JP2020184894A - Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same - Google Patents

Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same Download PDF

Info

Publication number
JP2020184894A
JP2020184894A JP2019089849A JP2019089849A JP2020184894A JP 2020184894 A JP2020184894 A JP 2020184894A JP 2019089849 A JP2019089849 A JP 2019089849A JP 2019089849 A JP2019089849 A JP 2019089849A JP 2020184894 A JP2020184894 A JP 2020184894A
Authority
JP
Japan
Prior art keywords
flat plate
fine holes
ultraviolet rays
vacuum ultraviolet
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019089849A
Other languages
Japanese (ja)
Inventor
亮輔 松井
Ryosuke Matsui
亮輔 松井
悠二 藤田
Yuji Fujita
悠二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Corp
Original Assignee
Towa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Corp filed Critical Towa Corp
Priority to JP2019089849A priority Critical patent/JP2020184894A/en
Publication of JP2020184894A publication Critical patent/JP2020184894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To obtain a flat plate having fine holes, the flat plate being configured to be able to reduce the influence on cells in contact with inner surfaces of the fine holes as compared with the prior art.SOLUTION: Provided is a flat plate 2 having fine holes 3 formed at a predetermined depth. On an inner surface 4 of the fine holes 3 in the flat plate 2 are formed a plurality of vertical grooves 5 which extend in a streak shape along the depth direction of the fine holes 3 and are arranged at intervals in the circumferential direction. The inner surface 4 includes: a bottom side region 4A from the bottom of the fine hole to the side of the opening of the fine hole up to 1/3 of the predetermined depth; an opening side region 4C from the opening of the fine hole to the bottom side up to 1/3 of the predetermined depth; and a middle region 4B between the opening side region and the bottom side region. When the surface roughness Ry of the bottom side region is RyA, the surface roughness Ry of the middle region is RyB, and the surface roughness Ry of the opening side region is RyC, a relationship of RyB/RyA<0.5 and a relationship of 0.8<RyC/RyB<1.2 hold.SELECTED DRAWING: Figure 3

Description

本発明は、微細穴を有する平板およびその製造方法、並びに細胞培養基材およびその製造方法に関する。 The present invention relates to a flat plate having micropores and a method for producing the same, and a cell culture substrate and a method for producing the same.

生体内の細胞周囲環境や形態を模倣することによって、より生体内に近い環境で細胞を培養する三次元の細胞培養技術が開発されている。近年、三次元の細胞培養のための培養容器として、マイクロオーダーの微細穴を複数有するプレートを備えるものが提案されている。 Three-dimensional cell culture technology has been developed for culturing cells in an environment closer to the living body by imitating the pericellular environment and morphology in the living body. In recent years, as a culture container for three-dimensional cell culture, a container provided with a plate having a plurality of micro-order micropores has been proposed.

このような微細穴を形成するために、加工の容易さや費用の安さから、切削加工が多く用いられる。樹脂製の平板に切削加工によって微細穴を形成した場合には、機械振動などの種々の外部要因の影響を受けてツールマークが発生しやすい。ツールマークとは、例えばエンドミルなどの切削工具によって加工した面に形成される工具痕である(特許文献1参照)。 In order to form such fine holes, cutting is often used because of the ease of processing and the low cost. When fine holes are formed on a resin flat plate by cutting, tool marks are likely to occur due to the influence of various external factors such as mechanical vibration. The tool mark is a tool mark formed on a surface machined by a cutting tool such as an end mill (see Patent Document 1).

細胞培養容器に形成される微細穴は深い凹形状を有している場合があり、そのような微細穴を形成するために用いられる長い突出長を有する切削工具は加工時に揺動しやすく、また、剛性が低下しやすいため、ツールマークが顕著となりやすい。 The micropores formed in the cell culture vessel may have a deep concave shape, and the cutting tool with a long protrusion length used to form such micropores is prone to swing during machining and also. Since the rigidity tends to decrease, the tool mark tends to be noticeable.

ツールマークの存在は、細胞の培養および培養した細胞の光学的な分析や評価などに支障を及ぼし得る。このようなツールマークは、研磨することによって減少させることが可能であるが、マイクロオーダーの様々な加工形状を有する微細穴を研磨することは容易ではない。 The presence of toolmarks can interfere with cell culture and optical analysis and evaluation of cultured cells. Such tool marks can be reduced by polishing, but it is not easy to polish microholes with various micro-ordered shapes.

特開2007−283437号公報Japanese Unexamined Patent Publication No. 2007-283437

微細穴に培地とともに播種された細胞は微細穴の中央やその付近を通過して開口側(入口側)から底部側に向かって移動したり、微細穴の内面に沿って微細穴の開口側から底部側に向かって移動したりする。微細穴の内面のツールマークは可能な限りない方が細胞への影響や光学的分析への影響を軽減できると考えられる。 The cells seeded with the medium in the micropores pass through the center or the vicinity of the micropores and move from the opening side (entrance side) to the bottom side, or from the opening side of the micropores along the inner surface of the micropores. It moves toward the bottom side. It is considered that the influence on cells and the influence on optical analysis can be reduced if the tool mark on the inner surface of the microhole is not as much as possible.

本発明は、上述のような実情に鑑みて創作されたものであって、微細穴の内面に形成されたツールマークの影響を従来に比して低減することが可能な構成を備えた、微細穴を有する平板およびその製造方法を提供することを目的とする。 The present invention has been created in view of the above circumstances, and has a structure capable of reducing the influence of tool marks formed on the inner surface of the fine holes as compared with the conventional case. It is an object of the present invention to provide a flat plate having a hole and a method for producing the flat plate.

本発明に基づく微細穴を有する平板は、所定深さで形成された微細穴を有する平板であって、上記平板のうちの上記微細穴の内面には、上記微細穴の深さ方向に沿って筋状に延在し、周方向に間隔を空けて並ぶ複数本の縦溝が形成されており、上記内面は、上記微細穴の底部から上記微細穴の開口部の側に向かって上記所定深さの1/3までの底部側領域と、上記微細穴の上記開口部から上記底部の側に向かって上記所定深さの1/3までの開口部側領域と、上記開口部側領域と上記底部側領域との間の中腹領域とを含み、上記底部側領域の面粗度RyをRyAとし、上記中腹領域の面粗度RyをRyBとし、上記開口部側領域の面粗度RyをRyCとした場合、RyB/RyA<0.5の関係を具備し、0.8<RyC/RyB<1.2の関係を具備する。 The flat plate having fine holes according to the present invention is a flat plate having fine holes formed at a predetermined depth, and the inner surface of the fine holes in the flat plate is along the depth direction of the fine holes. A plurality of vertical grooves are formed that extend in a streak pattern and are arranged at intervals in the circumferential direction, and the inner surface thereof has the predetermined depth from the bottom of the microhole toward the opening side of the microhole. The bottom side region up to 1/3 of the roughness, the opening side region up to 1/3 of the predetermined depth from the opening of the fine hole toward the bottom side, the opening side region and the above. The surface roughness Ry of the bottom side region is RyA, the surface roughness Ry of the middle region is RyB, and the surface roughness Ry of the opening side region is RyC, including the middle region between the bottom side region and the bottom side region. If, the relationship of RyB / RyA <0.5 is provided, and the relationship of 0.8 <RyC / RyB <1.2 is provided.

本発明に基づく微細穴を有する平板の製造方法は、樹脂製の平板に微細穴を切削により形成する工程と、上記平板のうちの上記微細穴が形成されている表面に真空紫外線を照射する工程とを含み、上記照射する工程における上記真空紫外線の積算照射量は、0より大きく2600mJ/cm以下である。 The method for producing a flat plate having fine holes based on the present invention includes a step of forming fine holes in a resin flat plate by cutting and a step of irradiating the surface of the flat plate on which the fine holes are formed with vacuum ultraviolet rays. The integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step is larger than 0 and 2600 mJ / cm 2 or less.

本発明に基づく細胞培養基材の製造方法は、樹脂製の平板に微細穴を切削により形成する工程と、上記平板のうちの上記微細穴が形成されている表面に、真空紫外線を照射する工程と、上記真空紫外線を照射した平板の上記微細穴を取り囲む壁部を形成する工程とを含み、上記照射する工程における上記真空紫外線の積算照射量は、0より大きく2600mJ/cm以下である。 The method for producing a cell culture substrate based on the present invention includes a step of forming fine holes in a resin flat plate by cutting, and a step of irradiating the surface of the flat plate on which the fine holes are formed with vacuum ultraviolet rays. The integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step includes the step of forming the wall portion surrounding the fine holes of the flat plate irradiated with the vacuum ultraviolet rays, which is larger than 0 and 2600 mJ / cm 2 or less.

本発明に基づく細胞培養基材の製造方法の他の局面は、樹脂製の平板に微細穴を切削により形成する工程と、上記平板のうちの上記微細穴が形成されている表面に、真空紫外線を照射する工程と、上記真空紫外線を照射した微細穴を有する平板を電鋳の原盤にして作製した金型を用いて、上記原盤の微細穴が転写された穴を底面に備えた細胞培養基材を形成する工程とを含み、上記照射する工程における上記真空紫外線の積算照射量は、0より大きく2600mJ/cm以下である。 Other aspects of the method for producing a cell culture substrate based on the present invention include a step of forming fine holes in a resin flat plate by cutting, and vacuum ultraviolet rays on the surface of the flat plate on which the fine holes are formed. A cell culture medium having a hole to which the fine holes of the master have been transferred on the bottom surface using a mold prepared by using a flat plate having fine holes irradiated with vacuum ultraviolet rays as an electrocast master. The integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step including the step of forming the material is larger than 0 and 2600 mJ / cm 2 or less.

上記構成によれば、微細穴の内面に形成されたツールマークの影響を従来に比して低減することが可能となる。 According to the above configuration, it is possible to reduce the influence of the tool mark formed on the inner surface of the fine hole as compared with the conventional case.

(A)は、細胞培養基材1を示す斜視図であり、(B)は、細胞培養基材1のプレート部2を示す斜視図である。(A) is a perspective view showing the cell culture base material 1, and (B) is a perspective view showing the plate portion 2 of the cell culture base material 1. 細胞培養基材1の底面(プレート部2)の領域7に形成された複数の微細穴3を拡大して示す平面図である。FIG. 5 is an enlarged plan view showing a plurality of microholes 3 formed in a region 7 on the bottom surface (plate portion 2) of the cell culture substrate 1. 図2中のIII−III線に沿った矢視断面図である。It is a cross-sectional view taken along the line III-III in FIG. プレート部2に形成された微細穴3の内面4に形成された縦溝5の一例を示す写真である。It is a photograph which shows an example of the vertical groove 5 formed in the inner surface 4 of the fine hole 3 formed in a plate part 2. エキシマランプ8を用いて真空紫外線を照射している様子を模式的に示す図である。It is a figure which shows typically the state of irradiating vacuum ultraviolet rays using an excimer lamp 8. 照射距離Lと放射強度Iとの関係を示す表である。It is a table which shows the relationship between the irradiation distance L and the radiation intensity I. 実施例1で用いた微細穴の断面を示す画像であり、実施例1に関する測定条件を説明するための図である。It is an image which shows the cross section of the fine hole used in Example 1, and is the figure for demonstrating the measurement condition concerning Example 1. FIG. 実施例1に関し、積算照射量(照射時間)と面粗度RyA、RyB、RyCとの関係を表すグラフである。FIG. 5 is a graph showing the relationship between the integrated irradiation amount (irradiation time) and the surface roughness RyA, RyB, and RyC with respect to the first embodiment. 実施例1に関し、照射時間とRyB/RyAとの関係、および、照射時間とRyC/RyBとの関係を示す表である。It is a table which shows the relationship between the irradiation time and RyB / RyA, and the relationship between the irradiation time and RyC / RyB with respect to Example 1. 実施例2で用いた微細穴の断面を示す画像であり、実施例2に関する測定条件を説明するための図である。It is an image which shows the cross section of the fine hole used in Example 2, and is the figure for demonstrating the measurement condition concerning Example 2. 実施例2に関し、照射距離を0.2mmに設定した場合に得られた積算照射量と面粗度Ra、Ry、Rzとの関係を表すグラフである。FIG. 5 is a graph showing the relationship between the integrated irradiation amount obtained when the irradiation distance is set to 0.2 mm and the surface roughness Ra, Ry, and Rz with respect to the second embodiment. 実施例2に関し、照射距離を0.5mmに設定した場合に得られた積算照射量と面粗度Ra、Ry、Rzとの関係を表すグラフである。FIG. 5 is a graph showing the relationship between the integrated irradiation amount obtained when the irradiation distance is set to 0.5 mm and the surface roughness Ra, Ry, and Rz with respect to the second embodiment. 実施例2に関し、照射距離を2.5mmに設定した場合に得られた積算照射量と面粗度Ra、Ry、Rzとの関係を表すグラフである。FIG. 5 is a graph showing the relationship between the integrated irradiation amount obtained when the irradiation distance is set to 2.5 mm and the surface roughness Ra, Ry, and Rz with respect to the second embodiment. 実施例2に関し、照射距離を0.2mm、0.5mm、2.5mmに設定した場合に得られた積算照射量と面粗度Ryとの関係を表すグラフである。It is a graph which shows the relationship between the integrated irradiation amount and surface roughness Ry obtained when the irradiation distance was set to 0.2mm, 0.5mm, 2.5mm with respect to Example 2. FIG. 実施例3で用いた微細穴の断面を示す画像であり、実施例3に関する測定条件を説明するための図である。It is an image which shows the cross section of the microhole used in Example 3, and is the figure for demonstrating the measurement condition concerning Example 3. 実施例3に関し、積算照射量(照射時間)と面粗度Ra、Ry、Rzとの関係を表すグラフである。FIG. 5 is a graph showing the relationship between the integrated irradiation amount (irradiation time) and the surface roughness Ra, Ry, and Rz with respect to the third embodiment.

発明を実施するための形態について、以下、図面を参照しながら説明する。以下の説明において同一の部品および相当部品には同一の参照番号を付し、重複する説明は繰り返さない場合がある。図1(A)は、細胞培養基材1を示す斜視図であり、図1(B)は、細胞培養基材1のプレート部2を示す斜視図である。図2は、細胞培養基材1の底面(プレート部2)の領域7に形成された複数の微細穴3を拡大して示す平面図である。図3は、図2中のIII−III線に沿った矢視断面図である。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the following description, the same parts and equivalent parts may be given the same reference numbers, and duplicate explanations may not be repeated. FIG. 1 (A) is a perspective view showing the cell culture base material 1, and FIG. 1 (B) is a perspective view showing the plate portion 2 of the cell culture base material 1. FIG. 2 is an enlarged plan view showing a plurality of microholes 3 formed in the region 7 of the bottom surface (plate portion 2) of the cell culture substrate 1. FIG. 3 is a cross-sectional view taken along the line III-III in FIG.

(細胞培養基材1)
図1(A)に示すように、細胞培養基材1は、樹脂製のプレート部2と、壁部6とを備える。プレート部2の表面2Sには、図1(B)に示すように、領域7に、所定深さH(図3)の複数の微細穴3が形成されている。細胞培養基材1において、領域7が底面となり、各微細穴3が細胞を培養する部分となる。プレート部2は例えばアクリル製の平板である。微細穴3は例えば、略円錐の形状を有し、開口部3Hの直径が500μmであり、底部3Bの直径Dが10μmであり、開口角θは75°であり、深さHが320μmである。隣り合う2つの開口部3Hの中心軸間の距離は、例えば459μm〜530μmである。微細穴3の各部のサイズに制限はないが、研磨することができないサイズであることが好ましい。例えば、微細穴3の開口部3Hの直径は、1mm未満、好ましくは10〜900μm、より好ましくは、10〜500μmである。また、微細穴3の深さHは1mm未満であり、好ましくは10〜900μm、よりこの好ましくは10〜500μmである。壁部6は、例えばアクリル製の平板に、領域7を包含する又は領域7とほぼ等しい大きさの貫通孔が複数形成されている。プレート部2と壁部6は、適宜の方法により互いに接合されている。
(Cell culture substrate 1)
As shown in FIG. 1 (A), the cell culture base material 1 includes a resin plate portion 2 and a wall portion 6. As shown in FIG. 1 (B), a plurality of fine holes 3 having a predetermined depth H (FIG. 3) are formed in the region 7 on the surface 2S of the plate portion 2. In the cell culture substrate 1, the region 7 is the bottom surface, and each microhole 3 is a portion for culturing cells. The plate portion 2 is, for example, an acrylic flat plate. The microhole 3 has, for example, a substantially conical shape, the diameter of the opening 3H is 500 μm, the diameter D of the bottom 3B is 10 μm, the opening angle θ is 75 °, and the depth H is 320 μm. .. The distance between the central axes of the two adjacent openings 3H is, for example, 459 μm to 530 μm. The size of each part of the fine hole 3 is not limited, but it is preferably a size that cannot be polished. For example, the diameter of the opening 3H of the fine hole 3 is less than 1 mm, preferably 10 to 900 μm, and more preferably 10 to 500 μm. Further, the depth H of the fine hole 3 is less than 1 mm, preferably 10 to 900 μm, and more preferably 10 to 500 μm. The wall portion 6 has, for example, an acrylic flat plate formed with a plurality of through holes including the region 7 or having a size substantially equal to that of the region 7. The plate portion 2 and the wall portion 6 are joined to each other by an appropriate method.

図4は、ダイヤモンド工具でアクリル製の平板(プレート部)2に形成した微細穴3の内側の状態を示す画像である。この一例を示すように、プレート部2のうちの微細穴3が形成されている内面(表面)4には、微細穴3の深さ方向に沿って筋状に延在し、周方向に間隔を空けて並ぶ複数本の縦溝5が形成されている。図3に示すように、プレート部2のうちの微細穴3が形成されている内周面(内面)4は、底部側領域4A、中腹領域4Bおよび開口部側領域4Cを含む。 FIG. 4 is an image showing the inside state of the fine holes 3 formed in the acrylic flat plate (plate portion) 2 with a diamond tool. As shown in this example, the inner surface (surface) 4 of the plate portion 2 on which the microholes 3 are formed extends in a streak shape along the depth direction of the microholes 3 and is spaced in the circumferential direction. A plurality of vertical grooves 5 are formed so as to be arranged with a space between them. As shown in FIG. 3, the inner peripheral surface (inner surface) 4 in which the fine holes 3 of the plate portion 2 are formed includes the bottom side region 4A, the middle ventral region 4B, and the opening side region 4C.

底部側領域4Aとは、微細穴3の底部3Bから微細穴3の開口部3Hの側に向かって所定深さHの1/3までの領域である。開口部側領域4Cとは、微細穴3の開口部3Hから底部3Bの側に向かって所定深さHの1/3までの領域である。中腹領域4Bとは、開口部側領域4Cと底部側領域4Aとの間の領域である。 The bottom side region 4A is a region from the bottom 3B of the fine hole 3 toward the side of the opening 3H of the fine hole 3 to 1/3 of a predetermined depth H. The opening side region 4C is a region from the opening 3H of the fine hole 3 toward the bottom 3B side to 1/3 of the predetermined depth H. The middle abdominal region 4B is a region between the opening side region 4C and the bottom side region 4A.

プレート部2においては、底部側領域4Aの面粗度RyをRyAと定義し、中腹領域4Bの面粗度RyをRyBと定義し、開口部側領域4Cの面粗度RyをRyCと定義した場合には、RyB/RyA<0.5の関係を具備しているとともに、0.8<RyC/RyB<1.2の関係を具備している。 In the plate portion 2, the surface roughness Ry of the bottom side region 4A is defined as RyA, the surface roughness Ry of the middle region 4B is defined as RyB, and the surface roughness Ry of the opening side region 4C is defined as RyC. In the case, it has a relationship of RyB / RyA <0.5 and a relationship of 0.8 <RyC / RyB <1.2.

上記構成を有する微細穴3は、例えば、ダイヤモンド工具または超硬工具などの切削工具を用いた加工をプレート部2に実施した後に、図5に示すように、プレート部2の加工面に、エキシマランプ8を用いて真空紫外線を照射することによって形成することが可能である。真空紫外線の波長は10nm〜200nm付近であり、例えば172nmである。 The microhole 3 having the above configuration has an excimer on the machined surface of the plate part 2 as shown in FIG. 5 after the plate part 2 is machined using a cutting tool such as a diamond tool or a cemented carbide tool. It can be formed by irradiating vacuum ultraviolet rays with the lamp 8. The wavelength of the vacuum ultraviolet light is around 10 nm to 200 nm, for example, 172 nm.

ここで、放射強度Iが10[mW/cm]であり、吸収係数αが16[atm−1・cm−1]であり、大気中の酸素分圧pが0.21[atm]であり、照射距離がL[cm]である場合には、真空紫外線の放射強度I[mW/cm]と照射距離L[mm]との関係は、次式で表わすことができる。
I=I×exp(−pαL)
図6は、上記式に基づき作成した照射距離Lと放射強度Iとの関係を表わしている。放射強度I[mW/cm]を時間で積算することにより、積算照射量[mJ/cm]を算出することができる。積算照射量を変更することにより、RyA、RyBおよびRyCの各値を変更可能である。
Here, the radiation intensity I 0 is 10 [mW / cm 2 ], the absorption coefficient α is 16 [atm -1 · cm -1 ], and the oxygen partial pressure p in the atmosphere is 0.21 [atm]. When the irradiation distance is L [cm], the relationship between the radiation intensity I [mW / cm 2 ] of the vacuum ultraviolet rays and the irradiation distance L [mm] can be expressed by the following equation.
I = I 0 × exp (−pαL)
FIG. 6 shows the relationship between the irradiation distance L and the radiation intensity I created based on the above formula. The integrated irradiation dose [mJ / cm 2 ] can be calculated by integrating the radiation intensity I [mW / cm 2 ] over time. By changing the integrated irradiation amount, each value of RyA, RyB and RyC can be changed.

ツールマークの有無およびその多少は、表面性状の指標の一つである面粗度で評価できる。面粗度RyA、RyB、RyCの相対的な関係について検討した。具体的には、アクリル製の平板(厚み1mm)を準備し、ダイヤモンド工具を用いた切削加工を用いて、その表面に円錐形状の微細穴を形成した。円錐形状の開口部の直径は500μm、深さは320μm、開口角は75°、加工条件は回転数を50000rpm、送り速度を3mm/min、ドウェルを10μsecとした。その後、真空紫外線を微細穴に向けて照射した。照射条件は波長を172nmとし、照射距離を0.5mmとし、照射時間を1〜10minとした。 The presence or absence of the tool mark and its degree can be evaluated by the surface roughness which is one of the indexes of the surface texture. The relative relationship between the surface roughness RyA, RyB, and RyC was examined. Specifically, an acrylic flat plate (thickness 1 mm) was prepared, and a conical fine hole was formed on the surface of the flat plate (thickness 1 mm) by cutting with a diamond tool. The diameter of the conical opening was 500 μm, the depth was 320 μm, the opening angle was 75 °, the processing conditions were a rotation speed of 50,000 rpm, a feed rate of 3 mm / min, and a dwell of 10 μsec. Then, vacuum ultraviolet rays were irradiated toward the fine holes. The irradiation conditions were a wavelength of 172 nm, an irradiation distance of 0.5 mm, and an irradiation time of 1 to 10 min.

各照射時間の面粗度Ryは、レーザー顕微鏡で観察して算出した。具体的には、真空紫外線を所定時間照射した後の微細穴を有するアクリル板を、微細穴が、図2のIII−III線で切断されるように、アクリルカッターで切断し、その切断面の三次元形状をキーエンス製のレーザー顕微鏡VK−9710(光源波長:408nm)で測定し、その三次元形状から、付属の面粗度計算ソフト(VK−Analyzer VK−H1A1)を用いて面粗度を算出した。面粗度は、図7に示すように、微細穴の底部3Bの中心から開口部3Hが形成されている面(図3において、プレート部2の表面2S)に向かって垂直に伸びる直線上にある、底部3Bから43.5μm離れた測定位置1、測定位置1から87μm離れた測定位置2、および測定位置2から87μm離れた測定位置3において、各測定位置を中心として周方向(つまり、底部3Bの中心からの等しい距離にある方向)に3μmの長さの線分について測定した(図7中の測定箇所1、測定箇所2、測定箇所3)。測定箇所1、測定箇所2、測定箇所3で測定した面粗度Ryを、それぞれ、RyA、RyB、RyCとした。 The surface roughness Ry at each irradiation time was calculated by observing with a laser microscope. Specifically, an acrylic plate having fine holes after being irradiated with vacuum ultraviolet rays for a predetermined time is cut with an acrylic cutter so that the fine holes are cut along the lines III-III of FIG. 2, and the cut surface thereof is cut. The three-dimensional shape is measured with a laser microscope VK-9710 (light source wavelength: 408 nm) manufactured by KEYENCE, and the surface roughness is determined from the three-dimensional shape using the attached surface roughness calculation software (VK-Analyzer VK-H1A1). Calculated. As shown in FIG. 7, the surface roughness is on a straight line extending vertically from the center of the bottom 3B of the microhole toward the surface on which the opening 3H is formed (in FIG. 3, the surface 2S of the plate portion 2). At a certain measurement position 1 43.5 μm away from the bottom 3B, a measurement position 2 87 μm away from the measurement position 1, and a measurement position 3 87 μm away from the measurement position 2, the circumferential direction (that is, the bottom) around each measurement position. A line segment having a length of 3 μm was measured in a direction (at an equal distance from the center of 3B) (measurement points 1, measurement points 2, and measurement points 3 in FIG. 7). The surface roughness Ry measured at the measurement point 1, the measurement point 2, and the measurement point 3 was designated as RyA, RyB, and RyC, respectively.

図8は、積算照射量(照射時間)と面粗度RyA、RyB、RyCとの関係を表すグラフである。図9は、照射時間とRyB/RyAとの関係、および、照射時間とRyC/RyBとの関係を示す表である。図8および図9に示すように、切削加工後であって真空紫外線を照射する前の状態(未処理の状態)では、RyB/RyA<0.5の関係が成立しておらず、底部側領域4AのRy(RyA)に対する中腹領域4BのRy(RyB)の相対値であるRyB/RyAの値(0.512)が、処理後の場合に比べて高いことが分かる。 FIG. 8 is a graph showing the relationship between the integrated irradiation amount (irradiation time) and the surface roughness RyA, RyB, and RyC. FIG. 9 is a table showing the relationship between the irradiation time and RyB / RyA, and the relationship between the irradiation time and RyC / RyB. As shown in FIGS. 8 and 9, in the state after cutting and before irradiating with vacuum ultraviolet rays (untreated state), the relationship of RyB / RyA <0.5 is not established, and the bottom side. It can be seen that the value (0.512) of RyB / RyA, which is a relative value of Ry (RyB) of the blunt region 4B with respect to Ry (RyA) of the region 4A, is higher than that after the treatment.

未処理の状態ではさらに、0.8<RyC/RyB<1.2の関係も成立しておらず、中腹領域4BのRyBに対する開口部側領域4CのRyCの相対値であるRyC/RyBの値(0.540)が、処理後の場合に比べて低いことが分かる。これらに対し、真空紫外線の照射後の状態はいずれも、RyB/RyA<0.5の関係および0.8<RyC/RyB<1.2の関係を具備している。このように、開口部側領域4Cの底部側領域4Aに対する面粗度を低くすることで、ツールマークが低減され、プレート部2に接触する細胞に対する影響を低減できるものと考えられる。 Further, in the untreated state, the relationship of 0.8 <RyC / RyB <1.2 is not established, and the value of RyC / RyB which is a relative value of RyC of the opening side region 4C with respect to RyB of the middle region 4B It can be seen that (0.540) is lower than that after the treatment. On the other hand, the states after irradiation with vacuum ultraviolet rays all have a relationship of RyB / RyA <0.5 and a relationship of 0.8 <RyC / RyB <1.2. It is considered that by lowering the surface roughness of the opening side region 4C with respect to the bottom side region 4A in this way, the tool mark can be reduced and the influence on the cells in contact with the plate portion 2 can be reduced.

実施例1の結果によれば、積算照射量が2600[mJ/cm]を超えると面粗度が増加することを確認した。したがって積算照射量が2600[mJ/cm]以下であれば、RyC/RyB≦1.0の関係が成立し、より低い面粗度が得られることが分かる。 According to the results of Example 1, it was confirmed that the surface roughness increases when the integrated irradiation amount exceeds 2600 [mJ / cm 2 ]. Therefore, when the integrated irradiation amount is 2600 [mJ / cm 2 ] or less, the relationship of RyC / RyB ≦ 1.0 is established, and it can be seen that a lower surface roughness can be obtained.

積算照射量と面粗度Ra、Ry、Rzとの関係について検討した。具体的には、厚み1mmのアクリル製の平板に、ダイヤモンド工具を用いた切削加工によって円錐形状の微細穴を形成した(図3参照)。円錐形状の開口部の直径は500μm、深さは320μm、開口角は75°、加工条件は回転数を50000rpm、送り速度を3mm/min、ドウェルを10μsecとした。その後、真空紫外線を微細穴に向けて照射した。 The relationship between the integrated irradiation amount and the surface roughness Ra, Ry, and Rz was examined. Specifically, a cone-shaped fine hole was formed on an acrylic flat plate having a thickness of 1 mm by cutting with a diamond tool (see FIG. 3). The diameter of the conical opening was 500 μm, the depth was 320 μm, the opening angle was 75 °, the processing conditions were a rotation speed of 50,000 rpm, a feed rate of 3 mm / min, and a dwell of 10 μsec. Then, vacuum ultraviolet rays were irradiated toward the fine holes.

照射条件については、照射距離Lは、0.2mm、0.5mm、および2.5mmの各々とし、照射時間は1〜10minとした。面粗度の測定は、実施例1と同様に、微細穴の断面の三次元形状をレーザー顕微鏡VK−9710(光源波長:408nm)で測定し、その三次元形状から、付属の面粗度計算ソフト(VK−Analyzer VK−H1A1)を用いて算出した。具体的には、図10に示すように、微細穴の底部3Bの中心から開口部3Hが形成されている面(プレート部2の表面2S)に向かって垂直に伸びる直線上で、底部3Bから50μm離れた位置から、さらに200μm離れた位置までの線分である測定箇所4の面粗度Ra、Ry、Rzを算出した。 Regarding the irradiation conditions, the irradiation distance L was 0.2 mm, 0.5 mm, and 2.5 mm, respectively, and the irradiation time was 1 to 10 min. The surface roughness is measured by measuring the three-dimensional shape of the cross section of the fine hole with a laser microscope VK-9710 (light source wavelength: 408 nm) and calculating the attached surface roughness from the three-dimensional shape as in Example 1. Calculated using software (VK-Analyzer VK-H1A1). Specifically, as shown in FIG. 10, from the bottom 3B on a straight line extending vertically from the center of the bottom 3B of the microhole toward the surface (surface 2S of the plate 2) where the opening 3H is formed. The surface roughness Ra, Ry, and Rz of the measurement point 4, which is a line segment from a position 50 μm away to a position further 200 μm away, were calculated.

図11〜図13は、それぞれ、照射距離を0.2mm、0.5mm、2.5mmに設定した場合に得られた積算照射量と面粗度Ra、Ry、Rzとの関係を表すグラフである。図14は、照射距離を0.2mm、0.5mm、2.5mmに設定した場合に得られた積算照射量と面粗度Ryとの関係を表すグラフである。図11〜図14に示すように、照射距離が0.2mm、0.5mm、2.5mmのいずれにおいても、積算照射量が2600[mJ/cm]以下の場合には面粗度Ryが減少し、2600[mJ/cm]を超えると面粗度Ryが増加することを確認した。細胞培養基材の微細穴においては、細胞凝集体の培養および光学的な分析や評価には面粗度RyがRa、Rzに比べて支配的な影響を与える。したがって積算照射量が2600[mJ/cm]以下であることが好ましいことが分かる。 11 to 13 are graphs showing the relationship between the integrated irradiation amount obtained when the irradiation distances are set to 0.2 mm, 0.5 mm, and 2.5 mm and the surface roughness Ra, Ry, and Rz, respectively. is there. FIG. 14 is a graph showing the relationship between the integrated irradiation amount obtained when the irradiation distances are set to 0.2 mm, 0.5 mm, and 2.5 mm and the surface roughness Ry. As shown in FIGS. 11 to 14, the surface roughness Ry is high when the integrated irradiation amount is 2600 [mJ / cm 2 ] or less at any of the irradiation distances of 0.2 mm, 0.5 mm, and 2.5 mm. It was confirmed that the surface roughness Ry increased when it decreased and exceeded 2600 [mJ / cm 2 ]. In the micropores of the cell culture substrate, the surface roughness Ry has a dominant influence on the culture and optical analysis and evaluation of cell aggregates as compared with Ra and Rz. Therefore, it can be seen that the integrated irradiation dose is preferably 2600 [mJ / cm 2 ] or less.

図11〜図14に示す結果によれば、真空紫外線の照射直後から面粗度Ryの改善効果が得られることが分かる。照射距離0.2mm、0.5mmの結果に鑑みると、積算照射量が500[mJ/cm]以上であれば面粗度Ryの十分な改善効果が得られることが分かる。照射距離2.5mmの結果に鑑みると、積算照射量が250[mJ/cm]以上であれば面粗度Ryの十分な改善効果が得られることが分かる。 According to the results shown in FIGS. 11 to 14, it can be seen that the effect of improving the surface roughness Ry can be obtained immediately after the irradiation with the vacuum ultraviolet rays. Considering the results of the irradiation distances of 0.2 mm and 0.5 mm, it can be seen that if the integrated irradiation amount is 500 [mJ / cm 2 ] or more, a sufficient effect of improving the surface roughness Ry can be obtained. In view of the result of the irradiation distance of 2.5 mm, it can be seen that if the integrated irradiation amount is 250 [mJ / cm 2 ] or more, a sufficient effect of improving the surface roughness Ry can be obtained.

切削工具を超硬工具に変更し、積算照射量と面粗度Ra、Ry、Rzとの関係について検討した。厚み1μmのアクリル製の平板に、超硬工具を用いた切削加工によって円錐形状の微細穴を形成した。円錐形状の開口部の直径は500μm、深さは320μm、開口角は75°、加工条件は回転数を50000rpm、送り速度を3mm/min、ドウェルを10μsecとした。その後、真空紫外線を微細穴に向けて照射した。 The cutting tool was changed to a carbide tool, and the relationship between the integrated irradiation amount and the surface roughness Ra, Ry, and Rz was examined. A conical fine hole was formed on an acrylic flat plate having a thickness of 1 μm by cutting with a cemented carbide tool. The diameter of the conical opening was 500 μm, the depth was 320 μm, the opening angle was 75 °, the processing conditions were a rotation speed of 50,000 rpm, a feed rate of 3 mm / min, and a dwell of 10 μsec. Then, vacuum ultraviolet rays were irradiated toward the fine holes.

照射条件については、照射距離Lは0.5mmとし、照射時間は1〜10minとした。面粗度の測定は、実施例1と同様に、微細穴の断面の三次元形状をレーザー顕微鏡VK−9710(光源波長:408nm)で測定し、その三次元形状を、付属の面粗度計算ソフト(VK−Analyzer VK−H1A1)を用いて算出した。具体的には、図15に示すように、微細穴の底部3Bの中心から開口部3Hが形成されている面(図3において、プレート部2の表面2S)に向かって垂直に伸びる直線上で、底部3Bから50μm離れた位置から、さらに200μm離れた位置までの線分である測定箇所5の面粗度Ra、Ry、Rzを算出した。 Regarding the irradiation conditions, the irradiation distance L was 0.5 mm, and the irradiation time was 1 to 10 min. The surface roughness is measured by measuring the three-dimensional shape of the cross section of the fine hole with a laser microscope VK-9710 (light source wavelength: 408 nm) and calculating the three-dimensional shape by the attached surface roughness calculation in the same manner as in Example 1. Calculated using software (VK-Analyzer VK-H1A1). Specifically, as shown in FIG. 15, on a straight line extending vertically from the center of the bottom portion 3B of the microhole toward the surface on which the opening 3H is formed (in FIG. 3, the surface 2S of the plate portion 2). The surface roughness Ra, Ry, and Rz of the measurement point 5, which is a line segment from a position 50 μm away from the bottom 3B to a position further 200 μm away, were calculated.

図16は、積算照射量と面粗度Ra、Ry、Rzとの関係を表すグラフである。図16に示す結果によれば、真空紫外線の照射直後から面粗度Ryの改善効果が得られることが分かる。積算照射量が2600[mJ/cm]以下の場合には面粗度Ryが減少し、2600[mJ/cm]を超えると面粗度Ryが増加することを確認した。 FIG. 16 is a graph showing the relationship between the integrated irradiation amount and the surface roughness Ra, Ry, and Rz. According to the results shown in FIG. 16, it can be seen that the effect of improving the surface roughness Ry can be obtained immediately after the irradiation with the vacuum ultraviolet rays. It was confirmed that the surface roughness Ry decreased when the integrated irradiation amount was 2600 [mJ / cm 2 ] or less, and the surface roughness Ry increased when the integrated irradiation amount exceeded 2600 [mJ / cm 2 ].

以上、実施の形態および実施例について説明したが、上記の開示内容はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments and examples have been described above, the above disclosure contents are examples in all respects and are not restrictive. The technical scope of the present invention is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

例えば、上記実施例では、アクリル製の平板をプレート部、壁部に用いたが、例えば、ポリスチレン樹脂など適宜の樹脂製の平板を用いることができる。また、上記実施例では、複数の微細穴を複数形成し、紫外線照射した平板を細胞培養基材1のプレート部2として用いているが、複数の微細穴を形成し、紫外線照射した後の平板を原盤として電鋳により金型を形成し、この金型から適宜の成形技術(例えば、樹脂成形)により、複数の微細穴を有する平板を形成することも可能である。この金型から形成された平板は、ツールマークが低減された原盤を転写して形成されるため、上記実施例と同様の構成を有するといえる。また、この金型は、さらに壁部の金型を含んでいてもよい。この場合、プレート部2に壁部6を接合する工程は不要となり、プレート部と壁部を一体成形して細胞培養基材を作製することができる。 For example, in the above embodiment, an acrylic flat plate is used for the plate portion and the wall portion, but for example, an appropriate resin flat plate such as polystyrene resin can be used. Further, in the above embodiment, a plurality of microholes are formed and a flat plate irradiated with ultraviolet rays is used as the plate portion 2 of the cell culture substrate 1. However, a flat plate after forming a plurality of fine holes and irradiating with ultraviolet rays. It is also possible to form a mold by electroplating using the above as a master, and to form a flat plate having a plurality of fine holes from this mold by an appropriate molding technique (for example, resin molding). Since the flat plate formed from this mold is formed by transferring the master with reduced tool marks, it can be said that it has the same configuration as that of the above embodiment. Further, this mold may further include a mold for the wall portion. In this case, the step of joining the wall portion 6 to the plate portion 2 becomes unnecessary, and the plate portion and the wall portion can be integrally molded to prepare a cell culture base material.

1 細胞培養基材、2 プレート部(平板)、2S 表面、3 微細穴、3B 底部、3H 開口部、4 内面、4A 底部側領域、4B 中腹領域、4C 開口部側領域、5 縦溝、6 壁部、7 微細穴が形成される領域、8 エキシマランプ。 1 Cell culture substrate, 2 Plate (flat plate), 2S surface, 3 Microholes, 3B bottom, 3H opening, 4 inner surface, 4A bottom side area, 4B middle area, 4C opening side area, 5 flutes, 6 Walls, 7 areas where microholes are formed, 8 excimer lamps.

Claims (9)

所定深さで形成された微細穴を有する平板であって、
前記平板のうちの前記微細穴の内面には、前記微細穴の深さ方向に沿って筋状に延在し、周方向に間隔を空けて並ぶ複数本の縦溝が形成されており、
前記内面は、前記微細穴の底部から前記微細穴の開口部の側に向かって前記所定深さの1/3までの底部側領域と、前記微細穴の前記開口部から前記底部の側に向かって前記所定深さの1/3までの開口部側領域と、前記開口部側領域と前記底部側領域との間の中腹領域とを含み、
前記底部側領域の面粗度RyをRyAとし、前記中腹領域の面粗度RyをRyBとし、前記開口部側領域の面粗度RyをRyCとした場合、
RyB/RyA<0.5の関係を具備し、
0.8<RyC/RyB<1.2の関係を具備する、微細穴を有する平板。
A flat plate having fine holes formed at a predetermined depth.
On the inner surface of the microholes in the flat plate, a plurality of vertical grooves extending in a streak shape along the depth direction of the microholes and arranging at intervals in the circumferential direction are formed.
The inner surface faces the bottom side region up to 1/3 of the predetermined depth from the bottom of the microhole toward the opening side of the microhole, and from the opening of the microhole toward the bottom side. Includes an opening-side region up to 1/3 of the predetermined depth and a middle region between the opening-side region and the bottom-side region.
When the surface roughness Ry of the bottom side region is RyA, the surface roughness Ry of the middle region is RyB, and the surface roughness Ry of the opening side region is RyC,
It has a relationship of RyB / RyA <0.5,
A flat plate having fine holes having a relationship of 0.8 <RyC / RyB <1.2.
RyC/RyB≦1.0の関係を具備する、請求項1に記載の微細穴を有する平板。 The flat plate having a fine hole according to claim 1, which has a relationship of RyC / RyB ≦ 1.0. 前記平板は、アクリル製である、請求項1または2に記載の微細穴を有する平板。 The flat plate having fine holes according to claim 1 or 2, which is made of acrylic. 前記微細穴の開口部の直径が10〜900μmである、請求項1から3のいずれか1項に記載の微細穴を有する平板。 The flat plate having the fine holes according to any one of claims 1 to 3, wherein the diameter of the opening of the fine holes is 10 to 900 μm. 請求項1〜4のいずれか1項に記載の微細穴を有する平板を備える細胞培養基材。 A cell culture substrate comprising a flat plate having the micropores according to any one of claims 1 to 4. 樹脂製の平板に微細穴を切削により形成する工程と、
前記平板のうちの前記微細穴が形成されている表面に真空紫外線を照射する工程とを含み、
前記照射する工程における前記真空紫外線の積算照射量は、0より大きく2600mJ/cm以下である、微細穴を有する平板の製造方法。
The process of forming fine holes in a resin flat plate by cutting,
The step of irradiating the surface of the flat plate on which the fine holes are formed with vacuum ultraviolet rays is included.
A method for producing a flat plate having fine holes, wherein the integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step is larger than 0 and 2600 mJ / cm 2 or less.
前記照射する工程における前記真空紫外線の積算照射量は、250mJ/cm以上である、請求項6に記載の微細穴を有する平板の製造方法。 The method for producing a flat plate having fine holes according to claim 6, wherein the integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step is 250 mJ / cm 2 or more. 樹脂製の平板に微細穴を切削により形成する工程と、
前記平板のうちの前記微細穴が形成されている表面に、真空紫外線を照射する工程と、
前記真空紫外線を照射した平板の前記微細穴を取り囲む壁部を形成する工程とを含み、
前記照射する工程における前記真空紫外線の積算照射量は、0より大きく2600mJ/cm以下である、細胞培養基材の製造方法。
The process of forming fine holes in a resin flat plate by cutting,
A step of irradiating the surface of the flat plate on which the fine holes are formed with vacuum ultraviolet rays,
Including a step of forming a wall portion surrounding the fine holes of the flat plate irradiated with vacuum ultraviolet rays.
A method for producing a cell culture substrate, wherein the integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step is greater than 0 and 2600 mJ / cm 2 or less.
樹脂製の平板に微細穴を切削により形成する工程と、
前記平板のうちの前記微細穴が形成されている表面に、真空紫外線を照射する工程と、
前記真空紫外線を照射した微細穴を有する平板を電鋳の原盤にして作製した金型を用いて、前記原盤の微細穴が転写された穴を底面に備えた細胞培養基材を形成する工程とを含み、
前記照射する工程における前記真空紫外線の積算照射量は、0より大きく2600mJ/cm以下である、細胞培養基材の製造方法。
The process of forming fine holes in a resin flat plate by cutting,
A step of irradiating the surface of the flat plate on which the fine holes are formed with vacuum ultraviolet rays,
A step of forming a cell culture substrate having holes transferred to the fine holes of the master on the bottom surface by using a mold prepared by using a flat plate having fine holes irradiated with vacuum ultraviolet rays as an electrocast master. Including
A method for producing a cell culture substrate, wherein the integrated irradiation amount of the vacuum ultraviolet rays in the irradiation step is greater than 0 and 2600 mJ / cm 2 or less.
JP2019089849A 2019-05-10 2019-05-10 Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same Pending JP2020184894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089849A JP2020184894A (en) 2019-05-10 2019-05-10 Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089849A JP2020184894A (en) 2019-05-10 2019-05-10 Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2020184894A true JP2020184894A (en) 2020-11-19

Family

ID=73220575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089849A Pending JP2020184894A (en) 2019-05-10 2019-05-10 Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2020184894A (en)

Similar Documents

Publication Publication Date Title
US6726322B2 (en) Fenestrated lens for increased tear flow and method of making the same
JP5921437B2 (en) Culture substrate
KR20150056661A (en) Production method for three-dimensionally shaped molded object
CN107052340A (en) Ultrasonic cutting is applied to the equipment and processing method in powdering formula increase and decrease material composite manufacturing
CA2034708A1 (en) Method for the manufacture of contact lenses, and contact lens production system
ES2049425T3 (en) MOLDING PROCEDURE FOR MOLDS WITH MICROTESTURIZED SURFACES USING LASER.
TWI619830B (en) Protective film and manufacturing method thereof
JP2007146216A (en) Equipment for manufacturing molding with three-dimensional shape
KR20040028593A (en) Method of manufacturing a three dimensional object
CN109570907B (en) Groove cavity and machining method
WO2016039419A1 (en) Method for forming surface structure of zirconia-based ceramic, and zirconia-based ceramic
CN105710980A (en) Laser in-situ assisted device and method for mechanically scratching hard and brittle materials assisted by laser in situ
JP2020184894A (en) Flat plate having fine holes and method of manufacturing the same, and cell culture substrate and method of manufacturing the same
CN102528142B (en) Carbon film coated end mill and manufacture method thereof
AU648760B2 (en) Contact lens
CN104907616B (en) A kind of monoblock type hardened steel turning back chipping test specimen and its high-speed milling process
JP2003181672A (en) Method for laser processing
CN102554319B (en) Carbon film cladding drill and manufacture method thereof
CN104720934B (en) Method for laser engraving of nasal prosthesis
JPS6176260A (en) Polishing method
JP2009139918A (en) Marking method of contact lens, and contact lens
JP2010125292A (en) Method of manufacturing multifocal intraocular lens and multifocal intraocular lens manufactured by the method
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
JP2014136304A (en) Molding die, manufacturing method of the same, structure, and manufacturing method of the same
CN111168065B (en) Base plate for laser additive manufacturing