JP2020186983A - Hose deterioration determination method - Google Patents

Hose deterioration determination method Download PDF

Info

Publication number
JP2020186983A
JP2020186983A JP2019091024A JP2019091024A JP2020186983A JP 2020186983 A JP2020186983 A JP 2020186983A JP 2019091024 A JP2019091024 A JP 2019091024A JP 2019091024 A JP2019091024 A JP 2019091024A JP 2020186983 A JP2020186983 A JP 2020186983A
Authority
JP
Japan
Prior art keywords
temperature
hose
life
deterioration
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019091024A
Other languages
Japanese (ja)
Other versions
JP7323770B2 (en
Inventor
畑中 進
Susumu Hatanaka
畑中  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2019091024A priority Critical patent/JP7323770B2/en
Publication of JP2020186983A publication Critical patent/JP2020186983A/en
Application granted granted Critical
Publication of JP7323770B2 publication Critical patent/JP7323770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a hose deterioration determination method that can readily determine a deterioration degree of inner surface rubber of a hose with high accuracy.SOLUTION: A hose deterioration determination method is configured to: set a time required until an elongation Eb when inner surface rubber 4 fractures in a prescribed temperature condition drops to a reference elongation Ex as a life of the inner surface rubber 4 in the prescribed temperature condition; perform advance testing, grasp a correlation relationship R between lives in a plurality of temperature conditions and the temperature condition, and input the correlation relationship R to a computation unit 10; segment temperature data on a fluid F in a fluid passage 3 detected by a temperature sensor 9 into a plurality of prescribed temperature ranges; integrate a use time of the hose 2 every each temperature range by the computation unit 10; calculate a thermal aging life of the inner surface rubber 4 on the basis of each representative temperature with the representative temperature in each temperature range as the temperature condition, and the correlation relationship R; and determine a deterioration degree of the inner surface rubber 4 on the basis of a comparison of an integration use time of the hose 2 in each temperature range with a length of the thermal aging life of the inner surface rubber 4.SELECTED DRAWING: Figure 8

Description

本発明は、ホースの劣化判定方法に関し、さらに詳しくは、ホースの内面ゴムの劣化具合を簡便に精度よく判定できるホースの劣化判定方法に関するものである。 The present invention relates to a method for determining deterioration of a hose, and more particularly to a method for determining deterioration of a hose, which can easily and accurately determine the degree of deterioration of the rubber on the inner surface of the hose.

ホースの外面層の劣化具合は、ホース外部からその外観などに基づいて判断し易い。しかしながら、ホースの内面ゴムの劣化具合を把握することは困難である。そこで、ホース寿命時の基準伸びと、その時点でのホースの内ゴム層の等価負荷推定温度とを用いてホースの寿命を予測する方法が提案されている(特許文献1参照)。 The degree of deterioration of the outer layer of the hose can be easily determined from the outside of the hose based on its appearance and the like. However, it is difficult to grasp the degree of deterioration of the rubber on the inner surface of the hose. Therefore, a method of predicting the life of a hose by using the reference elongation at the time of the life of the hose and the estimated equivalent load temperature of the inner rubber layer of the hose at that time has been proposed (see Patent Document 1).

特許文献1で提案されている方法で使用される内ゴム層の等価負荷推定温度は、外ゴム層の等価負荷推定温度から求められるが、これを求めるには外ゴム層の硬度のデータが使用される。即ち、ゴム硬度が、ホースの稼働中の温度および稼働時間に応じて上昇する特性を利用して寿命予測が行われる(段落0021、0030など)。 The estimated equivalent load temperature of the inner rubber layer used in the method proposed in Patent Document 1 is obtained from the estimated equivalent load temperature of the outer rubber layer, and the hardness data of the outer rubber layer is used to obtain this. Will be done. That is, the life is predicted by utilizing the characteristic that the rubber hardness increases according to the operating temperature and the operating time of the hose (paragraphs 0021, 0030, etc.).

しかしながら、ゴム硬度は測定結果にばらつきが生じ易い指標なので、寿命予測の精度を向上させるには不利になる。また、ゴム硬度とホースの稼働時間から稼働中の温度を精度よく推定することも難しい。それ故、ホースの内面ゴムの劣化具合を簡便に精度よく判定するには改善の余地がある。 However, since the rubber hardness is an index in which the measurement results are likely to vary, it is disadvantageous for improving the accuracy of life prediction. It is also difficult to accurately estimate the operating temperature from the rubber hardness and the operating time of the hose. Therefore, there is room for improvement in easily and accurately determining the degree of deterioration of the rubber on the inner surface of the hose.

特開2003−215023号公報Japanese Unexamined Patent Publication No. 2003-215023

本発明の目的は、ホースの内面ゴムの劣化具合を簡便に精度よく判定できるホースの劣化判定方法を提供することにある。 An object of the present invention is to provide a method for determining deterioration of a hose, which can easily and accurately determine the degree of deterioration of the rubber on the inner surface of the hose.

上記目的を達成するため本発明のホースの劣化判定方法は、ホースの流体流路を形成する内面ゴムの熱老化寿命と、前記流体流路を流れる流体の温度データとを用いるホースの劣化判定方法であって、所定の温度条件において前記内面ゴムの破断時伸びが基準値以下になるまでに要する時間を前記所定の温度条件での前記内面ゴムの寿命と設定し、事前試験によって前記寿命と前記温度条件との相関関係を把握しておき、前記温度データを複数の所定の温度範囲に区分してそれぞれの前記温度範囲毎の前記ホースの使用時間を積算し、それぞれの前記温度範囲での代表温度を前記温度条件として、それぞれの前記代表温度と前記相関関係とにより算出される寿命をそれぞれの前記代表温度での前記熱老化寿命とし、積算したそれぞれの前記温度範囲での積算使用時間と、算出したそれぞれの前記温度範囲での前記熱老化寿命と、に基づいて前記内面ゴムの劣化具合を判定することを特徴とする。 In order to achieve the above object, the hose deterioration determination method of the present invention is a hose deterioration determination method using the thermal aging life of the inner rubber forming the fluid flow path of the hose and the temperature data of the fluid flowing through the fluid flow path. The time required for the elongation at break of the inner surface rubber to become equal to or less than the reference value under a predetermined temperature condition is set as the life of the inner surface rubber under the predetermined temperature condition, and the life and the said life are obtained by a preliminary test. The correlation with the temperature condition is grasped, the temperature data is divided into a plurality of predetermined temperature ranges, the usage time of the hose for each of the temperature ranges is integrated, and the representative in each of the temperature ranges. With the temperature as the temperature condition, the life calculated by each of the representative temperatures and the correlation is defined as the heat aging life at each of the representative temperatures, and the integrated usage time in each of the temperature ranges is integrated. It is characterized in that the degree of deterioration of the inner surface rubber is determined based on the calculated heat aging life in each of the temperature ranges.

本発明によれば、事前試験を行うことで内面ゴムの伸びを指標にした寿命と温度条件との相関関係を把握しておく。そして、ホースの劣化判定をする際には、ホースの流体流路を流れる流体の温度を検知することで、検知した温度データを複数の所定の温度範囲に区分してそれぞれの温度範囲でのホースの積算使用時間と、それぞれの温度範囲での代表温度と前記相関関係とにより算出した内面ゴムの熱老化寿命との長さを比較する。内面ゴムの劣化に大きく影響する流体の温度データを直接使用し、内面ゴムの劣化状態が直接的に表れる伸びを指標にした寿命を使用することで、内面ゴムの劣化具合を簡便に精度よく判定することが可能になる。 According to the present invention, the correlation between the life and the temperature condition using the elongation of the inner rubber as an index is grasped by performing a preliminary test. Then, when determining the deterioration of the hose, by detecting the temperature of the fluid flowing through the fluid flow path of the hose, the detected temperature data is divided into a plurality of predetermined temperature ranges and the hose in each temperature range is determined. The lengths of the cumulative usage time of the above and the heat aging life of the inner surface rubber calculated by the representative temperature in each temperature range and the above correlation are compared. By directly using the temperature data of the fluid that greatly affects the deterioration of the inner rubber and using the life indexed by the elongation at which the deterioration state of the inner rubber directly appears, the degree of deterioration of the inner rubber can be easily and accurately determined. It becomes possible to do.

ホースを一部切り欠いて例示する説明図である。It is explanatory drawing which illustrates by cutting out a part of a hose. 図1のホースの横断面図である。It is a cross-sectional view of the hose of FIG. 本発明に用いる判定装置を例示する説明図である。It is explanatory drawing which illustrates the determination apparatus used in this invention. 複数の温度条件での内面ゴムの伸びと試験経過時間との関係を例示するグラフ図である。It is a graph which illustrates the relationship between the elongation of the inner surface rubber under a plurality of temperature conditions, and the elapsed time of a test. 内面ゴムの寿命と温度条件との相関関係(内面ゴムの熱老化寿命)を例示するグラフ図である。It is a graph which illustrates the correlation (heat aging life of an inner rubber) with a temperature condition (heat aging life of an inner rubber). 流体流路を流れる流体の温度データの経時変化を例示するグラフ図である。It is a graph which illustrates the time-dependent change of the temperature data of the fluid flowing through a fluid flow path. それぞれの温度範囲でのホースの積算使用時間を例示するグラフ図である。It is a graph which illustrates the integrated use time of a hose in each temperature range. それぞれの温度範囲でのホースの積算使用時間と、内面ゴムの熱老化寿命とを例示するグラフ図である。It is a graph which illustrates the cumulative use time of the hose in each temperature range, and the heat aging life of the inner rubber.

以下、ホースの劣化判定方法を図に示した実施形態に基づいて説明する。 Hereinafter, a method for determining deterioration of the hose will be described based on the embodiment shown in the figure.

図1、図2に例示するように、本発明による劣化の判定対象になるホース2は、内面ゴム4、補強層5、外面層6が内周側から順に同軸上に積層されて形成されている。この実施形態では補強層5が2層積層されていて、補強層5どうしの間に中間ゴム層5bが積層されている。内面ゴム4は最内周側に位置していて流体流路3を形成する。内面ゴム4には流体Fが直接接触するので、流体Fに対する耐久性等を考慮して適切なゴム種が採用される。流体Fとしては作動油、エアコン冷媒、水などを例示できるが特に限定されない。 As illustrated in FIGS. 1 and 2, the hose 2 to be determined for deterioration according to the present invention is formed by laminating the inner surface rubber 4, the reinforcing layer 5, and the outer surface layer 6 coaxially in this order from the inner peripheral side. There is. In this embodiment, two reinforcing layers 5 are laminated, and an intermediate rubber layer 5b is laminated between the reinforcing layers 5. The inner surface rubber 4 is located on the innermost peripheral side and forms the fluid flow path 3. Since the fluid F comes into direct contact with the inner surface rubber 4, an appropriate rubber type is adopted in consideration of durability against the fluid F and the like. Examples of the fluid F include hydraulic oil, air conditioner refrigerant, and water, but are not particularly limited.

補強層5は金属線や繊維等の補強線材5aにより形成されている。この実施形態では補強層5は、補強線材5aが編組されて形成されたブレード層になっているが、補強線材5aを螺旋状に巻き付けたスパイラル層の場合もある。補強線材5aの材質や補強層5の積層数はホース2に要求される耐圧性等を考慮して決定される。 The reinforcing layer 5 is formed of a reinforcing wire 5a such as a metal wire or a fiber. In this embodiment, the reinforcing layer 5 is a blade layer formed by braiding the reinforcing wire 5a, but it may be a spiral layer in which the reinforcing wire 5a is spirally wound. The material of the reinforcing wire 5a and the number of layers of the reinforcing layer 5 are determined in consideration of the pressure resistance required for the hose 2.

外面層6は例えば、ゴムや樹脂等によって形成される。外面層6には耐外傷性や耐候性等を考慮して適切な材質が採用される。ホース2には必要に応じてその他の部材(層)が設けられる。 The outer surface layer 6 is formed of, for example, rubber, resin, or the like. An appropriate material is adopted for the outer surface layer 6 in consideration of trauma resistance, weather resistance and the like. Other members (layers) are provided on the hose 2 as needed.

本発明によってホースの劣化判定を行うには、図3に例示する判定装置8を用いる。この判定装置8は、温度センサ9と演算部10とを備えている。温度センサ9は、ホース2の流体流路3を流れる流体Fの温度Kfを逐次検知する。この実施形態では、温度センサ9はホース金具7の上流側に設置されている。 In order to determine the deterioration of the hose according to the present invention, the determination device 8 illustrated in FIG. 3 is used. The determination device 8 includes a temperature sensor 9 and a calculation unit 10. The temperature sensor 9 sequentially detects the temperature K f of the fluid F flowing through the fluid flow path 3 of the hose 2. In this embodiment, the temperature sensor 9 is installed on the upstream side of the hose fitting 7.

演算部10には温度センサ9により検知された流体Fの温度データが逐入力される。演算部10としてはコンピュータ等が用いられる。温度センサ9と演算部10とは有線または無線によって通信可能に接続されている。インターネット等の通信ネットワークを介して温度センサ9と演算部10とを通信可能に接続することで、ホース2の使用場所(設置場所)に拘わらず、使用中のホース2の流体Fの温度データを演算部10に容易に逐次入力することができる。演算部10にはその他に、後述する相関関係Rなどを示す様々なデータが入力されていて、演算部10によって様々なデータ処理が行われる。演算部10は、ホース2が使用されている自動車や建設車両に搭載することもできる。 The temperature data of the fluid F detected by the temperature sensor 9 is input to the calculation unit 10 one by one. A computer or the like is used as the calculation unit 10. The temperature sensor 9 and the calculation unit 10 are communicably connected by wire or wirelessly. By connecting the temperature sensor 9 and the calculation unit 10 in a communicable manner via a communication network such as the Internet, the temperature data of the fluid F of the hose 2 in use can be obtained regardless of the place where the hose 2 is used (installation place). It can be easily sequentially input to the calculation unit 10. In addition, various data indicating the correlation R and the like, which will be described later, are input to the calculation unit 10, and the calculation unit 10 performs various data processing. The calculation unit 10 can also be mounted on an automobile or a construction vehicle in which the hose 2 is used.

ホース2の端部にホース金具7が取付けられたホース組立体1は、例えば、自動車や建設車両に搭載される部品、その他の様々な機器の部品に装着されて使用される。ホース2は使用場所のスペースに応じて様々な状態で装着され、この実施形態のように屈曲した状態だけでなく直線的な状態で装着されることもある。また、ホース2は一定状態に固定されるだけでなく、可動状態で装着されることもある。 The hose assembly 1 to which the hose metal fitting 7 is attached to the end of the hose 2 is used by being attached to, for example, a part mounted on an automobile or a construction vehicle, or a part of various other devices. The hose 2 is mounted in various states depending on the space of the place of use, and may be mounted not only in a bent state as in this embodiment but also in a linear state. Further, the hose 2 is not only fixed in a constant state, but may also be attached in a movable state.

本発明では、内面ゴム4の劣化具合に注目してホース2の劣化状況を判定する。そのため、内面ゴム4の熱老化寿命と流体Fの温度データとを用いる。 In the present invention, the deterioration state of the hose 2 is determined by paying attention to the deterioration degree of the inner surface rubber 4. Therefore, the heat aging life of the inner rubber 4 and the temperature data of the fluid F are used.

内面ゴム4は加熱の影響によって伸びEが変化し、破断時伸びEbが基準値EX以下になった場合は弾性が損なわれて老化して寿命になったと見なすことができる。したがって、所定の温度条件に維持した内面ゴム4の破断時伸びEbが基準値EX以下になるまでに要する時間をこの所定の温度条件での内面ゴム4の寿命と設定できる。 Inner rubber 4 can be regarded as the elongation E under the influence of heat changes, elongation at break Eb is when it becomes less than the reference value E X becomes life aged impaired elasticity. Therefore, the time required for the elongation at break Eb of inner rubber 4 which is maintained at a predetermined temperature condition is less than the reference value E X can be set as the life of the inner rubber 4 at the predetermined temperature condition.

基準値EXは適切な値に設定されるが、例えば破断時伸びEbが30%以上100%以下の間の所定値にする。具体的には基準値EXを破断時伸びEb50%に設定すると、内面ゴム4は概ね弾性が損なわれて寿命であると判断にするには妥当である。 Reference value E X is set to a suitable value, for example, elongation at break Eb is the predetermined value between 100% or less than 30%. Specifically when setting the reference value E X in elongation at break Eb50%, inner rubber 4 is generally appropriate to the determined elastic is impaired by life.

そこで、本発明では事前試験として内面ゴム4の熱老化試験を行って、内面ゴム4の寿命と温度条件との相関関係Rを把握する。事前試験では、図4に例示するように複数の温度条件K(K1、K2、K3)で内面ゴム4の破断時伸びEbを経時的に測定してデータを取得する。内面ゴム4の熱老化寿命を精度よく把握するには、この温度条件Kはホース2の使用温度の範囲内に設定するとよい。破断時伸びEbの測定は、JIS K 6251の規定に準じて行う。3水準以上の温度条件にすることが、内面ゴム4の熱劣化寿命を精度よく把握するには有利になる。取得したデータは演算部10に入力、記憶される。 Therefore, in the present invention, a heat aging test of the inner surface rubber 4 is performed as a preliminary test to grasp the correlation R between the life of the inner surface rubber 4 and the temperature condition. In the preliminary test, as illustrated in FIG. 4, the elongation Eb at break of the inner surface rubber 4 is measured over time under a plurality of temperature conditions K (K1, K2, K3) to acquire data. In order to accurately grasp the heat aging life of the inner rubber 4, this temperature condition K may be set within the operating temperature range of the hose 2. The elongation Eb at break is measured according to the provisions of JIS K 6251. It is advantageous to set the temperature condition to 3 levels or more in order to accurately grasp the thermal deterioration life of the inner surface rubber 4. The acquired data is input to and stored in the calculation unit 10.

事前試験はホース2のサンプルを使用することも、内面ゴム4のシートサンプルを使用することもできる。ホース2のサンプルを使用する場合は例えば、ホース2の使用時に流体流路3を実際に流れる流体Lを所定の温度条件に加熱して、ホース2のサンプルの流体流路3に流すことにより、内面ゴム4を所定の温度条件に維持するとよい。流体流路3に流す流体Lの圧力(ホース内圧)は、ホース2の規定使用圧力の最大値にするとよい。破断時伸びEbを測定する際には、内面ゴム4の測定片をホース2から切り出す。 For the preliminary test, a sample of the hose 2 can be used, or a sheet sample of the inner rubber 4 can be used. When the sample of the hose 2 is used, for example, the fluid L that actually flows in the fluid flow path 3 when the hose 2 is used is heated to a predetermined temperature condition and flows through the fluid flow path 3 of the sample of the hose 2. The inner surface rubber 4 may be maintained at a predetermined temperature condition. The pressure of the fluid L flowing through the fluid flow path 3 (internal pressure of the hose) may be set to the maximum value of the specified working pressure of the hose 2. When measuring the elongation Eb at break, the measuring piece of the inner surface rubber 4 is cut out from the hose 2.

事前試験に内面ゴム4のシートサンプルを使用する場合は例えば、ホース2の使用時に流体流路3を実際に流れる流体Lを所定の温度条件に加熱して、内面ゴム4のシートサンプルを接触させる(浸漬させる)ことにより、内面ゴム4を所定の温度条件に維持するとよい。ホース2の使用時に流体流路3を実際に流れる流体Lに限らず、この流体Lと同等の流体等を用いることもできるが、この流体Lを使用すると内面ゴム4の熱劣化寿命を精度よく把握するには有利になる。 When the sheet sample of the inner surface rubber 4 is used for the preliminary test, for example, when the hose 2 is used, the fluid L actually flowing in the fluid flow path 3 is heated to a predetermined temperature condition, and the sheet sample of the inner surface rubber 4 is brought into contact with the sheet sample. It is preferable to maintain the inner surface rubber 4 at a predetermined temperature condition by (immersing). When the hose 2 is used, not only the fluid L that actually flows through the fluid flow path 3 but also a fluid equivalent to this fluid L can be used, but if this fluid L is used, the thermal deterioration life of the inner surface rubber 4 can be accurately shortened. It will be advantageous to grasp.

尚、図4に例示するデータは、内面ゴム4の破断時伸びEbが基準値EX以下になるまで試験を行って取得することに限定されない。例えば、内面ゴム4の破断時伸びEbが基準値EXになる前の短時間の試験データを、公知の解析方法で劣化促進させた計算値データを用いることもできる。 The data illustrated in FIG. 4 is not limited to be acquired tested until elongation at break Eb of inner rubber 4 is less than the reference value E X. For example, it is also possible to use a calculation value data of previous short test data was accelerated deterioration in a known analysis method elongation at break Eb of inner rubber 4 becomes the reference value E X.

図4では、温度K1、K2、K3の条件下ではそれぞれ、内面ゴム4の破断時伸びEbが基準値EXになるまでに要する時間がt1、t2、t3になっている。したがって、温度K1、K2、K3の条件下での内面ゴム4の寿命がそれぞれ、t1、t2、t3と見なされる。 In Figure 4, respectively in the conditions of temperature K1, K2, K3, time required for the elongation at break Eb of inner rubber 4 becomes the reference value E X is in t1, t2, t3. Therefore, the life of the inner surface rubber 4 under the conditions of temperatures K1, K2, and K3 is regarded as t1, t2, and t3, respectively.

次いで、この寿命t1、t2、t3と温度条件K(K1、K2、K3)との相関関係Rを把握する。そこで、図5に例示するように、演算部10は図4のデータを処理することにより図5に例示するデータを算出する。図5では、縦軸を各温度条件(K1、K2、K3)での内面ゴム4の寿命(t1、t2、t3)の対数ln(時間t)、横軸を温度条件K(K1、K2、K3)の逆数(1/K)としてプロットされている。そして、それぞれのプロットを結ぶ直線Cを引く。即ち、アレニウスプロットにより直線Cが取得される。この直線Cが、内面ゴム4の寿命と温度条件Kとの相関関係Rを示していて、内面ゴム4の熱老化寿命を示すデータとなる。この相関関係Rは、演算部10に入力して記憶させておく。 Next, the correlation R between the lifetimes t1, t2, t3 and the temperature condition K (K1, K2, K3) is grasped. Therefore, as illustrated in FIG. 5, the calculation unit 10 calculates the data illustrated in FIG. 5 by processing the data in FIG. In FIG. 5, the vertical axis is the logarithm ln (time t) of the life (t1, t2, t3) of the inner rubber 4 under each temperature condition (K1, K2, K3), and the horizontal axis is the temperature condition K (K1, K2, K1). It is plotted as the reciprocal of K3) (1 / K). Then, a straight line C connecting each plot is drawn. That is, the straight line C is acquired by the Arrhenius plot. This straight line C shows the correlation R between the life of the inner surface rubber 4 and the temperature condition K, and is data showing the heat aging life of the inner surface rubber 4. This correlation R is input to the calculation unit 10 and stored.

尚、内面ゴム4のゴム種、配合剤の種類、ゴムやそれぞれの配合剤の配合比率、製造条件(混練条件や加硫条件等)などが異なると、熱老化寿命にも違いが生じる。即ち、内面ゴム4の仕様が異なると熱老化寿命に違いが生じる。そこで、内面ゴム4の仕様毎に図5に例示する相関関係Rを把握して熱老化寿命を算出する。 If the rubber type of the inner surface rubber 4, the type of the compounding agent, the compounding ratio of the rubber and each compounding agent, the manufacturing conditions (kneading conditions, vulcanization conditions, etc.) are different, the heat aging life also differs. That is, if the specifications of the inner rubber 4 are different, the heat aging life will be different. Therefore, the heat aging life is calculated by grasping the correlation R illustrated in FIG. 5 for each specification of the inner surface rubber 4.

次に、ホース2の劣化判定をする手順の一例を説明する。 Next, an example of the procedure for determining the deterioration of the hose 2 will be described.

図3に例示したように、実際に使用されているホース2の流体流路3に流れている流体Fの温度Kfが温度センサ9によって逐次検知される。図6に例示するように、演算部10には、検知された温度データが逐次入力されて記憶される。図6の縦軸は流体Fの温度Kf、横軸はホース2の使用時間tを示している。 As illustrated in FIG. 3, the temperature K f of the fluid F flowing in the fluid flow path 3 of the hose 2 actually used is sequentially detected by the temperature sensor 9. As illustrated in FIG. 6, the detected temperature data is sequentially input and stored in the calculation unit 10. The vertical axis of FIG. 6 shows the temperature K f of the fluid F, and the horizontal axis shows the usage time t of the hose 2.

図6の温度KXは、内面ゴム4の劣化を判定する際に考慮すべき下限温度を示している。流体Fの温度Kfがそれ程高くなければ、内面ゴム4の劣化に対する影響が無視できるのでこのように下限温度KXを設定して、下限温度KXよりも低い温度データは内面ゴム4の劣化の判定に利用しないようにしてもよい。下限温度KXは例えば50℃に設定して、50℃以上のデータを内面ゴム4の劣化の判定に利用する。下限温度Kxを設定するのは任意であり、すべての温度データを利用して劣化を判定することもできる。 The temperature K X in FIG. 6 indicates the lower limit temperature to be considered when determining the deterioration of the inner surface rubber 4. If the temperature K f of the fluid F is not so high, the influence on the deterioration of the inner surface rubber 4 can be ignored. Therefore, the lower limit temperature K X is set in this way, and the temperature data lower than the lower limit temperature K X is the deterioration of the inner surface rubber 4. It may not be used for the judgment of. The lower limit temperature K X is set to, for example, 50 ° C., and the data of 50 ° C. or higher is used for determining the deterioration of the inner surface rubber 4. It is arbitrary to set the lower limit temperature Kx, and deterioration can be determined using all the temperature data.

次いで図7に例示するように演算部10は、入力された温度データを複数の所定の温度範囲に区分し、区分されたそれぞれの温度範囲毎にホース2の使用時間を積算する。即ち、図6のデータを処理することで図7に例示するデータを算出する。図7では、縦軸がホース2の積算使用時間tの対数ln(時間t)、横軸が流体Fの温度Kfの逆数(1/Kf)になっている。 Next, as illustrated in FIG. 7, the calculation unit 10 divides the input temperature data into a plurality of predetermined temperature ranges, and integrates the usage time of the hose 2 for each of the divided temperature ranges. That is, the data illustrated in FIG. 7 is calculated by processing the data in FIG. In FIG. 7, the vertical axis is the logarithm ln (time t) of the cumulative usage time t of the hose 2, and the horizontal axis is the reciprocal of the temperature K f of the fluid F (1 / K f ).

図7では、温度データはn個の温度範囲に区分されて、それぞれの区分の温度範囲の大きさは同じになっている。即ち、k2−k1=k3−k2=・・・=kn+1−kn=一定になっている。そして、最も左側の温度範囲ではホース2の積算使用時間tがtw1になっていて、順に隣り合う温度範囲では、この積算使用時間がtw2、tw3、・・・twnになっている。 In FIG. 7, the temperature data is divided into n temperature ranges, and the magnitude of the temperature range of each division is the same. That is, k 2 −k 1 = k 3 −k 2 = ・ ・ ・ = k n + 1 −k n = is constant. In the leftmost temperature range, the cumulative usage time t of the hose 2 is t w1 , and in the adjacent temperature ranges, the cumulative usage time is t w2 , t w3 , ... t wn . ..

それぞれの温度範囲の上限温度と下限温度との差異は2℃以上20℃以上に設定するとよい。即ち、k2−k1、k3−k2、・・・、kn+1−kn=の値は2℃以上20℃以下にするとよい。この差異が2℃未満であるとデータ処理が煩雑になる割に内面ゴム4の劣化判定の精度の向上がそれほど期待できず、20℃超になると劣化判定の精度を向上させることが困難になる。 The difference between the upper limit temperature and the lower limit temperature of each temperature range may be set to 2 ° C. or higher and 20 ° C. or higher. That is, the values of k 2 −k 1 , k 3 −k 2 , ..., K n + 1 −k n = should be 2 ° C. or higher and 20 ° C. or lower. If this difference is less than 2 ° C, data processing becomes complicated, but improvement in the accuracy of deterioration determination of the inner rubber 4 cannot be expected so much, and if it exceeds 20 ° C, it becomes difficult to improve the accuracy of deterioration determination. ..

次いで、予め把握している相関関係Rを用いて、それぞれの温度範囲での代表温度を温度条件Kとして、それぞれの代表温度と相関関係Rとによって内面ゴム4の熱老化寿命を演算部10によって算出する。具合的には図8に例示するように、図5に例示したデータと図7に例示したデータと重ね合せるようにして、それぞれの温度範囲(代表温度)での熱老化寿命を算出する。 Next, using the correlation R grasped in advance, the representative temperature in each temperature range is set as the temperature condition K, and the heat aging life of the inner rubber 4 is determined by the calculation unit 10 by the respective representative temperatures and the correlation R. calculate. Specifically, as illustrated in FIG. 8, the heat aging life in each temperature range (representative temperature) is calculated by superimposing the data illustrated in FIG. 5 and the data illustrated in FIG.

図8ではそれぞれの温度範囲の代表温度として、それぞれの温度範囲における上限温度(k1、k2、k3、k4・・・kn)が用いられている。そして、最も左側の温度範囲では内面ゴム4の熱老化寿命がtL1になっていて、順に隣り合う温度範囲では、この熱老化寿命がtL2、tL3、・・・tLnになっている。 In FIG. 8, the upper limit temperatures (k 1 , k 2 , k 3 , k 4 ... k n ) in each temperature range are used as representative temperatures in each temperature range. In the leftmost temperature range, the heat aging life of the inner rubber 4 is t L1 , and in the adjacent temperature ranges, the heat aging life is t L2 , t L3 , ... T Ln . ..

演算部10は、それぞれの温度範囲でのホース2の積算使用時間tと、それぞれの温度範囲での熱老化寿命と、に基づいて内面ゴム4の劣化具合を判定する。即ち、この積算使用時間tとこの熱老化寿命との長さの比較、両者の長さ比を用いて内面ゴム4の劣化具合を判定する。具体的には、下記(1)式に基づいて判断寿命Lを算出して劣化具合の判定を行う。
判断寿命L=tw1/tL1+tw2/tL2+tw3/tL3+・・・+twn/tLn (1)
The calculation unit 10 determines the degree of deterioration of the inner surface rubber 4 based on the cumulative usage time t of the hose 2 in each temperature range and the heat aging life in each temperature range. That is, the degree of deterioration of the inner surface rubber 4 is determined by comparing the lengths of the cumulative usage time t and the heat aging life and the length ratio of the two. Specifically, the determination life L is calculated based on the following equation (1) to determine the degree of deterioration.
Judgment life L = t w1 / t L1 + t w2 / t L2 + t w3 / t L3 + ... + t wn / t Ln (1)

ここで判断寿命L≧1の場合は、内面ゴム4は熱劣化が進行していて既に寿命に達しているので、継続してホース2を使用することは不適切であると判定される。一方、判断寿命L<1の場合は、内面ゴム4は熱劣化が許容限度まで進行していない状態で未だ寿命に達していないので、継続してホース2を使用することができると判定される。即ち、図8のそれぞれの温度範囲(棒グラフで示された範囲)において、斜線で示された熱老化寿命を範囲の割合が多い程、劣化具合が進行していると判定される。 Here, when the determined life L ≧ 1, it is determined that it is inappropriate to continuously use the hose 2 because the inner surface rubber 4 has already reached the end of its life due to the progress of thermal deterioration. On the other hand, when the determined life L <1, it is determined that the hose 2 can be continuously used because the inner rubber 4 has not reached the end of its life in a state where the thermal deterioration has not progressed to the allowable limit. .. That is, in each temperature range (range shown by the bar graph) in FIG. 8, it is determined that the degree of deterioration progresses as the proportion of the heat aging life indicated by the diagonal line increases.

それぞれの温度範囲の代表温度としては、それぞれの温度範囲における上限温度に限らず、下限温度や、上限温度と下限温度との中間温度などを用いることもできる。それぞれの温度範囲の代表温度として、それぞれの温度範囲における上限温度を用いると、判断寿命Lがより大きくなるので、内面ゴム4の熱劣化がより進行していると見なされる。これにより、内面ゴム4の劣化状態がより厳しく判定されるので、使用中のホース2が熱劣化して使用不能になる不具合を回避するには有利になる。 As the representative temperature of each temperature range, not only the upper limit temperature in each temperature range but also the lower limit temperature and the intermediate temperature between the upper limit temperature and the lower limit temperature can be used. When the upper limit temperature in each temperature range is used as the representative temperature in each temperature range, the judgment life L becomes larger, so that it is considered that the thermal deterioration of the inner surface rubber 4 is further progressing. As a result, the deteriorated state of the inner surface rubber 4 is determined more severely, which is advantageous in avoiding the problem that the hose 2 in use is thermally deteriorated and becomes unusable.

以上説明したように、事前試験を行うことで上述した相関関係Rを予め把握しておき、判定対象となるホース2の流体流路3を流れる流体Fの温度Kfを検知する機器があればよいので、判定装置8を非常に簡素な構成にすることができる。ホース2の劣化具合を判定する際には、予め把握している相関関係Rと逐次検知した流体Fの温度データを用いて、演算部10によってデータ処理を行なえばよい。データ処理としては、区分したそれぞれの温度範囲でのホース2の積算使用時間tと、それぞれの温度範囲での代表温度と相関関係Rとにより算出した内面ゴム4の熱老化寿命との長さを比較すればよい。 As described above, if there is a device that can grasp the above-mentioned correlation R in advance by performing a preliminary test and detect the temperature K f of the fluid F flowing through the fluid flow path 3 of the hose 2 to be determined. Therefore, the determination device 8 can have a very simple configuration. When determining the degree of deterioration of the hose 2, the calculation unit 10 may perform data processing using the correlation R previously grasped and the temperature data of the fluid F sequentially detected. As data processing, the length of the integrated usage time t of the hose 2 in each of the divided temperature ranges and the heat aging life of the inner surface rubber 4 calculated by the representative temperature in each temperature range and the correlation R is calculated. Just compare.

そして、劣化判定には、内面ゴム4の劣化に大きく影響する流体Fの温度データを直接使用するとともに、内面ゴム4の劣化状態が直接的に表れる伸びEを指標にした寿命を使用する。そのため、内面ゴム4の劣化具合を簡便に精度よく判定するには有利になっている。 Then, in the deterioration determination, the temperature data of the fluid F, which greatly affects the deterioration of the inner surface rubber 4, is directly used, and the life with the elongation E at which the deterioration state of the inner surface rubber 4 directly appears is used as an index. Therefore, it is advantageous to easily and accurately determine the degree of deterioration of the inner surface rubber 4.

1 ホース組立体
2 ホース
3 流体流路
4 内面ゴム
5 補強層
5a 補強線材
5b 中間ゴム層
6 外面層
7 ホース金具
8 判定装置
9 温度センサ
10 演算部
F 流体
1 Hose assembly 2 Hose 3 Fluid flow path 4 Inner surface rubber 5 Reinforcing layer 5a Reinforcing wire 5b Intermediate rubber layer 6 Outer surface layer 7 Hose metal fittings 8 Judgment device 9 Temperature sensor 10 Calculation unit F Fluid

Claims (6)

ホースの流体流路を形成する内面ゴムの熱老化寿命と、前記流体流路を流れる流体の温度データとを用いるホースの劣化判定方法であって、
所定の温度条件において前記内面ゴムの破断時伸びが基準値以下になるまでに要する時間を前記所定の温度条件での前記内面ゴムの寿命と設定し、事前試験によって前記寿命と前記温度条件との相関関係を把握しておき、
前記温度データを複数の所定の温度範囲に区分してそれぞれの前記温度範囲毎の前記ホースの使用時間を積算し、それぞれの前記温度範囲での代表温度を前記温度条件として、それぞれの前記代表温度と前記相関関係とにより算出される寿命をそれぞれの前記代表温度での前記熱老化寿命とし、積算したそれぞれの前記温度範囲での積算使用時間と、算出したそれぞれの前記温度範囲での前記熱老化寿命と、に基づいて前記内面ゴムの劣化具合を判定することを特徴とするホースの劣化判定方法。
A method for determining deterioration of a hose using the heat aging life of the inner rubber forming the fluid flow path of the hose and the temperature data of the fluid flowing through the fluid flow path.
The time required for the elongation at break of the inner surface rubber to fall below the reference value under a predetermined temperature condition is set as the life of the inner surface rubber under the predetermined temperature condition, and the life and the temperature condition are determined by a preliminary test. Know the correlation,
The temperature data is divided into a plurality of predetermined temperature ranges, the usage time of the hose for each temperature range is integrated, and the representative temperature in each temperature range is used as the temperature condition, and each representative temperature is used. The life calculated by the above correlation is defined as the heat aging life at each of the representative temperatures, and the integrated usage time in each of the integrated temperature ranges and the calculated heat aging in each of the temperature ranges are calculated. A method for determining deterioration of a hose, which comprises determining the degree of deterioration of the inner surface rubber based on the life.
前記基準値を30%以上100%以下の所定値にする請求項1に記載のホースの劣化判定方法。 The method for determining deterioration of a hose according to claim 1, wherein the reference value is set to a predetermined value of 30% or more and 100% or less. 前記事前試験の前記温度条件を、前記ホースの使用温度の範囲内に設定する請求項1または2に記載のホースの劣化判定方法。 The method for determining deterioration of a hose according to claim 1 or 2, wherein the temperature condition of the preliminary test is set within the operating temperature range of the hose. 前記温度データとして、50℃以上のデータを使用する請求項1〜3のいずれかに記載のホースの劣化判定方法。 The method for determining deterioration of a hose according to any one of claims 1 to 3, wherein data of 50 ° C. or higher is used as the temperature data. それぞれの前記温度範囲の上限温度と下限温度との差異を2℃以上20℃以下に設定する請求項1〜4のいずれかに記載のホースの劣化判定方法。 The method for determining deterioration of a hose according to any one of claims 1 to 4, wherein the difference between the upper limit temperature and the lower limit temperature of each of the above temperature ranges is set to 2 ° C. or higher and 20 ° C. or lower. 前記代表温度として、それぞれの前記温度範囲の上限温度を使用する請求項1〜5のいずれかに記載のホースの劣化判定方法。 The method for determining deterioration of a hose according to any one of claims 1 to 5, wherein the upper limit temperature of each of the above temperature ranges is used as the representative temperature.
JP2019091024A 2019-05-14 2019-05-14 Hose deterioration determination method Active JP7323770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019091024A JP7323770B2 (en) 2019-05-14 2019-05-14 Hose deterioration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091024A JP7323770B2 (en) 2019-05-14 2019-05-14 Hose deterioration determination method

Publications (2)

Publication Number Publication Date
JP2020186983A true JP2020186983A (en) 2020-11-19
JP7323770B2 JP7323770B2 (en) 2023-08-09

Family

ID=73221636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091024A Active JP7323770B2 (en) 2019-05-14 2019-05-14 Hose deterioration determination method

Country Status (1)

Country Link
JP (1) JP7323770B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567494A (en) * 2021-08-26 2021-10-29 广东电网有限责任公司东莞供电局 Aging degree testing method and model of electric power composite grease
WO2023013308A1 (en) * 2021-08-06 2023-02-09 株式会社ブリヂストン Remaining hose service life prediction method and remaining hose service life prediction system
JP7468441B2 (en) 2021-04-09 2024-04-16 トヨタ自動車株式会社 Cooling water deterioration calculation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312660A (en) * 1992-05-08 1993-11-22 Komatsu Ltd Device for reporting replacement timing of rubber hose
JPH11344431A (en) * 1998-06-03 1999-12-14 Mitsubishi Cable Ind Ltd Method for estimating remaining life of organic polymer material article
JP2011067413A (en) * 2009-09-25 2011-04-07 Tokuyama Dental Corp Dental curable material storing container
JP2014025753A (en) * 2012-07-25 2014-02-06 Toshiba Industrial Products Manufacturing Corp Deterioration diagnostic device and degradation diagnostic method for on-vehicle rotary electric machine
US8829929B1 (en) * 2002-03-06 2014-09-09 Kenneth S. Watkins, Jr. Method and apparatus for measuring degradation of rubber products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312660A (en) * 1992-05-08 1993-11-22 Komatsu Ltd Device for reporting replacement timing of rubber hose
JPH11344431A (en) * 1998-06-03 1999-12-14 Mitsubishi Cable Ind Ltd Method for estimating remaining life of organic polymer material article
US8829929B1 (en) * 2002-03-06 2014-09-09 Kenneth S. Watkins, Jr. Method and apparatus for measuring degradation of rubber products
JP2011067413A (en) * 2009-09-25 2011-04-07 Tokuyama Dental Corp Dental curable material storing container
JP2014025753A (en) * 2012-07-25 2014-02-06 Toshiba Industrial Products Manufacturing Corp Deterioration diagnostic device and degradation diagnostic method for on-vehicle rotary electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468441B2 (en) 2021-04-09 2024-04-16 トヨタ自動車株式会社 Cooling water deterioration calculation system
WO2023013308A1 (en) * 2021-08-06 2023-02-09 株式会社ブリヂストン Remaining hose service life prediction method and remaining hose service life prediction system
CN113567494A (en) * 2021-08-26 2021-10-29 广东电网有限责任公司东莞供电局 Aging degree testing method and model of electric power composite grease
CN113567494B (en) * 2021-08-26 2023-06-27 广东电网有限责任公司东莞供电局 Aging degree testing method and model for electric power compound grease

Also Published As

Publication number Publication date
JP7323770B2 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
JP7323770B2 (en) Hose deterioration determination method
US9897586B2 (en) Multi point method and apparatus for monitoring the aging and changes in corresponding tensile performance properties of a polymer
CN108885154B (en) Valve diagnosis method and valve diagnosis device
US20220316979A1 (en) Hose remaining lifetime prediction method and hose remaining lifetime prediction system
EP3121584B1 (en) Method for predicting remaining service life of hose and method for diagnosing deterioration of hose
JPWO2017033517A1 (en) Rope deterioration detection device, elevator device equipped with rope deterioration detection device, and rope deterioration detection method
JPWO2018074433A1 (en) Crushing strength prediction method
JP2003500810A (en) Method and apparatus for predicting heater failure
JP2018096554A (en) Refrigerator performance evaluation method, its related flow meter calibration method and its related thermometer calibration method
JPWO2017002370A1 (en) Reaction force measuring device, deterioration diagnosis method, and deterioration diagnosis device
JP2014145657A (en) Method and device for evaluating life of metal member
Long et al. The effects of SHM system parameters on the value of damage detection information
CN116449211A (en) Method for monitoring floating state storage battery and related components
KR101538548B1 (en) Controling method of very small fraction of nonconforming
CN110795798B (en) Steel wire rope reliable life calculation method based on multiple samples
CN115201718A (en) Transformer state detection method and device, electronic equipment and storage medium
CN213397008U (en) Automatic on-line monitoring device and system for cable clamp slippage
JP3926156B2 (en) Rubber hose life prediction method
JPH08124751A (en) Method for diagnosing service life and abnormality of oil-immersed electric equipment
RU2722860C1 (en) Method of estimating residual life of heat exchanger structures
JP2018194382A (en) Degradation estimation method of rubber hose
WO2023013308A1 (en) Remaining hose service life prediction method and remaining hose service life prediction system
CN117741372B (en) On-line monitoring method and system for electrical equipment aiming at insulativity
JP2011232114A5 (en)
RU2819317C1 (en) Method of determining operability of a milling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7323770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150