JP2020185336A - Electrode, manufacturing method for electrode, and biological signal measuring apparatus - Google Patents
Electrode, manufacturing method for electrode, and biological signal measuring apparatus Download PDFInfo
- Publication number
- JP2020185336A JP2020185336A JP2019093760A JP2019093760A JP2020185336A JP 2020185336 A JP2020185336 A JP 2020185336A JP 2019093760 A JP2019093760 A JP 2019093760A JP 2019093760 A JP2019093760 A JP 2019093760A JP 2020185336 A JP2020185336 A JP 2020185336A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- conductive
- polymer
- intermediate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 54
- 238000007747 plating Methods 0.000 claims abstract description 18
- 239000011347 resin Substances 0.000 claims description 69
- 229920005989 resin Polymers 0.000 claims description 69
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 60
- 229920000642 polymer Polymers 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 30
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 7
- 229920000767 polyaniline Polymers 0.000 claims description 6
- 229920003026 Acene Polymers 0.000 claims description 3
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 3
- 229920002805 poly(2,2'-bithiophene-5,5'-diyl) polymer Polymers 0.000 claims description 3
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 3
- 229920000015 polydiacetylene Polymers 0.000 claims description 3
- -1 polyparaphenylene Polymers 0.000 claims description 3
- 229920000128 polypyrrole Polymers 0.000 claims description 3
- 229920000123 polythiophene Polymers 0.000 claims description 3
- 238000009413 insulation Methods 0.000 abstract 7
- 239000010410 layer Substances 0.000 description 185
- 239000010408 film Substances 0.000 description 70
- 229910021389 graphene Inorganic materials 0.000 description 51
- 239000002356 single layer Substances 0.000 description 31
- 239000011521 glass Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 10
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 9
- 229940072056 alginate Drugs 0.000 description 9
- 235000010443 alginic acid Nutrition 0.000 description 9
- 229920000615 alginic acid Polymers 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 8
- 238000010030 laminating Methods 0.000 description 8
- 238000004528 spin coating Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 239000012472 biological sample Substances 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010009 beating Methods 0.000 description 2
- 210000004958 brain cell Anatomy 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000009421 cellmass formation Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 230000014511 neuron projection development Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 241001397104 Dima Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 238000002567 electromyography Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、電極と、その電極の製造方法、およびその電極を用いた生体信号測定装置に関する。 The present invention relates to an electrode, a method for manufacturing the electrode, and a biological signal measuring device using the electrode.
近年、ペースメーカやブレインマシンインタフェース(BMI)、筋組織由来の電気信号の計測制御技術の向上に伴い、体内という水分を多く含む環境でも長期的かつ構造安定的に使用可能な生体内埋め込み電極の需要が高まっている。従来、金や銀、酸化インジウム錫(ITO)などの金属材料で構成された電極を用いて生体内の電気計測が広く行われてきた。 In recent years, with the improvement of pacemakers, brain-machine interfaces (BMI), and measurement and control technology for electrical signals derived from muscle tissue, there is a demand for in-vivo implantable electrodes that can be used in a long-term and structurally stable environment even in a water-rich environment. Is increasing. Conventionally, in vivo electrical measurement has been widely performed using electrodes made of metal materials such as gold, silver, and indium tin oxide (ITO).
しかしながら、金属材料で構成された電極を生体組織内に埋め込みを行うと、その金属材料の有する剛直性の高さ、親水性の低さ、さらに細胞の材料表面での生育性の低さに起因して、数か月以上の長期的の埋め込みによって接触する生体組織との乖離が生じ信号の取得が困難となる場合があった。そのため、その都度新規電極を入れ替えて刺入する必要があり、刺入される部位の損傷や個体への精神的な負荷が問題となっていた。また金属材料は光透過性が低いため、接触している生体組織の形状や様態変化などの継時的変化が観察できず、その場観察の可能性が強く求められている。さらに金属材料の希少性の高まりと共に、製造単価の増加が問題となっており、高い生体適合性と柔軟性を有し、かつ希少性が低い代替となる導電性材料の開発が盛んに行われている。 However, when an electrode made of a metal material is embedded in a living tissue, it is caused by the high rigidity, low hydrophilicity, and low growth of cells on the material surface of the metal material. As a result, long-term implantation for several months or longer may cause divergence from the living tissue in contact, making it difficult to obtain a signal. Therefore, it is necessary to replace the new electrode each time and insert the electrode, which causes problems such as damage to the inserted portion and mental load on the individual. Further, since the metal material has low light transmission, it is not possible to observe changes over time such as changes in the shape and mode of the living tissue in contact with the metal material, and the possibility of in-situ observation is strongly required. Furthermore, as the rarity of metal materials increases, the increase in manufacturing unit price has become a problem, and the development of alternative conductive materials having high biocompatibility and flexibility and low rarity has been actively carried out. ing.
そこで近年、生体内埋め込み電極の電極材料として、導電性高分子を利用することが検討されている。導電性高分子は単独で電極状に成形することが難しい。このため、導電性高分子を電極材料とする生体内埋め込み電極では、絶縁性基材の表面に導電性高分子層を形成するのが一般的である。例えば、特許文献1には、基材繊維に、PEDOT-PSSを含む導電体が含浸及び/又は付着されてなる導電性高分子繊維を、生体内埋め込み電極として用いることが記載されている。 Therefore, in recent years, it has been studied to use a conductive polymer as an electrode material for an implantable electrode in a living body. It is difficult to form a conductive polymer alone into an electrode shape. For this reason, in an implantable electrode in a living body using a conductive polymer as an electrode material, a conductive polymer layer is generally formed on the surface of an insulating base material. For example, Patent Document 1 describes that a conductive polymer fiber obtained by impregnating and / or adhering a conductor containing PEDOT-PSS to a base fiber is used as an in-vivo embedded electrode.
生体内埋め込み電極では、電極埋め込み時の生体の動作によって電極に歪が付与されても絶縁性基材と導電性高分子層とが剥離しないように密着性が高いことが好ましい。しかしながら、絶縁性基材の表面に直接導電性高分子層を形成した従来の電極では、過剰な歪が付与された場合には、絶縁性基材と導電性高分子層とが剥離するおそれがあった。 It is preferable that the implantable electrode in a living body has high adhesion so that the insulating base material and the conductive polymer layer do not peel off even if the electrode is distorted by the movement of the living body at the time of implanting the electrode. However, in the conventional electrode in which the conductive polymer layer is directly formed on the surface of the insulating base material, the insulating base material and the conductive polymer layer may be peeled off when excessive strain is applied. there were.
本発明は、上述の事情に鑑みてなされたものであり、絶縁性基材と導電性高分子層との密着性が高い電極およびその電極の製造方法を提供することを目的とする。本発明はまた、基材と導電性高分子層との密着性が高い電極を用いた生体信号測定装置を提供することにもある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrode having high adhesion between an insulating base material and a conductive polymer layer, and a method for manufacturing the electrode. The present invention also provides a biological signal measuring device using an electrode having high adhesion between a base material and a conductive polymer layer.
上記の課題を解決するために、本発明者らは鋭意研究を重ねた結果、絶縁性基材と導電性高分子層との間に、導電性高分子層よりも絶縁性基材に対する親和性が高い導電性中間層を設けることによって、絶縁性基材と導電性高分子層との密着性を向上させることができることを見出して、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors have made an affinity between the insulating base material and the conductive polymer layer for the insulating base material rather than the conductive polymer layer. The present invention has been completed by finding that the adhesion between the insulating base material and the conductive polymer layer can be improved by providing the conductive intermediate layer having a high conductivity.
本発明の一の態様である電極は、絶縁性基材と、前記絶縁性基材の少なくとも一方の表面に積層された導電性中間層と、前記導電性中間層の前記絶縁性基材側とは反対側の表面に積層された導電性高分子層とを有し、前記導電性中間層は、前記導電性高分子層よりも前記絶縁性基材に対する親和性が高いことを特徴とする。 The electrode according to one aspect of the present invention includes an insulating base material, a conductive intermediate layer laminated on at least one surface of the insulating base material, and the insulating base material side of the conductive intermediate layer. Has a conductive polymer layer laminated on the surface on the opposite side, and the conductive intermediate layer is characterized in that it has a higher affinity for the insulating base material than the conductive polymer layer.
本発明の一の態様である電極において、前記絶縁性基材は可撓性樹脂膜であって、前記導電性中間層は前記可撓性樹脂膜が有する分子構造に対して親和性を示す構造を有する構成とされていてもよい。
また、本発明の一の態様である電極において、前記可撓性樹脂膜は六員環を有する樹脂を含み、前記導電性中間層は六員環構造を有する構成とされていてもよい。
さらに、本発明の一の態様である電極において、前記可撓性樹脂膜はポリパラキシレン樹脂を含み、前記導電性中間層はグラフェン構造を有する構成とされていてもよい。
またさらに、本発明の一の態様である電極において、前記導電性高分子層は、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(4−スチレンスルホン酸)、ポリチオフェン系高分子、ポリビチオフェン系高分子、ポリイソチオフェン系高分子、ポリドデシルチオフェン系高分子、ポリイソナイトチオフェン系高分子、ポリ−3−ヘキシルチオフェン系高分子、ポリアセン系高分子、ポリパラフェニレン系高分子、ポリアニリン系高分子、ポリジアセチレン系高分子、ポリピロール系高分子およびポリアニリン系高分子からなる群から選択される1つ以上の導電性高分子を含む構成とされていてもよい。
In the electrode according to one aspect of the present invention, the insulating base material is a flexible resin film, and the conductive intermediate layer has a structure showing affinity for the molecular structure of the flexible resin film. It may be configured to have.
Further, in the electrode according to one aspect of the present invention, the flexible resin film may contain a resin having a six-membered ring, and the conductive intermediate layer may have a six-membered ring structure.
Further, in the electrode according to one aspect of the present invention, the flexible resin film may contain a polyparaxylene resin, and the conductive intermediate layer may have a graphene structure.
Furthermore, in the electrode according to one aspect of the present invention, the conductive polymer layer is composed of poly (3,4-ethylenedioxythiophene), poly (3,4-ethylenedioxythiophene) -poly (4-). Styrene sulfonic acid), polythiophene polymer, polybithiophene polymer, polyisothiophene polymer, polydodecylthiophene polymer, polyisonite thiophene polymer, poly-3-hexylthiophene polymer, polyacene A configuration including one or more conductive polymers selected from the group consisting of a polymer, a polyparaphenylene polymer, a polyaniline polymer, a polydiacetylene polymer, a polypyrrole polymer, and a polyaniline polymer. It may have been.
本発明の一の態様である電極の製造方法は、絶縁性基材の少なくとも一方の表面に導電性中間層を形成する導電性中間層形成工程と、導電性中間層の前記絶縁性基材側とは反対側の表面に、導電性高分子層をめっき法により形成する導電性高分子層形成工程とを、有する。 The method for manufacturing an electrode according to one aspect of the present invention includes a step of forming a conductive intermediate layer on at least one surface of an insulating base material and a step of forming the conductive intermediate layer on the insulating base material side. On the surface opposite to the above, a conductive polymer layer forming step of forming a conductive polymer layer by a plating method is provided.
本発明の一の態様である電極の製造方法において、前記導電性中間層形成工程は、転写用基板の表面に形成した導電性中間層を前記絶縁性基材の少なくとも一方の表面に転写することにより導電性中間層を形成する構成とされていてもよい。 In the method for manufacturing an electrode according to one aspect of the present invention, in the conductive intermediate layer forming step, the conductive intermediate layer formed on the surface of the transfer substrate is transferred to at least one surface of the insulating base material. It may be configured to form a conductive intermediate layer.
本発明の一の態様である生体信号測定装置は、上述の本発明の一の態様である電極を有する。 The biological signal measuring device according to one aspect of the present invention has the electrode according to one aspect of the present invention described above.
本発明によれば、基材と導電性高分子層との密着性が高く、耐久性が高く、かつ高精細な電極およびその電極の製造方法を提供することが可能となる。また、本発明によれば、基材と導電性高分子層との密着性が高く、耐久性が高い電極を用いた生体信号測定装置を提供することが可能となる。 According to the present invention, it is possible to provide an electrode having high adhesion between a base material and a conductive polymer layer, high durability, and a high-definition electrode and a method for manufacturing the electrode. Further, according to the present invention, it is possible to provide a biological signal measuring device using an electrode having high adhesion between a base material and a conductive polymer layer and high durability.
以下、図面を参照して、本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<電極>
以下、本発明の一実施形態である電極について説明する。
図1は、本発明の一実施形態に係る電極の断面図である。
<Electrode>
Hereinafter, an electrode according to an embodiment of the present invention will be described.
FIG. 1 is a cross-sectional view of an electrode according to an embodiment of the present invention.
図1に示すように、電極1は、絶縁性基材10と、絶縁性基材10の一方の表面(図1において上面)に積層された導電性中間層12と、導電性中間層12の絶縁性基材10側とは反対側の表面に積層された導電性高分子層13とを有する。導電性中間層12は、導電性高分子層13よりも絶縁性基材10に対する親和性が高い材料とされている。 As shown in FIG. 1, the electrode 1 is composed of an insulating base material 10, a conductive intermediate layer 12 laminated on one surface (upper surface in FIG. 1) of the insulating base material 10, and a conductive intermediate layer 12. It has a conductive polymer layer 13 laminated on the surface opposite to the insulating base material 10 side. The conductive intermediate layer 12 is made of a material having a higher affinity for the insulating base material 10 than the conductive polymer layer 13.
絶縁性基材10は可撓性樹脂膜11とされている。可撓性樹脂膜11は、用途によっても異なるが、電極1を全体的に円筒状、円錐状などの任意の形状に加工できる程度の可撓性を有していることが好ましい。可撓性樹脂膜11の材料としては特に制限はなく、次に述べるように導電性中間層12の材料との組み合わせを考慮して適宜選択することができる。 The insulating base material 10 is a flexible resin film 11. Although the flexible resin film 11 varies depending on the application, it is preferable that the flexible resin film 11 has enough flexibility to process the electrode 1 into an arbitrary shape such as a cylinder or a cone as a whole. The material of the flexible resin film 11 is not particularly limited, and can be appropriately selected in consideration of the combination with the material of the conductive intermediate layer 12 as described below.
導電性中間層12は、可撓性樹脂膜11と導電性高分子層13とが互いに剥がれないように結合するための結合層(リンカ―)として作用する。導電性中間層12は可撓性樹脂膜11が有する分子構造に対して親和性を示す構造を有することが好ましい。親和性を示す構造は、例えば、可撓性樹脂膜11が有する分子構造に対して、分子間相互作用によって、可撓性樹脂膜11と導電性中間層12との密着性を向上させる構造である。分子間相互作用の例としては、例えば、ファンデルワールス力、分散力(π−π相互作用)、静電力、水素結合が挙げられる。 The conductive intermediate layer 12 acts as a bonding layer (linker) for bonding the flexible resin film 11 and the conductive polymer layer 13 so as not to be peeled off from each other. The conductive intermediate layer 12 preferably has a structure that exhibits an affinity for the molecular structure of the flexible resin film 11. The structure showing affinity is, for example, a structure that improves the adhesion between the flexible resin film 11 and the conductive intermediate layer 12 by intermolecular interaction with respect to the molecular structure of the flexible resin film 11. is there. Examples of intermolecular interactions include van der Waals forces, dispersion forces (π-π interactions), electrostatic forces, and hydrogen bonds.
例えば、可撓性樹脂膜11が六員環を有する樹脂を含む場合は、導電性中間層12は六員環構造を有することが好ましい。可撓性樹脂膜11に含まれる六員環は、共役二重結合六員環であることが好ましい。導電性中間層12が有する六員環構造はグラフェン構造であることが好ましい。この場合、可撓性樹脂膜11と導電性中間層12は、六員環のπ電子系により非局在化した電子が豊富に存在するので、その界面においてπ−π相互作用が誘導され、可撓性樹脂膜11と導電性中間層12の密着性が向上する。π−π相互作用はファンデルワールス力や水素結合よりも強い密着力を有する。このため、大気中だけでなく水中でも剥離しにくい可撓性樹脂膜11と導電性中間層12の積層体を形成することができる。 For example, when the flexible resin film 11 contains a resin having a six-membered ring, the conductive intermediate layer 12 preferably has a six-membered ring structure. The six-membered ring contained in the flexible resin film 11 is preferably a conjugated double-bonded six-membered ring. The six-membered ring structure of the conductive intermediate layer 12 is preferably a graphene structure. In this case, since the flexible resin film 11 and the conductive intermediate layer 12 are rich in electrons delocalized by the π-electron system of the six-membered ring, the π-π interaction is induced at the interface. The adhesion between the flexible resin film 11 and the conductive intermediate layer 12 is improved. The π-π interaction has stronger adhesion than van der Waals forces and hydrogen bonds. Therefore, it is possible to form a laminate of the flexible resin film 11 and the conductive intermediate layer 12 which are difficult to peel off not only in the air but also in water.
可撓性樹脂膜11に含まれる六員環を有する樹脂として、例えば、ポリパラキシレン樹脂を用いることができる。グラフェン構造を有する導電性中間層12の材料としては、例えば、グラフェン、酸化グラフェン、カーボンナノチューブ、黒鉛などのグラフェン系炭素材料を用いることができる。グラフェン系炭素材料は、単層のグラフェンあるいは2〜30層の多層グラフェンであることが好ましい。 As the resin having a six-membered ring contained in the flexible resin film 11, for example, a polyparaxylene resin can be used. As the material of the conductive intermediate layer 12 having a graphene structure, for example, a graphene-based carbon material such as graphene, graphene oxide, carbon nanotubes, and graphite can be used. The graphene-based carbon material is preferably single-layer graphene or 2 to 30-layer multi-layer graphene.
導電性高分子層13は、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(4−スチレンスルホン酸)、ポリチオフェン系高分子、ポリビチオフェン系高分子、ポリイソチオフェン系高分子、ポリドデシルチオフェン系高分子、ポリイソナイトチオフェン系高分子、ポリ−3−ヘキシルチオフェン系高分子、ポリアセン系高分子、ポリパラフェニレン系高分子、ポリアニリン系高分子、ポリジアセチレン系高分子、ポリピロール系高分子およびポリアニリン系高分子からなる群から選択される導電性高分子を含むことが好ましい。これらの導電性高分子は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の導電性高分子は、いずれも生体適合性が高い。このため、上記の導電性高分子を導電性高分子層13の材料として用いることによって、電極1の生体適合性が向上する。 The conductive polymer layer 13 is composed of poly (3,4-ethylenedioxythiophene), poly (3,4-ethylenedioxythiophene) -poly (4-styrene sulfonic acid), polythiophene-based polymer, and polybithiophene-based polymer. Polymer, polyisothiophene polymer, polydodecylthiophene polymer, polyisonitethiophene polymer, poly-3-hexylthiophene polymer, polyacene polymer, polyparaphenylene polymer, polyaniline polymer It is preferable to include a conductive polymer selected from the group consisting of a molecule, a polydiacetylene polymer, a polypyrrole polymer and a polyaniline polymer. One of these conductive polymers may be used alone, or two or more of these conductive polymers may be used in combination. All of the above conductive polymers have high biocompatibility. Therefore, by using the above-mentioned conductive polymer as the material of the conductive polymer layer 13, the biocompatibility of the electrode 1 is improved.
導電性高分子層13は、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(4−スチレンスルホン酸)を含むことが好ましく、特に、PEDOT−PSS[ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)]を含むことが好ましい。PEDOT−PSSは、π共役系導電性高分子であるPEDOTと高分子電解質であるPSSとが複合化した構造を有し、親水性と生体適合性に優れている。 The conductive polymer layer 13 preferably contains poly (3,4-ethylenedioxythiophene) -poly (4-styrenesulfonic acid), and in particular, PEDOT-PSS [poly (3,4-ethylenedioxythiophene). ) -Poly (styrene sulfonic acid)] is preferably contained. PEDOT-PSS has a structure in which PEDOT, which is a π-conjugated conductive polymer, and PSS, which is a polymer electrolyte, are composited, and is excellent in hydrophilicity and biocompatibility.
導電性高分子層13の材料として、生体毒性が低く、生体適合性が高い導電性高分子を用いることによって、電極1の表面に細胞を培養したり、生体内埋め込み電極として生体組織内に刺入したりする場合に、細胞や生体組織などの生体由来試料に対して毒性を示すことのない導電性インタフェースとしての利用が可能となる。特に、上記の導電性高分子を用いた電極1は、1年以上の長期間にわたって生体試料に接触させた状態でも、生体試料の構造や活性を変化させないという特長を有する。このため、これまで数か月程度という短期間に制限されていた生体内埋め込みの持続期間をさらに延長することができ、これにより、生体に関するデータを長期間にわたって安定的に計測することが可能となる。上記の導電性高分子を用いた電極1は、例えば癲癇や脊髄損傷のような神経組織の修復のための生体内埋植用電極、ブレインマシンインタフェース(BMI)や筋組織由来の電気信号計測電極、細胞由来の電気的信号を計測する多電極アレイ(MEA)、微細なフレキシブル電池用素子、導電性高分子を用いたアクチュエータ用の素子など幅広い基板素子としての応用が可能となる。 By using a conductive polymer having low biotoxicity and high biocompatibility as the material of the conductive polymer layer 13, cells can be cultured on the surface of the electrode 1 or pierced into a living tissue as an in vivo implantable electrode. When it enters, it can be used as a conductive interface that does not show toxicity to biological samples such as cells and biological tissues. In particular, the electrode 1 using the above-mentioned conductive polymer has a feature that the structure and activity of the biological sample are not changed even when the electrode 1 is in contact with the biological sample for a long period of one year or more. For this reason, the duration of in vivo implantation, which was previously limited to a short period of several months, can be further extended, which makes it possible to stably measure data on living organisms over a long period of time. Become. The electrode 1 using the above conductive polymer is an electrode for in vivo implantation for repairing nerve tissue such as tantrum or spinal cord injury, a brain machine interface (BMI), or an electrical signal measurement electrode derived from muscle tissue. It can be applied as a wide range of substrate elements such as a multi-electrode array (MEA) for measuring electrical signals derived from cells, an element for a fine flexible battery, and an element for an actuator using a conductive polymer.
また、導電性高分子層13は、厚みが厚くなると、表面の凹凸が大きくなり、電気二重層を形成する電極表面(内部における空気または溶媒と触れ合う部分)の面積が増大し、その部分に電荷が保持される傾向が高くなる(キャパシタ効果)。導電性高分子層13がキャパシタ効果を有する電極1は、ノイズに埋もれがちな微弱な信号、例えば、脳由来の生体内電気信号も計測できるほどの電極特性を得ることができる。よって、この電極1は、生体信号測定装置用の生体内埋め込み電極として有用である。 Further, as the thickness of the conductive polymer layer 13 becomes thicker, the unevenness of the surface becomes larger, and the area of the electrode surface (the portion in contact with air or the solvent inside) forming the electric double layer increases, and the portion thereof is charged. Is more likely to be retained (capacitor effect). The electrode 1 in which the conductive polymer layer 13 has a capacitor effect can obtain electrode characteristics capable of measuring a weak signal that tends to be buried in noise, for example, an in-vivo electrical signal derived from the brain. Therefore, this electrode 1 is useful as an in-vivo implantable electrode for a biological signal measuring device.
電極1は、300〜1300nmの光の波長領域において、透過率が30%以上となる波長領域を有していることが好ましい。このような光透過性を有することによって、例えば、顕微鏡観察時において、正立型・倒立型を問わずあらゆる種類の光学顕微鏡において使用可能であり、さらに蛍光顕微鏡や共焦点顕微鏡を利用した波長依存性の少ない観察にも応用が可能となる。このような光透過性を有する電極1は、観察対象となる細胞や生体組織の状態のその場観察が可能となるだけでなく、光遺伝学(Optogenetics)などの光学系を組み合わせた生体材料の操作・解析手法にも応用が可能となる。電極1は、300〜450nmの光の波長領域において、透過率が30%以上(特に40%以上)であることが好ましい。 The electrode 1 preferably has a wavelength region in which the transmittance is 30% or more in the wavelength region of light of 300 to 1300 nm. By having such light transmission, for example, when observing with a microscope, it can be used in all kinds of optical microscopes regardless of whether it is an upright type or an inverted type, and further, it depends on the wavelength using a fluorescence microscope or a confocal microscope. It can also be applied to less sexual observations. The electrode 1 having such light transmittance not only enables in-situ observation of the state of cells and biological tissues to be observed, but also makes it possible to combine an optical system such as optogenetics with a biomaterial. It can also be applied to operation and analysis methods. The electrode 1 preferably has a transmittance of 30% or more (particularly 40% or more) in the wavelength region of light of 300 to 450 nm.
電極1の可撓性樹脂膜11は、厚みが100nm以上900μm以下の範囲内にあることが好ましい。導電性中間層12は、厚みが原子1個分の厚み以上原子50個分の厚み以下の範囲内にあることが好ましい。導電性高分子層13は、厚みが10nm以上1.5μm以下の範囲内にあることが好ましい。可撓性樹脂膜11、導電性中間層12および導電性高分子層13の厚みが上記の範囲内にある電極1は、通常、可撓性に優れ、例えば、円筒状や円錐状などの種々の形状への加工が容易となる。また、光透過性にも優れ、光学顕微鏡によるその場観察が容易になる。 The flexible resin film 11 of the electrode 1 preferably has a thickness in the range of 100 nm or more and 900 μm or less. It is preferable that the thickness of the conductive intermediate layer 12 is within the range of the thickness of one atom or more and the thickness of 50 atoms or less. The thickness of the conductive polymer layer 13 is preferably in the range of 10 nm or more and 1.5 μm or less. The electrode 1 in which the thicknesses of the flexible resin film 11, the conductive intermediate layer 12 and the conductive polymer layer 13 are within the above ranges is usually excellent in flexibility, and for example, various shapes such as cylindrical and conical. It becomes easy to process into the shape of. In addition, it has excellent light transmission and facilitates in-situ observation with an optical microscope.
以上に述べた本実施形態の電極1は、可撓性樹脂膜11と導電性中間層12とは、分子構造による親和性が高く、導電性中間層12と導電性高分子層13とは電気特性による親和性が高い。このため、本実施形態の電極1は、歪が付与された場合でも可撓性樹脂膜11と導電性高分子層13とが剥離しにくい。 In the electrode 1 of the present embodiment described above, the flexible resin film 11 and the conductive intermediate layer 12 have a high affinity due to the molecular structure, and the conductive intermediate layer 12 and the conductive polymer layer 13 are electrically connected. High affinity due to characteristics. Therefore, in the electrode 1 of the present embodiment, the flexible resin film 11 and the conductive polymer layer 13 are difficult to peel off even when strain is applied.
<電極の製造方法>
次に、本発明の一実施形態である電極の製造方法について説明する。
図2は、本発明の一実施形態に係る電極の製造方法を説明する断面図である。
本実施形態の電極の製造方法は、成膜用基板用意工程(図2(a))と、絶縁性基材形成工程(図2(b))と、導電性中間層形成工程(図2(c))と、導電性中間層パターン成形工程(図2(d)〜(e))と、導電性高分子層形成工程(図2(f))、剥離工程(図2(g))とを有する。
<Method of manufacturing electrodes>
Next, a method for manufacturing an electrode, which is an embodiment of the present invention, will be described.
FIG. 2 is a cross-sectional view illustrating a method for manufacturing an electrode according to an embodiment of the present invention.
The electrode manufacturing method of the present embodiment includes a substrate preparation step for film formation (FIG. 2 (a)), an insulating substrate forming step (FIG. 2 (b)), and a conductive intermediate layer forming step (FIG. 2 (FIG. 2)). c)), a conductive intermediate layer pattern forming step (FIGS. 2 (d) to (e)), a conductive polymer layer forming step (FIG. 2 (f)), and a peeling step (FIG. 2 (g)). Has.
成膜用基板用意工程では、図2(a)に示すように成膜用基板20を用意する。成膜用基板20は、電極1を成形する側の表面(図2(a)においては上面)に、剥離層21が形成されている。剥離層21は、化学的もしくは物理的な手法によって除去可能な層であり、電極1の形成後に、この層を除去することにより、電極1を成膜用基板20から剥離しやすくするための層である。 In the film-forming substrate preparation step, the film-forming substrate 20 is prepared as shown in FIG. 2 (a). The film-forming substrate 20 has a release layer 21 formed on the surface (upper surface in FIG. 2A) on the side where the electrode 1 is formed. The peeling layer 21 is a layer that can be removed by a chemical or physical method, and is a layer for facilitating the peeling of the electrode 1 from the film forming substrate 20 by removing this layer after the electrode 1 is formed. Is.
成膜用基板20は、表面の平坦性が高いものであることが望ましい。成膜用基板20の材料として、例えば、シリコン、ソーダガラス、石英、酸化マグネシウム、サファイアなどが挙げられる。 It is desirable that the film-forming substrate 20 has a high surface flatness. Examples of the material of the film-forming substrate 20 include silicon, soda glass, quartz, magnesium oxide, and sapphire.
剥離層21の材料としては、例えば、所定のエッチング液によって溶解する金属、ゾル−ゲル転移が可能な物理ゲルを用いることができる。物理ゲルとしては、カルシウムイオンの有無によりゲル−ゾル転移を制御できるアルギン酸ゲルを用いることができる。また、光、熱、pHの変化により分解するゲルとして、ポリ(N−イソプロピルアクリルアミド)(PNIPAM)やアゾベンゼン修飾ポリマゲルを用いることができる。 As the material of the release layer 21, for example, a metal dissolved by a predetermined etching solution or a physical gel capable of sol-gel transition can be used. As the physical gel, an alginate gel that can control the gel-sol transition depending on the presence or absence of calcium ions can be used. Further, as a gel that decomposes by changing light, heat, and pH, poly (N-isopropylacrylamide) (PNIPAM) or azobenzene-modified polymagel can be used.
成膜用基板用意工程では、図2(b)に示すように、成膜用基板20の剥離層21の表面に可撓性樹脂膜11を形成する。可撓性樹脂膜11の形成方法は特に制限はなく、化学気相成長法(CVD法)、スピンコーティング法、インクジェットプリンティング法、熱蒸着法、スパッタリング法、エレクトロスプレイ法など樹脂膜の形成方法として利用されている各種の方法を利用することができる。 In the film-forming substrate preparation step, as shown in FIG. 2B, the flexible resin film 11 is formed on the surface of the release layer 21 of the film-forming substrate 20. The method for forming the flexible resin film 11 is not particularly limited, and as a method for forming a resin film such as a chemical vapor deposition method (CVD method), a spin coating method, an inkjet printing method, a thermal vapor deposition method, a sputtering method, and an electrospray method. Various methods used can be used.
導電性中間層形成工程では、図2(c)に示すように、可撓性樹脂膜11の表面に導電性中間層12を形成する。導電性中間層12の形成方法としては、転写法や塗布法を用いることができる。転写法は、別に用意した転写用基板の表面に導電性中間層を形成し、その転写用基板の表面に形成した導電性中間層を、可撓性樹脂膜11の表面に転写する方法である。転写法は、導電性中間層12として単層あるいは多層のグラフェンを用いる場合に有用な方法である。塗布法は、導電性中間層12を形成する材料の粉末を溶媒に分散した塗布液を、可撓性樹脂膜11の表面に塗布して乾燥する方法である。塗布法は、導電性中間層12の材料としてグラフェン粉末、酸化グラフェン粉末、カーボンナノチューブ粉末、黒鉛粉末を用いる場合に有用な方法である。 In the conductive intermediate layer forming step, as shown in FIG. 2C, the conductive intermediate layer 12 is formed on the surface of the flexible resin film 11. As a method for forming the conductive intermediate layer 12, a transfer method or a coating method can be used. The transfer method is a method in which a conductive intermediate layer is formed on the surface of a separately prepared transfer substrate, and the conductive intermediate layer formed on the surface of the transfer substrate is transferred to the surface of the flexible resin film 11. .. The transfer method is a useful method when single-layer or multi-layer graphene is used as the conductive intermediate layer 12. The coating method is a method in which a coating liquid in which powder of a material forming the conductive intermediate layer 12 is dispersed in a solvent is applied to the surface of the flexible resin film 11 and dried. The coating method is a useful method when graphene powder, graphene oxide powder, carbon nanotube powder, or graphite powder is used as the material of the conductive intermediate layer 12.
導電性中間層パターン成形工程では、図2(d)に示すように、導電性中間層12の表面に物理マスク22を形成する。物理マスク22は、導電性中間層12の表面にフォトレジストを塗布し、リソグラフィ技術により紫外光を照射しパターニングすることによって形成することができる。次いで、物理マスク22が形成されていない部分の導電性中間層12をエッチングにより除去する。エッチングとしては、酸素プラズマエッチング法などを用いることができる。 In the conductive intermediate layer pattern forming step, as shown in FIG. 2D, a physical mask 22 is formed on the surface of the conductive intermediate layer 12. The physical mask 22 can be formed by applying a photoresist to the surface of the conductive intermediate layer 12 and irradiating it with ultraviolet light by a lithography technique to pattern it. Next, the conductive intermediate layer 12 in the portion where the physical mask 22 is not formed is removed by etching. As the etching, an oxygen plasma etching method or the like can be used.
次に、図2(e)に示すように、物理マスク22を除去する。これにより、所定のパターン状に形成された導電性中間層12が得られる。 Next, as shown in FIG. 2E, the physical mask 22 is removed. As a result, the conductive intermediate layer 12 formed in a predetermined pattern is obtained.
導電性高分子層形成工程では、図2(f)に示すように、導電性中間層12の表面に導電性高分子層13を形成する。導電性高分子層13はめっき法により形成する。めっき法は電気めっき法であることが好ましい。具体的には、次のようにして導電性高分子層13を形成する。まず、導電性中間層パターン成形工程で得られた成膜用基板20と、剥離層21と、可撓性樹脂膜11と、導電性中間層12とが、この順で積層された導電性積層体を、補助電極と共に導電性高分子が溶解されているめっき液に浸漬させる。次に、導電性積層体と補助電極の間に電圧を印加して、導電性中間層12の表面に導電性高分子を析出させて、導電性高分子層13を形成する。 In the conductive polymer layer forming step, as shown in FIG. 2 (f), the conductive polymer layer 13 is formed on the surface of the conductive intermediate layer 12. The conductive polymer layer 13 is formed by a plating method. The plating method is preferably an electroplating method. Specifically, the conductive polymer layer 13 is formed as follows. First, the conductive lamination substrate 20, the release layer 21, the flexible resin film 11, and the conductive intermediate layer 12 obtained in the conductive intermediate layer pattern forming step are laminated in this order. The body is immersed in a plating solution in which a conductive polymer is dissolved together with an auxiliary electrode. Next, a voltage is applied between the conductive laminate and the auxiliary electrode to deposit the conductive polymer on the surface of the conductive intermediate layer 12 to form the conductive polymer layer 13.
剥離工程では、図2(g)に示すように、剥離層21を溶解除去することによって、可撓性樹脂膜11と、導電性中間層12と、導電性高分子層13とが、この順で積層された電極1を、成膜用基板20から剥離する。得られた電極1は、必要に応じて加熱処理する。例えば、導電性高分子層13の材料としてPEDOT−PSSを用いた場合は、80℃の温度で、20分間加熱処理することが好ましい。 In the peeling step, as shown in FIG. 2 (g), the flexible resin film 11, the conductive intermediate layer 12, and the conductive polymer layer 13 are arranged in this order by dissolving and removing the peeling layer 21. The electrodes 1 laminated in 1 are peeled off from the film-forming substrate 20. The obtained electrode 1 is heat-treated, if necessary. For example, when PEDOT-PSS is used as the material of the conductive polymer layer 13, it is preferable to heat-treat it at a temperature of 80 ° C. for 20 minutes.
本実施形態の電極の製造方法によれば、めっき法を用いて、導電性中間層12の表面に、導電性高分子層13を形成するので、導電性中間層12と導電性高分子層13との密着性が高く、歪に対する耐久性が高い電極1を製造することができる。 According to the electrode manufacturing method of the present embodiment, the conductive polymer layer 13 is formed on the surface of the conductive intermediate layer 12 by using the plating method, so that the conductive intermediate layer 12 and the conductive polymer layer 13 are formed. It is possible to manufacture an electrode 1 having high adhesion to and high resistance to strain.
また、本実施形態の電極の製造方法によれば、フォトリソグラフィ法を用いて導電性中間層12の形状や面積を任意に調整することができる。このため、任意の形状の導電性高分子層13のパターンを作製することが可能となる。なお、本実施形態では、導電性中間層12のパターンを形成する方法として、フォトリソグラフィ法を用いているが、導電性中間層12のパターン形成方法はこれに限定されるものではない。導電性中間層12のパターン形成方法としては、例えば、電子ビームリソグラフィ法やドライエッチング法、インクジェット法を用いることができる。ただし、フォトリソグラフィ法は照射する光の波長をより短くすることにより、インクジェット法のような吐出型のパターニング方法よりも微細な構造のパターンを作製できる。よって、フォトリソグラフィ法を用いることによって、より微細なパターンの導電性高分子層13を形成することが可能となる。 Further, according to the electrode manufacturing method of the present embodiment, the shape and area of the conductive intermediate layer 12 can be arbitrarily adjusted by using the photolithography method. Therefore, it is possible to produce a pattern of the conductive polymer layer 13 having an arbitrary shape. In the present embodiment, a photolithography method is used as a method for forming the pattern of the conductive intermediate layer 12, but the pattern forming method for the conductive intermediate layer 12 is not limited to this. As a method for forming the pattern of the conductive intermediate layer 12, for example, an electron beam lithography method, a dry etching method, or an inkjet method can be used. However, in the photolithography method, by shortening the wavelength of the emitted light, it is possible to produce a pattern having a finer structure than the ejection type patterning method such as the inkjet method. Therefore, by using the photolithography method, it is possible to form the conductive polymer layer 13 having a finer pattern.
<生体信号測定装置>
本発明の一実施形態である生体信号測定装置は、上述の電極1を有する。電極1は、上述のとおり、生体適合性が高いため、生体内埋め込み電極として用いられる。生体信号測定装置は、電極1で測定された生体信号を解析あるいは記録する機能を有する外部装置を備えていることが好ましい。本実施形態の生体信号測定装置は、例えば、脳波、筋電、心電などの測定装置として利用することができる。
<Biomedical signal measuring device>
The biological signal measuring device according to the embodiment of the present invention has the above-mentioned electrode 1. As described above, the electrode 1 has high biocompatibility and is therefore used as an implantable electrode in the living body. The biological signal measuring device preferably includes an external device having a function of analyzing or recording the biological signal measured by the electrode 1. The biological signal measuring device of the present embodiment can be used as, for example, a measuring device for electroencephalogram, electromyography, electrocardiography, and the like.
以下、実施例により、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.
[実施例1]
成膜用基板として、ガラス基板を用意した(縦:32mm横:24mm厚み:100μm)。ガラス基板の表面に、剥離層としてアルギン酸ゲル層を形成した。アルギン酸ゲル層は、ガラス基板の表面にスピンコート法によりアルギン酸ナトリウム薄膜を形成し、その後、ガラス基板を、カルシウムを多く含む溶液に浸漬して、アルギン酸ナトリウムをアルギン酸カルシウムに変換することにより形成した。
次に、アルギン酸ゲル層の上に、絶縁性基材として、ポリパラキシレン樹脂膜を形成した。ポリパラキシレン樹脂膜は、1.6gのパラキシレンダイマを、CVD法を用いて基板上に成長させることによって形成した。形成したポリパラキシレン樹脂膜の膜厚は1μmであった。
[Example 1]
A glass substrate was prepared as the film-forming substrate (length: 32 mm, width: 24 mm, thickness: 100 μm). An alginate gel layer was formed as a release layer on the surface of the glass substrate. The alginate gel layer was formed by forming a sodium alginate thin film on the surface of a glass substrate by a spin coating method, and then immersing the glass substrate in a solution containing a large amount of calcium to convert sodium alginate into calcium alginate.
Next, a polyparaxylene resin film was formed on the alginate gel layer as an insulating base material. The polyparaxylene resin film was formed by growing 1.6 g of a paraxylene dima on a substrate using a CVD method. The film thickness of the formed polyparaxylene resin film was 1 μm.
次に、ポリパラキシレン樹脂膜の表面に、導電性中間層としてグラフェン単層を形成した。グラフェン単層は、単層のグラフェンを有するグラフェン単層付き銅箔を用意し、このグラフェン単層を、ポリパラキシレン樹脂膜の表面に転写することによって形成した。具体的には、グラフェン単層付き銅箔のグラフェン単層の表面に高分子薄膜(ポリメタクリル酸メチル(PMMA))を塗布した後、グラフェン単層付き銅箔の銅箔を、塩化第二鉄溶液を用いて溶解して、グラフェン単層を回収した。グラフェン単層を水面上で洗浄を繰り返した後、グラフェン単層の塗布した高分子薄膜がポリパラキシレン樹脂膜の表面に接するように重ねて、グラフェン単層をポリパラキシレン樹脂膜の表面に転写した。なお、グラフェン単層付き銅箔は、銅箔の表面に、CVD法を用いて単層のグラフェンを形成することによって作製した。
こうして、ガラス基板の表面に、アルギン酸ゲル層と、ポリパラキシレン樹脂膜と、グラフェン単層とが、この順で積層された導電性積層体を得た。
Next, a graphene single layer was formed as a conductive intermediate layer on the surface of the polyparaxylene resin film. The graphene single layer was formed by preparing a copper foil with a graphene single layer having a single layer of graphene and transferring the graphene single layer to the surface of a polyparaxylene resin film. Specifically, after applying a polymer thin film (polymethyl methacrylate (PMMA)) to the surface of the graphene single layer of the graphene single layer copper foil, the copper foil of the graphene single layer copper foil is coated with ferric chloride. The graphene monolayer was recovered by dissolving with a solution. After repeating washing of the graphene single layer on the water surface, the polymer thin film coated with the graphene single layer is layered so as to be in contact with the surface of the polyparaxylene resin film, and the graphene single layer is transferred to the surface of the polyparaxylene resin film. did. The graphene single-layered copper foil was produced by forming a single-layer graphene on the surface of the copper foil by using a CVD method.
In this way, a conductive laminate in which an alginate gel layer, a polyparaxylene resin film, and a graphene single layer were laminated in this order was obtained on the surface of the glass substrate.
次に、得られた導電性積層体のグラフェン単層の表面に、導電性高分子層としてPEDOT−PSS層をめっき法により形成した。具体的には、導電性積層体のグラファイト単層の端部に銀ペーストを塗布し、乾燥して導通を取るために導通部を形成した。次いで、めっき液としてPEDOT−PSS溶液が貯留されているめっき槽に、導電性積層体の導通部が形成されていない部分を浸漬した。導電性積層体の導通部を作用電極(WE)と接続し、めっき槽に補助電極(CE)と参照電極(RE)を浸漬した。参照電極には銀塩化銀電極を、補助電極には白金コイルを使用した。次いで、参照電極を基準として、作用電極を+0.8Vの電圧に設定し、電気めっき法により導電性高分子層としてPEDOT−PSS層を形成した。 Next, a PEDOT-PSS layer was formed as a conductive polymer layer on the surface of the graphene single layer of the obtained conductive laminate by a plating method. Specifically, a silver paste was applied to the end portion of the graphite single layer of the conductive laminate, and a conductive portion was formed to dry and take conduction. Next, a portion of the conductive laminate in which the conductive portion was not formed was immersed in a plating tank in which a PEDOT-PSS solution was stored as a plating solution. The conductive portion of the conductive laminate was connected to the working electrode (WE), and the auxiliary electrode (CE) and the reference electrode (RE) were immersed in the plating tank. A silver-silver chloride electrode was used as the reference electrode, and a platinum coil was used as the auxiliary electrode. Next, the working electrode was set to a voltage of + 0.8 V with reference to the reference electrode, and a PEDOT-PSS layer was formed as a conductive polymer layer by an electroplating method.
次に、PEDOT−PSS層が形成された導電性積層体をめっき槽から取り出し、水で十分に洗浄した後、乾燥して、ガラス基板の表面に、アルギン酸ゲル層と、ポリパラキシレン樹脂膜と、グラフェン単層と、PEDOT−PSS層が、この順で積層された積層体を得た。なお、めっき法によりPEDOT−PSS層を形成する際の電圧の印加時間を調整して、厚みが異なるPEDOT−PSS層を有する複数の導電性積層体を得た。得られた積層体をキレート剤(エチレンジアミン四酢酸(EDTA)溶液)に浸漬してアルギン酸ゲル層を溶解除去して、ポリパラキシレン樹脂膜と、グラフェン単層と、PEDOT−PSS層が、この順で積層された電極を、ガラス基板から剥離した。
得られた電極は、80℃の温度で20分間加熱した。
Next, the conductive laminate on which the PEDOT-PSS layer was formed was taken out from the plating tank, thoroughly washed with water, and then dried to form an alginate gel layer and a polyparaxylene resin film on the surface of the glass substrate. , A single layer of graphene and a PEDOT-PSS layer were laminated in this order to obtain a laminate. The voltage application time when forming the PEDOT-PSS layer was adjusted by the plating method to obtain a plurality of conductive laminates having PEDOT-PSS layers having different thicknesses. The obtained laminate is immersed in a chelating agent (ethylenediaminetetraacetic acid (EDTA) solution) to dissolve and remove the alginate gel layer, and the polyparaxylene resin film, the graphene monolayer, and the PEDOT-PSS layer are arranged in this order. The electrodes laminated in (1) were peeled off from the glass substrate.
The resulting electrode was heated at a temperature of 80 ° C. for 20 minutes.
以上のようにして得られた電極について、密着安定性、PEDOT−PSS層の膜厚、光透過性、親水性、電気特性、生体適合性を下記の方法により評価した。 The electrodes obtained as described above were evaluated for adhesion stability, PEDOT-PSS layer film thickness, light transmission, hydrophilicity, electrical characteristics, and biocompatibility by the following methods.
[密着安定性]
得られた電極全体を座屈したり、ひねりを加えたりすることにより電極に歪を加えた。PEDOT−PSS層の厚みが異なるいずれの電極についても、ポリパラキシレン樹脂膜やPEDOT−PSS層が剥がれたり、PEDOT−PSS層が断裂したりすることはなく、歪に対する密着安定性に優れていることが確認された。
また、電極を純水中に数日浸漬した。浸漬後の電極を純水から取り出して観察したところ、ポリパラキシレン樹脂膜やPEDOT−PSS層は剥離しておらず、水中での密着安定性にも優れているが確認された。
[Adhesion stability]
The entire obtained electrode was strained by buckling or twisting. The polyparaxylene resin film and the PEDOT-PSS layer are not peeled off or the PEDOT-PSS layer is not torn for any electrode having a different thickness of the PEDOT-PSS layer, and the adhesion stability against strain is excellent. It was confirmed that.
In addition, the electrodes were immersed in pure water for several days. When the electrode after immersion was taken out from pure water and observed, it was confirmed that the polyparaxylene resin film and the PEDOT-PSS layer were not peeled off and the adhesion stability in water was excellent.
[PEDOT−PSS層の膜厚]
PEDOT−PSS層の膜厚は、触針式プロファイラを用いて測定した。
図3は、めっき法によりPEDOT−PSS層を形成したときの単位面積当たりに流れた電荷量と、形成されたPEDOT−PSS層の厚みとの関係を示すグラフである。図3において、横軸は単位面積当たりに流れた電荷量であり、縦軸はPEDOT−PSS層の厚みである。
図3のグラフから、めっき法によりPEDOT−PSS層を形成する際の単位面積当たりに流れた電荷量(電圧の印加時間)とPEDOT−PSS層の厚みとは高い相関性を有することがわかる。この結果から、めっき法を用いてPEDOT−PSS層を形成する際の単位面積当たりに流れた電荷量を調整することによって、PEDOT−PSS層を精度よく管理することが可能であることがわかる。
[PEDOT-PSS layer film thickness]
The film thickness of the PEDOT-PSS layer was measured using a stylus profiler.
FIG. 3 is a graph showing the relationship between the amount of electric charge flowing per unit area when the PEDOT-PSS layer is formed by the plating method and the thickness of the formed PEDOT-PSS layer. In FIG. 3, the horizontal axis is the amount of charge flowing per unit area, and the vertical axis is the thickness of the PEDOT-PSS layer.
From the graph of FIG. 3, it can be seen that the amount of charge (voltage application time) flowing per unit area when the PEDOT-PSS layer is formed by the plating method has a high correlation with the thickness of the PEDOT-PSS layer. From this result, it can be seen that the PEDOT-PSS layer can be accurately managed by adjusting the amount of electric charge flowing per unit area when forming the PEDOT-PSS layer by using the plating method.
[光透過性]
分光光度計を用いて、波長300nm〜1300nmの光の透過率を測定した。その結果を図4に示す。
図4は、実施例1で作製した電極の光の透過率を示すグラフである。図4において、横軸は光の波長であり、縦軸は透過率である。なお、図4中、ポリパラキシレン樹脂膜は、ポリパラキシレン樹脂膜単体であり、グラフェン/ポリパラキシレン積層体は、ポリパラキシレン樹脂膜の表面にグラフェン単層を転写した積層体である。
[Optical transparency]
The transmittance of light having a wavelength of 300 nm to 1300 nm was measured using a spectrophotometer. The result is shown in FIG.
FIG. 4 is a graph showing the light transmittance of the electrode produced in Example 1. In FIG. 4, the horizontal axis is the wavelength of light and the vertical axis is the transmittance. In FIG. 4, the polyparaxylene resin film is a polyparaxylene resin film alone, and the graphene / polyparaxylene laminate is a laminate in which a graphene single layer is transferred to the surface of the polyparaxylene resin film.
図4のグラフから、ポリパラキシレン樹脂膜およびグラフェン/ポリパラキシレン積層体は、300nm〜1300nmの波長領域の光に対して80%以上の透過率を示すことがわかる。PEDOT−PSS層を積層した電極の場合、PEDOT−PSS層の厚みが増加すると共に、特に600nm以上の波長領域の光の透過率が減少することが確認された。一方、290nm〜600nmの波長領域については、PEDOT−PSS層の厚みが1μm(単位面積当たりに流れた電荷量:666μC/mm2)の場合でも、透過率が40%以上に維持されていることがわかる。 From the graph of FIG. 4, it can be seen that the polyparaxylene resin film and the graphene / polyparaxylene laminate show a transmittance of 80% or more with respect to light in the wavelength region of 300 nm to 1300 nm. In the case of the electrode in which the PEDOT-PSS layer is laminated, it was confirmed that the thickness of the PEDOT-PSS layer increases and the transmittance of light in the wavelength region of 600 nm or more decreases. On the other hand, in the wavelength region of 290 nm to 600 nm, the transmittance is maintained at 40% or more even when the thickness of the PEDOT-PSS layer is 1 μm (the amount of charge flowing per unit area: 666 μC / mm 2 ). I understand.
[親水性]
電極の親水性を評価するために、電極のPEDOT−PSS層の表面に純水を滴下し、PEDOT−PSS層と、その表面に生成した液滴との接触角の経時変化を測定した。その結果を図5に示す。
図5は、実施例1で作製した電極のPEDOT−PSS層と液滴の接触時間と接触角との関係を示すグラフである。図5において、横軸は接触時間(秒)であり、縦軸は液滴の接触角である。なお、図5中、親水性ガラス板は、市販のガラス板の表面を洗浄し、親水処理を施したものである。疎水性ガラス板は、市販のガラス板の表面を洗浄し、市販の撥水ポリマの塗布により撥水処理を施したものである。ポリパラキシレン樹脂膜は、親水性ガラス板の表面に厚さ1μmのポリパラキシレン樹脂膜を蒸着したものであり、グラフェン/ポリパラキシレン積層体は、そのポリパラキシレン樹脂膜の表面にグラフェン単層を転写した積層体である。PEDOT−PSSスピンコート膜は、親水性ガラス板の表面にスピンコート法により形成したPEDOT−PSSスピンコート膜である。加熱処理後は、PEDOT−PSSスピンコート膜を80℃の温度で20分間加熱処理したものである。
[Hydrophilic]
In order to evaluate the hydrophilicity of the electrode, pure water was dropped on the surface of the PEDOT-PSS layer of the electrode, and the change over time in the contact angle between the PEDOT-PSS layer and the droplets formed on the surface was measured. The result is shown in FIG.
FIG. 5 is a graph showing the relationship between the contact time and the contact angle between the PEDOT-PSS layer of the electrode produced in Example 1 and the droplet. In FIG. 5, the horizontal axis is the contact time (seconds), and the vertical axis is the contact angle of the droplet. In FIG. 5, the hydrophilic glass plate is obtained by cleaning the surface of a commercially available glass plate and subjecting it to hydrophilic treatment. The hydrophobic glass plate is obtained by cleaning the surface of a commercially available glass plate and applying a water repellent treatment by applying a commercially available water repellent polymer. The polyparaxylene resin film is a 1 μm-thick polyparaxylene resin film deposited on the surface of a hydrophilic glass plate, and the graphene / polyparaxylene laminate is a single graphene on the surface of the polyparaxylene resin film. It is a laminated body in which layers are transferred. The PEDOT-PSS spin coating film is a PEDOT-PSS spin coating film formed on the surface of a hydrophilic glass plate by a spin coating method. After the heat treatment, the PEDOT-PSS spin coating film was heat-treated at a temperature of 80 ° C. for 20 minutes.
図5のグラフに示すように、親水性ガラス板の液滴との接触角は12度であり、疎水性ガラス板の液滴との接触角は88度であった。親水性ガラス板の形成したポリパラキシレン樹脂膜の液滴との接触角は、疎水性ガラス板と同等の80度以上であった。さらにそのポリパラキシレン樹脂膜の表面にグラフェン単層を転写すると、親水性がわずかに向上し、液滴との接触角は70度となった。これに対して、PEDOT−PSSスピンコート膜(加熱所処理前)は、純水の滴下直後の接触角は65度であったが、接触角が時間の経過と共に徐々に40度まで減少し、その後不安定になった。PEDOT−PSSスピンコート膜(加熱処理後)は、純水の滴下直後の接触角は45度であったが、水分を含有して膨潤することによって徐々に接触角が減少することが観察され、最終的に5度以下の値をなることが観察された。そして、実施例1で作製した電極は、純水の滴下直後の接触角は13度であったが、その後22度に上昇し、さらにその後徐々に減少し、5度付近で安定し、PEDOT−PSSスピンコート膜と同等の親水性を示すことが確認された。 As shown in the graph of FIG. 5, the contact angle of the hydrophilic glass plate with the droplets was 12 degrees, and the contact angle of the hydrophobic glass plate with the droplets was 88 degrees. The contact angle of the polyparaxylene resin film formed by the hydrophilic glass plate with the droplets was 80 degrees or more, which was equivalent to that of the hydrophobic glass plate. Further, when a graphene single layer was transferred to the surface of the polyparaxylene resin film, the hydrophilicity was slightly improved, and the contact angle with the droplet was 70 degrees. On the other hand, the contact angle of the PEDOT-PSS spin coating film (before treatment at the heating plant) was 65 degrees immediately after the dropping of pure water, but the contact angle gradually decreased to 40 degrees with the passage of time. Then it became unstable. The contact angle of the PEDOT-PSS spin coating film (after heat treatment) was 45 degrees immediately after dropping pure water, but it was observed that the contact angle gradually decreased due to swelling containing water. It was observed that the final value was 5 degrees or less. The contact angle of the electrode produced in Example 1 was 13 degrees immediately after the dropping of pure water, but then increased to 22 degrees, then gradually decreased, and became stable at around 5 degrees, PEDOT-. It was confirmed that the hydrophilicity was equivalent to that of the PSS spin-coated film.
[電気特性]
(1)電流−電圧
電極のPEDOT−PSS層の表面に、5mmの間隙を有するように、銀ペーストを塗布、乾燥して、2つの銀端子を形成した。次いで銀端子に二端子のプローブを接続し、銀端子間に電圧を印加して、電極の面方向に電圧を印加したときの電流値を測定した。その結果を図6に示す。
図6に示すように、ポリパラキシレン樹脂膜の表面にグラフェン単層を転写したグラフェン/ポリパラキシレン積層体(GR)と比較して、電極は、PEDOT−PSS層の厚みの増加に伴って、同一電圧値での電流値が上昇すること、すなわち抵抗値が低減する傾向があることが確認された。
[Electrical characteristics]
(1) Current-voltage A silver paste was applied and dried on the surface of the PEDOT-PSS layer of the electrode so as to have a gap of 5 mm to form two silver terminals. Next, a two-terminal probe was connected to the silver terminal, a voltage was applied between the silver terminals, and the current value when the voltage was applied in the plane direction of the electrode was measured. The result is shown in FIG.
As shown in FIG. 6, as compared with the graphene / polyparaxylene laminate (GR) in which a graphene single layer is transferred to the surface of the polyparaxylene resin film, the electrodes of the electrodes increase in thickness of the PEDOT-PSS layer. It was confirmed that the current value at the same voltage value tends to increase, that is, the resistance value tends to decrease.
(2)サイクリックボルタンメトリー
電極のサイクリックボルタンメトリーを測定した。その結果を図7に示す。
図7に示すサイクリックボルタンメトリー曲線から、実施例1で作製した電極は、電極電位を直線的に掃引し、応答電流を測定した場合に、キャパシタ効果が生じていることが確認された。
(2) Cyclic voltammetry The cyclic voltammetry of the electrode was measured. The result is shown in FIG.
From the cyclic voltammetry curve shown in FIG. 7, it was confirmed that the electrode produced in Example 1 had a capacitor effect when the electrode potential was linearly swept and the response current was measured.
[生体適合性]
(1)神経細胞との適合性
実施例1で作製した電極のPEDOT−PSS層表面と、ポリパラキシレン樹脂膜の表面にグラフェン単層を転写したグラフェン/ポリパラキシレン積層体のグラフェン層の表面に、ラット胎児海馬初代培養細胞を播種、培養し、播種2週間後の細胞形状と神経突起の伸展長を測定した。その結果、電極のPEDOT−PSS層表面とグラフェン/ポリパラキシレン積層体のグラフェン層表面とで、細胞形状と神経突起の伸展長に有意差がないことが確認された。
[Biocompatibility]
(1) Compatibility with nerve cells The surface of the PEDOT-PSS layer of the electrode prepared in Example 1 and the surface of the graphene layer of the graphene / polyparaxylene laminate in which a graphene single layer is transferred to the surface of the polyparaxylene resin film. In addition, rat fetal hippocampal primary cultured cells were seeded and cultured, and the cell shape and neurite outgrowth length were measured 2 weeks after seeding. As a result, it was confirmed that there was no significant difference in cell shape and neurite outgrowth between the surface of the PEDOT-PSS layer of the electrode and the surface of the graphene layer of the graphene / polyparaxylene laminate.
(2)心筋細胞との適合性
実施例1で作製した電極のPEDOT−PSS層表面と、ポリパラキシレン樹脂膜の表面にグラフェン単層を転写したグラフェン/ポリパラキシレン積層体のグラフェン層の表面に、ラット胎児心筋初代培養細胞を播種、培養し、播種2週間後の細胞形状と細胞塊形成、ならびに細胞の自発的拍動の周期を測定した。その結果、電極のPEDOT−PSS層表面とグラフェン/ポリパラキシレン積層体のグラフェン層表面とで、細胞形状、細胞塊形成、ならびに細胞の自発的拍動の周期に有意差がないことが確認された。
(2) Compatibility with myocardial cells The surface of the PEDOT-PSS layer of the electrode prepared in Example 1 and the surface of the graphene layer of the graphene / polyparaxylene laminate in which a graphene single layer was transferred to the surface of the polyparaxylene resin film. In addition, rat fetal myocardial primary cultured cells were seeded and cultured, and the cell shape and cell mass formation 2 weeks after seeding and the cycle of spontaneous beating of the cells were measured. As a result, it was confirmed that there was no significant difference in cell shape, cell mass formation, and spontaneous beating cycle of cells between the surface of the PEDOT-PSS layer of the electrode and the surface of the graphene layer of the graphene / polyparaxylene laminate. It was.
(3)ラットの脳細胞との適合性
実施例1で作製した電極を用いて、円錐状電極を作製した。図8に作製した円錐状電極の斜視図を示す。
図8に示すように、円錐状電極30は、電極1(PEDOT−PSS層の厚み:約1.5μm)を、導電性高分子層13(PEDOT−PSS層)が外側となるように円錐状に巻き付けたものである。円錐状電極30は、最大径3mm、長さ5mmである。
(3) Compatibility with rat brain cells A conical electrode was prepared using the electrode prepared in Example 1. FIG. 8 shows a perspective view of the produced conical electrode.
As shown in FIG. 8, the conical electrode 30 has a conical shape such that the electrode 1 (PEDOT-PSS layer thickness: about 1.5 μm) is on the outside and the conductive polymer layer 13 (PEDOT-PSS layer) is on the outside. It is wrapped around. The conical electrode 30 has a maximum diameter of 3 mm and a length of 5 mm.
作製した円錐状電極をガラスキャピラリの先端に取り付けて、ラットの脳内に刺入した。円錐状電極を刺入してから2ヵ月後のラットの脳切片を得て、得られた脳切片を染色した。そして、円錐状電極が刺入されたラットの脳組織の免疫染色像を、光学顕微鏡を用いて観察した。その免疫染色像を図9に示す。
図9の免疫染色像から、円錐状電極の表面と脳組織と間に乖離は観られず、脳細胞が円錐状電極の表面に生育していることが観察された。
The prepared conical electrode was attached to the tip of a glass capillary and inserted into the rat brain. Two months after the insertion of the conical electrode, a rat brain section was obtained, and the obtained brain section was stained. Then, an immunostained image of the brain tissue of the rat in which the conical electrode was inserted was observed using an optical microscope. The immunostained image is shown in FIG.
From the immunostained image of FIG. 9, no dissociation was observed between the surface of the conical electrode and the brain tissue, and it was observed that brain cells were growing on the surface of the conical electrode.
[実施例2]
実施例1と同様にして、ガラス基板(成膜用基板)の上に、アルギン酸ゲル層(剥離層)、ポリパラキシレン樹脂膜(絶縁性基材)、グラフェン単層(導電性中間層)を、この順に形成した。得られた導電性積層体のグラフェン単層の表面に、ポジ型フォトレジストを塗布し、リソグラフィ技術により所定パターンの紫外光を照射して、所定パターンの形状を有する物理マスクを形成した。次いで、プラズマアッシャ装置を用いて、物理マスクが形成されていない部分を酸素プラズマによりエッチングして、その部分のグラフェン単体層とポリパラキシレン樹脂膜を除去した。次いで、物理マスクを除去した。
[Example 2]
In the same manner as in Example 1, an alginate gel layer (release layer), a polyparaxylene resin film (insulating base material), and a graphene single layer (conductive intermediate layer) are placed on a glass substrate (deposition substrate). , Formed in this order. A positive photoresist was applied to the surface of the graphene single layer of the obtained conductive laminate, and a predetermined pattern of ultraviolet light was irradiated by a lithography technique to form a physical mask having a predetermined pattern shape. Then, using a plasma asher device, the portion where the physical mask was not formed was etched with oxygen plasma to remove the graphene simple substance layer and the polyparaxylene resin film in that portion. The physical mask was then removed.
次に、エッチングした導電性積層体のグラフェン単層の表面に、実施例1と同様にして、導電性高分子層としてPEDOT−PSS層をめっき法により形成し、水で十分に洗浄した後、乾燥した。そして得られた積層体のアルギン酸ゲル層を溶解除去して、ポリパラキシレン樹脂膜と、グラフェン単層と、PEDOT−PSS層が、この順で積層された電極を、ガラス基板から剥離した。得られた電極は、80℃の温度で20分間加熱した。 Next, a PEDOT-PSS layer was formed as a conductive polymer layer on the surface of the graphene single layer of the etched conductive laminate by a plating method in the same manner as in Example 1, and after being sufficiently washed with water, It was dry. Then, the alginate gel layer of the obtained laminate was dissolved and removed, and the electrode in which the polyparaxylene resin film, the graphene single layer, and the PEDOT-PSS layer were laminated in this order was peeled off from the glass substrate. The resulting electrode was heated at a temperature of 80 ° C. for 20 minutes.
得られた電極のPEDOT−PSS層側の表面を、SEM(走査型電子顕微鏡)と位相差光顕微鏡とを用いて観察した。図10にPEDOT−PSS層を積層する前と後のSEM画像を、図11にPEDOT−PSS層を積層する前と後の位相差画像を示す。
図10の(a)は、PEDOT−PSS層を積層する前(エッチングした導電性積層体のグラフェン単層の表面)のSEM画像であり、(b)は、PEDOT−PSS層を積層した後のSEM画像である。図11の(a)は、PEDOT−PSS層を積層する前(エッチングした導電性積層体のグラフェン単層の表面)の位相差画像であり、(b)は、PEDOT−PSS層を積層した後の位相差画像である。
図10と図11に示すように、PEDOT−PSS層は所定パターンに形成されていることが確認された。
The surface of the obtained electrode on the PEDOT-PSS layer side was observed using an SEM (scanning electron microscope) and a retardation light microscope. FIG. 10 shows SEM images before and after laminating the PEDOT-PSS layer, and FIG. 11 shows phase difference images before and after laminating the PEDOT-PSS layer.
FIG. 10A is an SEM image before laminating the PEDOT-PSS layer (the surface of the graphene single layer of the etched conductive laminate), and FIG. 10B is an SEM image after laminating the PEDOT-PSS layer. It is an SEM image. FIG. 11A is a phase difference image before laminating the PEDOT-PSS layer (the surface of the graphene single layer of the etched conductive laminate), and FIG. 11B is a phase difference image after laminating the PEDOT-PSS layer. It is a phase difference image of.
As shown in FIGS. 10 and 11, it was confirmed that the PEDOT-PSS layer was formed in a predetermined pattern.
1…電極、10…絶縁性基材、11…可撓性樹脂膜、12…導電性中間層、13…導電性高分子層、20…成膜用基板、21…剥離層、22…物理マスク、30…円錐状電極 1 ... Electrode, 10 ... Insulating base material, 11 ... Flexible resin film, 12 ... Conductive intermediate layer, 13 ... Conductive polymer layer, 20 ... Deposition substrate, 21 ... Release layer, 22 ... Physical mask , 30 ... Conical electrode
Claims (8)
導電性中間層の前記絶縁性基材側とは反対側の表面に、導電性高分子層をめっき法により形成する導電性高分子層形成工程とを、有する電極の製造方法。 A conductive intermediate layer forming step of forming a conductive intermediate layer on at least one surface of an insulating base material,
A method for manufacturing an electrode, which comprises a conductive polymer layer forming step of forming a conductive polymer layer on the surface of the conductive intermediate layer opposite to the insulating base material side by a plating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019093760A JP7178048B2 (en) | 2019-05-17 | 2019-05-17 | ELECTRODE, ELECTRODE MANUFACTURING METHOD, AND BIOLOGICAL SIGNAL MEASURING DEVICE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019093760A JP7178048B2 (en) | 2019-05-17 | 2019-05-17 | ELECTRODE, ELECTRODE MANUFACTURING METHOD, AND BIOLOGICAL SIGNAL MEASURING DEVICE |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020185336A true JP2020185336A (en) | 2020-11-19 |
JP7178048B2 JP7178048B2 (en) | 2022-11-25 |
Family
ID=73221183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019093760A Active JP7178048B2 (en) | 2019-05-17 | 2019-05-17 | ELECTRODE, ELECTRODE MANUFACTURING METHOD, AND BIOLOGICAL SIGNAL MEASURING DEVICE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7178048B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024109839A3 (en) * | 2022-11-24 | 2024-08-02 | 中国科学院深圳先进技术研究院 | Flexible graphene electrode, preparation method therefor and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013512062A (en) * | 2009-12-01 | 2013-04-11 | エコーレ ポリテクニーク フェデラーレ デ ローザンヌ | Microfabricated surface nerve stimulation device and methods of making and using the same |
WO2014157550A1 (en) * | 2013-03-28 | 2014-10-02 | 国立大学法人東北大学 | Porous substrate electrode body and method for producing same |
JP2015077414A (en) * | 2011-11-17 | 2015-04-23 | 日本電信電話株式会社 | Conductive polymer fiber, and method and device of producing conductive polymer fiber |
JP2017020944A (en) * | 2015-07-13 | 2017-01-26 | 日本電信電話株式会社 | Method for producing carbon microelectrode |
-
2019
- 2019-05-17 JP JP2019093760A patent/JP7178048B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013512062A (en) * | 2009-12-01 | 2013-04-11 | エコーレ ポリテクニーク フェデラーレ デ ローザンヌ | Microfabricated surface nerve stimulation device and methods of making and using the same |
JP2015077414A (en) * | 2011-11-17 | 2015-04-23 | 日本電信電話株式会社 | Conductive polymer fiber, and method and device of producing conductive polymer fiber |
WO2014157550A1 (en) * | 2013-03-28 | 2014-10-02 | 国立大学法人東北大学 | Porous substrate electrode body and method for producing same |
JP2017020944A (en) * | 2015-07-13 | 2017-01-26 | 日本電信電話株式会社 | Method for producing carbon microelectrode |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024109839A3 (en) * | 2022-11-24 | 2024-08-02 | 中国科学院深圳先进技术研究院 | Flexible graphene electrode, preparation method therefor and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7178048B2 (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs | |
An et al. | A wearable second skin‐like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline | |
Nguyen‐Vu et al. | Vertically aligned carbon nanofiber arrays: an advance toward electrical–neural interfaces | |
Berggren et al. | Ion electron–coupled functionality in materials and devices based on conjugated polymers | |
Green et al. | Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through MWNT incorporation | |
Heim et al. | Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation | |
Qiang et al. | Bilayer nanomesh structures for transparent recording and stimulating microelectrodes | |
Wallace et al. | Nanobionics: the impact of nanotechnology on implantable medical bionic devices | |
US20100068461A1 (en) | Nanostructured composites | |
US9617649B2 (en) | Porous structure provided with a pattern that is composed of conductive polymer and method of manufacturing the same | |
Wang et al. | 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation | |
Yao et al. | High-stability conducting polymer-based conformal electrodes for bio-/iono-electronics | |
Vafaiee et al. | Carbon nanotube modified microelectrode array for neural interface | |
Chen et al. | Multilayered polypyrrole-coated carbon nanotubes to improve functional stability and electrical properties of neural electrodes | |
Tian et al. | Design of adhesive conducting PEDOT-MeOH: PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes | |
Nikiforidis et al. | A self-standing organic supercapacitor to power bioelectronic devices | |
Ashok et al. | Flexible nanoarchitectonics for biosensing and physiological monitoring applications | |
Ullah et al. | Large charge-storage-capacity iridium/ruthenium oxide coatings as promising material for neural stimulating electrodes | |
Liang et al. | Strategies for interface issues and challenges of neural electrodes | |
Gablech et al. | State‐of‐the‐Art Electronic Materials for Thin Films in Bioelectronics | |
Saunier et al. | Microelectrodes from PEDOT-carbon nanofiber composite for high performance neural recording, stimulation and neurochemical sensing | |
Chik et al. | Flexible multichannel neural probe developed by electropolymerization for localized stimulation and sensing | |
Eslamian et al. | Organic semiconductor nanotubes for electrochemical devices | |
Bao et al. | Development and characterisation of electroplating silver/silver chloride modified microelectrode arrays | |
Yang et al. | Chemical polymerization of conducting polymer poly (3, 4-ethylenedioxythiophene) onto neural microelectrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190517 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7178048 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |