JP2020183703A - Ceramic heater and exhaust emission control device using the same - Google Patents

Ceramic heater and exhaust emission control device using the same Download PDF

Info

Publication number
JP2020183703A
JP2020183703A JP2019086679A JP2019086679A JP2020183703A JP 2020183703 A JP2020183703 A JP 2020183703A JP 2019086679 A JP2019086679 A JP 2019086679A JP 2019086679 A JP2019086679 A JP 2019086679A JP 2020183703 A JP2020183703 A JP 2020183703A
Authority
JP
Japan
Prior art keywords
ceramic heater
electrode
exhaust gas
partition wall
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019086679A
Other languages
Japanese (ja)
Inventor
潤二郎 里岡
Junjiro Satooka
潤二郎 里岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019086679A priority Critical patent/JP2020183703A/en
Publication of JP2020183703A publication Critical patent/JP2020183703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

To provide a ceramic heater which is excellent in durability, and can equally heat an exhaust gas, and an exhaust emission control device having the ceramic heater.SOLUTION: A ceramic heater 1 comprises a heat generation resistance body 10, an electrode 20, a terminal 30 and a lead wire 40. The heat generation resistance body 10 has a bulkhead 12 for partitioning a plurality of spaces which extend in an internal space of a peripheral wall 11 in an axial line direction. The bulkhead 12 also comprises end faces 13 and side faces 14 at both ends in the axial line direction. The electrode 20 is located over the end faces 13 and the side faces 14 at both the sides continuing to the end faces 13.SELECTED DRAWING: Figure 1

Description

本開示は、セラミックヒータおよびこのセラミックヒータを備えた排気ガス浄化装置に関するものである。 The present disclosure relates to a ceramic heater and an exhaust gas purification device provided with the ceramic heater.

自動車エンジンなどの内燃機関からの排気には、HC、CO、NOxなどの環境汚染の原因となる有害物質が含まれており、近年、これらの有害物質の排出規制が強化されている。一般に、これらの有害物質は、いわゆる三元触媒を利用した方法により浄化される。その場合、触媒は、排気ガスの熱を利用して、触媒が活性化する300℃まで加熱される必要があるが、エンジンの始動時など排気ガスの温度が低い場合には、触媒が活性化されず、排気ガスを十分に浄化できない。また、近年の低燃費の自動車では排気ガスの温度が低下しているため、同様に、触媒の温度を活性化に必要な温度まで加熱できない。 Exhaust gas from internal combustion engines such as automobile engines contains harmful substances such as HC, CO, and NOx that cause environmental pollution, and in recent years, emission regulations for these harmful substances have been tightened. Generally, these harmful substances are purified by a method using a so-called three-way catalyst. In that case, the catalyst needs to be heated to 300 ° C. where the catalyst is activated by using the heat of the exhaust gas, but when the temperature of the exhaust gas is low such as when starting the engine, the catalyst is activated. It is not possible to purify the exhaust gas sufficiently. Further, in recent fuel-efficient automobiles, the temperature of the exhaust gas is lowered, so that the temperature of the catalyst cannot be heated to the temperature required for activation.

前記のような問題に対処するため、導電性材料からなるハニカム構造体を発熱させ、流入する排気ガスを触媒が活性化する温度まで加熱する排気ガス処理装置が利用されている。また、最近では、両端面の全面に電極を形成したハニカム構造体が提案されている。例えば、特許文献1には、導電性材料からなり隔壁に仕切られたガス流れ方向に実質的に平行な多数の貫通孔と、ガス流入側及びガス流出側の両端面とを備え、隔壁に通電する際の電流の流れを制御することにより発熱を制御してなる通電発熱用ハニカム体であって、体積抵抗率が低い電極部と体積抵抗率が高い発熱部とを備え、電極部が両端面全面に形成され、発熱部の体積抵抗率が0.1〜10Ω・cmで、電極部の体積抵抗率が発熱部の抵抗率の1/10以下であり、少なくとも発熱部が金属とセラミックの複合材料から構成される通電発熱用ハニカム体が開示されている。 In order to deal with the above problems, an exhaust gas treatment device that heats a honeycomb structure made of a conductive material and heats the inflowing exhaust gas to a temperature at which the catalyst is activated is used. Recently, a honeycomb structure in which electrodes are formed on the entire surfaces of both ends has been proposed. For example, Patent Document 1 includes a large number of through holes made of a conductive material and partitioned by a partition wall substantially parallel to the gas flow direction, and both end surfaces on the gas inflow side and the gas outflow side, and energizes the partition wall. It is a honeycomb body for energization heat generation that controls heat generation by controlling the flow of electric current at the time of operation. It is provided with an electrode portion having a low volume resistivity and a heat generating portion having a high volume resistivity, and the electrode portions are both end surfaces. It is formed on the entire surface, the volume resistivity of the heat generating part is 0.1 to 10 Ω · cm, the volume resistivity of the electrode part is 1/10 or less of the resistivity of the heat generating part, and at least the heat generating part is a composite of metal and ceramic. A honeycomb body for energizing heat generation made of a material is disclosed.

特開2010−229976号公報Japanese Unexamined Patent Publication No. 2010-229976

セラミック材料からなるハニカム構造体の両端面全面に電極を形成する方法としては、一般に、焼成、めっき、蒸着、スパッタリングなどの方法が用いられる。しかし、これらの方法によって端面に電極を形成したハニカム構造体については、電極全体に均一に通電せず、ハニカム構造体に部分的に通電することがあり、その場合、ハニカム構造体が異常発熱して、クラックが生じやすいという問題がある。また、ハニカム構造体の端面に電極を形成することにより、圧力損失が上昇し、浄化効率を低下させるという問題がある。 As a method of forming electrodes on both end faces of a honeycomb structure made of a ceramic material, methods such as firing, plating, vapor deposition, and sputtering are generally used. However, in the honeycomb structure in which the electrodes are formed on the end faces by these methods, the entire electrode may not be uniformly energized and the honeycomb structure may be partially energized. In that case, the honeycomb structure generates abnormal heat. Therefore, there is a problem that cracks are likely to occur. Further, by forming the electrode on the end face of the honeycomb structure, there is a problem that the pressure loss increases and the purification efficiency decreases.

本開示は、
筒状の周壁、および前記周壁の内部空間を軸線方向に延びる複数の空間に区画する隔壁を有する、セラミック材料で構成される発熱抵抗体と、
前記発熱抵抗体の軸線方向両端に設けられる電極と、を備え、
前記電極は、前記隔壁の端面と前記端面に連なる両側面とにわたって位置していることを特徴とするセラミックヒータを提供することを目的とする。
This disclosure is
A heating resistor made of a ceramic material, which has a tubular peripheral wall and a partition wall that divides the internal space of the peripheral wall into a plurality of spaces extending in the axial direction.
Electrodes provided at both ends in the axial direction of the heat generation resistor are provided.
An object of the electrode is to provide a ceramic heater characterized in that it is located over an end face of the partition wall and both side surfaces connected to the end face.

また、本開示は、前記セラミックヒータを備えることを特徴とする排気ガス浄化装置を提供することを目的とする。 Another object of the present disclosure is to provide an exhaust gas purification device including the ceramic heater.

本開示のセラミックヒータにおいては、発熱抵抗体の隔壁の端面と端面に連なる両側面とにわたって電極が形成されているので、端面のみに電極が位置している場合よりも、電極の抵抗が小さくなり、電極全体に均一に通電させることができる。これによって、発熱抵抗体でのクラックの発生を低減することができ、耐久性に優れたセラミックヒータを提供することができる。 In the ceramic heater of the present disclosure, since the electrodes are formed over the end face of the partition wall of the heat generation resistor and both side surfaces connected to the end faces, the resistance of the electrodes is smaller than that when the electrodes are located only on the end faces. , The entire electrode can be uniformly energized. As a result, the occurrence of cracks in the heat generating resistor can be reduced, and a ceramic heater having excellent durability can be provided.

本開示の排気ガス処理装置によれば、本開示のセラミックヒータを備えることによって、排気ガスが効率よく加熱され、圧力損失を低減することができるので、排気ガスの浄化効率を向上させることができる。 According to the exhaust gas treatment apparatus of the present disclosure, by providing the ceramic heater of the present disclosure, the exhaust gas can be efficiently heated and the pressure loss can be reduced, so that the purification efficiency of the exhaust gas can be improved. ..

本開示のセラミックヒータの第1実施形態における斜視図である。It is a perspective view in 1st Embodiment of the ceramic heater of this disclosure. 本開示の第1実施形態における図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 1 in the 1st Embodiment of this disclosure. 本開示の第2実施形態における図1のA−A線に対応する部分の断面図である。It is sectional drawing of the part corresponding to line AA of FIG. 1 in the 2nd Embodiment of this disclosure. 本開示のセラミックヒータを備える排気ガス浄化装置である。An exhaust gas purification device including the ceramic heater of the present disclosure.

<第1実施形態>
以下、本開示の第1実施形態に係るセラミックヒータについて、排気ガス浄化用のヒータを例として、図面を参照しながら説明する。図1は、本実施形態のセラミックヒータ1の斜視図である。図2は、セラミックヒータ1の一部の断面図である。セラミックヒータ1は、発熱抵抗体10と、電極20と、端子30と、リード線40と、を備える。
<First Embodiment>
Hereinafter, the ceramic heater according to the first embodiment of the present disclosure will be described with reference to the drawings, taking as an example a heater for purifying exhaust gas. FIG. 1 is a perspective view of the ceramic heater 1 of the present embodiment. FIG. 2 is a cross-sectional view of a part of the ceramic heater 1. The ceramic heater 1 includes a heat generating resistor 10, an electrode 20, a terminal 30, and a lead wire 40.

<発熱抵抗体>
発熱抵抗体10は、筒状の部材であり、周壁11と、隔壁12、とを備える。本実施形態においては、発熱抵抗体10は円筒状であるが、筒状であれば、三角筒状、四角筒状、楕円筒状を含むその他の形状であってもよい。
<Heat resistor>
The heat generation resistor 10 is a tubular member, and includes a peripheral wall 11 and a partition wall 12. In the present embodiment, the heat generating resistor 10 has a cylindrical shape, but if it has a tubular shape, it may have other shapes including a triangular tubular shape, a square tubular shape, and an elliptical tubular shape.

発熱抵抗体10は、周壁11の内部空間を軸線方向に延びる複数の空間に区画する隔壁12を有している。隔壁12は、さらに、軸線方向の両端に端面13と、側面14を備える。側面14によって囲まれた空間は複数の流通孔15を規定する。内燃機関で発生した排気ガスは、発熱抵抗体10の一方の端面から流入し、流通孔15を通過し、発熱抵抗体10の他方の端面から排出される。 The heat generation resistor 10 has a partition wall 12 that divides the internal space of the peripheral wall 11 into a plurality of spaces extending in the axial direction. The partition wall 12 further includes end faces 13 and side surfaces 14 at both ends in the axial direction. The space surrounded by the side surface 14 defines a plurality of distribution holes 15. The exhaust gas generated by the internal combustion engine flows in from one end face of the heat generation resistor 10, passes through the flow hole 15, and is discharged from the other end face of the heat generation resistor 10.

本実施形態において、流通孔15の横断面は、図1に示されるように、四角形であるが、円形、楕円形、多角形を含むその他の形状であってもよい。また、流通孔15の隔壁の厚さは、0.05〜0.30mmであることが好ましい。 In the present embodiment, the cross section of the flow hole 15 is a quadrangle as shown in FIG. 1, but may have other shapes including a circle, an ellipse, and a polygon. The thickness of the partition wall of the flow hole 15 is preferably 0.05 to 0.30 mm.

発熱抵抗体10は、導電性のセラミック材料からなる。発熱抵抗体10で用いられるセラミック材料としては、例えば、ペロブスカイト型の結晶構造を持つランタンマンガンライト(LaMnO)やランタンクロマイト(LaCrO)などを主成分とするセラミックスが挙げられる。Laの一部をCa、Sr、Ba等の周期律表第2A元素で置換したり、Mn、Crの一部をCo、Fe、Ni、Ce、Zr等の元素で置換してもよい。これらの置換量を調整することでさまざまな体積抵抗率を持った発熱抵抗体10を形成することができる。 The heat generation resistor 10 is made of a conductive ceramic material. Examples of the ceramic material used in the heat generating resistor 10 include ceramics containing lanthanum manganese light (LaMnO 3 ) and lanthanum chromite (LaCrO 3 ) having a perovskite-type crystal structure as main components. A part of La may be replaced with an element of Periodic Table 2A such as Ca, Sr and Ba, and a part of Mn and Cr may be replaced with an element such as Co, Fe, Ni, Ce and Zr. By adjusting these substitution amounts, it is possible to form a heat generating resistor 10 having various volume resistivitys.

<電極>
電極20aおよび20b(以下、電極を総称する場合は「電極20」と称する。)は、それぞれ、発熱抵抗体10の両端の端面13と、端面13に連なる両側の側面14とにわたって位置している。従来のハニカム構造体を有するヒータでは、例えば、端面13上にのみ電極20が位置しているが、本実施形態のセラミックヒータ1においては、図2に示すように、電極20は、端面13から側面14に回り込むように厚みをもって形成されている。本実施形態において、隔壁12の厚さ方向における、電極20の幅は、隔壁12の、電極20が設けられていない部分の厚さより大きい。また、図2に示すように、側面14に位置している電極20の厚みは一定であってもよい。
<Electrode>
The electrodes 20a and 20b (hereinafter, collectively referred to as "electrode 20") are located over the end faces 13 at both ends of the heat generating resistor 10 and the side surfaces 14 on both sides connected to the end faces 13, respectively. .. In the conventional heater having a honeycomb structure, for example, the electrode 20 is located only on the end face 13, but in the ceramic heater 1 of the present embodiment, as shown in FIG. 2, the electrode 20 is from the end face 13. It is formed with a thickness so as to wrap around the side surface 14. In the present embodiment, the width of the electrode 20 in the thickness direction of the partition wall 12 is larger than the thickness of the portion of the partition wall 12 where the electrode 20 is not provided. Further, as shown in FIG. 2, the thickness of the electrode 20 located on the side surface 14 may be constant.

電極20の材料は特に限定されないが、発熱抵抗体10を構成するセラミック材料よりも体積抵抗率が低い材料が用いられる。電極20の形成方法については、焼成、めっき、蒸着、スパッタなどの方法が挙げられるが、これらに限定されない。 The material of the electrode 20 is not particularly limited, but a material having a volume resistivity lower than that of the ceramic material constituting the heat generating resistor 10 is used. Examples of the method for forming the electrode 20 include, but are not limited to, methods such as firing, plating, vapor deposition, and sputtering.

発熱抵抗体10で用いられる導電性のセラミック材料の体積抵抗率は、0.1〜500Ω・cmであることが好ましい。体積抵抗率が0.1Ω・cm以下である場合は、発熱抵抗体10の加熱が過剰となり、クラックの発生などの不具合が生じ、一方で、体積抵抗率が500Ω・cmを超えると、発熱抵抗体10に電流が流れにくくなり、発熱抵抗体10を十分に加熱することができなくなるため、排気ガスの浄化効率が低下する。 The volume resistivity of the conductive ceramic material used in the heat generation resistor 10 is preferably 0.1 to 500 Ω · cm. When the volume resistivity is 0.1 Ω · cm or less, the heating resistor 10 is overheated, causing problems such as cracks. On the other hand, when the volume resistivity exceeds 500 Ω · cm, the heat generating resistance Since it becomes difficult for the current to flow through the body 10 and the heat generation resistor 10 cannot be sufficiently heated, the purification efficiency of the exhaust gas is lowered.

本実施形態においては、隔壁12の端面13だけでなく側面14にまで回り込むように電極20が形成されている。そのため、端面13上のみに電極20を形成した場合よりも、電極20の電気抵抗値が小さくなるので、電極20全体に通電しやすくなり、発熱抵抗体10全体にも通電されて、発熱抵抗体10が均一に発熱する。これによって、発熱抵抗体10への部分的な通電およびこれによる発熱抵抗体10の異常発熱を抑制するとともに、発熱抵抗体10におけるクラックの発生を低減でき、耐久性に優れたセラミックヒータを提供することができる。また、発熱抵抗体10が均一に発熱することによって、触媒作用を促進し、排気ガスを効率よく加熱することが可能となる。 In the present embodiment, the electrodes 20 are formed so as to wrap around not only the end surface 13 of the partition wall 12 but also the side surface 14. Therefore, since the electric resistance value of the electrode 20 is smaller than that when the electrode 20 is formed only on the end face 13, it becomes easier to energize the entire electrode 20, and the entire heating resistor 10 is also energized, so that the heating resistor is energized. 10 uniformly generates heat. As a result, partial energization of the heat generation resistor 10 and abnormal heat generation of the heat generation resistor 10 due to this can be suppressed, and the occurrence of cracks in the heat generation resistor 10 can be reduced, thereby providing a ceramic heater having excellent durability. be able to. Further, when the heat generating resistor 10 generates heat uniformly, the catalytic action can be promoted and the exhaust gas can be efficiently heated.

<触媒>
排気ガスを浄化する触媒は、発熱抵抗体10とは別の担体に担持することも、発熱抵抗体10の隔壁12に担持させることもできる。
<Catalyst>
The catalyst for purifying the exhaust gas can be supported on a carrier different from the heat generation resistor 10, or can be supported on the partition wall 12 of the heat generation resistor 10.

隔壁12に担持させる触媒には、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)などの貴金属が用いられるが、排気ガス中に含まれる有害物質を浄化することができる材質であれば、これらに限定されない。 Precious metals such as platinum (Pt), rhodium (Rh), and palladium (Pd) are used as the catalyst to be supported on the partition wall 12, but any material that can purify harmful substances contained in the exhaust gas is used. Not limited to these.

発熱抵抗体10の一方の端面13から流入した排気ガスは、流通孔15を通過し、均一に発熱した発熱抵抗体10によって加熱されるとともに、隔壁12に担持された触媒によって浄化され、発熱抵抗体10の他方の端面13から排出される。 The exhaust gas flowing in from one end surface 13 of the heat generation resistor 10 passes through the flow hole 15 and is heated by the heat generation resistor 10 that generates heat uniformly, and is purified by the catalyst supported on the partition wall 12 to generate heat resistance. It is ejected from the other end face 13 of the body 10.

<第2実施形態>
次に、本開示の第2実施形態に係るセラミックヒータについて、第1実施形態の説明と同様、排気ガス浄化用のヒータを例にとって、図3を参照しながら説明する。また、本実施形態においては、第1実施形態と同様の構成要素には、第1実施形態と同一の符号を付して詳細な説明を省略する。
<Second Embodiment>
Next, the ceramic heater according to the second embodiment of the present disclosure will be described with reference to FIG. 3 by taking a heater for purifying exhaust gas as an example, as in the description of the first embodiment. Further, in the present embodiment, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.

本実施形態において、電極20は、図3に示すように、第1実施形態と同様に、隔壁12の端面13を包接するように形成されている。 In the present embodiment, as shown in FIG. 3, the electrode 20 is formed so as to include the end surface 13 of the partition wall 12 as in the first embodiment.

本実施形態では、さらに、電極20は、電極20の表面と隔壁12の側面14との間の、隔壁12の厚さ方向における距離が、側面14の少なくとも一部において、発熱抵抗体10の軸線方向、すなわち、排気ガスが流入する流通孔15の内方に向かうにつれて短くなるように形成されている。図3に示すように、電極20の側面14に位置する部分の端部において、電極20の表面と隔壁12の側面14との間の距離が発熱抵抗体10の軸線方向の内方に向かうにつれて漸減的に短くなるように電極20が形成されていてもよい。 In the present embodiment, the electrode 20 is further such that the distance in the thickness direction of the partition wall 12 between the surface of the electrode 20 and the side surface 14 of the partition wall 12 is the axis of the heat generating resistor 10 at least a part of the side surface 14. It is formed so as to become shorter in the direction, that is, toward the inside of the flow hole 15 into which the exhaust gas flows. As shown in FIG. 3, at the end of the portion located on the side surface 14 of the electrode 20, as the distance between the surface of the electrode 20 and the side surface 14 of the partition wall 12 goes inward in the axial direction of the heat generating resistor 10. The electrode 20 may be formed so as to be gradually shortened.

本実施形態によれば、電極20の表面と隔壁12の側面14との間の、隔壁12の厚さ方向における距離が、側面14の少なくとも一部において、発熱抵抗体10の軸線方向内方に向かうにつれて漸減的に短くなるように電極20を形成することによって、電極20の内燃機関からの排気ガスが衝突する部分のクラックの発生を低減することができる。 According to the present embodiment, the distance in the thickness direction of the partition wall 12 between the surface of the electrode 20 and the side surface 14 of the partition wall 12 is inward in the axial direction of the heat generating resistor 10 at least a part of the side surface 14. By forming the electrode 20 so as to be gradually shortened toward the direction, it is possible to reduce the occurrence of cracks in the portion of the electrode 20 where the exhaust gas from the internal combustion engine collides.

また、本実施形態によれば、排気ガスが流入する流通孔15の内方にむかうにつれて電極20の表面と隔壁12の側面14との間の、隔壁12の厚さ方向における距離が側面14の少なくとも一部において漸減的に短くなるように電極20を形成することによって、排気ガス中の粒子状物質による目詰まり等による圧力損失を低減させることができる。 Further, according to the present embodiment, the distance between the surface of the electrode 20 and the side surface 14 of the partition wall 12 in the thickness direction of the partition wall 12 is the side surface 14 toward the inside of the flow hole 15 into which the exhaust gas flows. By forming the electrode 20 so as to be gradually shortened at least in a part thereof, it is possible to reduce the pressure loss due to clogging or the like due to the particulate matter in the exhaust gas.

<排気ガス浄化装置>
図4は、本開示のセラミックヒータを備えた排気ガス浄化装置の実施の形態の一例を示す断面図である。
<Exhaust gas purification device>
FIG. 4 is a cross-sectional view showing an example of an embodiment of the exhaust gas purification device provided with the ceramic heater of the present disclosure.

図4に示すように、排気ガス浄化装置100においては、本開示のセラミックヒータ1がその外周を断熱材層105に保持された状態で、ケース101に収容されている。排気ガス浄化装置100は、排気ガスの流入口102と、流出口103を備え、それぞれに排気管104a,104bが接続されている。 As shown in FIG. 4, in the exhaust gas purification device 100, the ceramic heater 1 of the present disclosure is housed in the case 101 with its outer periphery held by the heat insulating material layer 105. The exhaust gas purification device 100 includes an exhaust gas inlet 102 and an exhaust gas outlet 103, and exhaust pipes 104a and 104b are connected to each of the exhaust gas purification device 100.

ケース101は、例えば、SUS303、SUS304およびSUS316等のステンレスからなり、その中央部が円筒状に、両端部が円錐台状に、それぞれ形成されている。断熱材層105は、例えばセラミックファイバー、ガラスファイバー、カーボンファイバーおよびセラミックウィスカ―の少なくとも1種から形成されている。 The case 101 is made of, for example, stainless steel such as SUS303, SUS304, and SUS316, and the central portion thereof is formed in a cylindrical shape and both ends thereof are formed in a truncated cone shape. The insulation layer 105 is formed from, for example, at least one of ceramic fiber, glass fiber, carbon fiber and ceramic whiskers.

排気ガス浄化装置100の排気ガス流入側には、ガソリンエンジン等の内燃機関が排気管104aを通じて接続されている。内燃機関によって生成された排気ガスは、排気管104aおよび流入口102を通ってケース101に供給され、セラミックヒータ1の流通孔15を通過し、発熱抵抗体10によって加熱される。本実施形態においては、セラミックヒータ1には触媒が担持されており、発熱抵抗体10によって加熱された排気ガスは、触媒によって浄化され、流出口103から排気管104bを通って、外部に排出される。 An internal combustion engine such as a gasoline engine is connected to the exhaust gas inflow side of the exhaust gas purification device 100 through an exhaust pipe 104a. The exhaust gas generated by the internal combustion engine is supplied to the case 101 through the exhaust pipe 104a and the inflow port 102, passes through the flow hole 15 of the ceramic heater 1, and is heated by the heat generating resistor 10. In the present embodiment, a catalyst is supported on the ceramic heater 1, and the exhaust gas heated by the heat generating resistor 10 is purified by the catalyst and discharged to the outside from the outlet 103 through the exhaust pipe 104b. To.

このように排気ガス浄化装置100は、本開示のセラミックヒータ1を備えることによって、排気ガスが効率よく加熱されるとともに、圧力損失を低減することができるので、内燃機関からの有害物質を含む排気ガスの浄化効率を向上させることができる。 As described above, the exhaust gas purification device 100 is provided with the ceramic heater 1 of the present disclosure, so that the exhaust gas can be efficiently heated and the pressure loss can be reduced. Therefore, the exhaust gas containing harmful substances from the internal combustion engine can be exhausted. The gas purification efficiency can be improved.

上記においては、セラミックヒータを排気ガス浄化用として説明したが、本開示の発明は、これに限らず、ガスまたは液体などの流体を流通孔内に流通させて、流体を加熱させる用途であれば、どのようなものに対しても適用できる。 In the above, the ceramic heater has been described for purifying exhaust gas, but the invention of the present disclosure is not limited to this, as long as it is an application in which a fluid such as gas or liquid is circulated in the flow hole to heat the fluid. , Applicable to anything.

1 セラミックヒータ
10 発熱抵抗体
11 周壁
12 隔壁
13 端面
14 側面
15 流通孔
20,20a,20b 電極
30 端子
40 リード線
100 排気ガス浄化装置
101 ケース
102 流入口
103 流出口
104,104a,104b 排気管
105 断熱材層
1 Ceramic heater 10 Heat generation resistor 11 Peripheral wall 12 Partition wall 13 End face 14 Side surface 15 Flow holes 20, 20a, 20b Electrodes 30 Terminal 40 Lead wire 100 Exhaust gas purification device 101 Case 102 Inflow port 103 Outlet 104, 104a, 104b Exhaust pipe 105 Insulation layer

Claims (4)

筒状の周壁、および前記周壁の内部空間を軸線方向に延びる複数の空間に区画する隔壁を有する、セラミック材料で構成される発熱抵抗体と、
前記発熱抵抗体の軸線方向両端に設けられる電極と、を備え、
前記電極は、前記隔壁の端面と前記端面に連なる両側面とにわたって位置していることを特徴とするセラミックヒータ。
A heating resistor made of a ceramic material, which has a tubular peripheral wall and a partition wall that divides the internal space of the peripheral wall into a plurality of spaces extending in the axial direction.
Electrodes provided at both ends in the axial direction of the heat generation resistor are provided.
A ceramic heater characterized in that the electrodes are located over an end face of the partition wall and both side surfaces connected to the end face.
前記隔壁の厚さ方向における、前記電極の幅は、前記隔壁の、前記電極が設けられていない部分の厚さより大きいことを特徴とする請求項1記載のセラミックヒータ。 The ceramic heater according to claim 1, wherein the width of the electrode in the thickness direction of the partition wall is larger than the thickness of the portion of the partition wall where the electrode is not provided. 前記電極の表面と前記隔壁の前記側面との間の、前記隔壁の厚さ方向における距離が、前記側面の少なくとも一部において、軸線方向内方に向かうにつれて短くなっていることを特徴とする請求項2記載のセラミックヒータ。 A claim characterized in that the distance in the thickness direction of the partition wall between the surface of the electrode and the side surface of the partition wall becomes shorter toward inward in the axial direction at least a part of the side surface. Item 2. The ceramic heater according to item 2. 請求項1〜3のいずれかに記載のセラミックヒータを備えていることを特徴とする排気ガス浄化装置。 An exhaust gas purification device including the ceramic heater according to any one of claims 1 to 3.
JP2019086679A 2019-04-26 2019-04-26 Ceramic heater and exhaust emission control device using the same Pending JP2020183703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019086679A JP2020183703A (en) 2019-04-26 2019-04-26 Ceramic heater and exhaust emission control device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019086679A JP2020183703A (en) 2019-04-26 2019-04-26 Ceramic heater and exhaust emission control device using the same

Publications (1)

Publication Number Publication Date
JP2020183703A true JP2020183703A (en) 2020-11-12

Family

ID=73044853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086679A Pending JP2020183703A (en) 2019-04-26 2019-04-26 Ceramic heater and exhaust emission control device using the same

Country Status (1)

Country Link
JP (1) JP2020183703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386288B1 (en) * 2021-08-31 2022-04-12 (주)일승 Honeycomb ceramic heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066853A (en) * 1973-10-22 1975-06-05
JPS5229996A (en) * 1975-09-03 1977-03-07 Ngk Insulators Ltd Positive characteristic ceramic heat emission body of barium titanate series having a plurality of through hoholes
JPH07204518A (en) * 1994-01-28 1995-08-08 Shimadzu Corp Purifying device for exhaust gas from automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066853A (en) * 1973-10-22 1975-06-05
JPS5229996A (en) * 1975-09-03 1977-03-07 Ngk Insulators Ltd Positive characteristic ceramic heat emission body of barium titanate series having a plurality of through hoholes
JPH07204518A (en) * 1994-01-28 1995-08-08 Shimadzu Corp Purifying device for exhaust gas from automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386288B1 (en) * 2021-08-31 2022-04-12 (주)일승 Honeycomb ceramic heater

Similar Documents

Publication Publication Date Title
US7935163B2 (en) Filtering device for diesel engine exhaust gas
JP6487982B1 (en) Exhaust gas purification catalyst
JP5010679B2 (en) Side flow filter with improved filtration efficiency
JPH04284852A (en) Catalyst core for catalytic converter
JP6537606B2 (en) Exhaust pipe structure of internal combustion engine
JP2007514104A (en) Exhaust mechanism for lean burn internal combustion engines including particulate matter filters
US6968681B2 (en) Method and device for aftertreatment of exhaust gases from combustion engines
JP2005211794A (en) Catalyst for emission gas purification
CN105143629A (en) Catalytic converter
JP2020183703A (en) Ceramic heater and exhaust emission control device using the same
JP6729244B2 (en) Exhaust gas purifying apparatus and method for controlling exhaust gas purifying apparatus
JPH0932534A (en) Honeycomb body for current-carrying heating and honeycomb unit
JP2015090139A (en) Catalytic converter
CN1195940C (en) Device for purifying waste gas of diesel motor
KR102568991B1 (en) Exhaust gas heating arrangement
CN106468204B (en) Exhaust gas purification device for internal combustion engine
JPH06182220A (en) Metal carrier for purifying exhaust gas
JP5625764B2 (en) Honeycomb structure and electrically heated catalyst device
JPH09504474A (en) Catalytic method
JP4564737B2 (en) Exhaust gas purification device
JP7020670B2 (en) Heater device for raising gas
KR100581182B1 (en) honeycomb heater
JP2017066981A (en) Exhaust system component of internal combustion engine
JPH08193509A (en) Exhaust emission control device
JPH08338236A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230418