JP2020183364A - Yeast protein-containing composition - Google Patents

Yeast protein-containing composition Download PDF

Info

Publication number
JP2020183364A
JP2020183364A JP2019089189A JP2019089189A JP2020183364A JP 2020183364 A JP2020183364 A JP 2020183364A JP 2019089189 A JP2019089189 A JP 2019089189A JP 2019089189 A JP2019089189 A JP 2019089189A JP 2020183364 A JP2020183364 A JP 2020183364A
Authority
JP
Japan
Prior art keywords
yeast
protein
containing composition
enzyme
yeast protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019089189A
Other languages
Japanese (ja)
Inventor
敬展 櫻井
Keiten Sakurai
敬展 櫻井
知恵 北原
Tomoe Kitahara
知恵 北原
佐藤 寿哉
Hisaya Sato
寿哉 佐藤
忠与次 勝又
Tadayoshi Katsumata
忠与次 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp Life Sciences Ltd
Original Assignee
Mitsubishi Corp Life Sciences Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp Life Sciences Ltd filed Critical Mitsubishi Corp Life Sciences Ltd
Priority to JP2019089189A priority Critical patent/JP2020183364A/en
Publication of JP2020183364A publication Critical patent/JP2020183364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide a composition that contains nutrients such as protein and has health functionality such as the effects of inhibiting increases in blood glucose level or neutral fat.SOLUTION: The inventors have found that yeast (yeast protein) not only supplies protein but also has health functions, e.g. inhibiting increases in blood glucose or neutral fat.SELECTED DRAWING: None

Description

本発明は、酵母たんぱく質含有組成物及び血糖値上昇抑制効果または中性脂肪上昇抑制
効果を有する組成物に関するものである。
The present invention relates to a yeast protein-containing composition and a composition having an effect of suppressing an increase in blood glucose level or an effect of suppressing an increase in triglyceride.

超高齢化社会の進展に伴い、健康寿命の延伸の重要性は高まってきている。
一方で、世界の人口増加に伴う食糧危機や日本国内における食料自給率(特に、たんぱく質)の低さが問題となってきている。
With the development of a super-aging society, the importance of extending healthy life expectancy is increasing.
On the other hand, the food crisis caused by the increase in the world population and the low food self-sufficiency rate (especially protein) in Japan have become problems.

このようななか、医薬品に頼ることなく、普段の食事の中で健康寿命を延伸させようと
うコンセプトから機能性食品という概念が生まれ注目されている。
健康志向の高まりも伴って、健康機能性を有する食品素材を加える食品が年々増加し、
定保健用食品や機能性表示食品などが注目されている。種々の健康機能性を有する食品
材が知られているが、血糖や中性脂肪の上昇を抑制させる機能性食品としては難消化性
キストリンなどが挙げられる(特許文献1)。しかしながら、難消化性デキストリンは
ウモロコシ澱粉由来の焙焼デキストリンにα-アミラーゼ及びグルコシダーゼを作用させ
、グルコースを分離させた食物繊維であるため、たんぱく質などの栄養素はほとんど含
れない。
Under these circumstances, the concept of functional foods has been attracting attention from the concept of extending healthy life expectancy in everyday meals without relying on pharmaceuticals.
With the growing health consciousness, the number of foods to which food materials with health functionality are added is increasing year by year.
Foods for health care and foods with functional claims are attracting attention. Food materials having various health functionalities are known, and examples of functional foods that suppress an increase in blood glucose and triglyceride include indigestible kistrin (Patent Document 1). However, indigestible dextrin is a dietary fiber in which glucose is separated by allowing α-amylase and glucosidase to act on roasted dextrin derived from umorokoshi starch, and therefore contains almost no nutrients such as protein.

また、酵母由来のたんぱく質を大豆や小麦由来のたんぱく質代替として用いることは知
れている(特許文献2)。これらは、たんぱく質を栄養素としての利用を想定しており
血糖や中性脂肪の上昇を抑制などの健康機能性素材として利用する概念はなかった。
Further, it is known that yeast-derived protein is used as a substitute for soybean- and wheat-derived protein (Patent Document 2). These are supposed to be used as nutrients, and there was no concept of using them as health functional materials such as suppressing the rise of blood sugar and triglyceride.

特開2016−119861号公報Japanese Unexamined Patent Publication No. 2016-119861 特開2013−53083号公報Japanese Unexamined Patent Publication No. 2013-53083

本発明の課題は、たんぱく質などの栄養素を含み、さらに、血糖値上昇抑制効果または
中性脂肪上昇抑制効果等の健康機能性を有する組成物を提供することを課題とする。
An object of the present invention is to provide a composition containing nutrients such as protein and having health functionality such as an effect of suppressing an increase in blood glucose level or an effect of suppressing an increase in triglyceride.

本発明者らは、鋭意研究の中で、酵母(酵母たんぱく質)は、たんぱく質補給とともに
血糖や中性脂肪の上昇抑制といった健康機能も併せ持つことを見出し、本発明を完成さ
た。
The present inventors have found in diligent research that yeast (yeast protein) has not only protein supplementation but also health functions such as suppression of increase in blood glucose and triglyceride, and completed the present invention.

(1)酵母菌体または酵母残渣の細胞壁分解酵素処理物である酵母たんぱく質含有組成

(2)酵母菌体または酵母残渣の細胞壁分解酵素処理物である血糖値上昇抑制用酵母た
ぱく質含有組成物。
(3)酵母菌体または酵母残渣の細胞壁分解酵素処理物である血中中性脂肪上昇抑制用
母たんぱく質含有組成物。
(4)前記(1)の酵母たんぱく質含有組成物を含む食品であって、食後の血糖値の上
を抑える若しくは食後の血糖値の上昇をゆるやかにする、または食後の血中中性脂肪の
昇を抑える若しくは食後の血中中性脂肪の上昇をゆるやかにすると表示する食品。
(5)酵母菌体または酵母残渣に細胞壁分解酵素処理をする工程を含む、酵母たんぱく
含有組成物の製造方法。
(1) A yeast protein-containing composition which is a cell wall-degrading enzyme-treated product of yeast cells or yeast residues.
(2) A yeast protein-containing composition for suppressing an increase in blood glucose level, which is a cell wall-degrading enzyme-treated product of yeast cells or yeast residues.
(3) A composition containing a mother protein for suppressing the increase in triglyceride in blood, which is a cell wall-degrading enzyme-treated product of yeast cells or yeast residues.
(4) A food containing the yeast protein-containing composition of (1) above, which suppresses the postprandial blood glucose level, moderates the postprandial blood glucose level rise, or raises the postprandial blood triglyceride level. Foods that are labeled as suppressing or slowing the rise of triglyceride in the blood after eating.
(5) A method for producing a yeast protein-containing composition, which comprises a step of treating yeast cells or yeast residues with a cell wall-degrading enzyme.

本発明によると、酵母菌体や酵母エキス等を抽出した後の酵母菌体(本発明では「酵母
残渣」ともいう)を細胞壁分解酵素処理した組成物は、酵母が持つ栄養素としてのタンパク質と血糖値上昇抑制効果または中性脂肪上昇抑制効果等の健康機能性を併せ持つ組成物を提供することができる。本発明では、酵母たんぱく質にも、健康機能効果を見出した。
According to the present invention, a composition obtained by treating yeast cells (also referred to as "yeast residue" in the present invention) after extracting yeast cells, yeast extract, etc. with a cell wall-degrading enzyme is a protein and blood glucose as nutrients possessed by yeast. It is possible to provide a composition having health functionality such as a value increase suppressing effect or a neutral fat increase suppressing effect. In the present invention, a health functional effect was also found in yeast protein.

酵素濃度と反応溶液の粘度・可溶化率の関係Relationship between enzyme concentration and viscosity / solubilization rate of reaction solution 酵素反応時間と反応溶液の粘度・可溶化率(Brix)の関係Relationship between enzyme reaction time and viscosity / solubilization rate (Brix) of reaction solution 酵母たんぱく質含有組成物の分子量分布解析結果Results of molecular weight distribution analysis of yeast protein-containing composition 酵母たんぱく質含有組成物の食後血糖値抑制効果Postprandial blood glucose suppression effect of yeast protein-containing composition 酵母たんぱく質含有組成物の食後血中中性脂肪抑制効果Postprandial blood triglyceride inhibitory effect of yeast protein-containing composition 酵母たんぱく質含有組成物のグルコシダーゼ阻害Glucosidase inhibition of yeast protein-containing composition 酵母たんぱく質含有組成物のリパーゼ阻害および胆汁酸吸着試験Lipase inhibition and bile acid adsorption test of yeast protein-containing composition

本発明の酵母たんぱく質含有組成物は、酵母菌体または、酵母残渣を細胞壁分解酵素処
理することで得られる。
The yeast protein-containing composition of the present invention can be obtained by treating yeast cells or yeast residues with a cell wall-degrading enzyme.

本発明で使用する酵母としてはサッカロミセス、エンドミコプシス、サッカロミコデス、ネマトスポラ、キャンディダ、トルロプシス、プレタノミセス、ロドトルラなどの属に属する菌、あるいはいわゆるビール酵母、パン酵母、清酒酵母などが挙げられる。このうち、特に食経験が多いキャンディダ・ユティリス又はサッカロマイセス・セレビシエが望しい。 Examples of the yeast used in the present invention include bacteria belonging to the genera such as saccharomyces, endomicopsis, saccharomycodes, nematospora, candida, tolulopsis, pretanomyces, and rhodotorula, or so-called brewer's yeast, baker's yeast, and sake yeast. Of these, Candida utilis or Saccharomyces cerevisiae, who have a lot of eating experience, are desired.

本発明では、酵母の培養方法に制限はなく、一般的な方法を採用できる。一般的には、酵母を培養する際の培地には、炭素源として、ブドウ糖、酢酸、エタノ−ル、グリセロ−ル、糖蜜、亜硫酸パルプ廃液等が用いられ、窒素源としては、尿素、アンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸塩などが使用される。リン酸、カリウム、マグネシウム源も過リン酸石灰、リン酸アンモニウム、塩化カリウム、水酸化カリウム、硫酸マグネシウム、塩化マグネシウム等の通常の工業用原料でよく、その他亜鉛、銅、マンガン、鉄イオン等の無機塩を添加する。その他は、ビタミン、アミノ酸、核酸関連物質等を使用しないでも培養可能であるが、これらを添加しても良い。コーンスチーブリカー、カゼイン、酵母エキス、肉エキス、ペプトン等の有機物を添加しても良い。 In the present invention, the yeast culture method is not limited, and a general method can be adopted. Generally, as a medium for culturing yeast, glucose, acetic acid, ethanol, glycerol, sugar honey, sulfite pulp waste liquid, etc. are used as carbon sources, and urea, ammonia, etc. are used as nitrogen sources. Ammonium sulfate, ammonium chloride, nitrate, etc. are used. The source of phosphate, potassium and magnesium may be ordinary industrial raw materials such as lime superphosphate, ammonium phosphate, potassium chloride, potassium hydroxide, magnesium sulfate and magnesium chloride, and other sources such as zinc, copper, manganese and iron ions. Add inorganic salt. Others can be cultured without using vitamins, amino acids, nucleic acid-related substances, etc., but these may be added. Organic substances such as corn stee bricker, casein, yeast extract, meat extract and peptone may be added.

培養温度やpH等の培養条件は、特に制限なく適用でき、使用する酵母菌株に合わせて設定し、培養すれば良い。一般的には、培養温度は20〜40℃、pHは3.0〜9.0で培養するのが一般的である。培養形式としては、バッチ培養、あるいは連続培養のいずれでも良く、培養時の撹拌、通気等の条件は特に制限なく、一般的な方法でよい。 Culturing conditions such as culturing temperature and pH can be applied without particular limitation, and may be set and cultivated according to the yeast strain to be used. Generally, the culture temperature is 20 to 40 ° C. and the pH is 3.0 to 9.0. The culture form may be either batch culture or continuous culture, and the conditions such as stirring and aeration during culture are not particularly limited, and a general method may be used.

本発明では、酵母の一般的な培養で得られた酵母菌体をそのまま利用することができる。ビール製造工程でできる酵母菌体なども利用可能である。また、酵母菌体から酵母エキス等の有用成分を抽出した後に残る酵母菌体(酵母残渣)を用いることもできる。酵母エキスや有用成分の抽出方法は、特に制限がないが、酵母に熱水、酸・アルカリ性溶液、自己消化、機械的破砕等のいずれか一つ以上を用いて抽出処理することにより酵母エキスや有用成分を抽出したものを利用することができる。 In the present invention, yeast cells obtained by general culture of yeast can be used as they are. Yeast cells produced in the beer manufacturing process can also be used. It is also possible to use the yeast cell (yeast residue) that remains after extracting a useful component such as yeast extract from the yeast cell. The method for extracting yeast extract and useful components is not particularly limited, but yeast extract or yeast extract can be obtained by extracting yeast with one or more of hot water, acid / alkaline solution, autolysis, mechanical crushing, etc. Extracted useful components can be used.

本発明では、前記のような方法で得られた酵母菌体または酵母残渣に対して、酵母細胞
壁分解酵素を作用させる。酵母細胞壁分解酵素は、グルカナーゼを用いることが好ましい。さらに、プロテアーゼを含まない、又はプロテアーゼ活性を有さないグルカナーゼを用いることが特に好ましい。細胞壁分解酵素がプロテアーゼ活性を有さないものであれば、プロテアーゼを含んでいても、酵素製剤中のプロテアーゼが作用しない温度、pHで細胞壁分解酵素を作用させても良い。プロテアーゼ活性が低い又は有さない酵素としては、Streptomyces属由来の細胞壁分解酵素「デナチームGEL」(ナガセケムテックス社製)、Talaromyces属由来の「Filtease BRX」(DSM社製)等を例示することができる。なお、プロテアーゼを含まないグルカナーゼを用いた場合、プロテアーゼが作用しない条件でプロテアーゼ処理した場合等には、グルカナーゼ処理後にプロテアーゼ処理をしてもよい。プロテアーゼは、任意のものを使用できる。
In the present invention, the yeast cell wall-degrading enzyme is allowed to act on the yeast cells or yeast residues obtained by the above method. It is preferable to use glucanase as the yeast cell wall degrading enzyme. Furthermore, it is particularly preferable to use a glucanase that does not contain protease or has no protease activity. As long as the cell wall-degrading enzyme does not have protease activity, the cell wall-degrading enzyme may be allowed to act at a temperature and pH at which the protease in the enzyme preparation does not act, even if the protease is contained. Examples of enzymes having low or no protease activity include the cell wall degrading enzyme "Denateam GEL" (manufactured by Nagase ChemteX) derived from the genus Streptomyces, "Filtase BRX" (manufactured by DSM) derived from the genus Talaromyces, and the like. it can. When glucanase containing no protease is used, or when protease treatment is performed under conditions in which protease does not act, protease treatment may be performed after glucanase treatment. Any protease can be used.

酵素処理条件は、特に制限はない。使用する酵素により、当業者であれば、適宜選択できる条件でよい。酵母菌体等の懸濁濃度、酵素濃度等は任意であるが、一般的に酵母菌体等の懸濁濃度は、5〜20重量%、グルカナーゼの添加濃度は酵母に対し0.001〜10%、好ましくは0.01〜0.5% でpHは中性付近が望ましいが酵素が作用するpH範囲内であれば構わない。反応温度についても至適温度付近が望ましく、特に制限はない。酵素反応時間は任意である。酵素反応の調整は、本発明品を直接摂取する場合、他の食品と混合する場合など、使用態様により、当業者が適宜調整することでよい。例えば、本発明品を直接摂取する場合では、酵母又は酵母残渣に対して、酵素を0.3重量%となるように添加し、5時間反応する。これにより、酵母又は酵母残渣の水への溶解性が高くなるため扱いやすい。 The enzyme treatment conditions are not particularly limited. Depending on the enzyme used, those skilled in the art may have conditions that can be appropriately selected. The suspension concentration of yeast cells and the like, the enzyme concentration, etc. are arbitrary, but in general, the suspension concentration of yeast cells and the like is 5 to 20% by weight, and the addition concentration of glucanase is 0.001 to 10 with respect to yeast. %, preferably 0.01 to 0.5%, and the pH is preferably near neutral, but it may be within the pH range in which the enzyme acts. The reaction temperature is also preferably near the optimum temperature, and is not particularly limited. The enzyme reaction time is arbitrary. The enzyme reaction may be appropriately adjusted by those skilled in the art depending on the mode of use, such as when the product of the present invention is directly ingested or when it is mixed with other foods. For example, when the product of the present invention is directly ingested, the enzyme is added to yeast or yeast residue so as to be 0.3% by weight, and the mixture is reacted for 5 hours. This makes the yeast or yeast residue highly soluble in water and is easy to handle.

酵素処理後、水に溶解する成分と溶解しない成分を分離してもよいが、分離せず、そのまま本発明の酵母たんぱく質含有組成物として利用してもよい。 After the enzyme treatment, the component that dissolves in water and the component that does not dissolve in water may be separated, but they may not be separated and may be used as they are as the yeast protein-containing composition of the present invention.

本発明のたんぱく質含量は、ケルダール法(総窒素量に窒素−タンパク質換算係数6.25を乗じることにより算出)により算出した。本発明では、組成物中に50重量%以上含有することが好ましい。他の成分は任意であるが、食物繊維、ビタミン等を含有してよい。 The protein content of the present invention was calculated by the Kjeldahl method (calculated by multiplying the total amount of nitrogen by the nitrogen-protein conversion coefficient of 6.25). In the present invention, it is preferable that the composition contains 50% by weight or more. Other ingredients are optional, but may contain dietary fiber, vitamins and the like.

得られた酵母酵素処理物は、そのまま水等で溶解し、飲料として摂取、又は、例えば打錠等でサプリメントの形としても、一般食品にたんぱく素材として混合して使用又は調理してもかまわない。また、加塩や濃縮などで液体調味料として使用してもかまわない。乾燥する場合は、乾燥方法に制限ない。通常利用されている粉末化する方法としては、スプレードライ、凍結乾燥、ドラムドライなど一般的な粉末化方法を利用することができる The obtained yeast enzyme-treated product may be dissolved in water or the like as it is and ingested as a beverage, or may be used or cooked in the form of a supplement by, for example, tableting, or mixed with general foods as a protein material. .. In addition, it may be used as a liquid seasoning by salting or concentrating. When it is dried, there is no limitation on the drying method. As a commonly used powdering method, a general powdering method such as spray drying, freeze drying, and drum drying can be used.

ヒトが摂取する場合の摂取量および摂取回数は、摂取形態、被摂取者の年齢、体重等により異なる。通常は、本発明の組成物として、1日あたり1〜40gの摂取でよい。
The amount and frequency of intake when ingested by humans differ depending on the form of intake, the age of the ingested person, the body weight, and the like. Usually, the composition of the present invention may be ingested in an amount of 1 to 40 g per day.

以下に、本願発明を具体的に示すが、本願発明は、これに限定されるものではない。 The invention of the present application will be specifically shown below, but the invention of the present application is not limited thereto.

本願における各種測定方法等は以下の方法による。
<粘度の測定方法>
粘度は、b型粘度計(東機産業社製、TVB−10M)を使用し、10重量%、50℃および7
0℃の粘度を測定した。
The various measurement methods and the like in the present application are as follows.
<Viscosity measurement method>
Viscosity is 10% by weight, 50 ° C. and 7 using a b-type viscometer (TVB-10M, manufactured by Toki Sangyo Co., Ltd.).
The viscosity at 0 ° C. was measured.

<分子量分布の測定方法>
酵素処理した酵母たんぱくの可溶性画分の分子量分布測定はゲル濾過を用いたHPLC分析により実施した。酵素処理した酵母たんぱくを乾燥させた乾燥酵母たんぱく組成物25mgに超純水1mLを加え、ボルテックスで充分振動分散させたのち、遠心分離を行い(15,000rpm, 3分)、上清部分を回収した。0.45μmフィルター濾過を行った後、下記条件にてHPLC分析を行った。
<HPLC条件>
HPLC:Agilent 1200システム
移動相:超純水
カラム:YMC-Pack Diol-300(5μm, 300×8.0mmI.D.,ナカライテスク社製)
カラムオーブン温度:30℃
検出器:RI
流速:0.7mL/min.
インジェクト量:50μL
<Measurement method of molecular weight distribution>
The molecular weight distribution of the soluble fraction of the enzyme-treated yeast protein was measured by HPLC analysis using gel filtration. Add 1 mL of ultrapure water to 25 mg of dried yeast protein composition obtained by drying enzyme-treated yeast protein, sufficiently vibrate and disperse with vortex, and then centrifuge (15,000 rpm, 3 minutes) to collect the supernatant. did. After filtering with a 0.45 μm filter, HPLC analysis was performed under the following conditions.
<HPLC conditions>
HPLC: Agilent 1200 System Mobile Phase: Ultrapure Water Column: YMC-Pack Diol-300 (5 μm, 300 × 8.0 mm ID, manufactured by Nacalai Tesque)
Column oven temperature: 30 ° C
Detector: RI
Flow velocity: 0.7 mL / min.
Inject amount: 50 μL

<可溶化率>
可溶化率は常圧加熱乾燥法により、酵母たんぱくおよび酵母たんぱく可溶性画分の固形分(全固形分(%):W1, 可溶性画分固形分(%):W2)を算出し、下記計算式より可溶化率を算出した。
可溶化率(%)=(100−W1)×W2÷W1
(前処理方法)
1 サンプルを5g採取、蒸留水45gを加えた。
2 スターラーで30分間撹拌し、しっかりと分散させた。
3 全固形分測定用のサンプルはそのままサンプリングした。
4 可溶性固形分測定用として、10mLを15mL遠沈管にはかりとり、10,000rpm(9,000G)で10分間遠心分離し、上清を回収したものをサンプリングした。
(固形分測定方法)
サンプル量2g、海砂使用量を10gとし、105℃4時間の常圧加熱乾燥法により、酵母たんぱく全量固形分(%, W1)および可溶性画分固形分(%, W2)を測定した。
<Solubilization rate>
The solubilization rate is calculated by calculating the solid content of yeast protein and the yeast protein-soluble fraction (total solid content (%): W1, soluble fraction solid content (%): W2) by the atmospheric heating and drying method, and using the following formula. The solubilization rate was calculated.
Solubilization rate (%) = (100-W1) x W2 ÷ W1
(Pretreatment method)
5 g of 1 sample was collected, and 45 g of distilled water was added.
2 Stirrer for 30 minutes to disperse well.
3 The sample for total solid content measurement was sampled as it was.
4 For measuring the soluble solid content, 10 mL was weighed in a 15 mL centrifuge tube, centrifuged at 10,000 rpm (9,000 G) for 10 minutes, and the supernatant was collected and sampled.
(Solid content measurement method)
The total amount of yeast protein solids (%, W1) and soluble fraction solids (%, W2) were measured by a normal pressure heating and drying method at 105 ° C. for 4 hours with a sample amount of 2 g and sea sand used of 10 g.

(酵母たんぱく質含有組成物の物性)
食品用KR酵母(興人ライフサイエンス社製)を乾燥菌体として1kgを水に懸濁して、菌体濃度を10重量%とした後、40℃、pH7.0に調整後、細胞壁分解酵素(ナガセケムテックス社製「グルカナーゼGEL」)を酵母菌体あたり、0.01、0.02、0.03、0.04、0.05、0.1、0.3重量%となるよう酵素を添加し、5時間反応させた。反応後、10%溶液の粘度および可溶化率を測定し、図1のような結果となった。なお図1は、KR酵母を用いた場合の結果である。
(Physical properties of yeast protein-containing composition)
1 kg of dried bacterial cells of KR yeast for food (manufactured by Kojin Life Science Co., Ltd.) was suspended in water to adjust the bacterial cell concentration to 10% by weight, adjusted to 40 ° C. and pH 7.0, and then the cell wall degrading enzyme (cell wall degrading enzyme). "Glucanase GEL" manufactured by Nagase ChemteX Co., Ltd.) was added to the yeast so that the enzyme content was 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3% by weight per yeast cell. It was added and reacted for 5 hours. After the reaction, the viscosity and solubilization rate of the 10% solution were measured, and the results shown in FIG. 1 were obtained. Note that FIG. 1 shows the results when KR yeast was used.

物性の異なる酵母たんぱく質含有組成物は図1に示すように酵素濃度を変更することで製造することができるが、以下に示す通り酵素反応時間を変更することでも製造可能である。酵母菌体に対して、酵素を0.03重量%添加し、粘度と上清Brixを測定した結果を図2に示す。本試験において粘度は音叉振動式レオメーターRV−10000(株式会社エー・アンド・デイ製)を用い、10%懸濁液のサンプル濃度で50℃、振幅1.0mmにて測定した。また、懸濁液を15,000rpmで遠心分離した上清溶液のBrixを測定することで可溶化率の目安とした。
図1、2の結果から、細胞壁が高分解された低粘性タイプの酵母たんぱく質含有組成物(H体)を製造するためには、酵素濃度を高め反応時間を短縮する方が製造適性は高いが、低濃度で長時間酵素処理を行うことでも製造可能である。また、細胞壁を低分解し高粘性タイプの酵母たんぱく質含有組成物(L体)を製造する場合は、高濃度の酵素を作用させると短時間で製造が完了するメリットがあるが、物性確保のための反応時間の設定が難しくなるため、安定的に製造するためには酵素濃度を下げる方が適している。
このように、酵素濃度、酵素反応時間については、製造者が目的に応じ適時選択できる。
Yeast protein-containing compositions having different physical properties can be produced by changing the enzyme concentration as shown in FIG. 1, but can also be produced by changing the enzyme reaction time as shown below. FIG. 2 shows the results of measuring the viscosity and the supernatant Brix by adding 0.03% by weight of the enzyme to the yeast cells. In this test, the viscosity was measured using a tuning fork vibration rheometer RV-10000 (manufactured by A & D Co., Ltd.) at a sample concentration of 10% suspension at 50 ° C. and an amplitude of 1.0 mm. In addition, the Brix of the supernatant solution obtained by centrifuging the suspension at 15,000 rpm was measured as a guideline for the solubilization rate.
From the results shown in FIGS. 1 and 2, in order to produce a low-viscosity type yeast protein-containing composition (H form) in which the cell wall is highly decomposed, it is more suitable to increase the enzyme concentration and shorten the reaction time. It can also be produced by long-term enzyme treatment at a low concentration. In addition, when producing a highly viscous type yeast protein-containing composition (L-form) with low decomposition of the cell wall, there is a merit that the production can be completed in a short time by allowing a high concentration of enzyme to act, but to ensure physical properties. Since it is difficult to set the reaction time of the enzyme, it is more suitable to lower the enzyme concentration for stable production.
In this way, the enzyme concentration and the enzyme reaction time can be timely selected by the manufacturer according to the purpose.

得られた酵母たんぱく質含有組成物の分子量分布解析結果の一部を図3に示す。分子量の大きいものから(1)(2)(3)の3本のピークが特徴的である。H体は、酵素を0.3重量%添加し、5時間反応させたもの、L体は、酵素を0.03重量%添加し、5時間反応させたものである。酵素条件が強くなるほど、(1)のピークが減少し、(2)および(3)のピーク割合が上昇していく。 FIG. 3 shows a part of the results of molecular weight distribution analysis of the obtained yeast protein-containing composition. The three peaks (1), (2), and (3) from the one with the largest molecular weight are characteristic. The H form is obtained by adding 0.3% by weight of the enzyme and reacting for 5 hours, and the L form is obtained by adding 0.03% by weight of the enzyme and reacting for 5 hours. As the enzyme condition becomes stronger, the peak of (1) decreases and the peak ratios of (2) and (3) increase.

(酵母たんぱく質含有組成物の製造)
酵母としてKR酵母を、グルカナーゼとして「デナチームGEL」(ナガセケムテックス社製)を用いた酵母たん白の製造例を下記に示す。水18Kgにトルラ酵母2kgを懸濁させ、pHを7.0に調整後、デナチームGELをKR酵母に対し、0.03重量%(酵母たんぱく質含有組成物L体)または0.3重量%(酵母たんぱく質含有組成物H体)となるよう添加し、60℃で5h撹拌した。反応溶液を90℃以上で10分間撹拌し酵素を失活させたのち、スプレードライにて粉末化することで酵母たんぱく質含有組成物を得た。酵母たんぱく質含有組成物中のたんぱく質含量は、ケルダール法により測定し、62重量%であった。さらに水に再懸濁し、水溶性画分と非水溶性画分(たんぱく質高含有画分)を分離した。
(Production of yeast protein-containing composition)
An example of producing a yeast protein using KR yeast as the yeast and "Denateam GEL" (manufactured by Nagase ChemteX Corporation) as the glucanase is shown below. After suspending 2 kg of torula yeast in 18 kg of water and adjusting the pH to 7.0, 0.03% by weight (L-form of yeast protein-containing composition) or 0.3% by weight (yeast) of Denateam GEL with respect to KR yeast. It was added so as to be a protein-containing composition H form), and the mixture was stirred at 60 ° C. for 5 hours. The reaction solution was stirred at 90 ° C. or higher for 10 minutes to inactivate the enzyme, and then powdered by spray drying to obtain a yeast protein-containing composition. The protein content in the yeast protein-containing composition was 62% by weight as measured by the Kjeldahl method. Further, it was resuspended in water, and the water-soluble fraction and the water-insoluble fraction (high protein content fraction) were separated.

(酵母たんぱく質含有組成物の食後血糖値の抑制効果)
酵母たんぱく質含有組成物の有効性試験を行った。健常な成人男女にKR酵母、酵母た
んぱく質含有組成物L体、酵母たんぱく質含有組成物H体、パインファイバー、βグルカンリッチ大豆粉を下記のプロトコルに従い試験をした。
(Effect of suppressing postprandial blood glucose level of yeast protein-containing composition)
The efficacy test of the yeast protein-containing composition was carried out. KR yeast, yeast protein-containing composition L, yeast protein-containing composition H, pine fiber, and β-glucan-rich soybean flour were tested in healthy adult men and women according to the following protocol.

(試験方法)
ステップ1:負荷食(水200mlにブドウ糖75gを溶解した食品)を摂取
ステップ2:ステップ1の負荷食にKR酵母を分散したものを摂取
ステップ3:ステップ1の負荷食に酵母たんぱく質含有組成物H体を分散したもの摂取
ステップ4:ステップ1の負荷食に酵母たんぱく質含有組成物H体の非水溶性画分を分散したもの摂取

以下 上記と同様に各試料(酵母たんぱく質含有組成物L、パインファイバー、βグルカ
ンリッチ大豆粉)を分散もしくは溶解させたもの摂取した。
※ステップ間の休止期間は2日以上とした。

(用法・用量)
ステップ2以降の試験では、下記の容量をステップ1の負荷食に溶解もしくは分散させ摂取した。摂取量は、図4に記載。
摂取後、0分、30分、45分、60分、75分、90分、120分経過時にランセットにより指先から採血し、血糖値を測定した。
Δ血糖AUC%は下記計算式により算出した。
Δ血糖AUC%=(被験サンプル添加75gブドウ糖摂取後120分までの血糖値の総面積)÷(75gブドウ糖摂取後120分までの血糖値の総面積)×100%
(Test method)
Step 1: Ingest a loaded diet (a food in which 75 g of glucose is dissolved in 200 ml of water) Step 2: Ingest a substance in which KR yeast is dispersed in the loaded diet of Step 1: Yeast protein-containing composition H in the loaded diet of Step 1. Body-dispersed intake Step 4: Ingestion of the yeast protein-containing composition H-form ingested with the water-insoluble fraction dispersed in the load diet of Step 1.

Hereinafter, in the same manner as above, each sample (yeast protein-containing composition L, pine fiber, β-glucan-rich soybean flour) was dispersed or dissolved and ingested.
* The rest period between steps is 2 days or more.

(Usage / Dose)
In the tests after step 2, the following volumes were dissolved or dispersed in the loaded diet of step 1 and ingested. The intake is shown in FIG.
Blood was collected from the fingertips with a lancet at 0 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, 90 minutes, and 120 minutes after ingestion, and the blood glucose level was measured.
ΔBlood glucose AUC% was calculated by the following formula.
Δ Blood glucose AUC% = (total area of blood glucose level up to 120 minutes after ingestion of 75 g glucose added to the test sample) ÷ (total area of blood glucose level up to 120 minutes after ingestion of 75 g glucose) × 100%

結果は、図4に示す。
酵母そのものも酵素細胞壁を低分解させたものも、高分解させたものもいずれも食後血糖値の上昇抑制効果が認められた。
また、血糖値の上昇抑制効果は、水溶性未分画の酵母たんぱく質含有組成物のみならず、たんぱく質豊富な非水溶性画分いずれでも認められた。
The results are shown in FIG.
Yeast itself, those with low degradation of the enzyme cell wall, and those with high degradation were all found to have an effect of suppressing the increase in postprandial blood glucose level.
In addition, the effect of suppressing the increase in blood glucose level was observed not only in the yeast protein-containing composition having an unwater-soluble fraction, but also in the protein-rich water-insoluble fraction.

(食後中性脂肪の抑制効果)
健常な成人男女にKR酵母、酵母たんぱく質含有組成物L体、酵母たんぱく質含有組成物H体、パインファイバー、βグルカンリッチ大豆粉を下記のプロトコルに従い試験をした。
(Suppressive effect of postprandial triglyceride)
KR yeast, yeast protein-containing composition L, yeast protein-containing composition H, pine fiber, and β-glucan-rich soybean flour were tested in healthy adult men and women according to the following protocol.

(試験食品)
試験食品1 KR酵母5g
試験食品2 酵母たんぱく質組成物L体3g
試験食品3 酵母たんぱく質組成物H体3g
試験食品4 酵母たんぱく質組成物H体の不溶性画分2.4g
試験食品5 パインファイバー6g
試験食品6 βグルカンリッチ大豆粉3g

(試験方法)
ステップ1:総脂質46.4gの食事メニュー+水200g
ステップ2:ステップ1の食事メニュー+試験食品1を水200gに懸濁したもの
ステップ3:ステップ1の食事メニュー+試験食品2を水200gに懸濁したもの
ステップ4:ステップ1の食事メニュー+試験食品3を水200gに懸濁したもの
ステップ5:ステップ1の食事メニュー+試験食品4を水200gに懸濁したもの
ステップ6:ステップ1の食事メニュー+試験食品5を水200gに溶解したもの
ステップ7:ステップ1の食事メニュー+試験食品6を水200gに懸濁したもの
各ステップ間で24時間以上の休止期間を設ける
なお、総脂質46.4gの食事メニューの構成は下記の通り
冷凍ハンバーグ1個(脂質:25.1g)
バターロール2個(脂質:16.0g)
フライドポテト1袋(100g)(脂質:5.3g)
(Test food)
Test food 1 KR yeast 5g
Test food 2 Yeast protein composition L-form 3 g
Test food 3 Yeast protein composition H body 3 g
Test food 4 Yeast protein composition H-form insoluble fraction 2.4 g
Test food 5 Pine fiber 6g
Test food 6 β-glucan rich soy flour 3g

(Test method)
Step 1: 46.4g total fat meal menu + 200g water
Step 2: Step 1 meal menu + test food 1 suspended in 200 g of water Step 3: Step 1 meal menu + test food 2 suspended in 200 g Step 4: Step 1 meal menu + test Food 3 suspended in 200 g of water Step 5: Meal menu of step 1 + test food 4 suspended in 200 g of water Step 6: Meal menu of step 1 + test food 5 dissolved in 200 g of water Step 7: Meal menu of step 1 + test food 6 suspended in 200 g of water A rest period of 24 hours or more is provided between each step. The composition of the meal menu of 46.4 g of total fat is as follows: Frozen hamburger 1 Pieces (fat: 25.1 g)
2 butter rolls (fat: 16.0 g)
1 bag of french fries (100g) (fat: 5.3g)

摂取後、1、2、3、4、5、6時間経過時にランセットにより指先から採血し、血中トリグリセライド(TG)量を測定した。
ΔTG値AUC%は下記計算式により算出した。

ΔTG値AUC%=(高脂肪食+被験サンプル摂取後6時間までの血中TGの総面積)÷(高脂肪食摂取後6時間までの血中TGの総面積)×100%

有効性試験結果は図5の通りである。酵母そのものも酵素細胞壁を低分解させたものも、
高分解させたものもいずれも食後中性脂肪の上昇抑制効果が認められた。
また、中性脂肪値の上昇抑制効果は、分画操作を行っていない酵母たんぱく質含有組成物のみならず、たんぱく質豊富な非水溶性画分いずれでも認められた。なおグラフ中の0.03%5h、0.3%5hは、酵素添加濃度と反応時間を表す。酵素処理をした酵母たんぱく質組成物は、たんぱく質と細胞壁の溶解成分との相乗効果により、より強い中性脂肪の上昇抑制効果が認められた。
Blood was collected from the fingertips with a lancet at 1, 2, 3, 4, 5, and 6 hours after ingestion, and the amount of triglyceride (TG) in the blood was measured.
The ΔTG value AUC% was calculated by the following formula.

ΔTG value AUC% = (high-fat diet + total area of blood TG up to 6 hours after ingestion of test sample) ÷ (total area of blood TG up to 6 hours after ingestion of high-fat diet) × 100%

The results of the efficacy test are shown in Fig. 5. Yeast itself and those with low degradation of the enzyme cell wall
All of the highly decomposed ones were found to have an effect of suppressing the increase in postprandial triglyceride.
In addition, the effect of suppressing the increase in triglyceride level was observed not only in the yeast protein-containing composition that had not been fractionated, but also in the protein-rich water-insoluble fraction. Note that 0.03% 5h and 0.3% 5h in the graph represent the enzyme addition concentration and the reaction time. The enzyme-treated yeast protein composition was found to have a stronger inhibitory effect on the increase of triglyceride due to the synergistic effect of the protein and the lysing component of the cell wall.

(酵母たんぱく質含有組成物のα-グルコシダーゼ阻害効果)
酵母たんぱく質含有組成物の血糖抑制効果の作用機序を解明するためにα-アミラーゼ阻
害効果およびα-グルコシダーゼ阻害効果を下記のプロトコルに従い試験をした。
(Α-Glucosidase inhibitory effect of yeast protein-containing composition)
In order to elucidate the mechanism of action of the hypoglycemic effect of the yeast protein-containing composition, the α-amylase inhibitory effect and the α-glucosidase inhibitory effect were tested according to the following protocol.

(α-アミラーゼ阻害)
<酵素液>
ブタ膵臓由来のα−アミラーゼ(SIGMA社製)を50mM NaCl入り 0.1Mリン酸バッファー(pH6.9)で5U/mLになるように溶解したものを使用した。

<検体溶液>
ポジティブコントロールとしてアカルボース(富士フィルム和光純薬社製)を用いた。
検体溶液は下記の通りになるように50mM NaCl入り 0.1Mリン酸バッファー(pH6.9)に溶解もしくは分散したものを使用した。
酵母、酵母含有組成物、パインファイバー:100mg/mL
アカルボース:1mg/mL

<基質溶液>
1%可溶性デンプン/50mM NaCl入り0.1Mリン酸バッファー(pH6.9)

<操作手順>
1 検体溶液100μLと基質溶液100μLを混合。
2 酵素液100μL加え、37℃で正確に10分間浸とう混合。
3 0.5mol/Lの酢酸水溶液1mLを加え、反応を停止。
4 15,000rpmで2分間遠心分離し、上清を回収。
5 回収した上清溶液500μLに0.15%ヨウ素−1.5%ヨウ化カリウム水溶液を500μL加え混合。
6 15,000rpmで2分間遠心分離。
7 Abs700nmを測定。
8 検量線より残存デンプン濃度Xを求めた。
また、2の工程において酵素液を添加せず、3の工程後に酵素液を添加しAbs700nmを算出、検量線よりデンプン濃度Cを求めた。

阻害活性は以下の式にて算出した。
阻害率(%)=100−(1−C/X)×100
(Α-Amylase inhibition)
<Enzyme solution>
A porcine pancreas-derived α-amylase (manufactured by SIGMA) dissolved in 0.1 M phosphate buffer (pH 6.9) containing 50 mM NaCl to 5 U / mL was used.

<Sample solution>
Acarbose (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as a positive control.
The sample solution used was dissolved or dispersed in 0.1 M phosphate buffer (pH 6.9) containing 50 mM NaCl as follows.
Yeast, yeast-containing composition, pine fiber: 100 mg / mL
Acarbose: 1 mg / mL

<Substrate solution>
0.1 M phosphate buffer with 1% soluble starch / 50 mM NaCl (pH 6.9)

<Operation procedure>
1 Mix 100 μL of sample solution and 100 μL of substrate solution.
2 Add 100 μL of the enzyme solution and soak at 37 ° C for exactly 10 minutes for mixing.
3 Add 1 mL of 0.5 mol / L acetic acid aqueous solution and stop the reaction.
4 Centrifuge at 15,000 rpm for 2 minutes and collect the supernatant.
5 Add 500 μL of 0.15% iodine-1.5% potassium iodide aqueous solution to 500 μL of the collected supernatant solution and mix.
6 Centrifuge at 15,000 rpm for 2 minutes.
7 Abs 700 nm is measured.
8 The residual starch concentration X was determined from the calibration curve.
Further, the enzyme solution was not added in the step 2, but the enzyme solution was added after the step 3, Abs 700 nm was calculated, and the starch concentration C was determined from the calibration curve.

The inhibitory activity was calculated by the following formula.
Inhibition rate (%) = 100- (1-C / X) x 100

(α-グルコシダーゼ阻害)
<粗酵素液>
粗酵素液はラット腸管アセトンパウダー(SIGMA社製)1.5gを0.1Mリン酸バッファー(pH7.0)15mLに懸濁、氷水中でホモジナイズ後、遠心分離した上清液をさらに0.1Mリン酸バッファー(pH7.0)で2倍希釈したものを使用した。

<検体溶液>
ポジティブコントロールとしてアカルボース(富士フィルム和光純薬社製)を用いた。
検体溶液は下記の通りになるように0.1Mリン酸バッファー(pH7.0)に溶解もしくは分散
したものを使用した。
酵母、酵母含有組成物、パインファイバー:100mg/mL
アカルボース:1mg/mL

<基質溶液>
基質には4−ニトロフェニル−α−D−グルコピラノシド(東京化成工業社製)を用い、0.1Mリン酸バッファー(pH7.0)で10mM濃度になるように溶解したものを使用した。

<操作手順>
1 検体溶液100μLと基質溶液100μLを混合。
2 酵素液50μL加え、37℃で正確に30分間浸とう混合。
3 0.2M炭酸ナトリウム水溶液250μLを加え反応を停止
4 15,000rpmで2分間遠心分離し、上清を回収。
5 上清のAbs415nmを測定。

2の工程において酵素液を添加せず、3の工程後に酵素液を添加しAbs415nmを算出したものを盲検とし5との差値を算出、検量線よりp−ニトロフェノール濃度Xを求めた。
上記工程の基質溶液の代わりに、0.1Mリン酸バッファー(pH7.0)を用い、p−ニトロフェノール濃度Cを求めた。

阻害活性は以下の式にて算出した。
阻害率(%)=(1−X/C)×100
(Α-Glucosidase inhibition)
<Crude enzyme solution>
As for the crude enzyme solution, 1.5 g of rat intestinal acetone powder (manufactured by SIGMA) was suspended in 15 mL of 0.1 M phosphate buffer (pH 7.0), homogenized in ice water, and then centrifuged, and the supernatant was further 0.1 M. The one diluted 2-fold with phosphate buffer (pH 7.0) was used.

<Sample solution>
Acarbose (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as a positive control.
The sample solution used was dissolved or dispersed in 0.1 M phosphate buffer (pH 7.0) as follows.
Yeast, yeast-containing composition, pine fiber: 100 mg / mL
Acarbose: 1 mg / mL

<Substrate solution>
4-Nitrophenyl-α-D-glucopyranoside (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a substrate, and the substrate was dissolved in 0.1 M phosphate buffer (pH 7.0) to a concentration of 10 mM.

<Operation procedure>
1 Mix 100 μL of sample solution and 100 μL of substrate solution.
2 Add 50 μL of enzyme solution and soak at 37 ° C for exactly 30 minutes for mixing.
3 Add 250 μL of 0.2 M aqueous sodium carbonate solution to stop the reaction. 4 Centrifuge at 15,000 rpm for 2 minutes, and collect the supernatant.
5 Measure Abs 415 nm of the supernatant.

The enzyme solution was not added in the step 2, the enzyme solution was added after the step 3, and the Abs 415 nm was calculated as blind, and the difference value from 5 was calculated, and the p-nitrophenol concentration X was obtained from the calibration curve.
A 0.1 M phosphate buffer (pH 7.0) was used instead of the substrate solution in the above step to determine the p-nitrophenol concentration C.

The inhibitory activity was calculated by the following formula.
Inhibition rate (%) = (1-X / C) x 100

酵母、酵母たんぱく質含有組成物を用いたグルコシダーゼ阻害効果は図6の通りである。
酵母、酵母たんぱく質含有組成物でグルコシダーゼ阻害効果が認められ、酵母および酵母たんぱく質含有組成物の有する食後血糖値の上昇抑制効果の作用機序のひとつとしてグルコシダーゼ阻害が推察された。
The glucosidase inhibitory effect of the yeast and yeast protein-containing composition is shown in FIG.
Glucosidase inhibitory effect was observed in yeast and yeast protein-containing compositions, and glucosidase inhibition was presumed as one of the mechanisms of action of yeast and yeast protein-containing compositions to suppress the increase in postprandial blood glucose level.

(酵母たんぱく質含有組成物のリパーゼ抑制効果)
酵母たんぱく質含有組成物の血糖抑制効果の作用機序を解明するためにリパーゼ阻害効果および胆汁酸吸着試験を下記のプロトコルに従い試験した。
(Lipase-suppressing effect of yeast protein-containing composition)
In order to elucidate the mechanism of action of the hypoglycemic effect of the yeast protein-containing composition, the lipase inhibitory effect and the bile acid adsorption test were tested according to the following protocol.

(リパーゼ阻害活性)
<酵素液>
ブタ膵臓リパーゼ(SIGMA製)を0.1M トリス緩衝液(0.1M NaClを含む0.1M Tris−HCl緩衝液, pH7.0)で1mg/mLの濃度で溶解したものを使用した。

<検体溶液>
ポジティブコントロールとしてオルリスタット(東京化成工業社製)を用いた。
検体濃度は下記の通りになるように0.1M トリス緩衝液(0.1M NaClを含む0.1M Tris−HCl緩衝液, pH7.0)に溶解もしくは分散したものを使用した。
酵母、酵母含有組成物、パインファイバー:100mg/mL
オリルスタット:0.1mg/mL

<基質溶液>
基質溶液は下記の配合で作成後、超音波で均一化したものを使用した。
オリーブオイル(味の素社製):2g
大豆レシチン(富士フィルム和光純薬社製):250mg
コール酸ナトリウム(富士フィルム和光純薬社製):100mg
0.1M トリス緩衝液(0.1M NaClを含む0.1M Tris−HCl緩衝液,pH7.0)で50mLにメスアップ

<操作手順>
1 検体溶液100μLと基質溶液100μLを混合。
2 酵素液50μL加え、37℃で正確に60分間浸とう混合。
3 沸騰水中で2分静置の後、0.2M炭酸ナトリウム水溶液500μLを加え反応を停止。次いで 0.1M トリス緩衝液を500μL加え希釈。
4 15,000rpmで2分間遠心分離し、上清を回収。
5 NEFA C−テストワコー(富士フィルム和光純薬株式会社製)のプロトコルに従い、反応 させた上清液のAbs550nmを測定
6 1の工程においてあらかじめ熱湯中で失活させた酵素液を用い同様の操作を行い、Abs550nmを算出したものを盲検とし5との差値を算出、検量線よりオレイン酸換算の遊離脂肪酸濃度Xを求めた。

上記工程の基質溶液の代わりに、0.1M トリス緩衝液(0.1M NaClを含む0.1M Tris−HCl緩
衝液, pH7.0)を用いオレイン酸換算の遊離脂肪酸濃度Cを求めた。

阻害活性は以下の式にて算出した。

阻害率(%)=(1−X/C)×100
(Lipase inhibitory activity)
<Enzyme solution>
Pig pancreatic lipase (manufactured by SIGMA) dissolved in 0.1 M Tris buffer (0.1 M Tris-HCl buffer containing 0.1 M NaCl, pH 7.0) at a concentration of 1 mg / mL was used.

<Sample solution>
Orlistat (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a positive control.
The sample concentration was dissolved or dispersed in 0.1 M Tris buffer (0.1 M Tris-HCl buffer containing 0.1 M NaCl, pH 7.0) so as to be as follows.
Yeast, yeast-containing composition, pine fiber: 100 mg / mL
Orlistat: 0.1 mg / mL

<Substrate solution>
The substrate solution was prepared with the following composition and then homogenized by ultrasonic waves.
Olive oil (manufactured by Ajinomoto Co., Inc.): 2g
Soy lecithin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.): 250 mg
Sodium cholic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.): 100 mg
Female up to 50 mL with 0.1 M Tris buffer (0.1 M Tris-HCl buffer containing 0.1 M NaCl, pH 7.0)

<Operation procedure>
1 Mix 100 μL of sample solution and 100 μL of substrate solution.
2 Add 50 μL of the enzyme solution and soak and mix at 37 ° C for exactly 60 minutes.
3 After allowing to stand in boiling water for 2 minutes, add 500 μL of 0.2 M aqueous sodium carbonate solution to stop the reaction. Then, add 500 μL of 0.1 M Tris buffer to dilute.
4 Centrifuge at 15,000 rpm for 2 minutes and collect the supernatant.
5 Measure Abs 550 nm of the reacted supernatant according to the protocol of NEFA C-Test Wako (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) In step 61, the same operation was performed using the enzyme solution deactivated in boiling water in advance. The value obtained by calculating Abs 550 nm was blinded to calculate the difference value from 5, and the free fatty acid concentration X in terms of oleic acid was obtained from the calibration curve.

Instead of the substrate solution in the above step, 0.1 M Tris buffer (0.1 M Tris-HCl buffer containing 0.1 M NaCl, pH 7.0) was used to determine the free fatty acid concentration C in terms of oleic acid.

The inhibitory activity was calculated by the following formula.

Inhibition rate (%) = (1-X / C) x 100


(胆汁酸吸着試験)
<検体>
ポジティブコントロールとしてコレスチラミン(SIGMA−ALDRICH社製)を用いた。
試料の添加量は下記の通り。
コレスチラミン:25 mg
酵母、酵母含有組成物、パインファイバー:200 mg

<操作手順>
1 15ml遠沈管に試料を量り取り、水5 mlに懸濁。
2 0.2mM コール酸ナトリウム溶液 5mlを加え、懸濁(0.2Mリン酸バッファー(pH6.8)を 使用、終濃度0.1mMコール酸ナトリウム/0.1Mリン酸バッファーとなる)。
3 振とう機にて転倒混和 (37℃, 2h, 100rpm)。
4 2mlをエッペンに取り、遠心分離(15000rpm, 10min)。
5 上清を回収し、フィルター濾過(0.45μm)。
6 総胆汁酸−テストワコー(富士フィルム和光純薬株式会社製)のプロトコルに従い、上 清のAbs 560nmを測定。
7 試料のリン酸バッファー懸濁液(コール酸ナトリウムを含まない)を用い工程3以降の同様の操作を行ったものを盲検とし工程5との差値を算出、検量線より遊離胆汁酸濃度X(mM)を求めた。

胆汁酸吸着率は以下の式にて算出した。
胆汁酸吸着率(%)=(1−X/0.1)×100

(Bile acid adsorption test)
<Sample>
Cholestyramine (manufactured by SIGMA-ALDRICH) was used as a positive control.
The amount of sample added is as follows.
Cholestyramine: 25 mg
Yeast, yeast-containing composition, pine fiber: 200 mg

<Operation procedure>
1 Weigh the sample into a 15 ml centrifuge tube and suspend in 5 ml of water.
2 Add 5 ml of 0.2 mM sodium cholic acid solution and suspend (use 0.2 M phosphate buffer (pH 6.8) to reach a final concentration of 0.1 mM sodium cholic acid / 0.1 M phosphate buffer).
3 Inversion mixing with a shaker (37 ° C, 2h, 100rpm).
42 Take 2 ml into Eppen and centrifuge (15000 rpm, 10 min).
5 The supernatant is collected and filtered through a filter (0.45 μm).
6 Abs 560 nm of Kamisei was measured according to the protocol of total bile acid-Test Wako (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).
7 Using the phosphate buffer suspension of the sample (not containing sodium cholic acid), the one that was subjected to the same operation from step 3 onward was blinded, and the difference value from step 5 was calculated, and the free bile acid concentration was calculated from the calibration curve. X (mM) was determined.

The bile acid adsorption rate was calculated by the following formula.
Bile acid adsorption rate (%) = (1-X / 0.1) x 100

酵母、酵母たんぱく質含有組成物を用いたリパーゼ阻害効果は図7の通りである。酵母及び酵母たんぱく質含有組成物いずれにおいてもリパーゼ阻害が認められた。さらに、胆汁酸吸着試験においても酵母および酵母たんぱく質含有組成物には効果が認められたことから、酵母および酵母たんぱく質含有組成物の有する食後中性脂肪上昇抑制効果の作用機序として酵母素材が胆汁酸を吸着することで油脂のミセル化形成を阻害し、リパーゼを効きにくくしているものが一要因であると推察された。 The lipase inhibitory effect of the yeast and yeast protein-containing composition is shown in FIG. Lipase inhibition was observed in both yeast and yeast protein-containing compositions. Furthermore, since the effects of yeast and yeast protein-containing compositions were also observed in the bile acid adsorption test, the yeast material was used as the mechanism of action of the postprandial neutral fat elevation inhibitory effect of yeast and yeast protein-containing compositions. It was speculated that one of the factors was that the adsorption of acids inhibited the formation of micelles in fats and oils, making lipase less effective.

Claims (5)

酵母菌体または酵母残渣の細胞壁分解酵素処理物である酵母たんぱく質含有組成物。 A yeast protein-containing composition which is a cell wall-degrading enzyme-treated product of yeast cells or yeast residues. 酵母菌体または酵母残渣の細胞壁分解酵素処理物である血糖値上昇抑制用酵母たんぱく質
含有組成物。
A yeast protein-containing composition for suppressing an increase in blood glucose level, which is a cell wall-degrading enzyme-treated product of yeast cells or yeast residues.
酵母菌体または酵母残渣の細胞壁分解酵素処理物である血中中性脂肪上昇抑制用酵母たん
ぱく質含有組成物。
A yeast protein-containing composition for suppressing the rise of triglyceride in blood, which is a cell wall-degrading enzyme-treated product of yeast cells or yeast residues.
請求項1の酵母たんぱく質含有組成物を含む食品であって、食後の血糖値の上昇を抑える若しくは食後の血糖値の上昇をゆるやかにする、または食後の血中中性脂肪の上昇を抑える若しくは食後の血中中性脂肪の上昇をゆるやかにすると表示する食品。 A food containing the yeast protein-containing composition according to claim 1, which suppresses the rise in blood glucose level after meals or moderates the rise in blood glucose level after meals, or suppresses the rise in blood triglyceride after meals or after meals. Foods that claim to slow the rise of triglycerides in the blood. 酵母菌体または酵母残渣に細胞壁分解酵素処理をする工程を含む、請求項1の酵母たんぱく質含有組成物の製造方法。
The method for producing a yeast protein-containing composition according to claim 1, which comprises a step of treating a yeast cell or a yeast residue with a cell wall-degrading enzyme.
JP2019089189A 2019-05-09 2019-05-09 Yeast protein-containing composition Pending JP2020183364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089189A JP2020183364A (en) 2019-05-09 2019-05-09 Yeast protein-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089189A JP2020183364A (en) 2019-05-09 2019-05-09 Yeast protein-containing composition

Publications (1)

Publication Number Publication Date
JP2020183364A true JP2020183364A (en) 2020-11-12

Family

ID=73044525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089189A Pending JP2020183364A (en) 2019-05-09 2019-05-09 Yeast protein-containing composition

Country Status (1)

Country Link
JP (1) JP2020183364A (en)

Similar Documents

Publication Publication Date Title
JP2024086732A (en) Method for proliferating mycelium of fungus and forming edible product from mycelium
TWI652992B (en) Yeast-derived seasoning, method for producing yeast protein composition, and yeast-derived seasoning
EP4130286A1 (en) Protein deamidation method
Shrivastava et al. Use of the backslopping method for accelerated and nutritionally enriched idli fermentation
AU2019260558B2 (en) Yeast proteins
JP5526416B2 (en) Food having α-glucosidase inhibitory activity
WO2017104807A1 (en) Humectant, softener having water retaining property, and method for manufacturing said humectant and softener
JP2015530109A (en) Method for producing ginkgo fermented liquor using thermostable amylase
Gobbetti et al. Sourdough/lactic acid bacteria
Wang et al. Trypsin and chymotrypsin are necessary for in vitro enzymatic digestion of rice starch
CN114009751B (en) Composition, preparation method and application thereof
Lorente et al. Opportunities for the valorization of waste generated by the plant-based milk substitutes industry
JP2009060805A (en) New mannanase and dietary fiber food produced using the same
Nuobariene et al. Phytase active yeasts isolated from bakery sourdoughs.
JP2015500023A (en) Enzymatic hydrolyzed lipids as flavoring ingredients
JP2020183364A (en) Yeast protein-containing composition
JP2020078268A (en) Sweetness enhancing composition
US10631546B2 (en) Frozen bread dough improver
Shukla et al. Applications of microbial enzymes in the food industry
Juárez-Enríquez et al. Significance of enzyme kinetics in food processing and production
JPWO2018225813A1 (en) Water retention agent for food
JP2014079179A (en) Seasoning derived from yeast protein
Ratnaningrum et al. The production of corn kernel miso based on rice-koji fermented by Aspergillus oryzae and Rhizopus oligosporus
JP2021114935A (en) Food material for improving texture of baked confectionary and the like
WO2007066458A1 (en) Yeast for extraction of lipid-soluble component, method for producing the same, color-improving agent using the same and method for producing lipid-soluble component