D12, D13, and D14.

方向D11,D12,D13,D14で示すように、反射光に対応する信号強度のピークを検出するために用いられる入射信号と外乱信号とを取得する受光領域が同一となるように制御される。例えば、方向D11は、時間t5に受光領域La2で検出した入射信号のヒストグラムと、時間t3に受光領域Lc2がオンとされる期間内に受光領域La2が検出した外乱信号の信号強度の平均値とを用いて反射光の信号強度を算出することを表す。このように、本実施形態では、一の受光領域が検出した入射光に対応する入射信号と、他の受光領域をオンとする期間内にこの一の受光領域が検出した外乱光に対応する外乱信号とを用いる。 As shown in the directions D11, D12, D13, and D14, the light receiving region for acquiring the incident signal and the disturbance signal used for detecting the peak of the signal intensity corresponding to the reflected light is controlled to be the same. For example, the direction D11 is a histogram of the incident signal detected in the light receiving region La2 at time t5, and a mean value of the signal intensities of the disturbance signal detected by the light receiving region La2 during the period when the light receiving region Lc2 is turned on at time t3. Indicates that the signal intensity of the reflected light is calculated using. As described above, in the present embodiment, the incident signal corresponding to the incident light detected by one light receiving region and the disturbance corresponding to the disturbance light detected by this one light receiving region within the period when the other light receiving region is turned on. Use with a signal.

以上のように、本実施形態の光測距装置20によれば、受光領域La2,Lb2,Lc2,Ld2のうち一の受光領域に入射光を受光させる期間内に、他の受光領域に外乱光を受光させる制御が実行される。一の受光領域に入射光を受光させる期間内に、他の受光領域に外乱光を受光させる制御がひとつの受光アレイ65で実行されるので、部品点数を増加させることなく入射光と外乱光とを受光できるとともに、外乱光のみを受光させるための期間を別に設けることなく効率良く入射光と外乱光とを受光させることができる。 As described above, according to the optical ranging device 20 of the present embodiment, the ambient light is emitted to the other light receiving region within the period in which the incident light is received by one of the light receiving regions La2, Lb2, Lc2, and Ld2. The control to receive light is executed. Since the control for receiving the ambient light to the other light receiving region is executed by one light receiving array 65 within the period during which the incident light is received by one light receiving region, the incident light and the ambient light can be obtained without increasing the number of parts. Can receive light, and can efficiently receive incident light and ambient light without providing a separate period for receiving only ambient light.

本実施形態の光測距装置20によれば、同一の受光領域で検出した外乱信号と入射信号とを用いて反射光に対応する信号強度のピークを検出する。同一の位置の受光領域に受光した入射光と外乱光とを用いることにより、入射信号に含まれる外乱信号の検出精度を高めることができ、反射光の検出精度を向上させることができる。 According to the optical ranging device 20 of the present embodiment, the peak of the signal intensity corresponding to the reflected light is detected by using the disturbance signal and the incident signal detected in the same light receiving region. By using the incident light and the disturbance light received in the light receiving region at the same position, the detection accuracy of the disturbance signal included in the incident signal can be improved, and the detection accuracy of the reflected light can be improved.

本実施形態の光測距装置20によれば、反射光を受光させる一の受光領域と、同期間内に並行して外乱光を受光させる他の受光領域とが互いに離間されて配置されるので、外乱光を受光させる他の受光領域に外乱光とともにノイズとしての反射光が入射してしまう不具合を抑制することができる。 According to the optical ranging device 20 of the present embodiment, one light receiving region for receiving reflected light and another light receiving region for receiving ambient light in parallel during the same period are arranged so as to be separated from each other. It is possible to suppress the problem that the reflected light as noise is incident on the other light receiving region that receives the disturbance light together with the disturbance light.

本実施形態の光測距装置20では、受光領域La2,Lb2,Lc2,Ld2からなる3以上の複数の受光領域が直線状に配列される。受光領域La2と受光領域Lc2とのように互いに離間する受光領域間に、受光領域Lb2といった第三の受光領域を更に備えることによって、離間する受光領域間の領域を利用して効率良く入射光と外乱光とを検出させることができる。本実施形態では、受光領域La2,Lb2,Lc2,Ld2からなる4つの領域を直線状に配列し、受光領域La2と受光領域Lc2、受光領域Lb2と受光領域Ld2のように、互いに離間する2つの受光領域を組み合わせているので、より効率良く入射光と外乱光とを受光させることができる。 In the optical ranging device 20 of the present embodiment, a plurality of three or more light receiving regions including the light receiving regions La2, Lb2, Lc2, and Ld2 are linearly arranged. By further providing a third light receiving region such as the light receiving region Lb2 between the light receiving regions separated from each other such as the light receiving region La2 and the light receiving region Lc2, the region between the separated light receiving regions can be efficiently used for the incident light. It is possible to detect ambient light. In the present embodiment, four regions consisting of light receiving regions La2, Lb2, Lc2, and Ld2 are linearly arranged, and two regions separated from each other, such as light receiving region La2 and light receiving region Lc2, and light receiving region Lb2 and light receiving region Ld2. Since the light receiving regions are combined, the incident light and the ambient light can be received more efficiently.

本実施形態の光測距装置20によれば、各照射領域La1,Lb1,Lc1,Ld1をオンとするタイミングと、各照射領域La1〜Ld1に対応する受光領域La2〜Ld2をオンとするタイミングとが同時になるように制御される。これにより、制御部110による発光指示の時点から発光部40が実際に発光する時点までの遅延期間内、受光領域La2〜Ld2は外乱光を受光し得る。したがって、一つの受光領域が、遅延期間を利用して効率良く外乱光を検出できるとともに、入射光を取得する直前での外乱光を取得し得るので、反射光の検出精度を向上させることができる。また、外乱光の取得と入射光の取得とを同じ受光領域で取得し得るので、入射信号に含まれる外乱信号の検出精度を高めることができ、反射光の検出精度を向上させることができる。 According to the optical ranging device 20 of the present embodiment, the timing of turning on each irradiation region La1, Lb1, Lc1, Ld1 and the timing of turning on the light receiving regions La2 to Ld2 corresponding to each irradiation region La1 to Ld1. Are controlled to be at the same time. As a result, the light receiving regions La2 to Ld2 can receive ambient light within the delay period from the time when the light emitting unit 110 is instructed to emit light to the time when the light emitting unit 40 actually emits light. Therefore, one light receiving region can efficiently detect the disturbance light by utilizing the delay period, and can acquire the disturbance light immediately before acquiring the incident light, so that the detection accuracy of the reflected light can be improved. .. Further, since the acquisition of the disturbance light and the acquisition of the incident light can be acquired in the same light receiving region, the detection accuracy of the disturbance signal included in the incident signal can be improved, and the detection accuracy of the reflected light can be improved.

B.第2実施形態:
図8を用いて、第2実施形態の光測距装置20について説明する。第2実施形態の光測距装置20の各部の構成は、第1実施形態の光測距装置20と同様であるが、反射光の信号強度の算出方法が第1実施形態とは異なる。
B. Second embodiment:
The optical ranging device 20 of the second embodiment will be described with reference to FIG. The configuration of each part of the optical ranging device 20 of the second embodiment is the same as that of the optical ranging device 20 of the first embodiment, but the method of calculating the signal intensity of the reflected light is different from that of the first embodiment.

図8に、第2実施形態においてSPAD演算部100が反射光のピーク検出に用いる外乱信号と入射信号との関係を方向D21,D22,D23,D24によって概念的に表した。方向D21,D22,D23,D24で示すように、反射光に対応する信号強度のピークを検出するために用いられる入射信号と外乱信号とを取得する期間が同一となるように制御される。例えば、方向D21は、時間t1に受光領域La2で検出した入射信号のヒストグラムと、同期間中に受光領域Lc2で検出した外乱信号の信号強度の平均値とを用いて反射光の信号強度を算出することを表す。このように、本実施形態では、一の受光領域をオンとする期間内に、一の受光領域が検出した入射光に対応する入射信号と、同期間内に他の受光領域が検出した外乱光に対応する外乱信号とを用いる。 FIG. 8 conceptually shows the relationship between the disturbance signal and the incident signal used by the SPAD calculation unit 100 for detecting the peak of the reflected light in the second embodiment by the directions D21, D22, D23, and D24. As shown in the directions D21, D22, D23, and D24, the period for acquiring the incident signal and the disturbance signal used for detecting the peak of the signal intensity corresponding to the reflected light is controlled to be the same. For example, in the direction D21, the signal intensity of the reflected light is calculated by using the histogram of the incident signal detected in the light receiving region La2 at time t1 and the average value of the signal intensities of the disturbance signal detected in the light receiving region Lc2 during the same period. Represents to do. As described above, in the present embodiment, the incident signal corresponding to the incident light detected by one light receiving region and the ambient light detected by the other light receiving region within the same period during the period when one light receiving region is turned on. The disturbance signal corresponding to is used.

第2実施形態の光測距装置20によれば、一の受光領域が検出する入射信号と、この一の受光領域が入射信号を検出する期間中に他の受光領域が検出した外乱信号とを用いて、反射光に対応する信号強度のピークを検出する。同期間中に受光した入射光と外乱光とを用いることにより、入射光の受光時点の環境に応じた外乱光を検出することができ、反射光の検出精度を高めることができる。 According to the optical ranging device 20 of the second embodiment, the incident signal detected by one light receiving region and the disturbance signal detected by the other light receiving region while the one light receiving region detects the incident signal. It is used to detect the peak of the signal intensity corresponding to the reflected light. By using the incident light received during the same period and the ambient light, it is possible to detect the ambient light according to the environment at the time of receiving the incident light, and it is possible to improve the detection accuracy of the reflected light.

C.他の実施形態:
(C1)上記各実施形態では、受光アレイ65は、直線状に配列された、受光領域La2,Lb2,Lc2,Ld2の4つの受光領域で構成されるが、受光領域は4つに限定されず、2つであるほか、3以上の任意の数の受光領域を備える態様であってよい。受光領域の配列は、直線状でなくとも正方形状や円形状など照射光の照射領域の形状に応じた任意の形状で配列されてもよい。また、各領域は、互いに隣接せずそれぞれが互いに離間した位置関係となるように配置されてもよい。
C. Other embodiments:
(C1) In each of the above embodiments, the light receiving array 65 is composed of four light receiving regions La2, Lb2, Lc2, and Ld2 arranged in a straight line, but the light receiving region is not limited to four. In addition to the number of 2, the mode may include any number of light receiving regions of 3 or more. The arrangement of the light receiving regions may be any shape according to the shape of the irradiation region of the irradiation light, such as a square shape or a circular shape, even if it is not linear. Further, the regions may be arranged so as not to be adjacent to each other but to be separated from each other.

(C2)上記各実施形態では、受光領域La2と受光領域Lc2、受光領域Lb2と受光領域Ld2のように、外乱光を受光させる受光領域と、入射光を受光させる受光領域とが互いに離間する位置関係を示したが、受光領域La2と受光領域Lb2、受光領域Lb2と受光領域Lc2、受光領域Lc2と受光領域Ld2などのように互いに離間せず隣接する位置関係の受光領域が用いられてもよい。 (C2) In each of the above embodiments, positions such as the light receiving region La2 and the light receiving region Lc2, the light receiving region Lb2 and the light receiving region Ld2, where the light receiving region that receives the ambient light and the light receiving region that receives the incident light are separated from each other. Although the relationship is shown, light receiving regions having a positional relationship adjacent to each other, such as the light receiving region La2 and the light receiving region Lb2, the light receiving region Lb2 and the light receiving region Lc2, and the light receiving region Lc2 and the light receiving region Ld2, may be used. ..

(C3)上記各実施形態では、受光領域La2と受光領域Lc2、受光領域Lb2と受光領域Ld2のように、互いに離間した位置関係にある受光領域で受光した外乱信号と入射信号とを用いて信号強度を算出するが、受光領域La2と受光領域Lb2、受光領域Lb2と受光領域Lc2、受光領域Lc2と受光領域Ld2などのように互いに離間せず隣接する位置関係の受光領域で検出した外乱信号と入射信号とを用いてもよい。 (C3) In each of the above embodiments, a signal is used by using the disturbance signal and the incident signal received in the light receiving regions that are separated from each other, such as the light receiving region La2 and the light receiving region Lc2, and the light receiving region Lb2 and the light receiving region Ld2. The intensity is calculated, but the disturbance signal detected in the light receiving area of the adjacent positional relationship such as the light receiving area La2 and the light receiving area Lb2, the light receiving area Lb2 and the light receiving area Lc2, the light receiving area Lc2 and the light receiving area Ld2, etc. An incident signal may be used.

(C4)上記各実施形態では、投射部50は、1つの平面状のミラーを備える一次元スキャナによって構成されるが、2つのミラーを組み合わせて二次元スキャナとして構成されてもよく、互いに交差する2つの回転軸で回転する1つのミラーによって二次元スキャナとして構成されてもよい。投射部50は、平面状のミラーに限らず、ポリゴンミラー、多面体ミラー、MEMSミラー、ガルバノミラーといった種々のミラーで構成されてもよい。 (C4) In each of the above embodiments, the projection unit 50 is composed of a one-dimensional scanner including one planar mirror, but the two mirrors may be combined to form a two-dimensional scanner and intersect with each other. It may be configured as a two-dimensional scanner by one mirror rotating on two rotation axes. The projection unit 50 is not limited to a flat mirror, and may be composed of various mirrors such as a polygon mirror, a polyhedral mirror, a MEMS mirror, and a galvano mirror.

(C5)上記各実施形態では、受光素子68として、ピンフォトダイオードやアバランシェフォトダイオード等のSPADを備える例を示したが、SPAD以外の受光素子によって構成されてもよい。例えば、受光素子68には、外部光電効果(光電子放出)を用いた光電管や光電子増倍管のほか、半導体の内部光電効果を利用したフォトトランジスタ、光導電セル、イメージセンサが用いられてもよく、光吸収による熱を検出する放射用熱電対、サーモパイルが用いられてもよい。 (C5) In each of the above embodiments, the light receiving element 68 includes a SPAD such as a pin photodiode or an avalanche photodiode, but it may be composed of a light receiving element other than the SPAD. For example, as the light receiving element 68, a photocell or a photomultiplier tube using the external photoelectric effect (photoelectron emission), a phototransistor using the internal photoelectric effect of the semiconductor, a photoconductive cell, or an image sensor may be used. , A thermocouple for radiation that detects heat due to light absorption, or a thermopile may be used.

(C6)上記各実施形態では、投射部50の照射光の光軸と、受光の光軸とが一致する同軸型の光学系を採用しているが、照射光の光軸と受光の光軸とが異なる異軸型の光学系を採用してもよい。 (C6) In each of the above embodiments, a coaxial optical system in which the optical axis of the irradiation light of the projection unit 50 and the optical axis of the light reception are aligned with each other is adopted, but the optical axis of the irradiation light and the optical axis of the light reception An different axis type optical system different from the above may be adopted.

本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the gist thereof. For example, the technical features of the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or a part of the above-mentioned effects. Or, in order to achieve all of them, it is possible to replace or combine them as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

20 光測距装置、40 発光部、60 受光部、La2〜Ld2 受光領域 20 optical ranging device, 40 light emitting part, 60 light receiving part, La2 to Ld2 light receiving area

Claims (5)

光測距装置(20)であって、
入射光を受光するための複数の受光領域(La2,Lb2,Lc2,Ld2)を有し、前記受光領域のそれぞれを単位として前記入射光の受光を実行する受光部(60)と、
前記受光領域のそれぞれに対応して排他的に照射光の照射を実行する発光部(40)と、を備え、
前記発光部による前記照射光の照射に応じて前記受光部により前記入射光を受光する際に、
前記複数の受光領域のうち前記照射光の照射に対応する一の受光領域をオンにして受光状態とする期間内に、前記一の受光領域とは異なる他の受光領域をオンにして受光状態とする、
光測距装置。
Optical ranging device (20)
A light receiving unit (60) having a plurality of light receiving regions (La2, Lb2, Lc2, Ld2) for receiving the incident light and executing the light receiving of the incident light in each of the light receiving regions as a unit.
A light emitting unit (40) that exclusively executes irradiation of irradiation light corresponding to each of the light receiving regions is provided.
When the incident light is received by the light receiving unit in response to the irradiation of the irradiation light by the light emitting unit,
Within the period in which one of the plurality of light receiving regions corresponding to the irradiation of the irradiation light is turned on to be in the light receiving state, another light receiving region different from the one light receiving region is turned on to be in the light receiving state. To do,
Optical ranging device.
前記一の受光領域を受光状態とする期間内に前記一の受光領域が検出した入射光に対応する入射信号と、前記他の受光領域を受光状態とする期間内に前記一の受光領域が検出した外乱光に対応する外乱信号とを用いて前記照射光に対応する信号強度を算出する、請求項1に記載の光測距装置。 The incident signal corresponding to the incident light detected by the one light receiving region during the period when the one light receiving region is in the light receiving state and the one light receiving region are detected during the period when the other light receiving region is in the light receiving state. The optical ranging device according to claim 1, wherein the signal intensity corresponding to the irradiation light is calculated by using the disturbance signal corresponding to the disturbance light. 前記一の受光領域を受光状態とする期間内に前記一の受光領域が検出した入射光に対応する入射信号と、前記一の受光領域を受光状態とする期間内に前記他の受光領域が検出した外乱光に対応する外乱信号とを用いて前記照射光に対応する信号強度を算出する、
請求項1に記載の光測距装置。
The incident signal corresponding to the incident light detected by the one light receiving region during the period when the one light receiving region is in the light receiving state and the other light receiving region are detected during the period when the one light receiving region is in the light receiving state. The signal intensity corresponding to the irradiation light is calculated by using the disturbance signal corresponding to the disturbance light.
The optical ranging device according to claim 1.
前記一の受光領域と、前記他の受光領域とは互いに離間した位置に配される、請求項1から請求項3のいずれか一項に記載の光測距装置。 The optical ranging device according to any one of claims 1 to 3, wherein the one light receiving region and the other light receiving region are arranged at positions separated from each other. 前記複数の受光領域は、直線状に配列された3以上の受光領域で構成され、
前記一の受光領域と、前記他の受光領域との間には、少なくとも前記一の受光領域と前記他の受光領域とは異なる第三の受光領域を備える、請求項4に記載の光測距装置。
The plurality of light receiving regions are composed of three or more light receiving regions arranged in a straight line.
The optical ranging according to claim 4, wherein at least a third light receiving region different from the one light receiving region and the other light receiving region is provided between the one light receiving region and the other light receiving region. apparatus.
JP2019092514A 2019-05-16 2019-05-16 Optical distance measurement device Pending JP2020187042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019092514A JP2020187042A (en) 2019-05-16 2019-05-16 Optical distance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019092514A JP2020187042A (en) 2019-05-16 2019-05-16 Optical distance measurement device

Publications (1)

Publication Number Publication Date
JP2020187042A true JP2020187042A (en) 2020-11-19

Family

ID=73220895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019092514A Pending JP2020187042A (en) 2019-05-16 2019-05-16 Optical distance measurement device

Country Status (1)

Country Link
JP (1) JP2020187042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118552A1 (en) * 2020-12-04 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 Light detection device and light detection system
WO2024048242A1 (en) * 2022-09-02 2024-03-07 株式会社デンソー Ranging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118552A1 (en) * 2020-12-04 2022-06-09 ソニーセミコンダクタソリューションズ株式会社 Light detection device and light detection system
WO2024048242A1 (en) * 2022-09-02 2024-03-07 株式会社デンソー Ranging device

Similar Documents

Publication Publication Date Title
US11977156B2 (en) Optical distance measuring device
JP4810763B2 (en) Distance measuring device
CN112219131B (en) Optical distance measuring device and method thereof
JP7013925B2 (en) Optical ranging device and its method
JP7578031B2 (en) Distance measuring device
JP2000056018A (en) Distance measuring device
JP2020187042A (en) Optical distance measurement device
WO2021210415A1 (en) Optical ranging device
KR20210045457A (en) LIDAR sensor for optically detecting the field of view, work device or vehicle with LIDAR sensor, and method for optically detecting the field of view
JP7259525B2 (en) Optical ranging device and method
US20210239834A1 (en) Optical ranging apparatus and optical ranging method
US12099145B2 (en) SPAD array with ambient light suppression for solid-state LiDAR
JP2020134516A (en) Vehicle periphery monitoring system
WO2021230018A1 (en) Optical distance measurement device
JP7302622B2 (en) optical rangefinder
CN112887628B (en) Optical detection and ranging apparatus and method of increasing dynamic range thereof
WO2023153451A1 (en) Measurement device
WO2021166542A1 (en) Object detection device, light reception unit, and object detection device control method
JP2023116125A (en) Measuring apparatus
US20230408694A1 (en) Segmented flash lidar using stationary reflectors
US20210208277A1 (en) Real-time denoise and saturation removal of 3d lidar data
CN110869801A (en) Laser scanner for a laser radar system and method for operating a laser scanner
JP2020153886A (en) Optical device, optical distance measuring device, and method for these
CN115176171A (en) Optical detection device and method for determining optical axis deviation in optical detection device
CN117434551A (en) Non-coaxial laser radar system and configuration method thereof