JP2020185065A - Microneedle and manufacturing method thereof - Google Patents

Microneedle and manufacturing method thereof Download PDF

Info

Publication number
JP2020185065A
JP2020185065A JP2019089922A JP2019089922A JP2020185065A JP 2020185065 A JP2020185065 A JP 2020185065A JP 2019089922 A JP2019089922 A JP 2019089922A JP 2019089922 A JP2019089922 A JP 2019089922A JP 2020185065 A JP2020185065 A JP 2020185065A
Authority
JP
Japan
Prior art keywords
microneedle
gel
particles
tip
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019089922A
Other languages
Japanese (ja)
Inventor
宏忠 平間
Hirotada Hirama
宏忠 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019089922A priority Critical patent/JP2020185065A/en
Publication of JP2020185065A publication Critical patent/JP2020185065A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a microneedle containing an active substance such as cosmetics and a medicament at high concentration.SOLUTION: A microneedle 10 includes a microneedle base material 12 and a plurality of gelatinous particles 14. The microneedle base material 12 includes a tip part 12a and a base part 12b. The gelatinous particles 14 are included in the tip part 12a. The gelatinous particles 14 contain a hydrophilic medium and an active substance in an amount exceeding a saturation dissolution amount to the hydrophilic medium. A mean particle diameter of the gelatinous particles 14 is preferably 10-100 μm. The active substance is sodium hyaluronate, for example.SELECTED DRAWING: Figure 1

Description

本願は、皮膚表層などから体内に、化粧料または薬物などの有効成分を高濃度で投与するときに使用するマイクロニードルに関する。 The present application relates to microneedles used when an active ingredient such as a cosmetic or a drug is administered at a high concentration into the body from the surface layer of the skin or the like.

生分解性高分子素材のマイクロニードルの先端に薬物を保持する方法として、マイクロニードルの先端を薬物の溶液に浸漬する方法が報告されている(特許文献1)。この方法では、溶媒への飽和溶解量を超える量の薬物をマイクロニードルの先端に付着させるのは困難である。化粧料または薬物などの有効成分を高濃度で含有するマイクロニードルの出現が望まれている。 As a method of holding a drug at the tip of a microneedle made of a biodegradable polymer material, a method of immersing the tip of the microneedle in a solution of the drug has been reported (Patent Document 1). With this method, it is difficult to attach an amount of drug that exceeds the saturated dissolution amount in the solvent to the tip of the microneedle. The emergence of microneedles containing high concentrations of active ingredients such as cosmetics or drugs is desired.

特開2012−158607号公報Japanese Unexamined Patent Publication No. 2012-158607

本願の課題は、化粧料または薬物などの有効成分を高濃度で含有するマイクロニードルを提供することである。 An object of the present application is to provide microneedles containing a high concentration of an active ingredient such as a cosmetic or a drug.

本願のマイクロニードルは、先端部を備えるマイクロニードル基材と、先端部に内包され、親水性媒体と、親水性媒体への飽和溶解量を超える量の有効成分とを含有する複数のゲル状粒子とを有する。 The microneedles of the present application are a plurality of gel-like particles encapsulated in a microneedle base material having a tip portion and containing a hydrophilic medium and an active ingredient in an amount exceeding the saturated dissolution amount in the hydrophilic medium. And have.

本願のある態様のマイクロニードルの製造方法は、親水性媒体を吸収するとともに、親水性媒体をゲル化するゲル化剤を含有する基材と、基材の表面に設けられ、疎水性液体と界面活性剤を含有する混合液とを備える複合体の表面に、有効成分と親水性媒体を含有する液滴を設置する設置工程と、液滴中の親水性媒体を基材に吸収させるとともに、ゲル化剤を液滴中に導入し、液滴を濃縮およびゲル化して、親水性媒体と、親水性媒体への飽和溶解量を超える量の有効成分とを含有するゲル状粒子を得る濃縮工程と、先端部と基底部を備えるマイクロニードルの成形型の先端部の対応部に、ゲル状粒子とマイクロニードル基材の材料を入れ、材料を硬化させて、ゲル状粒子とマイクロニードル基材を備えるマイクロニードルを得る硬化工程とを有する。 The method for producing a microneedle according to an aspect of the present application is provided on a base material containing a gelling agent that absorbs a hydrophilic medium and gels the hydrophilic medium, and is provided on the surface of the base material to interface with a hydrophobic liquid. An installation step in which droplets containing the active ingredient and a hydrophilic medium are placed on the surface of a composite containing a mixed solution containing an activator, and the hydrophilic medium in the droplets is absorbed by the substrate and gel is absorbed. A concentration step of introducing an agent into the droplets and concentrating and gelling the droplets to obtain gel-like particles containing a hydrophilic medium and an amount of active ingredient in excess of the saturated dissolution amount in the hydrophilic medium. , The gel-like particles and the material of the microneedle base material are put in the corresponding portion of the tip portion of the mold of the microneedle having the tip portion and the base portion, and the material is cured to provide the gel-like particles and the microneedle base material. It has a curing step of obtaining microneedles.

本願の他の態様のマイクロニードルの製造方法は、先端部と基底部を備えるマイクロニードルの成形型の先端部の対応部に、有効成分を含有するゲル状粒子と高分子化合物溶液を含む混合物を入れ、高分子化合物溶液を硬化させて先端部を成形する先端部硬化工程と、成形型の基底部の対応部に、高分子化合物溶液を入れ、高分子化合物溶液を硬化させて基底部を成形する基底部硬化工程とを有する。 In the method for producing a microneedle according to another aspect of the present application, a mixture containing a gel-like particle containing an active ingredient and a polymer compound solution is provided at a corresponding portion of a molded tip of a microneedle having a tip and a base. Put the polymer compound solution and cure the polymer compound solution to mold the tip part, and put the polymer compound solution in the corresponding part of the base part of the molding mold and cure the polymer compound solution to mold the base part. It has a base hardening step to be performed.

本願によれば、有効成分を高濃度で含有するマイクロニードルが得られる。 According to the present application, microneedles containing a high concentration of the active ingredient can be obtained.

実施形態のマイクロニードルの断面模式図。Schematic diagram of the cross section of the microneedle of the embodiment. 実施形態のマイクロニードルの製造方法の設置工程を説明するための断面模式図。The cross-sectional schematic diagram for demonstrating the installation process of the manufacturing method of the microneedle of embodiment. 実施形態のマイクロニードルの製造方法の濃縮工程を説明するための断面模式図。FIG. 6 is a schematic cross-sectional view for explaining a concentration step of the method for manufacturing a microneedle of the embodiment. 実施形態のマイクロニードルの製造方法の硬化工程を説明するための断面模式図。The cross-sectional schematic diagram for demonstrating the curing process of the manufacturing method of the microneedle of an embodiment. 他の実施形態のマイクロニードルの製造方法の先端部硬化工程を説明するための断面模式図。The cross-sectional schematic diagram for demonstrating the tip hardening process of the manufacturing method of the microneedle of another embodiment. 他の実施形態のマイクロニードルの製造方法の基底部硬化工程を説明するための断面模式図。The cross-sectional schematic diagram for demonstrating the base hardening process of the manufacturing method of the microneedle of another embodiment.

図1は、本願の実施形態のマイクロニードル10の断面を模式的に示している。マイクロニードル10は、マイクロニードル基材12と、複数のゲル状粒子14を備えている。マイクロニードル基材12は、マイクロニードル10の主成分である。マイクロニードル基材12は、例えば、ヒアルロン酸、ポリ乳酸、ポリグリコール酸、マルトース、ガラクトース、デキストリン、またはキトサン等の高分子化合物から主に構成されている。マイクロニードル基材12は、生体内で溶解または分解し、生体適合性を備えることが好ましい。マイクロニードル基材12は、尖った先端部12aと、平板状の基底部12bを備えている。マイクロニードル基材12がマイクロニードル10の主成分であることから、マイクロニードル10が先端部10aと基底部10bを備えているともいえる。 FIG. 1 schematically shows a cross section of the microneedle 10 according to the embodiment of the present application. The microneedle 10 includes a microneedle base material 12 and a plurality of gel-like particles 14. The microneedle base material 12 is the main component of the microneedle 10. The microneedle base material 12 is mainly composed of a polymer compound such as hyaluronic acid, polylactic acid, polyglycolic acid, maltose, galactose, dextrin, or chitosan. The microneedle base material 12 is preferably dissolved or decomposed in vivo to have biocompatibility. The microneedle base material 12 includes a pointed tip portion 12a and a flat plate-shaped base portion 12b. Since the microneedle base material 12 is the main component of the microneedle 10, it can be said that the microneedle 10 includes a tip portion 10a and a base portion 10b.

ゲル状粒子14は、親水性媒体と、有効成分を含有している。親水性媒体としては、水、エタノール、または酢酸などが例示できる。有効成分は、ヒトを含む生物に作用して効力を発揮する物質であり、化粧料または薬物などである。より具体的には、有効成分としては、化粧料および薬物以外に、ヒアルロン酸塩などの糖類、核酸、タンパク質、ペプチド、グリセリン、ポリエチレングリコール、尿素、アミノ酸、ピロリドンカルポン酸ナトリウム、乳酸、または細胞外小胞などが例示できる。 The gel-like particles 14 contain a hydrophilic medium and an active ingredient. Examples of the hydrophilic medium include water, ethanol, acetic acid and the like. The active ingredient is a substance that acts on living organisms including humans and exerts its effect, such as cosmetics or drugs. More specifically, in addition to cosmetics and drugs, the active ingredients include sugars such as hyaluronate, nucleic acids, proteins, peptides, glycerin, polyethylene glycol, urea, amino acids, sodium pyrrolidone carponate, lactic acid, or cells. Examples include external vesicles.

ゲル状粒子14は先端部12aに内包されている。ゲル状粒子14は、親水性媒体への飽和溶解量を超える量の有効成分を含有している。このため、マイクロニードル10の先端部10aをヒトの皮膚表層に接触させると、有効成分が高濃度で体内に導入される。ゲル状粒子14中の有効成分の量を親水性媒体への飽和溶解量を超える量にする方法については後述する。ゲル状粒子の平均粒径は10〜100μmであることが好ましい。平均粒径は、例えば、画像解析ソフト(Image J)を用いて、顕微鏡画像の任意の50個の直径を測定し、その平均値によって算出する。 The gel-like particles 14 are included in the tip portion 12a. The gel-like particles 14 contain an amount of the active ingredient that exceeds the saturated dissolution amount in the hydrophilic medium. Therefore, when the tip portion 10a of the microneedle 10 is brought into contact with the surface layer of human skin, the active ingredient is introduced into the body at a high concentration. A method for adjusting the amount of the active ingredient in the gel-like particles 14 to an amount exceeding the saturated dissolution amount in the hydrophilic medium will be described later. The average particle size of the gel-like particles is preferably 10 to 100 μm. The average particle size is calculated by measuring any 50 diameters of a microscope image using, for example, image analysis software (Image J) and using the average value thereof.

図2から図4は、マイクロニードル10の製造方法の各工程を説明するために、マイクロニードル10の構成部材またはマイクロニードル10の製造に使用する周辺部材の断面を模式的に示している。マイクロニードル10の製造方法は、設置工程と、濃縮工程と、硬化工程を備えている。図2に示すように、設置工程では、複合体16内に液滴18を設置する。複合体16は、基材20と、混合液22を備えている。基材20は親水性媒体を吸収する。本実施形態では、基材20の主成分はアガロースなどのゲルである。また、基材20は、浸透圧を高くするための無機塩類を含有しており、親水性媒体との浸透圧差によって、基材20が親水性媒体を吸収する。 2 to 4 schematically show cross sections of a constituent member of the microneedle 10 or a peripheral member used for manufacturing the microneedle 10 in order to explain each step of the method of manufacturing the microneedle 10. The method for manufacturing the microneedle 10 includes an installation step, a concentration step, and a curing step. As shown in FIG. 2, in the installation step, the droplet 18 is installed in the composite 16. The composite 16 includes a base material 20 and a mixed solution 22. The base material 20 absorbs a hydrophilic medium. In the present embodiment, the main component of the base material 20 is a gel such as agarose. Further, the base material 20 contains inorganic salts for increasing the osmotic pressure, and the base material 20 absorbs the hydrophilic medium due to the difference in osmotic pressure from the hydrophilic medium.

基材20は、親水性媒体をゲル化するゲル化剤を含有している。本実施形態では、無機塩類がゲル化剤としても機能する。ゲル化剤としては、塩化カルシウム、塩化マグネシウム、または塩化バリウムなどが例示できる。混合液22は、基材20の表面20aに設けられている。混合液22は疎水性液体と界面活性剤を含有する。疎水性液体としては、油、フッ素系不活性液体、または液体炭化水素などが例示できる。界面活性剤は液滴界面の安定化剤として機能する。界面活性剤としては、油溶性の両親媒性化合物などが例示できる。 The base material 20 contains a gelling agent that gels a hydrophilic medium. In this embodiment, the inorganic salts also function as a gelling agent. Examples of the gelling agent include calcium chloride, magnesium chloride, barium chloride and the like. The mixed solution 22 is provided on the surface 20a of the base material 20. The mixture 22 contains a hydrophobic liquid and a surfactant. Examples of the hydrophobic liquid include oils, fluorine-based inert liquids, and liquid hydrocarbons. The surfactant functions as a stabilizer for the droplet interface. Examples of the surfactant include oil-soluble amphipathic compounds.

設置工程では、内径50〜1000μmの流路に、有効成分と親水性媒体を含有する液体を通過させて、基材20の表面20aに液滴18を設置することが好ましい。液滴18の大きさ、すなわち粒径の均一性が向上するからである。なお、流路の内径は、液体が流れる方向と垂直な断面において、最も狭い径である。そして、粒径の均一性が高い液滴18からは、粒径の均一性が高いゲル状粒子14が得られる。粒径の均一性が高いゲル状粒子14は、マイクロニードル基材12の先端部12aに密に充填できる。このため、粒径の均一性が高いゲル状粒子14は、マイクロニードル10に多く含有できる。 In the installation step, it is preferable to pass the liquid containing the active ingredient and the hydrophilic medium through a flow path having an inner diameter of 50 to 1000 μm to install the droplet 18 on the surface 20a of the base material 20. This is because the size of the droplet 18, that is, the uniformity of the particle size is improved. The inner diameter of the flow path is the narrowest diameter in the cross section perpendicular to the direction in which the liquid flows. Then, from the droplet 18 having high particle size uniformity, gel-like particles 14 having high particle size uniformity can be obtained. The gel-like particles 14 having a high uniformity of particle size can be densely packed in the tip portion 12a of the microneedle base material 12. Therefore, a large amount of gel-like particles 14 having high particle size uniformity can be contained in the microneedle 10.

流路を備える器具としてはマイクロ流路が例示できる。マイクロ流路は、1箇所の入口から流路が十字状またはT字状に分岐し、複数箇所の同じ大きさの出口につながっている。このため、マイクロ流路を使用すれば、ほぼ同じ大きさの液滴が大量に作製できる。マイクロ流路の流路の内壁は疎水性であることが好ましい。流路内径は数十〜数千μmであることが好ましい。流路の流れる方向と垂直な断面は、長方形または円形であることが好ましい。マイクロ流路は、シリコーンゴム、ガラス、または樹脂などから作製される。マイクロ流路の使用に代えて、機械攪拌または膜乳化法などの乳化分散手法により液滴18を作製し、基材20の表面20aに設置してもよい。 A micro flow path can be exemplified as an instrument provided with a flow path. In the micro flow path, the flow path branches from one inlet in a cross shape or a T shape, and is connected to a plurality of outlets of the same size. Therefore, if a microchannel is used, a large number of droplets having substantially the same size can be produced. The inner wall of the flow path of the micro flow path is preferably hydrophobic. The inner diameter of the flow path is preferably several tens to several thousand μm. The cross section perpendicular to the flow direction of the flow path is preferably rectangular or circular. The microchannel is made of silicone rubber, glass, resin or the like. Instead of using the microchannel, the droplet 18 may be prepared by an emulsification / dispersion method such as mechanical stirring or a membrane emulsification method and placed on the surface 20a of the base material 20.

濃縮工程では、液滴18中の親水性媒体を基材20に吸収させるとともに、ゲル化剤を液滴18中に導入する。そして、液滴18を濃縮およびゲル化して、図3に示すように、親水性媒体と、親水性媒体への飽和溶解量を超える量の有効成分とを含有するゲル状粒子14を得る。より具体的には、本実施形態では、設置工程後に静置すれば、濃縮工程が進行する。すなわち、基材20が高浸透圧であることから、基材20が液滴18中の親水性媒体を吸収し、基材20がゲル化剤を含有することから、液滴18中にゲル化剤が導入される。これらの親水性媒体の吸収と液滴18中へのゲル化剤の導入は同時に進行する。 In the concentration step, the hydrophilic medium in the droplet 18 is absorbed by the base material 20, and the gelling agent is introduced into the droplet 18. Then, the droplet 18 is concentrated and gelled to obtain a gel-like particle 14 containing a hydrophilic medium and an active ingredient in an amount exceeding the saturated dissolution amount in the hydrophilic medium, as shown in FIG. More specifically, in the present embodiment, if the product is allowed to stand after the installation process, the concentration process proceeds. That is, since the base material 20 has a high osmotic pressure, the base material 20 absorbs the hydrophilic medium in the droplet 18, and the base material 20 contains a gelling agent, so that the base material 20 gels in the droplet 18. The agent is introduced. The absorption of these hydrophilic media and the introduction of the gelling agent into the droplet 18 proceed at the same time.

濃縮工程では、ゲル状粒子14の有効成分の濃度が、液滴18の有効成分の濃度の100倍以上となるように液滴18を濃縮することが好ましい。なお、ゲル状粒子14の有効成分の濃度/液滴18の有効成分の濃度(以下「ゲル状粒子の濃縮倍率」と記載することがある)は、ゲル状粒子14の体積/液滴18の体積とした。ゲル状粒子14および液滴18の体積は、ゲル状粒子14および液滴18の粒径を50個計測し、その数平均値を直径とする球体の体積とした。ゲル状粒子14の有効成分の濃度を、液滴18の有効成分の濃度の100倍以上にするには、ゲル状粒子14の粒径、または混合液22もしくは基材20の成分もしくは量などを調整すればよい。 In the concentration step, it is preferable to concentrate the droplet 18 so that the concentration of the active ingredient of the gel-like particles 14 is 100 times or more the concentration of the active ingredient of the droplet 18. The concentration of the active ingredient of the gel-like particles 14 / the concentration of the active ingredient of the droplets 18 (hereinafter, may be referred to as "concentration ratio of the gel-like particles") is the volume of the gel-like particles 14 / the concentration of the droplets 18. The volume was defined. The volume of the gel-like particles 14 and the droplets 18 was determined by measuring 50 particle sizes of the gel-like particles 14 and the droplets 18 and using the number average value as the diameter as the volume of a sphere. In order to make the concentration of the active ingredient of the gel-like particles 14 100 times or more the concentration of the active ingredient of the droplet 18, the particle size of the gel-like particles 14 or the component or amount of the mixed solution 22 or the base material 20 is adjusted. You just have to adjust.

図4に示すように、硬化工程では、マイクロニードル10の成形型30の先端部10aの対応部30aに、ゲル状粒子14と、マイクロニードル基材12の材料を入れる。成形型30の素材は特に制限がないが、成形型30の素材としては、金属、ガラス、またはポリジメチルシロキサン樹脂などの高分子化合物が例示できる。ゲル状粒子14およびマイクロニードル基材12の材料以外に、成形型30の先端部10aの対応部30aに離型剤を入れてもよい。そして、マイクロニードル基材12の材料を硬化させて、ゲル状粒子14とマイクロニードル基材12を備えるマイクロニードル10を得る。マイクロニードル基材12の材料の硬化は、静置、加熱、冷却、または光照射などによって行う。得られたマイクロニードル10は、成形型30から離して使用する。 As shown in FIG. 4, in the curing step, the gel-like particles 14 and the material of the microneedle base material 12 are put into the corresponding portion 30a of the tip portion 10a of the molding mold 30 of the microneedle 10. The material of the molding die 30 is not particularly limited, and examples of the material of the molding die 30 include polymer compounds such as metal, glass, and polydimethylsiloxane resin. In addition to the materials of the gel-like particles 14 and the microneedle base material 12, a mold release agent may be added to the corresponding portion 30a of the tip portion 10a of the molding mold 30. Then, the material of the microneedle base material 12 is cured to obtain a microneedle 10 including the gel-like particles 14 and the microneedle base material 12. The material of the microneedle base material 12 is cured by standing, heating, cooling, light irradiation, or the like. The obtained microneedle 10 is used away from the molding die 30.

図5および図6は、他の実施形態のマイクロニードル40の製造方法を説明するために、マイクロニードル40の構成部材またはマイクロニードル40の製造に使用する周辺部材の断面を模式的に示している。先端部40aと基底部40bを備えるマイクロニードル40の製造方法は、先端部硬化工程と、基底部硬化工程を備えている。図5に示すように、先端部硬化工程では、マイクロニードル40の成形型50の先端部40aの対応部50aに、有効成分を含有するゲル状粒子14と高分子化合物溶液52を入れ、高分子化合物溶液52を硬化させて先端部40aを成形する。 5 and 6 schematically show a cross section of a constituent member of the microneedle 40 or a peripheral member used for manufacturing the microneedle 40 in order to explain a method of manufacturing the microneedle 40 of another embodiment. .. The method for manufacturing the microneedle 40 including the tip portion 40a and the base portion 40b includes a tip portion curing step and a base portion curing step. As shown in FIG. 5, in the tip curing step, the gel-like particles 14 containing the active ingredient and the polymer compound solution 52 are placed in the corresponding portion 50a of the tip 40a of the molding mold 50 of the microneedle 40 to form a polymer. The compound solution 52 is cured to form the tip portion 40a.

先端部硬化工程では、ゲル状粒子14と高分子化合物溶液52を含有する混合物54を多段階で入れ、高分子化合物溶液52を多段階で硬化させてもよい。すなわち、マイクロニードル40の成形型50の先端部40aの対応部50aの一部に混合物54を入れ、高分子化合物溶液52を硬化させる過程を繰り返し、対応部50aの全部を満たしてもよい。この方法によって、より多くのゲル状粒子14が先端部40aに配置できる。 In the tip curing step, the mixture 54 containing the gel-like particles 14 and the polymer compound solution 52 may be added in multiple steps, and the polymer compound solution 52 may be cured in multiple steps. That is, the process of putting the mixture 54 in a part of the corresponding portion 50a of the tip portion 40a of the molding mold 50 of the microneedle 40 and curing the polymer compound solution 52 may be repeated to fill the entire corresponding portion 50a. By this method, more gel-like particles 14 can be arranged at the tip portion 40a.

図6に示すように、基底部硬化工程では、成形型50の基底部40bの対応部50bに、高分子化合物溶液52を入れ、高分子化合物溶液52を硬化させて基底部40bを成形する。基底部硬化工程では、高分子化合物溶液52を多段階で入れ、高分子化合物溶液52を多段階で硬化させてもよい。すなわち、成形型50の基底部40bの対応部50bの一部に高分子化合物溶液52を入れ、高分子化合物溶液52を硬化させる過程を繰り返し、対応部50bの全部を満たしてもよい。この方法によって、強固なマイクロニードル40が得られる。 As shown in FIG. 6, in the base portion curing step, the polymer compound solution 52 is placed in the corresponding portion 50b of the base portion 40b of the molding die 50, and the polymer compound solution 52 is cured to form the base portion 40b. In the basal curing step, the polymer compound solution 52 may be added in multiple steps, and the polymer compound solution 52 may be cured in multiple steps. That is, the process of putting the polymer compound solution 52 in a part of the corresponding portion 50b of the base portion 40b of the molding die 50 and curing the polymer compound solution 52 may be repeated to fill the entire corresponding portion 50b. By this method, a strong microneedle 40 is obtained.

ゲル状粒子の作製
2w/v%のアガロース(アガロースS、和光純薬)水溶液0.75mLと、0.1〜1.2mol/Lのゲル化剤であるCaCl(無水物、和光純薬)水溶液0.75mLを混合攪拌し、ゲル化して基材を作製した。内容量9mLのポリスチレン製容器(コーニング)の内底面に、この基材を厚さ1〜2mmで設置した。縮合リシノール酸エステル系の界面活性剤(SY-Glyster CRS-75、阪本薬品工業)と鉱物油(シグマアルドリッチ)を混合攪拌して混合液を作製した。シリンジとシリンジポンプ(KDS-200、KD Scientific社)を用いて、基材上でこの混合液を流量0.8mL/hで流した。
Preparation of gel-like particles 0.75 mL of 2 w / v% agarose (agarose S, Wako pure drug) aqueous solution and CaCl 2 (anhydride, Wako pure drug) which is a gelling agent of 0.1 to 1.2 mol / L. 0.75 mL of the aqueous solution was mixed and stirred, and gelled to prepare a base material. This base material was placed on the inner bottom surface of a polystyrene container (Corning) having an internal volume of 9 mL and having a thickness of 1 to 2 mm. A mixed solution was prepared by mixing and stirring a condensed ricinoleic acid ester-based surfactant (SY-Glyster CRS-75, Sakamoto Yakuhin Kogyo) and mineral oil (Sigma-Aldrich). Using a syringe and a syringe pump (KDS-200, KD Scientific), the mixture was flowed on the substrate at a flow rate of 0.8 mL / h.

有効成分であるヒアルロン酸ナトリウム(和光純薬、089-10343)0.01gと、親水性媒体である水100mLを混合攪拌して、液滴を形成する液体を作製した。シリンジをシリンジポンプ(KDS-200、KD Scientific社)に接続した。また、フッ素樹脂製チューブ(内径0.8mm、アズワン)を介して、シリンジの先端と、十字構造のポリジメチルシロキサン(PDMS)製マイクロ流路(流路断面形状:正方形、断面寸法0.1mm×0.1mm、自作)を接続した。シリンジにこの液体を充填し、シリンジポンプを用いて、流量0.3mL/hで基材上にこの液体を滴下して液滴を形成させた。これを静置して、基材上に複数のゲル状粒子を得た。得られたゲル状粒子をマイクロピペットによりマイクロチューブに回収し、アセトンおよびリン酸緩衝液を添加し撹拌して洗浄し、マイクロチューブ内に保存した。 0.01 g of sodium hyaluronate (Wako Pure Chemical Industries, Ltd., 089-10343), which is an active ingredient, and 100 mL of water, which is a hydrophilic medium, were mixed and stirred to prepare a liquid for forming droplets. The syringe was connected to a syringe pump (KDS-200, KD Scientific). Further, via a fluororesin tube (inner diameter 0.8 mm, AS ONE), the tip of the syringe and a cross-structured polydimethylsiloxane (PDMS) microchannel (channel cross-sectional shape: square, cross-sectional dimension 0.1 mm ×) 0.1 mm, self-made) was connected. A syringe was filled with this liquid, and a syringe pump was used to drop the liquid onto the substrate at a flow rate of 0.3 mL / h to form droplets. This was allowed to stand to obtain a plurality of gel-like particles on the substrate. The obtained gel-like particles were collected in a microtube by a micropipette, acetone and a phosphate buffer were added, stirred and washed, and stored in the microtube.

混合液の流量を0.8〜4.0mL/hと変化させたところ、液滴の粒径が60〜105μmに変化した。このように、混合液の流量を調整することによって、液滴の粒径も調整できた。また、混合液の流量を0.8mL/hとして、基材中のCaClの濃度を0.05〜0.6mol/Lと変化させたところ、得られたゲル状粒子の平均粒径が21〜55μmと変化した。混合液の流量を4.0mL/hとして、基材中のCaClの濃度を0.05〜0.6mol/Lと変化させたところ、得られたゲル状粒子の平均粒径が12〜32μmと変化した。このように、基材中のCaClの濃度または混合液の流量を調整することによって、ゲル状粒子の平均粒径も調整できた。以上で作製したゲル状粒子の濃縮倍率は、6〜129倍であり、100倍以上の濃縮が可能であった。 When the flow rate of the mixed solution was changed from 0.8 to 4.0 mL / h, the particle size of the droplets changed to 60 to 105 μm. By adjusting the flow rate of the mixed solution in this way, the particle size of the droplets could also be adjusted. Further, when the flow rate of the mixed solution was 0.8 mL / h and the concentration of CaCl 2 in the substrate was changed from 0.05 to 0.6 mol / L, the average particle size of the obtained gel-like particles was 21. It changed to ~ 55 μm. When the flow rate of the mixed solution was 4.0 mL / h and the concentration of CaCl 2 in the substrate was changed from 0.05 to 0.6 mol / L, the average particle size of the obtained gel-like particles was 12 to 32 μm. Changed. In this way, the average particle size of the gel-like particles could be adjusted by adjusting the concentration of CaCl 2 in the substrate or the flow rate of the mixed solution. The concentration ratio of the gel-like particles produced as described above was 6 to 129 times, and it was possible to concentrate 100 times or more.

マイクロニードルの作製
金属製の凸型鋳型に、溶解したPDMS(silpot 184、東レ・ダウコーニング)を注ぎ、乾燥・硬化させた。硬化したPDMSを剥離して、凹型鋳型である成形型を得た。成形型に、ゲル状粒子とマイクロニードル基材の材料である0.01質量%ヒアルロン酸ナトリウム水溶液を注ぎ、乾燥・硬化させてマイクロニードルを成形した。成形型から剥離してマイクロニードルを得た。
Preparation of microneedles Melted PDMS (silpot 184, Toray Dow Corning) was poured into a metal convex mold, dried and cured. The cured PDMS was peeled off to obtain a molding mold which was a concave mold. Gel-like particles and a 0.01 mass% sodium hyaluronate aqueous solution, which is a material for a microneedle base material, were poured into a molding die, and dried and cured to form microneedles. A microneedle was obtained by peeling from the molding die.

10 マイクロニードル
10a 先端部
10b 基底部
12 マイクロニードル基材
12a 先端部
12b 基底部
14 ゲル状粒子
16 複合体
18 液滴
20 基材
20a 表面
22 混合液
30 成形型
30a 先端部の対応部
40 マイクロニードル
40a 先端部
40b 基底部
50 成形型
50a 先端部の対応部
50b 基底部の対応部
52 高分子化合物溶液
54 混合物
10 Microneedle 10a Tip 10b Base 12 Microneedle base material 12a Tip 12b Base 14 Gel-like particles 16 Composite 18 Droplets 20 Base 20a Surface 22 Mixture 30 Molding mold 30a Corresponding part of tip 40 Microneedle 40a Tip 40b Base 50 Mold 50a Tip Corresponding 50b Base Corresponding 52 Polymer Compound Solution 54 Mixture

Claims (9)

先端部を備えるマイクロニードル基材と、
前記先端部に内包され、親水性媒体と、前記親水性媒体への飽和溶解量を超える量の有効成分とを含有する複数のゲル状粒子と、
を有するマイクロニードル。
A microneedle base material with a tip and
A plurality of gel-like particles encapsulated in the tip portion and containing the hydrophilic medium and an active ingredient in an amount exceeding the saturated dissolution amount in the hydrophilic medium.
Microneedle with.
請求項1において、
前記ゲル状粒子の平均粒径が10〜100μmであるマイクロニードル。
In claim 1,
A microneedle having an average particle size of 10 to 100 μm of the gel-like particles.
請求項1または2において、
前記有効成分がヒアルロン酸塩であるマイクロニードル。
In claim 1 or 2,
A microneedle in which the active ingredient is hyaluronate.
親水性媒体を吸収するとともに、前記親水性媒体をゲル化するゲル化剤を含有する基材と、前記基材の表面に設けられ、疎水性液体と界面活性剤を含有する混合液とを備える複合体の前記表面に、有効成分と前記親水性媒体を含有する液滴を設置する設置工程と、
前記液滴中の前記親水性媒体を前記基材に吸収させるとともに、前記ゲル化剤を前記液滴中に導入し、前記液滴を濃縮およびゲル化して、前記親水性媒体と、前記親水性媒体への飽和溶解量を超える量の有効成分とを含有するゲル状粒子を得る濃縮工程と、
先端部と基底部を備えるマイクロニードルの成形型の前記先端部の対応部に、前記ゲル状粒子とマイクロニードル基材の材料を入れ、前記材料を硬化させて、前記ゲル状粒子と前記マイクロニードル基材を備えるマイクロニードルを得る硬化工程と、
を有するマイクロニードルの製造方法。
A base material containing a gelling agent that absorbs the hydrophilic medium and gels the hydrophilic medium, and a mixed liquid provided on the surface of the base material and containing a hydrophobic liquid and a surfactant are provided. An installation step of placing droplets containing the active ingredient and the hydrophilic medium on the surface of the composite, and
The hydrophilic medium in the droplet is absorbed by the substrate, the gelling agent is introduced into the droplet, and the droplet is concentrated and gelled to form the hydrophilic medium and the hydrophilic medium. A concentration step for obtaining gel-like particles containing an amount of the active ingredient exceeding the saturated dissolution amount in the medium, and
The gel-like particles and the material of the microneedle base material are put into the corresponding portion of the tip portion of the molding mold of the microneedle having the tip portion and the base portion, and the material is cured to cure the gel-like particles and the microneedle. A curing process to obtain microneedles with a substrate,
A method for manufacturing a microneedle having.
請求項4において、
前記設置工程が、マイクロ流路に、前記有効成分と前記親水性媒体を含有する液体を通過させて、前記基材の前記表面に前記液滴を設置する過程を備えるマイクロニードルの製造方法。
In claim 4,
A method for producing a microneedle, wherein the installation step comprises a process of passing a liquid containing the active ingredient and the hydrophilic medium through a microchannel to place the droplet on the surface of the substrate.
請求項4または5において、
前記濃縮工程では、前記ゲル状粒子の前記有効成分の濃度が、前記液滴の前記有効成分の濃度の100倍以上となるように前記液滴を濃縮するマイクロニードルの製造方法。
In claim 4 or 5,
In the concentration step, a method for producing a microneedle that concentrates the droplet so that the concentration of the active ingredient in the gel-like particles is 100 times or more the concentration of the active ingredient in the droplet.
先端部と基底部を備えるマイクロニードルの成形型の前記先端部の対応部に、有効成分を含有するゲル状粒子と高分子化合物溶液を含む混合物を入れ、前記高分子化合物溶液を硬化させて前記先端部を成形する先端部硬化工程と、
前記成形型の前記基底部の対応部に、前記高分子化合物溶液を入れ、前記高分子化合物溶液を硬化させて前記基底部を成形する基底部硬化工程と、
を有するマイクロニードルの製造方法。
A mixture containing gel-like particles containing an active ingredient and a polymer compound solution is placed in a corresponding portion of the tip of a microneedle molding mold having a tip and a base, and the polymer compound solution is cured to obtain the above. Tip hardening process to mold the tip and
A base curing step of putting the polymer compound solution into the corresponding portion of the base of the molding mold and curing the polymer compound solution to form the base.
A method for manufacturing a microneedle having.
請求項7において、
前記先端部硬化工程では、前記混合物を多段階で入れ、前記高分子化合物溶液を前記多段階で硬化させるマイクロニードルの製造方法。
In claim 7,
In the tip curing step, a method for producing a microneedle, in which the mixture is added in multiple steps and the polymer compound solution is cured in the multi-steps.
請求項7または8において、
前記基底部硬化工程では、前記高分子化合物溶液を多段階で入れ、前記高分子化合物溶液を前記多段階で硬化させるマイクロニードルの製造方法。
In claim 7 or 8,
In the base curing step, a method for producing a microneedle, in which the polymer compound solution is added in multiple steps and the polymer compound solution is cured in the multi-steps.
JP2019089922A 2019-05-10 2019-05-10 Microneedle and manufacturing method thereof Pending JP2020185065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089922A JP2020185065A (en) 2019-05-10 2019-05-10 Microneedle and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089922A JP2020185065A (en) 2019-05-10 2019-05-10 Microneedle and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020185065A true JP2020185065A (en) 2020-11-19

Family

ID=73222930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089922A Pending JP2020185065A (en) 2019-05-10 2019-05-10 Microneedle and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020185065A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507573A (en) * 2005-09-06 2009-02-26 セラジェクト, インコーポレイテッド Solid solution punch comprising drug particles and / or particles adsorbed with drugs
WO2010140401A1 (en) * 2009-06-03 2010-12-09 株式会社バイオセレンタック Microneedle array using porous substrate and process for producing same
JP2011224332A (en) * 2010-03-29 2011-11-10 Fujifilm Corp Skin absorption sheet and method for manufacturing the same
WO2014181674A1 (en) * 2013-05-07 2014-11-13 日本写真印刷株式会社 Method for producing transdermal patch and transdermal patch
JP2017095427A (en) * 2015-11-27 2017-06-01 ライオン株式会社 Dissolution type microneedle pharmaceutical preparation
JP2017145226A (en) * 2016-02-19 2017-08-24 日本写真印刷株式会社 Microneedle sheet
JP2017221924A (en) * 2016-06-17 2017-12-21 国立研究開発法人産業技術総合研究所 Core-shell particle manufacturing method and core-shell particle manufacturing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507573A (en) * 2005-09-06 2009-02-26 セラジェクト, インコーポレイテッド Solid solution punch comprising drug particles and / or particles adsorbed with drugs
WO2010140401A1 (en) * 2009-06-03 2010-12-09 株式会社バイオセレンタック Microneedle array using porous substrate and process for producing same
JP2011224332A (en) * 2010-03-29 2011-11-10 Fujifilm Corp Skin absorption sheet and method for manufacturing the same
WO2014181674A1 (en) * 2013-05-07 2014-11-13 日本写真印刷株式会社 Method for producing transdermal patch and transdermal patch
JP2017095427A (en) * 2015-11-27 2017-06-01 ライオン株式会社 Dissolution type microneedle pharmaceutical preparation
JP2017145226A (en) * 2016-02-19 2017-08-24 日本写真印刷株式会社 Microneedle sheet
JP2017221924A (en) * 2016-06-17 2017-12-21 国立研究開発法人産業技術総合研究所 Core-shell particle manufacturing method and core-shell particle manufacturing apparatus

Similar Documents

Publication Publication Date Title
Zhao et al. Injectable microfluidic hydrogel microspheres for cell and drug delivery
Daly et al. Hydrogel microparticles for biomedical applications
Zhao et al. Microfluidic platforms toward rational material fabrication for biomedical applications
Detamornrat et al. The role of 3D printing technology in microengineering of microneedles
Zhang et al. Core-shell microparticles: From rational engineering to diverse applications
Makvandi et al. Bioinspired microneedle patches: Biomimetic designs, fabrication, and biomedical applications
Nuxoll BioMEMS in drug delivery
JP6710000B2 (en) Micro fiber
JP5063544B2 (en) Transdermal absorption sheet and method for producing the same
JP4885816B2 (en) Method and apparatus for producing functional film
US10544036B2 (en) Microfluidic devices and methods for the extrusion of tubular structures
US20150030642A1 (en) Polymer micro-needle array chip, preparation process and use thereof
Chen et al. Rapidly fabricated microneedle arrays using magnetorheological drawing lithography for transdermal drug delivery
ES2692296T3 (en) Method for the manufacture of monolithic three-dimensional microfluidic devices
WO2010096469A2 (en) Fabrication of interconnected model vasculature
US20160297131A1 (en) Hydrogel Microparticles via Soft Robotics Micromold (SRM) for In Vitro Cell Culture
Duarte et al. Microfluidic production of perfluorocarbon-alginate core–shell microparticles for ultrasound therapeutic applications
CN111195371A (en) Micro-heterotype cell-carrying alginic acid gel and preparation method and application thereof
JPS6144823A (en) Microcapsule, manufacture and apparatus
JP2010069252A (en) Method for manufacturing transdermal absorption sheet
CN111269834A (en) 3D voxel printing device and method based on cell soft sphere
Luo et al. Structured microgels through microfluidic assembly and their biomedical applications
Lee et al. Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays
Seo et al. Microfluidic-assisted fabrication of flexible and location traceable organo-motor
WO2012099482A2 (en) Device, method and system for preparing microcapsules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711