JP2020183161A - Power supply unit and power supply system - Google Patents

Power supply unit and power supply system Download PDF

Info

Publication number
JP2020183161A
JP2020183161A JP2019087728A JP2019087728A JP2020183161A JP 2020183161 A JP2020183161 A JP 2020183161A JP 2019087728 A JP2019087728 A JP 2019087728A JP 2019087728 A JP2019087728 A JP 2019087728A JP 2020183161 A JP2020183161 A JP 2020183161A
Authority
JP
Japan
Prior art keywords
electric machine
storage battery
rotary electric
engine
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019087728A
Other languages
Japanese (ja)
Other versions
JP7192648B2 (en
Inventor
大和 宇都宮
Yamato Utsunomiya
大和 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019087728A priority Critical patent/JP7192648B2/en
Publication of JP2020183161A publication Critical patent/JP2020183161A/en
Application granted granted Critical
Publication of JP7192648B2 publication Critical patent/JP7192648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

To provide a power supply unit and a power supply system that can properly calculate internal resistance of a second storage battery without having influence on behaviour of a vehicle.SOLUTION: A power supply unit 40 is applied to a power supply system 100 that is mounted on a vehicle in which an engine 30 is automatically stopped and restarted according to a prescribed condition and is equipped with a first storage battery 11 that is used for power supply at the time of initially starting the engine and a second storage battery 12 that is used for power supply at the time of restarting the engine after the engine is automatically stopped, which are connected in parallel to a rotating electric machine 10, which comprises: a driving control part that brings the rotating electric machine into a force driving state by power supply from the second storage battery, under a low-efficiency state where efficiency of the rotating electric machine is equal to a predetermined value or less, after initially starting the engine 30; and a resistance calculation part that calculates internal resistance of the second storage battery, when the driving control part brings the rotating electric machine into the force driving state under the low efficiency state.SELECTED DRAWING: Figure 1

Description

本発明は、車両に搭載される電源システム、及びこの電源システムに適用される電源装置に関するものである。 The present invention relates to a power supply system mounted on a vehicle and a power supply device applied to the power supply system.

車両に搭載される電源システムとして、電源として第1蓄電池(サブバッテリ)と、第2蓄電池(メインバッテリ)との2つのバッテリが搭載された構成が知られている。これら2つの蓄電池は、リレーを介して並列接続されており、第2蓄電池には、スタータおよびモータジェネレータが接続され、第1蓄電池には、電圧降下が許容されない各種電気負荷が接続されている。 As a power supply system mounted on a vehicle, a configuration in which two batteries, a first storage battery (sub-battery) and a second storage battery (main battery), are mounted as a power source is known. These two storage batteries are connected in parallel via a relay, a starter and a motor generator are connected to the second storage battery, and various electric loads that do not allow a voltage drop are connected to the first storage battery.

また、燃費向上やガス排出量の低減を目的として、所定の自動停止条件の成立によりエンジンを自動停止させ、その後の所定の再始動条件が成立した場合に、エンジンを再始動させるアイドリングストップ制御を行う電源システムが知られている。この電源システムでは、エンジンを初回始動させる際には、第1蓄電池の電力を用いてモータジェネレータを駆動し、エンジンを再始動させる際には、第2蓄電池の電力を用いてモータジェネレータを駆動する。 In addition, for the purpose of improving fuel efficiency and reducing gas emissions, idling stop control is performed to automatically stop the engine when a predetermined automatic stop condition is satisfied and then restart the engine when a predetermined restart condition is satisfied. The power system to do is known. In this power supply system, when the engine is started for the first time, the electric power of the first storage battery is used to drive the motor generator, and when the engine is restarted, the electric power of the second storage battery is used to drive the motor generator. ..

特許文献1に記載の技術では、エンジンの再始動失敗の回避を目的として、第1蓄電池による初回始動後に、第2蓄電池の内部抵抗を算出する電源システムが開示されている。この電源システムでは、例えば動力アシストの開始時など、第2蓄電池に所定以上の電流を通電した状態で、第2蓄電池の内部抵抗を算出し、その内部抵抗が所定の閾値未満であることを条件に、第2蓄電池からの電力供給によるエンジンの再始動を許可する。これにより、エンジンの再始動が適正に実施されないことを抑制している。 In the technique described in Patent Document 1, a power supply system for calculating the internal resistance of the second storage battery after the initial start by the first storage battery is disclosed for the purpose of avoiding the failure of restarting the engine. In this power supply system, the internal resistance of the second storage battery is calculated in a state where a current equal to or higher than a predetermined value is applied to the second storage battery, for example, at the start of power assist, and the condition is that the internal resistance is less than a predetermined threshold value. The engine is allowed to restart by supplying power from the second storage battery. This prevents the engine from being restarted properly.

特開2017−25709号公報JP-A-2017-25709

第2蓄電池に通電される電流が大きくないと、再始動時における第2蓄電池の内部抵抗を適正に算出できない。例えば、動力アシスト時に流れる電流は再始動時に流れる電流よりも小さいため、動力アシスト時に流れる電流を用いて、再始動時における第2蓄電池の内部抵抗を適正に算出できない問題があった。一方、再始動時における第2蓄電池の内部抵抗を算出するために、動力アシスト時に流れる電流を再始動時に流れる電流と同程度まで大きくすると、車両への動力付与が過大となり、車両挙動に影響を及ぼす問題があった。 Unless the current energized in the second storage battery is large, the internal resistance of the second storage battery at the time of restart cannot be calculated appropriately. For example, since the current flowing during power assist is smaller than the current flowing during restart, there is a problem that the internal resistance of the second storage battery at restart cannot be calculated appropriately using the current flowing during power assist. On the other hand, if the current flowing during power assist is increased to the same level as the current flowing during restart in order to calculate the internal resistance of the second storage battery at restart, the power applied to the vehicle becomes excessive, which affects the vehicle behavior. There was a problem to affect.

本発明は上記に鑑みてなされたものであり、その目的は、車両挙動に影響及ぼすことなく第2蓄電池の内部抵抗を適正に算出できる電源装置及び電源システムを提供することにある。 The present invention has been made in view of the above, and an object of the present invention is to provide a power supply device and a power supply system capable of appropriately calculating the internal resistance of the second storage battery without affecting the vehicle behavior.

上記課題を解決するための第1の手段は、所定条件に応じてエンジンの自動停止及び再始動を行う車両に搭載され、回転電機に対して並列接続され、前記エンジンの初回始動時の電力供給に使用される第1蓄電池と、前記エンジンの自動停止後の再始動の際の電力供給に使用される第2蓄電池と、を備える電源システムに適用される電源装置であって、前記エンジンの初回始動後において、当該回転電機の効率が所定以下となる低効率状態下で、前記第2蓄電池からの電力供給により前記回転電機を力行駆動状態とする駆動制御部と、前記駆動制御部により前記低効率状態下で前記回転電機を力行駆動状態とした場合に、前記第2蓄電池の内部抵抗を算出する抵抗算出部と、を備える。 The first means for solving the above problems is mounted on a vehicle that automatically stops and restarts the engine according to a predetermined condition, is connected in parallel to the rotary electric machine, and supplies electric power at the first start of the engine. A power supply device applied to a power supply system including a first storage battery used for the engine and a second storage battery used for supplying electric power at the time of restarting the engine after the automatic stop of the engine. After starting, under a low efficiency state in which the efficiency of the rotary electric machine is equal to or less than a predetermined value, a drive control unit that puts the rotary electric machine into a power running state by supplying electric power from the second storage battery, and the drive control unit that lowers the efficiency. It is provided with a resistance calculation unit that calculates the internal resistance of the second storage battery when the rotary electric machine is put into a power running state under an efficiency state.

アイドリングストップ機能を備える車両では、第1蓄電池の電力を用いた初回始動の後、第2蓄電池の電力を用いた再始動が適宜行われる。この場合、第2蓄電池の劣化等の状態を把握した上で、エンジンの自動停止が行われることが望ましい。この点、上記構成では、回転電機の効率が所定以下となる低効率状態で、第2蓄電池からの電力供給により回転電機を力行駆動状態とした場合に、第2蓄電池の内部抵抗を算出するようにした。なお、「力行駆動状態」には、回転電機の電機子巻線に対して力行動作を行わせるべく通電を行う状態に加え、力行動作が生じない状態での通電を行う状態が含まれる。 In a vehicle having an idling stop function, after the initial start using the electric power of the first storage battery, the restart using the electric power of the second storage battery is appropriately performed. In this case, it is desirable that the engine is automatically stopped after grasping the state such as deterioration of the second storage battery. In this regard, in the above configuration, the internal resistance of the second storage battery is calculated when the rotary electric machine is driven by power by supplying power from the second storage battery in a low efficiency state where the efficiency of the rotary electric machine is equal to or less than a predetermined value. I made it. The "power running drive state" includes a state in which the armature winding of the rotary electric machine is energized so as to perform a power running operation, and a state in which the power running operation is not generated.

低効率状態下で回転電機を力行駆動状態とすることにより、低効率状態でない条件下で回転電機を力行駆動状態とする場合に比べて、車両への動力を増大させない状態にしつつ第2蓄電池に流れる電流を増大させることができる。つまり、例えば動力アシスト時であっても、車両の動力増加を抑制しつつ、再始動時と同じレベルまで第2蓄電池に流れる電流を増大させることができる。これにより、車両駆動に影響を及ぼすことなく、第2蓄電池の内部抵抗を適正に算出できる。 By putting the rotary electric machine in the power running state under the low efficiency state, the second storage battery can be used in a state where the power to the vehicle is not increased as compared with the case where the rotary electric machine is put into the power running drive state under the condition not in the low efficiency state. The flowing current can be increased. That is, for example, even at the time of power assist, the current flowing through the second storage battery can be increased to the same level as at the time of restart while suppressing the increase in the power of the vehicle. As a result, the internal resistance of the second storage battery can be calculated appropriately without affecting the vehicle drive.

第2の手段では、前記回転電機は、前記車両の走行時において、所定のアシスト条件が成立した場合に動力アシストを行うものであり、前記駆動制御部は、前記アシスト条件が成立しない場合に、前記低効率状態下で前記回転電機を力行駆動状態とする。 In the second means, the rotary electric machine performs power assist when a predetermined assist condition is satisfied while the vehicle is traveling, and the drive control unit performs the power assist when the assist condition is not satisfied. Under the low efficiency state, the rotary electric machine is put into a power running state.

回転電機は、所定のアシスト条件が成立した場合に動力アシストを行い、アシスト条件が成立しない場合に動力アシストを行わない。上記構成によれば、この動力アシストを行わない回転電機の休止期間に、低効率状態で回転電機を力行駆動状態とし、第2蓄電池の内部抵抗を算出する。これにより、休止期間の回転電機を有効活用して、第2蓄電池の内部抵抗を適正に算出できる。 The rotary electric machine performs power assist when a predetermined assist condition is satisfied, and does not perform power assist when the assist condition is not satisfied. According to the above configuration, during the rest period of the rotary electric machine that does not perform the power assist, the rotary electric machine is put into the power running state in the low efficiency state, and the internal resistance of the second storage battery is calculated. As a result, the internal resistance of the second storage battery can be appropriately calculated by effectively utilizing the rotary electric machine during the suspension period.

第3の手段では、前記駆動制御部は、エンジン回転数が所定回転数よりも大きい場合に、前記低効率状態であるとして前記回転電機を力行駆動状態とする。 In the third means, when the engine speed is higher than the predetermined speed, the drive control unit puts the rotary electric machine into the power running drive state as being in the low efficiency state.

エンジン回転数が所定回転数よりも大きい場合、所定回転数よりも小さい場合に比べて、車両への動力付与によるエンジン回転数の上昇量が抑制される。つまり、回転電機の効率が所定以下となる低効率状態となる。そのため、エンジン回転数が所定回転数よりも大きい場合に第2蓄電池の内部抵抗を算出することで、車両駆動に影響を及ぼすことなく、第2蓄電池の内部抵抗を適正に算出できる。 When the engine speed is larger than the predetermined speed, the amount of increase in the engine speed due to power application to the vehicle is suppressed as compared with the case where the engine speed is smaller than the predetermined speed. That is, the efficiency of the rotary electric machine becomes a predetermined value or less, which is a low efficiency state. Therefore, by calculating the internal resistance of the second storage battery when the engine speed is larger than the predetermined speed, the internal resistance of the second storage battery can be appropriately calculated without affecting the vehicle drive.

第4の手段では、前記駆動制御部は、前記回転電機の温度が所定温度よりも高温である場合に、前記低効率状態であるとして前記回転電機を力行駆動状態とする。 In the fourth means, when the temperature of the rotary electric machine is higher than a predetermined temperature, the drive control unit puts the rotary electric machine into a power running drive state as being in the low efficiency state.

回転電機の温度が所定温度よりも高温である場合、回転電機における熱損失により、所定温度よりも小さい場合に比べて、車両への動力付与によるエンジン回転数の上昇量が抑制される。つまり、回転電機の効率が所定以下となる低効率状態となる。そのため、回転電機の温度が所定温度よりも高温である場合に第2蓄電池の内部抵抗を算出することで、車両駆動に影響を及ぼすことなく、第2蓄電池の内部抵抗を適正に算出できる。 When the temperature of the rotary electric machine is higher than the predetermined temperature, the heat loss in the rotary electric machine suppresses the increase in the engine speed due to the power application to the vehicle as compared with the case where the temperature is lower than the predetermined temperature. That is, the efficiency of the rotary electric machine becomes a predetermined value or less, which is a low efficiency state. Therefore, by calculating the internal resistance of the second storage battery when the temperature of the rotary electric machine is higher than the predetermined temperature, the internal resistance of the second storage battery can be appropriately calculated without affecting the vehicle drive.

第5の手段では、前記駆動制御部は、前記回転電機のd軸及びq軸のうちd軸にのみ電流を流した状態で前記回転電機を力行駆動状態とする。 In the fifth means, the drive control unit puts the rotary electric machine into a power running state with a current flowing only in the d-axis of the d-axis and the q-axis of the rotary electric machine.

回転電機のd軸にのみ電流が流れる状態では、回転電機にトルクが発生しないため、エンジン回転数の上昇量が抑制される。つまり、回転電機の効率が所定以下となる低効率状態となる。そのため、回転電機のd軸にのみ電流が流れる状態で、第2蓄電池の内部抵抗を算出することで、車両駆動に影響を及ぼすことなく、第2蓄電池の内部抵抗を適正に算出できる。 When the current flows only on the d-axis of the rotary electric machine, no torque is generated in the rotary electric machine, so that the amount of increase in the engine speed is suppressed. That is, the efficiency of the rotary electric machine becomes a predetermined value or less, which is a low efficiency state. Therefore, by calculating the internal resistance of the second storage battery in a state where the current flows only on the d-axis of the rotary electric machine, the internal resistance of the second storage battery can be appropriately calculated without affecting the vehicle drive.

第6の手段では、前記抵抗算出部により算出した前記内部抵抗に基づいて、前記第2蓄電池からの電力供給による前記再始動を許可するか否かを判定する再始動判定部を備える。 The sixth means includes a restart determination unit that determines whether or not to permit the restart by supplying power from the second storage battery based on the internal resistance calculated by the resistance calculation unit.

上記構成によれば、第2蓄電池の劣化等の状態を把握した上で、アイドリングストップ制御を適正に実施できる。 According to the above configuration, the idling stop control can be appropriately performed after grasping the state such as deterioration of the second storage battery.

第7の手段では、所定条件に応じてエンジンの自動停止及び再始動を行う車両に搭載される電源システムであって、回転電機と、前記回転電機に対して並列接続され、前記エンジンの初回始動時の電力供給に使用される第1蓄電池と、前記エンジンの自動停止後の再始動の際の電力供給に使用される第2蓄電池と、前記エンジンの初回始動後において、当該回転電機の効率が所定以下となる低効率状態下で、前記第2蓄電池からの電力供給により前記回転電機を力行駆動状態とする駆動制御部と、前記駆動制御部により前記低効率状態下で前記回転電機を力行駆動状態とした場合に、前記第2蓄電池の内部抵抗を算出する抵抗算出部と、を備える。 The seventh means is a power supply system mounted on a vehicle that automatically stops and restarts the engine according to a predetermined condition, and is connected in parallel to the rotary electric machine and the rotary electric machine to start the engine for the first time. The efficiency of the rotary electric machine after the first storage battery used for power supply at the time, the second storage battery used for power supply at the time of restarting after the automatic stop of the engine, and the first start of the engine. A drive control unit that puts the rotary electric machine into a power driving state by supplying electric power from the second storage battery under a low efficiency state of a predetermined value or less, and a drive control unit that drives the rotary electric machine by power running under the low efficiency state. A resistance calculation unit for calculating the internal resistance of the second storage battery when the state is set is provided.

上記構成では、回転電機の効率が所定以下となる低効率状態で、第2蓄電池からの電力供給により回転電機を力行駆動状態とした場合に、第2蓄電池の内部抵抗を算出する。これにより、車両への動力を増大させない状態にしつつ第2蓄電池に流れる電流を増大させることができ、車両駆動に影響を及ぼすことなく、第2蓄電池の内部抵抗を適正に算出できる。 In the above configuration, the internal resistance of the second storage battery is calculated when the rotary electric machine is put into a power running state by supplying electric power from the second storage battery in a low efficiency state where the efficiency of the rotary electric machine is equal to or less than a predetermined value. As a result, the current flowing through the second storage battery can be increased while the power to the vehicle is not increased, and the internal resistance of the second storage battery can be appropriately calculated without affecting the vehicle drive.

電源システムの概略構成図。Schematic block diagram of the power supply system. 第1実施形態に係る制御処理の手順を示すフローチャート。The flowchart which shows the procedure of the control process which concerns on 1st Embodiment. 制御処理の一例を示すタイムチャート。A time chart showing an example of control processing. 差分電流と差分電圧との関係を示す図。The figure which shows the relationship between the difference current and the difference voltage. 回転電機の回転数と回転電機のトルクとの関係を示す図。The figure which shows the relationship between the rotation speed of a rotary electric machine and the torque of a rotary electric machine. 第2実施形態に係る制御処理の手順を示すフローチャート。The flowchart which shows the procedure of the control process which concerns on 2nd Embodiment. 回転電機の温度と回転電機の熱損失との関係を示す図。The figure which shows the relationship between the temperature of a rotary electric machine and the heat loss of a rotary electric machine. 第3実施形態に係る制御処理の手順を示すフローチャート。The flowchart which shows the procedure of the control process which concerns on 3rd Embodiment.

以下、本発明を具体化した実施形態を図面に基づいて説明する。本実施形態の電源システム100が搭載される車両は、エンジン30を駆動源として走行するものであり、いわゆるアイドリングストップ機能を有している。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. The vehicle equipped with the power supply system 100 of the present embodiment travels by using the engine 30 as a drive source, and has a so-called idling stop function.

(第1実施形態)
図1に示すように、電源システム100は、回転電機10、鉛蓄電池11、リチウムイオン蓄電池12、スタータ13、電気負荷14、電流検出部15、電圧検出部16、第1スイッチ21、第2スイッチ22、第3スイッチ23を備えている。このうち、リチウムイオン蓄電池12、第1スイッチ21及び第2スイッチ22は、図示しない筐体(収容ケース)に収容されることで一体化され、電池ユニットUとして構成されている。なお、本実施形態において、鉛蓄電池11が「第1蓄電池」に相当し、リチウムイオン蓄電池12が「第2蓄電池」に相当する。
(First Embodiment)
As shown in FIG. 1, the power supply system 100 includes a rotary electric machine 10, a lead storage battery 11, a lithium ion storage battery 12, a starter 13, an electric load 14, a current detection unit 15, a voltage detection unit 16, a first switch 21, and a second switch. 22 and a third switch 23 are provided. Of these, the lithium ion storage battery 12, the first switch 21, and the second switch 22 are integrated by being housed in a housing (storage case) (not shown), and are configured as a battery unit U. In the present embodiment, the lead storage battery 11 corresponds to the "first storage battery", and the lithium ion storage battery 12 corresponds to the "second storage battery".

電池ユニットUには外部端子として第1端子T1、第2端子T2が設けられている。第1端子T1には鉛蓄電池11と電気負荷14とが接続され、第2端子T2には回転電機10とスタータ13が接続されている。なお、端子T1,T2はいずれも回転電機10の入出力の電流が流れる大電流入出力端子となっている。 The battery unit U is provided with a first terminal T1 and a second terminal T2 as external terminals. The lead storage battery 11 and the electric load 14 are connected to the first terminal T1, and the rotary electric machine 10 and the starter 13 are connected to the second terminal T2. Both the terminals T1 and T2 are large-current input / output terminals through which the input / output current of the rotary electric machine 10 flows.

回転電機10の回転軸は、図示しないエンジン出力軸に対してベルト等により駆動連結されており、エンジン出力軸の回転によって回転電機10の回転軸が回転する一方、回転電機10の回転軸の回転によってエンジン出力軸が回転する。この場合、回転電機10は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に動力を付与する力行機能とを備えている。なお回転電機10には、例えばISG(Integrated Starter Generator)が使用される。 The rotary shaft of the rotary electric machine 10 is driven and connected to an engine output shaft (not shown) by a belt or the like. Rotates the engine output shaft. In this case, the rotary electric machine 10 has a power generation function of generating power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function of applying power to the engine output shaft. For the rotary electric machine 10, for example, an ISG (Integrated Starter Generator) is used.

鉛蓄電池11とリチウムイオン蓄電池12とは回転電機10に対して並列に電気接続されており、回転電機10の発電電力により各蓄電池11,12の充電が可能となっている。また、回転電機10は、各蓄電池11,12からの給電によりエンジン30への動力の付与(力行動作)を行うものとなっている。 The lead storage battery 11 and the lithium ion storage battery 12 are electrically connected to the rotary electric machine 10 in parallel, and the storage batteries 11 and 12 can be charged by the generated power of the rotary electric machine 10. Further, the rotary electric machine 10 applies power (power running operation) to the engine 30 by supplying power from the storage batteries 11 and 12.

鉛蓄電池11は周知の汎用蓄電池である。例えば、鉛蓄電池11の正極活物質には二酸化鉛(PbO2)、負極活物質には鉛(Pb)が用いられる。また、電解液には硫酸(H2SO4)が用いられる。そして、これらの電極から構成された複数の電池セルを直列接続することで鉛蓄電池11が構成されている。なお、本実施形態では、鉛蓄電池11の蓄電容量がリチウムイオン蓄電池12の蓄電容量よりも大きくなるように設定されている。 The lead storage battery 11 is a well-known general-purpose storage battery. For example, lead dioxide (PbO2) is used as the positive electrode active material of the lead storage battery 11, and lead (Pb) is used as the negative electrode active material. Further, sulfuric acid (H2SO4) is used as the electrolytic solution. Then, the lead storage battery 11 is configured by connecting a plurality of battery cells composed of these electrodes in series. In this embodiment, the storage capacity of the lead storage battery 11 is set to be larger than the storage capacity of the lithium ion storage battery 12.

リチウムイオン蓄電池12は、鉛蓄電池11に比べて、未使用状態(新品)における内部抵抗RLが小さく、また、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い(電力受け入れ性の高い)高密度蓄電池である。 Compared with the lead-acid battery 11, the lithium-ion storage battery 12 has a smaller internal resistance RL in an unused state (new), a smaller power loss during charging / discharging, and a higher output density and energy density (high power acceptability). ) It is a high-density storage battery.

例えば、リチウムイオン蓄電池12の正極活物質には、リチウムを含む酸化物(リチウム金属複合酸化物)が用いられる。具体例としては、LiCoO2、LiMn2O4、LiNiO2、LiFePO4等が挙げられる。リチウムイオン蓄電池12の負極活物質には、カーボン(C)やグラファイト、チタン酸リチウム(例えばLixTiO2)、Si又はSuを含有する合金等が用いられる。リチウムイオン蓄電池12の電解液には有機電解液が用いられる。そして、これらの電極から構成された複数の電池セルを直列接続することでリチウムイオン蓄電池12が構成されている。 For example, an oxide containing lithium (lithium metal composite oxide) is used as the positive electrode active material of the lithium ion storage battery 12. Specific examples include LiCoO2, LiMn2O4, LiNiO2, LiFePO4 and the like. As the negative electrode active material of the lithium ion storage battery 12, an alloy containing carbon (C), graphite, lithium titanate (for example, LixTiO2), Si or Su is used. An organic electrolytic solution is used as the electrolytic solution of the lithium ion storage battery 12. Then, the lithium ion storage battery 12 is configured by connecting a plurality of battery cells composed of these electrodes in series.

なお、図1中の符号11a,12aは、鉛蓄電池11及びリチウムイオン蓄電池12の電池セル集合体を表し、符号11b,12bは鉛蓄電池11及びリチウムイオン蓄電池12の内部抵抗を表している。また、以下の説明において、蓄電池の開放電圧V0とは、電池セル集合体11a,12aにより生じた電圧のことである。 Reference numerals 11a and 12a in FIG. 1 represent battery cell assemblies of the lead-acid battery 11 and the lithium-ion storage battery 12, and reference numerals 11b and 12b represent the internal resistances of the lead-acid battery 11 and the lithium-ion storage battery 12. Further, in the following description, the open circuit voltage V0 of the storage battery is a voltage generated by the battery cell aggregates 11a and 12a.

電池ユニットUには、ユニット内電気経路として、各端子T1,T2及びリチウムイオン蓄電池12を相互に接続する第1接続経路L1,第2接続経路L2が設けられている。そして、このうち第1端子T1と第2端子T2とを接続する第1接続経路L1に第1スイッチ21が設けられ、第1接続経路L1上の接続点N1(電池接続点)と、リチウムイオン蓄電池12とを接続する第2接続経路L2に第2スイッチ22が設けられている。 The battery unit U is provided with a first connection path L1 and a second connection path L2 for connecting the terminals T1 and T2 and the lithium ion storage battery 12 to each other as an electric path in the unit. A first switch 21 is provided in the first connection path L1 that connects the first terminal T1 and the second terminal T2, and the connection point N1 (battery connection point) on the first connection path L1 and the lithium ion. A second switch 22 is provided in the second connection path L2 that connects the storage battery 12.

例えば、第1スイッチ21,第2スイッチ22には、PチャネルMOSFET、NチャネルMOSFET等の半導体スイッチが用いられる。 For example, semiconductor switches such as P-channel MOSFETs and N-channel MOSFETs are used for the first switch 21 and the second switch 22.

また、電源システム100では、第1スイッチ21を介さずに鉛蓄電池11と回転電機10とを接続可能にするバイパス経路L3が設けられている。バイパス経路L3は、電池ユニットUを迂回して、第1端子T1に接続される電気経路(鉛蓄電池11等に接続される経路)と、第2端子T2に接続される電気経路(回転電機10に接続される経路)とを電気接続するように設けられている。 Further, the power supply system 100 is provided with a bypass path L3 that enables the lead storage battery 11 and the rotary electric machine 10 to be connected without going through the first switch 21. The bypass path L3 bypasses the battery unit U and is an electric path connected to the first terminal T1 (a path connected to the lead storage battery 11 or the like) and an electric path connected to the second terminal T2 (rotary electric machine 10). It is provided so as to electrically connect to the path) connected to.

バイパス経路L3上には、鉛蓄電池11側と回転電機10側との間の接続を遮断状態又は導通状態にする第3スイッチ23が設けられている。第3スイッチ23には、例えば常閉式のリレースイッチが用いられる。なお、バイパス経路L3及び第3スイッチ23を、電池ユニットU内において第1スイッチ21を迂回するように設けることも可能である。 A third switch 23 is provided on the bypass path L3 to cut off or conduct a connection between the lead-acid battery 11 side and the rotary electric machine 10 side. For the third switch 23, for example, a normally closed relay switch is used. It is also possible to provide the bypass path L3 and the third switch 23 so as to bypass the first switch 21 in the battery unit U.

スタータ13は、エンジン30を始動させる始動装置である。図示を略す車両のイグニッションスイッチがオンされて、スタータ13がオンに切り替えられると、鉛蓄電池11から供給される電力でエンジン30が始動される。 The starter 13 is a starting device for starting the engine 30. When the ignition switch of the vehicle (not shown) is turned on and the starter 13 is turned on, the engine 30 is started by the electric power supplied from the lead storage battery 11.

電気負荷14は、供給電力の電圧が概ね一定、又は少なくとも所定範囲内で変動するよう安定していることが要求される定電圧要求負荷と、定電圧負荷以外の一般負荷とを有している。 The electric load 14 has a constant voltage required load that requires the voltage of the supplied power to be substantially constant, or at least stable so as to fluctuate within a predetermined range, and a general load other than the constant voltage load. ..

電気負荷14について詳しく説明すると、定電圧要求負荷には、車両走行に関連する走行用負荷と、走行用以外の負荷とが含まれる。走行用負荷としては、ブレーキ装置、自動変速機のオイルポンプ、燃料ポンプ、電動パワーステアリング等が挙げられる。走行用以外の負荷としては、ナビゲーション装置、メータ等を表示するディスプレイ装置、オーディオ装置等が挙げられる。一般負荷には、定電圧要求負荷に比べて動作可能な電圧範囲が比較的に広い負荷であり、ヘッドライト、フロントウインドシールド等のワイパ、空調装置の送風ファン、リヤウインドシールドのデフロスタ用ヒータ等が挙げられる。 Explaining the electric load 14 in detail, the constant voltage required load includes a traveling load related to vehicle traveling and a non-traveling load. Examples of the traveling load include a braking device, an oil pump for an automatic transmission, a fuel pump, an electric power steering, and the like. Examples of loads other than those for traveling include navigation devices, display devices that display meters and the like, audio devices, and the like. The general load has a relatively wide operating voltage range compared to the constant voltage required load, such as headlights, wipers such as front windshields, blower fans for air conditioners, and heaters for defrosters on rear windshields. Can be mentioned.

電流検出部15は、リチウムイオン蓄電池12に直列接続され、リチウムイオン蓄電池12に流れる充放電電流ILを検出する。電圧検出部16は、リチウムイオン蓄電池12に並列接続され、リチウムイオン蓄電池12にかかる端子間電圧VLを検出する。 The current detection unit 15 is connected in series to the lithium ion storage battery 12 and detects the charge / discharge current IL flowing through the lithium ion storage battery 12. The voltage detection unit 16 is connected in parallel to the lithium ion storage battery 12 and detects the voltage VL between terminals applied to the lithium ion storage battery 12.

回転電機10は、エンジン出力軸に動力を付与する力行動作を行うものである。例えば、車両の走行時において、所定のアシスト条件が成立した場合に、エンジン出力軸に動力を付与して動力アシストを行う。ここで、アシスト条件は、例えば車両の低速状態における加速時という条件である。また、アイドリングストップ制御による自動停止からの再始動時に、エンジン出力軸に動力を付与する。 The rotary electric machine 10 performs a power running operation that applies power to the engine output shaft. For example, when a predetermined assist condition is satisfied while the vehicle is running, power is applied to the engine output shaft to perform power assist. Here, the assist condition is, for example, a condition during acceleration in a low speed state of the vehicle. In addition, power is applied to the engine output shaft when restarting from automatic stop by idling stop control.

回転電機10は、車両が定常走行を行う際又は自動停止した際には、回転電機10の駆動によるエンジン30への動力の付与が行われない状態になる。また、車両が加速走行を行う際又はエンジン30の自動停止後の再始動の際には、回転電機10の駆動によるエンジン30への動力の付与が行われる状態になる。 The rotary electric machine 10 is in a state in which power is not applied to the engine 30 by the drive of the rotary electric machine 10 when the vehicle is constantly running or automatically stopped. Further, when the vehicle accelerates, or when the engine 30 is restarted after the automatic stop, the power is applied to the engine 30 by driving the rotary electric machine 10.

また、回転電機10は、エンジン出力軸の回転エネルギにより発電する発電機を兼用するものである。例えば、回転電機10においてロータがエンジン出力軸により回転すると、ロータコイルに流れる励磁電流に応じてステータコイルに交流電流が誘起され、図示しない整流器により直流電流に変換される。そして、回転電機10においてロータコイルに流れる励磁電流がレギュレータにより調整されることで、発電された直流電流の電圧が所定の電圧となるよう調整されている。 Further, the rotary electric machine 10 also serves as a generator that generates electricity by the rotational energy of the engine output shaft. For example, when the rotor is rotated by the engine output shaft in the rotary electric machine 10, an alternating current is induced in the stator coil according to the exciting current flowing through the rotor coil, and is converted into a direct current by a rectifier (not shown). Then, the exciting current flowing through the rotor coil in the rotary electric machine 10 is adjusted by the regulator so that the voltage of the generated DC current becomes a predetermined voltage.

回転電機10で発電した電力は、電気負荷14に供給されるとともに、鉛蓄電池11及びリチウムイオン蓄電池12に供給される。エンジン30の駆動が停止して回転電機10で発電されていない時には、鉛蓄電池11及びリチウムイオン蓄電池12から電気負荷14に電力供給される。鉛蓄電池11及びリチウムイオン蓄電池12から電気負荷14への放電量、及び回転電機10からの充電量は、SOC(State of charge:充電状態)が過充放電とならない範囲となるよう適宜調整されている。 The electric power generated by the rotary electric machine 10 is supplied to the electric load 14, and is also supplied to the lead storage battery 11 and the lithium ion storage battery 12. When the driving of the engine 30 is stopped and the rotary electric machine 10 is not generating electric power, electric power is supplied from the lead storage battery 11 and the lithium ion storage battery 12 to the electric load 14. The amount of discharge from the lead-acid battery 11 and the lithium-ion storage battery 12 to the electric load 14 and the amount of charge from the rotary electric machine 10 are appropriately adjusted so that the SOC (State of charge) does not become overcharged / discharged. There is.

エンジン30には、回転検出部17が設けられている。回転検出部17は、エンジン30の単位時間当たりの回転数であるエンジン回転数NEを検出する。また、回転電機10には、温度検出部18が設けられている。温度検出部18は、回転電機10の温度YMを検出する。 The engine 30 is provided with a rotation detection unit 17. The rotation detection unit 17 detects the engine speed NE, which is the number of revolutions of the engine 30 per unit time. Further, the rotary electric machine 10 is provided with a temperature detection unit 18. The temperature detection unit 18 detects the temperature YM of the rotary electric machine 10.

制御部40は、電源システム100における各種処理を実施する。例えば、制御部40は、イグニッションスイッチからの信号に基づいて初回の始動要求があると判断した際に、スタータ13を駆動してエンジン30を駆動させる。なお、本実施形態において、制御部40が「電源装置」に相当する。この際、鉛蓄電池11からの電力供給でスタータ13を駆動させる。 The control unit 40 carries out various processes in the power supply system 100. For example, the control unit 40 drives the starter 13 to drive the engine 30 when it determines that there is an initial start request based on the signal from the ignition switch. In this embodiment, the control unit 40 corresponds to the "power supply device". At this time, the starter 13 is driven by the power supply from the lead storage battery 11.

また、制御部40は、アイドリングストップ制御を実施する。アイドリングストップ制御では、周知のとおり所定の自動停止条件の成立によりエンジン30を自動停止させ、且つその自動停止状態下で所定の再始動条件の成立によりエンジン30を再始動させる。なお、制御部40は、自動停止中のエンジン30の再始動をする際には、第1スイッチ21をオフ、第2スイッチ22をオンに切り替えた状態で、リチウムイオン蓄電池12からの電力供給で回転電機10を駆動させる。 In addition, the control unit 40 performs idling stop control. In the idling stop control, as is well known, the engine 30 is automatically stopped when a predetermined automatic stop condition is satisfied, and the engine 30 is restarted when a predetermined restart condition is satisfied under the automatic stop state. When restarting the engine 30 that is automatically stopped, the control unit 40 supplies power from the lithium ion storage battery 12 with the first switch 21 turned off and the second switch 22 turned on. Drive the rotary electric machine 10.

以上のように、鉛蓄電池11とリチウムイオン蓄電池12の2電源を備える電源システム100において、エンジン30の初回始動の際には、初回始動の際の大電流放電に対して安定した電圧を出力できる鉛蓄電池11を使用する。一方、アイドリングストップ制御によるエンジン30の停止状態からエンジン30を再始動する際に、充放電特性のよいリチウムイオン蓄電池12を使用する。これにより、頻繁な充放電(累積充放電)に対する耐久性の低い鉛蓄電池11について早期劣化の抑制を図りつつ、充放電特性のよいリチウムイオン蓄電池12を用いてエンジン30の自動再始動を好適に実施できる。 As described above, in the power supply system 100 having two power sources of the lead storage battery 11 and the lithium ion storage battery 12, when the engine 30 is started for the first time, a stable voltage can be output against a large current discharge at the time of the first start. The lead storage battery 11 is used. On the other hand, when the engine 30 is restarted from the stopped state of the engine 30 by idling stop control, the lithium ion storage battery 12 having good charge / discharge characteristics is used. As a result, the automatic restart of the engine 30 is preferably performed by using the lithium ion storage battery 12 having good charge / discharge characteristics while suppressing early deterioration of the lead storage battery 11 having low durability against frequent charge / discharge (cumulative charge / discharge). Can be carried out.

ところで、リチウムイオン蓄電池12が劣化状態であると、リチウムイオン蓄電池12の電力不足が生じるおそれがある。この劣化状態でエンジン30を自動停止させると、リチウムイオン蓄電池12を電源として実施される回転電機10によるエンジン30の再始動に支障が及ぶことが懸念される。 By the way, if the lithium ion storage battery 12 is in a deteriorated state, the power of the lithium ion storage battery 12 may be insufficient. If the engine 30 is automatically stopped in this deteriorated state, there is a concern that the restart of the engine 30 by the rotary electric machine 10 implemented by using the lithium ion storage battery 12 as a power source will be hindered.

そのため、エンジン30の初回始動後に、リチウムイオン蓄電池12の劣化状態として、内部抵抗RLを算出することが好ましい。内部抵抗RLは、例えば、電圧検出部16により検出された端子間電圧VLと、電流検出部15により検出された充放電電流ILとを用いて算出できる。 Therefore, it is preferable to calculate the internal resistance RL as the deteriorated state of the lithium ion storage battery 12 after the engine 30 is started for the first time. The internal resistance RL can be calculated using, for example, the inter-terminal voltage VL detected by the voltage detection unit 16 and the charge / discharge current IL detected by the current detection unit 15.

エンジン30の初回始動後に内部抵抗RLを算出する際に、例えば、車両の加速に伴って回転電機10の駆動による動力アシストを行い、その際に流れる電流(放電電流)でリチウムイオン蓄電池12を通電する。そして、例えば動力アシストの開始時など、リチウムイオン蓄電池12に所定以上の電流を通電した状態で、リチウムイオン蓄電池12の内部抵抗RLを算出することで、リチウムイオン蓄電池12の劣化状態を確認できるとも考えられる。 When calculating the internal resistance RL after the initial start of the engine 30, for example, power assist is performed by driving the rotary electric machine 10 as the vehicle accelerates, and the lithium ion storage battery 12 is energized by the current (discharge current) flowing at that time. To do. Then, for example, at the start of power assist, the deterioration state of the lithium ion storage battery 12 can be confirmed by calculating the internal resistance RL of the lithium ion storage battery 12 in a state where a predetermined current or more is applied to the lithium ion storage battery 12. Conceivable.

しかし、動力アシスト時に流れる電流は再始動時に流れる電流よりも小さいため、動力アシスト時に流れる電流を用いて、再始動時におけるリチウムイオン蓄電池12の内部抵抗RLを適正に算出できない。一方、再始動時におけるリチウムイオン蓄電池12の内部抵抗RLを算出するために、動力アシスト時に流れる電流を再始動時に流れる電流と同程度まで大きくすると、車両への動力が過大となり、車両挙動に影響を及ぼしてしまう。 However, since the current flowing during power assist is smaller than the current flowing during restart, the internal resistance RL of the lithium ion storage battery 12 at restart cannot be properly calculated using the current flowing during power assist. On the other hand, if the current flowing during power assist is increased to the same level as the current flowing during restart in order to calculate the internal resistance RL of the lithium ion storage battery 12 at restart, the power to the vehicle becomes excessive, which affects the vehicle behavior. Will affect.

そこで、本実施形態では、制御部40は、エンジン30の初回始動後において、回転電機10の効率が所定以下となる低効率状態下で、回転電機10からエンジン30に動力を付与する状態(力行駆動状態)とし、その際に流れる電流でリチウムイオン蓄電池12を通電する。そして、通電により生じるリチウムイオン蓄電池12の電気変化(電流、電圧)の検出結果から、リチウムイオン蓄電池12の内部抵抗RLを算出する制御処理を実施する。 Therefore, in the present embodiment, the control unit 40 is in a state of applying power from the rotary electric machine 10 to the engine 30 under a low efficiency state in which the efficiency of the rotary electric machine 10 is equal to or less than a predetermined value after the first start of the engine 30 (power running). The lithium ion storage battery 12 is energized by the current flowing at that time. Then, a control process is performed to calculate the internal resistance RL of the lithium ion storage battery 12 from the detection result of the electrical change (current, voltage) of the lithium ion storage battery 12 caused by energization.

以上のように、低効率状態下で回転電機10を力行駆動状態とすることにより、車両への動力を増大させない状態にしつつ、リチウムイオン蓄電池12に流れる充放電電流ILを増大させることができる。これにより、車両駆動に影響を及ぼすことなく、内部抵抗RLを適正に算出できる。 As described above, by putting the rotary electric machine 10 into the power running state under the low efficiency state, it is possible to increase the charge / discharge current IL flowing through the lithium ion storage battery 12 while keeping the power to the vehicle from increasing. As a result, the internal resistance RL can be appropriately calculated without affecting the vehicle drive.

続いて、図2を用いて、本実施形態に係る制御処理について説明する。ここで、図2は、上記処理の手順を示すフローチャートである。この処理は、スタータ13がオンとなり、エンジン30の初回始動が実施された状況下において、制御部40によって、例えば所定周期で繰り返し実施される。 Subsequently, the control process according to the present embodiment will be described with reference to FIG. Here, FIG. 2 is a flowchart showing the procedure of the above processing. This process is repeatedly performed by the control unit 40, for example, at a predetermined cycle under the condition that the starter 13 is turned on and the engine 30 is started for the first time.

制御処理を開始すると、まずステップS10において、エンジン回転数NEが所定回転数Nthよりも大きい高回転状態であるか否かを判定する。ここで、所定回転数Nthは、車両の高速状態、つまり車両に動力アシストが必要とされない状態におけるエンジン30の最小回転数であり、例えば2000回転/分である。ステップS10で否定判定すると、内部抵抗RLを算出することなく制御処理を終了する。 When the control process is started, first, in step S10, it is determined whether or not the engine speed NE is in a high speed state larger than the predetermined speed Nth. Here, the predetermined rotation speed Nth is the minimum rotation speed of the engine 30 in a high-speed state of the vehicle, that is, a state in which the vehicle does not require power assist, and is, for example, 2000 rotation speeds / minute. If a negative determination is made in step S10, the control process ends without calculating the internal resistance RL.

一方、ステップS10で肯定判定すると、ステップS12において、要求フラグFDがオンであるか否かを判定する。ここで、要求フラグFDは、内部抵抗RLの算出を要求するフラグである。具体的には、要求フラグFDは、イグニッションスイッチがオンされてからオフされるまでのワントリップ中に1回オンされる。ステップS12で否定判定すると、内部抵抗RLを算出することなく制御処理を終了する。 On the other hand, if an affirmative determination is made in step S10, it is determined in step S12 whether or not the request flag FD is on. Here, the request flag FD is a flag that requests the calculation of the internal resistance RL. Specifically, the request flag FD is turned on once during one trip from when the ignition switch is turned on to when it is turned off. If a negative determination is made in step S12, the control process ends without calculating the internal resistance RL.

一方、ステップS12で肯定判定すると、ステップS14において、回転電機10の駆動によりエンジン30へ動力を付与する。つまり、エンジン30の高回転状態下で、回転電機10を力行駆動状態とする。なお、本実施形態において、ステップS14の処理が「駆動制御部」に相当する。 On the other hand, if an affirmative determination is made in step S12, power is applied to the engine 30 by driving the rotary electric machine 10 in step S14. That is, the rotary electric machine 10 is put into the power running drive state under the high rotation state of the engine 30. In this embodiment, the process of step S14 corresponds to the "drive control unit".

ステップS16において、リチウムイオン蓄電池12の内部抵抗RLを算出する。つまり、エンジン30の高回転状態下で、回転電機10を力行駆動状態とした場合に、リチウムイオン蓄電池12の内部抵抗RLを算出する。なお、本実施形態において、ステップS16の処理が「抵抗算出部」に相当する。 In step S16, the internal resistance RL of the lithium ion storage battery 12 is calculated. That is, the internal resistance RL of the lithium ion storage battery 12 is calculated when the rotary electric machine 10 is driven by power running under the high rotation state of the engine 30. In this embodiment, the process of step S16 corresponds to the “resistance calculation unit”.

ステップS18において、ステップS16で算出された内部抵抗RLが所定の閾値抵抗Rthよりも小さいかを判定する。ここで、閾値抵抗Rthは、エンジン30の再始動に支障が生じる抵抗値であり、リチウムイオン蓄電池12の温度毎に予め設定されている。 In step S18, it is determined whether the internal resistance RL calculated in step S16 is smaller than the predetermined threshold resistance Rth. Here, the threshold resistance Rth is a resistance value that hinders the restart of the engine 30, and is preset for each temperature of the lithium ion storage battery 12.

ステップS18で肯定判定すると、ステップS20において、許可フラグFPをオンし、制御処理を終了する。ここで、許可フラグFPは、リチウムイオン蓄電池12からの電力供給によるエンジン30の再始動を許可するフラグであり、再始動を許可する場合にオンされ、再始動を禁止する場合にオフされる。一方、ステップS18で否定判定すると、ステップS22において、許可フラグFPをオフし、制御処理を終了する。そのため、ステップS18の処理は、ステップS16で算出された内部抵抗RLに基づいて、リチウムイオン蓄電池12からの電力供給による再始動を許可するか否かが判定する処理である、ということができる。なお、本実施形態において、ステップS18の処理が「再始動判定部」に相当する。 If an affirmative determination is made in step S18, the permission flag FP is turned on and the control process is terminated in step S20. Here, the permission flag FP is a flag that permits the restart of the engine 30 by supplying electric power from the lithium ion storage battery 12, and is turned on when the restart is permitted and turned off when the restart is prohibited. On the other hand, if a negative determination is made in step S18, the permission flag FP is turned off and the control process ends in step S22. Therefore, it can be said that the process of step S18 is a process of determining whether or not to allow restart by power supply from the lithium ion storage battery 12 based on the internal resistance RL calculated in step S16. In this embodiment, the process of step S18 corresponds to the "restart determination unit".

続いて、図3に、制御処理の一例を示す。図3において、(A)は、エンジン回転数NEの推移を示し、(B)は、高回転フラグFHの推移を示し、(C)は、要求フラグFDの推移を示す。また、(D)は、充放電電流ILの推移を示し、(E)は、端子間電圧VLの推移を示し、(F)は、許可フラグFPの推移を示す。 Subsequently, FIG. 3 shows an example of control processing. In FIG. 3, (A) shows the transition of the engine speed NE, (B) shows the transition of the high rotation flag FH, and (C) shows the transition of the request flag FD. Further, (D) shows the transition of the charge / discharge current IL, (E) indicates the transition of the voltage between terminals VL, and (F) indicates the transition of the permission flag FP.

ここで、高回転フラグFHは、制御処理のステップS10における判定結果を示すフラグであり、ステップS10で肯定判定されるとオンとなり、ステップS10で否定判定されるとオフとなる。また、充放電電流ILは、充電電流が正となり、放電電流が負となるように記載されている。なお、本実施形態では、制御処理の開始時において、許可フラグFPはオフされている。 Here, the high rotation flag FH is a flag indicating the determination result in step S10 of the control process, and is turned on when a positive determination is made in step S10 and turned off when a negative determination is made in step S10. Further, the charge / discharge current IL is described so that the charge current becomes positive and the discharge current becomes negative. In the present embodiment, the permission flag FP is turned off at the start of the control process.

図示される例では、時刻t1においてエンジン30の初回始動が実施され、車両が走行を開始すると、図3(A)に示すように、エンジン回転数NEが始動回転数Nsとなる。ここで、始動回転数Nsは所定回転数Nthよりも小さく、例えば1000回転/分である。 In the illustrated example, when the engine 30 is started for the first time at time t1 and the vehicle starts running, the engine speed NE becomes the starting speed Ns as shown in FIG. 3A. Here, the starting rotation speed Ns is smaller than the predetermined rotation speed Nth, for example, 1000 rotations / minute.

その後時刻t2において、使用者のアクセル操作に伴う車両の加速により、エンジン回転数NEが増加する。一方、車両は、エンジン回転数NEが所定回転数Nthよりも小さい低速状態であるため、図3(D),(E)に示すように、回転電機10による動力アシストが行われる。 After that, at time t2, the engine speed NE increases due to the acceleration of the vehicle accompanying the accelerator operation of the user. On the other hand, since the vehicle is in a low speed state in which the engine speed NE is smaller than the predetermined speed Nth, power assist is performed by the rotary electric machine 10 as shown in FIGS. 3 (D) and 3 (E).

その後時刻t3において、エンジン回転数NEが所定回転数Nthよりも大きくなると、図3(B)に示すように、高回転フラグFHがオンされる。これにより、回転電機10のアシスト条件が成立しなくなるため、回転電機10による動力アシストが停止される。 After that, at time t3, when the engine speed NE becomes larger than the predetermined speed Nth, the high speed flag FH is turned on as shown in FIG. 3 (B). As a result, the assist condition of the rotary electric machine 10 is no longer satisfied, so that the power assist by the rotary electric machine 10 is stopped.

その後時刻t4において、図3(C)に示すように、要求フラグFDがオンされると、リチウムイオン蓄電池12の内部抵抗RLを算出する。本実施形態では、回転電機10のアシスト条件が成立しないエンジン30の高回転状態下で、回転電機10の駆動によりエンジン30に動力を付与し、リチウムイオン蓄電池12の内部抵抗RLを算出する。 After that, at time t4, as shown in FIG. 3C, when the request flag FD is turned on, the internal resistance RL of the lithium ion storage battery 12 is calculated. In the present embodiment, under the high rotation state of the engine 30 in which the assist condition of the rotary electric machine 10 is not satisfied, power is applied to the engine 30 by driving the rotary electric machine 10, and the internal resistance RL of the lithium ion storage battery 12 is calculated.

この場合、エンジン30が既に高回転状態であるため、エンジン30に動力を付与してもエンジン回転数NEの上昇が抑制される。つまり、エンジン30に付与される動力に対するエンジン回転数NEの上昇量の割合で示される回転電機10の効率が所定以下となる低効率状態となる。本実施形態では、エンジン回転数NEが所定回転数Nthよりも大きい場合に、低効率状態であるとして回転電機10の駆動によりエンジン30に動力を付与し、リチウムイオン蓄電池12の内部抵抗RLを算出する。 In this case, since the engine 30 is already in a high rotation state, the increase in the engine speed NE is suppressed even if power is applied to the engine 30. That is, the efficiency of the rotary electric machine 10 indicated by the ratio of the increase amount of the engine rotation speed NE to the power applied to the engine 30 becomes a predetermined value or less. In the present embodiment, when the engine speed NE is larger than the predetermined speed Nth, power is applied to the engine 30 by driving the rotary electric machine 10 assuming that the efficiency is low, and the internal resistance RL of the lithium ion storage battery 12 is calculated. To do.

具体的には、まず、回転電機10からエンジン30に動力が付与される前の時刻t4における充放電電流IL及び端子間電圧VLが検出される。以下、時刻t4における充放電電流IL及び端子間電圧VLを、電圧V4及び電流I4という。電圧V4は、リチウムイオン蓄電池12の開放電圧V0、電流I4、及び内部抵抗RLを用いて次の(式1)のように表される。 Specifically, first, the charge / discharge current IL and the voltage between terminals VL at time t4 before power is applied to the engine 30 from the rotary electric machine 10 are detected. Hereinafter, the charge / discharge current IL and the voltage between terminals VL at time t4 are referred to as voltage V4 and current I4. The voltage V4 is expressed as the following (Equation 1) by using the open circuit voltage V0 of the lithium ion storage battery 12, the current I4, and the internal resistance RL.

V4=V0+I4×RL・・・(式1)
次に、回転電機10の駆動によりエンジン30に動力を付与する。これにより、放電電流が増大し、端子間電圧VLが低下する。そして、時刻t4から所定の経過期間が経過した時刻t5における充放電電流IL及び端子間電圧VLが検出される。以下、時刻t5における充放電電流IL及び端子間電圧VLを、電圧V5及び電流I5という。電圧V5は、リチウムイオン蓄電池12の開放電圧V0、電流I5、及び内部抵抗RLを用いて次の(式2)のように表される。
V4 = V0 + I4 × RL ... (Equation 1)
Next, power is applied to the engine 30 by driving the rotary electric machine 10. As a result, the discharge current increases and the voltage VL between terminals decreases. Then, the charge / discharge current IL and the terminal voltage VL are detected at the time t5 when a predetermined elapsed period has elapsed from the time t4. Hereinafter, the charge / discharge current IL and the voltage between terminals VL at time t5 are referred to as voltage V5 and current I5. The voltage V5 is represented by the following (Equation 2) using the open circuit voltage V0 of the lithium ion storage battery 12, the current I5, and the internal resistance RL.

V5=V0+I5×RL・・・(式2)
(式1)、(式2)より、内部抵抗RLは、電圧V4,V5及び電流I4,I5を用いて次の(式3)のように表される。
V5 = V0 + I5 × RL ... (Equation 2)
From (Equation 1) and (Equation 2), the internal resistance RL is expressed as the following (Equation 3) by using the voltages V4 and V5 and the currents I4 and I5.

RL=(I4−I5)/(V4−V5)・・・(式3)
以下、電流I4から電流I5を減算したものを、差分電流ΔIといい、電圧V4から電圧V5減算したものを、差分電圧ΔVという(図4参照)。本実施形態では、時刻t4からの経過期間が異なる複数の時刻t5において電圧V5及び電流I5を検出し、差分電流ΔIと差分電圧ΔVとの関係を示すデータを複数取得する。
RL = (I4-I5) / (V4-V5) ... (Equation 3)
Hereinafter, the current I4 minus the current I5 is referred to as a differential current ΔI, and the voltage V4 minus the voltage V5 is referred to as a differential voltage ΔV (see FIG. 4). In the present embodiment, the voltage V5 and the current I5 are detected at a plurality of times t5 having different elapsed periods from the time t4, and a plurality of data showing the relationship between the differential current ΔI and the differential voltage ΔV are acquired.

その後時刻t6において、要求フラグFDがオフされると、回転電機10からエンジン30への動力の付与を停止する。そして、取得された差分電流ΔIと差分電圧ΔVとの関係を示すデータから、リチウムイオン蓄電池12の内部抵抗RLを算出し、算出された内部抵抗RLが閾値抵抗Rthよりも小さいかを判定する。図示される例では、算出された内部抵抗RLが閾値抵抗Rthよりも小さいため、図3(F)に示すように、時刻t6に許可フラグFPがオンされている。 After that, when the request flag FD is turned off at time t6, the application of power from the rotary electric machine 10 to the engine 30 is stopped. Then, the internal resistance RL of the lithium ion storage battery 12 is calculated from the acquired data showing the relationship between the differential current ΔI and the differential voltage ΔV, and it is determined whether the calculated internal resistance RL is smaller than the threshold resistance Rth. In the illustrated example, since the calculated internal resistance RL is smaller than the threshold resistance Rth, the permission flag FP is turned on at time t6 as shown in FIG. 3 (F).

その後時刻t7において車両が減速を開始すると、エンジン回転数NEが減少する。その後時刻t8において、エンジン回転数NEが所定回転数Nthよりも小さくなると、高回転フラグFHがオフされる。 After that, when the vehicle starts decelerating at time t7, the engine speed NE decreases. After that, at time t8, when the engine speed NE becomes smaller than the predetermined speed Nth, the high speed flag FH is turned off.

図4は、差分電流ΔIと差分電圧ΔVとの関係を示す図である。図4に示すように、差分電圧ΔVは差分電流ΔIに線形比例し、差分電流ΔIが大きくなるほど差分電圧ΔVが大きくなる。そして、差分電流ΔIに対する差分電圧ΔVの傾きから、内部抵抗RLが算出される。 FIG. 4 is a diagram showing the relationship between the differential current ΔI and the differential voltage ΔV. As shown in FIG. 4, the differential voltage ΔV is linearly proportional to the differential current ΔI, and the larger the differential current ΔI, the larger the differential voltage ΔV. Then, the internal resistance RL is calculated from the slope of the differential voltage ΔV with respect to the differential current ΔI.

差分電圧ΔVは差分電流ΔIに線形比例するため、例えば図3の時刻t2から時刻t3までの動力アシスト時に流れる充放電電流IL及び端子間電圧VLを用いて、内部抵抗RLを算出することも可能であるとも考えられる。 Since the differential voltage ΔV is linearly proportional to the differential current ΔI, it is possible to calculate the internal resistance RL by using, for example, the charge / discharge current IL flowing during power assist from time t2 to time t3 in FIG. It is also considered to be.

しかし、動力アシスト時には、大きな放電電流が流れないため、大きな差分電流ΔIが生じない。そのため、差分電流ΔIと差分電圧ΔVとの関係を示すデータとして、差分電流ΔIが小さい範囲のデータ群DXしか取得できない。データ群DXしか取得できないと、図4に破線で示すように、電圧検出部16及び電流検出部15の検出誤差により、差分電流ΔIに対する差分電圧ΔVの傾きが大きく変化してしまい、内部抵抗RLを適切に算出できない。 However, since a large discharge current does not flow during power assist, a large differential current ΔI does not occur. Therefore, as data showing the relationship between the differential current ΔI and the differential voltage ΔV, only the data group DX in the range where the differential current ΔI is small can be acquired. If only the data group DX can be acquired, as shown by the broken line in FIG. 4, the slope of the differential voltage ΔV with respect to the differential current ΔI changes significantly due to the detection error of the voltage detection unit 16 and the current detection unit 15, and the internal resistance RL Cannot be calculated properly.

本実施形態では、差分電流ΔIと差分電圧ΔVとの関係を示すデータを取得する際に、リチウムイオン蓄電池12に流れる放電電流を増大させる。これにより、差分電流ΔIが大きい範囲のデータを取得でき、図4に直線で示すように、電圧検出部16及び電流検出部15の検出誤差によらず、内部抵抗RLを適切に算出できる。 In the present embodiment, the discharge current flowing through the lithium ion storage battery 12 is increased when the data showing the relationship between the differential current ΔI and the differential voltage ΔV is acquired. As a result, data in a range in which the differential current ΔI is large can be acquired, and as shown by a straight line in FIG. 4, the internal resistance RL can be appropriately calculated regardless of the detection errors of the voltage detection unit 16 and the current detection unit 15.

一方、リチウムイオン蓄電池12に流れる充放電電流ILを増大させると、回転電機10の回転数NMが上昇し、これに伴って回転電機10のトルクTMが上昇する。回転電機10のトルクTMの上昇により、エンジン30に付与される動力、つまり車両への動力が過大となると、車両挙動に影響を及ぼし、車両挙動を適切に制御できない。 On the other hand, when the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased, the rotation speed NM of the rotary electric machine 10 increases, and the torque TM of the rotary electric machine 10 increases accordingly. If the power applied to the engine 30, that is, the power to the vehicle becomes excessive due to the increase in the torque TM of the rotary electric machine 10, the vehicle behavior is affected and the vehicle behavior cannot be controlled appropriately.

そこで、本実施形態では、エンジン30の高回転状態下でリチウムイオン蓄電池12に流れる充放電電流ILを増大させる。図5は、回転電機10の回転数NMと回転電機10のトルクTMとの関係を示す図である。図5に示すように、回転電機10は、回転数NMが大きいほど、トルクTMが小さくなる特性を有する。ここで、回転数NMはエンジン回転数NEに比例し、回転数NMが大きい状態が、エンジン30の高回転状態に相当する。そのため、エンジン30の高回転状態下でリチウムイオン蓄電池12に流れる充放電電流ILを増大させると、回転電機10に発生するトルクTMが小さいためにエンジン回転数NEの上昇が抑制される。その結果、車両への動力付与が抑制され、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 Therefore, in the present embodiment, the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased under the high rotation state of the engine 30. FIG. 5 is a diagram showing the relationship between the rotation speed NM of the rotary electric machine 10 and the torque TM of the rotary electric machine 10. As shown in FIG. 5, the rotary electric machine 10 has a characteristic that the torque TM becomes smaller as the rotation speed NM is larger. Here, the rotation speed NM is proportional to the engine rotation speed NE, and a state in which the rotation speed NM is large corresponds to a high rotation state of the engine 30. Therefore, when the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased under the high rotation state of the engine 30, the torque TM generated in the rotary electric machine 10 is small, so that the increase in the engine rotation speed NE is suppressed. As a result, the power application to the vehicle is suppressed, and the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated without affecting the vehicle drive.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the present embodiment described in detail above, the following effects can be obtained.

・アイドリングストップ機能を備える車両では、鉛蓄電池11の電力を用いた初回始動の後、リチウムイオン蓄電池12の電力を用いた再始動が適宜行われる。この場合、リチウムイオン蓄電池12の劣化等の状態を把握した上で、エンジン30の自動停止が行われることが望ましい。この点、本実施形態では、回転電機10の効率が所定以下となる低効率状態で、リチウムイオン蓄電池12からの電力供給により回転電機10からエンジン30に動力を付与した場合に、リチウムイオン蓄電池12の内部抵抗RLを算出するようにした。低効率状態下で回転電機10からエンジン30に動力を付与することにより、低効率状態でない条件下で回転電機10からエンジン30に動力を付与する場合に比べて、車両への動力を増大させない状態にしつつ、リチウムイオン蓄電池12に流れる充放電電流ILを増大させることができる。これにより、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 -In a vehicle having an idling stop function, after the initial start using the electric power of the lead storage battery 11, the restart using the electric power of the lithium ion storage battery 12 is appropriately performed. In this case, it is desirable that the engine 30 is automatically stopped after grasping the state such as deterioration of the lithium ion storage battery 12. In this respect, in the present embodiment, when the rotary electric machine 10 supplies power to the engine 30 by supplying electric power from the lithium ion storage battery 12 in a low efficiency state in which the efficiency of the rotary electric machine 10 is equal to or less than a predetermined value, the lithium ion storage battery 12 The internal resistance RL of the above was calculated. By applying power from the rotary electric machine 10 to the engine 30 under a low efficiency state, the power to the vehicle is not increased as compared with the case where power is applied from the rotary electric machine 10 to the engine 30 under conditions other than the low efficiency state. At the same time, the charge / discharge current IL flowing through the lithium ion storage battery 12 can be increased. As a result, the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated without affecting the vehicle drive.

・回転電機10は、所定のアシスト条件が成立した場合に動力アシストを行い、アシスト条件が成立しない場合に動力アシストを行わない。本実施形態では、この動力アシストを行わない回転電機10の休止期間に、低効率状態で回転電機10からエンジン30に動力を付与し、リチウムイオン蓄電池12の内部抵抗RLを算出する。これにより、休止期間の回転電機10を有効活用して、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 The rotary electric machine 10 performs power assist when a predetermined assist condition is satisfied, and does not perform power assist when the assist condition is not satisfied. In the present embodiment, power is applied from the rotary electric machine 10 to the engine 30 in a low efficiency state during the rest period of the rotary electric machine 10 without the power assist, and the internal resistance RL of the lithium ion storage battery 12 is calculated. As a result, the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated by effectively utilizing the rotary electric machine 10 during the rest period.

・具体的には、エンジン回転数NEが所定回転数Nthよりも大きい場合、回転電機10の休止期間(図3 時刻t3〜t8)となる。この休止期間では、エンジン回転数NEが所定回転数Nthよりも大きいため、所定回転数Nthよりも小さい場合に比べて、車両への動力付与によるエンジン回転数NEの上昇量が抑制される。つまり、回転電機10の効率が所定以下となる低効率状態となる。そのため、この休止期間にリチウムイオン蓄電池12の内部抵抗RLを算出することで、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 -Specifically, when the engine speed NE is larger than the predetermined speed Nth, the suspension period of the rotary electric machine 10 (time t3 to t8 in FIG. 3) is set. In this rest period, since the engine speed NE is larger than the predetermined speed Nth, the amount of increase in the engine speed NE due to the power application to the vehicle is suppressed as compared with the case where the engine speed NE is smaller than the predetermined speed Nth. That is, the efficiency of the rotary electric machine 10 becomes a predetermined value or less. Therefore, by calculating the internal resistance RL of the lithium ion storage battery 12 during this pause period, the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated without affecting the vehicle drive.

・本実施形態では、算出された内部抵抗RLに基づいて、リチウムイオン蓄電池12からの電力供給によるエンジン30の再始動を許可するか否かを判定する。そのため、リチウムイオン蓄電池12の劣化等の状態を把握した上で、アイドリングストップ制御を適正に実施できる。 -In the present embodiment, it is determined whether or not the restart of the engine 30 by the power supply from the lithium ion storage battery 12 is permitted based on the calculated internal resistance RL. Therefore, the idling stop control can be appropriately performed after grasping the state such as deterioration of the lithium ion storage battery 12.

(第2実施形態)
以下、第2実施形態について、先の第1実施形態との相違点を中心に図6及び図7を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIGS. 6 and 7, focusing on the differences from the first embodiment.

本実施形態では、制御処理が第1実施形態と異なる。本実施形態の制御処理では、回転電機10の温度YMに基づいてリチウムイオン蓄電池12に流れる充放電電流ILを増大させる点で、第1実施形態の制御処理と異なる。 In the present embodiment, the control process is different from that of the first embodiment. The control process of the present embodiment is different from the control process of the first embodiment in that the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased based on the temperature YM of the rotary electric machine 10.

図6には、本実施形態に係る制御処理のフローチャートを示す。図6において、先の図2に示した処理と同一の処理については、便宜上、同一の符号を付して説明を省略する。 FIG. 6 shows a flowchart of the control process according to the present embodiment. In FIG. 6, the same processing as that shown in FIG. 2 above is designated by the same reference numerals for convenience, and the description thereof will be omitted.

本実施形態では、制御処理を開始すると、まずステップS30において、回転電機10の温度YMが所定温度Ythよりも高い高温状態であるか否かを判定する。ここで、所定温度Ythは、回転電機10の熱損失HLが過大となり、回転電機10の効率が所定以下となる最低温度である。ステップS10で否定判定すると、内部抵抗RLを算出することなく制御処理を終了する。一方、ステップS10で肯定判定すると、ステップS12に進む。 In the present embodiment, when the control process is started, first, in step S30, it is determined whether or not the temperature YM of the rotary electric machine 10 is in a high temperature state higher than the predetermined temperature Yth. Here, the predetermined temperature Yth is the lowest temperature at which the heat loss HL of the rotary electric machine 10 becomes excessive and the efficiency of the rotary electric machine 10 becomes equal to or less than a predetermined temperature. If a negative determination is made in step S10, the control process ends without calculating the internal resistance RL. On the other hand, if an affirmative determination is made in step S10, the process proceeds to step S12.

本実施形態では、回転電機10の高温状態下でリチウムイオン蓄電池12に流れる充放電電流ILを増大させる。図7は、回転電機10の温度YMと回転電機10の熱損失HLとの関係を示す図である。図7に示すように、回転電機10は、温度YMが高いほど、熱損失HLが大きくなる特性を有する。そのため、回転電機10の高温状態下でリチウムイオン蓄電池12に流れる充放電電流ILを増大させると、熱損失HLが大きいためにエンジン回転数NEの上昇が抑制され、車両への動力付与が抑制される。その結果、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 In the present embodiment, the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased under the high temperature state of the rotary electric machine 10. FIG. 7 is a diagram showing the relationship between the temperature YM of the rotary electric machine 10 and the heat loss HL of the rotary electric machine 10. As shown in FIG. 7, the rotary electric machine 10 has a characteristic that the higher the temperature YM, the larger the heat loss HL. Therefore, when the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased under the high temperature state of the rotary electric machine 10, the increase in the engine speed NE is suppressed due to the large heat loss HL, and the power application to the vehicle is suppressed. To. As a result, the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated without affecting the vehicle drive.

・以上説明した本実施形態によれば、回転電機10の温度YMが所定温度Ythよりも高い高温状態である場合に、リチウムイオン蓄電池12の内部抵抗RLを算出する。回転電機10の温度YMが所定温度Ythよりも高い場合、回転電機10の熱損失HLにより、回転電機10の温度YMが所定温度Ythよりも低い場合に比べて、車両への動力によるエンジン回転数NEの上昇量が抑制される。つまり、回転電機10の効率が所定以下となる低効率状態となる。そのため、回転電機10の高温状態でリチウムイオン蓄電池12の内部抵抗RLを算出することで、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 -According to the present embodiment described above, the internal resistance RL of the lithium ion storage battery 12 is calculated when the temperature YM of the rotary electric machine 10 is higher than the predetermined temperature Yth. When the temperature YM of the rotary electric machine 10 is higher than the predetermined temperature Yth, the engine speed due to the power to the vehicle is compared with the case where the temperature YM of the rotary electric machine 10 is lower than the predetermined temperature Yth due to the heat loss HL of the rotary electric machine 10. The amount of increase in NE is suppressed. That is, the efficiency of the rotary electric machine 10 becomes a predetermined value or less. Therefore, by calculating the internal resistance RL of the lithium ion storage battery 12 in the high temperature state of the rotary electric machine 10, the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated without affecting the vehicle drive.

(第3実施形態)
以下、第3実施形態について、先の第1実施形態との相違点を中心に図8を参照しつつ説明する。
(Third Embodiment)
Hereinafter, the third embodiment will be described with reference to FIG. 8, focusing on the differences from the first embodiment.

本実施形態では、制御処理が第1実施形態と異なる。本実施形態の制御処理では、リチウムイオン蓄電池12に流れる充放電電流ILを増大させる際に、回転電機10のd軸及びq軸のうちd軸にのみ電流を流す点で、第1実施形態の制御処理と異なる。 In the present embodiment, the control process is different from that of the first embodiment. In the control process of the present embodiment, when the charge / discharge current IL flowing through the lithium ion storage battery 12 is increased, the current flows only in the d-axis of the d-axis and the q-axis of the rotary electric machine 10. Different from control processing.

図8には、本実施形態に係る制御処理のフローチャートを示す。図8において、先の図2に示した処理と同一の処理については、便宜上、同一の符号を付して説明を省略する。 FIG. 8 shows a flowchart of the control process according to the present embodiment. In FIG. 8, the same processing as that shown in FIG. 2 above is designated by the same reference numerals and the description thereof will be omitted for convenience.

本実施形態では、制御処理を開始すると、まずステップS12において、要求フラグFDがオンであるか否かを判定する。ステップS12で否定判定すると、内部抵抗RLを算出することなく制御処理を終了する。 In the present embodiment, when the control process is started, first, in step S12, it is determined whether or not the request flag FD is on. If a negative determination is made in step S12, the control process ends without calculating the internal resistance RL.

一方、ステップS12で肯定判定すると、ステップS40において、回転電機10のq軸電流Iqをゼロに設定し、ステップS14に進む。これにより、ステップS14で回転電機10を力行駆動状態とする際に、回転電機10にはd軸電流Idのみが流れる状態となる。なお、「力行駆動状態」には、回転電機10の電機子巻線に対して、回転電機10からエンジン30への動力の付与を行わせるべく通電を行う状態に加え、エンジン30への動力の付与が生じない状態での通電を行う状態が含まれる。 On the other hand, if an affirmative determination is made in step S12, the q-axis current Iq of the rotary electric machine 10 is set to zero in step S40, and the process proceeds to step S14. As a result, when the rotary electric machine 10 is put into the power running drive state in step S14, only the d-axis current Id flows through the rotary electric machine 10. In the "power running drive state", in addition to the state in which the armature winding of the rotary electric machine 10 is energized so as to apply power from the rotary electric machine 10 to the engine 30, the power to the engine 30 is supplied. It includes a state in which energization is performed in a state where no application occurs.

本実施形態では、回転電機10にd軸電流Idのみを流してリチウムイオン蓄電池12に流れる充放電電流ILを増大させる。回転電機10にd軸電流Idのみが流れる場合、回転電機10にトルクTMが発生しないため、エンジン回転数NEの上昇が抑制される。その結果、車両への動力付与が抑制され、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 In the present embodiment, only the d-axis current Id is passed through the rotary electric machine 10 to increase the charge / discharge current IL flowing through the lithium ion storage battery 12. When only the d-axis current Id flows through the rotary electric machine 10, torque TM is not generated in the rotary electric machine 10, so that the increase in the engine speed NE is suppressed. As a result, the power application to the vehicle is suppressed, and the internal resistance RL of the lithium ion storage battery 12 can be appropriately calculated without affecting the vehicle drive.

・以上説明した本実施形態によれば、回転電機10にd軸電流Idのみが流れる状態で、リチウムイオン蓄電池12の内部抵抗RLを算出する。回転電機10にd軸電流Idのみが流れる状態では、回転電機10にトルクTMが発生しないため、エンジン回転数NEの上昇量が抑制される。つまり、回転電機10の効率が所定以下となる低効率状態となる。そのため、回転電機10にd軸電流Idのみが流れる状態でリチウムイオン蓄電池12の内部抵抗RLを算出することで、車両駆動に影響を及ぼすことなく、リチウムイオン蓄電池12の内部抵抗RLを適正に算出できる。 -According to the present embodiment described above, the internal resistance RL of the lithium ion storage battery 12 is calculated in a state where only the d-axis current Id flows through the rotary electric machine 10. In a state where only the d-axis current Id flows through the rotary electric machine 10, torque TM is not generated in the rotary electric machine 10, so that the amount of increase in the engine speed NE is suppressed. That is, the efficiency of the rotary electric machine 10 becomes a predetermined value or less. Therefore, by calculating the internal resistance RL of the lithium ion storage battery 12 in a state where only the d-axis current Id flows through the rotary electric machine 10, the internal resistance RL of the lithium ion storage battery 12 is appropriately calculated without affecting the vehicle drive. it can.

・本実施形態では、回転電機10にトルクTMが発生しないため、車両の停止状態でもリチウムイオン蓄電池12の内部抵抗RLを算出できる。そのため、エンジン30の初回始動後、リチウムイオン蓄電池12の電力を用いた再始動が行われる前までの期間に、リチウムイオン蓄電池12の内部抵抗RLを算出できる。 -In the present embodiment, since the torque TM is not generated in the rotary electric machine 10, the internal resistance RL of the lithium ion storage battery 12 can be calculated even when the vehicle is stopped. Therefore, the internal resistance RL of the lithium ion storage battery 12 can be calculated in the period after the engine 30 is started for the first time and before the restart using the electric power of the lithium ion storage battery 12 is performed.

(その他の実施形態)
本発明は上記実施形態の記載内容に限定されず、次のように実施されてもよい。
(Other embodiments)
The present invention is not limited to the contents described in the above embodiments, and may be implemented as follows.

・上記実施形態において、エンジン30の初回始動に鉛蓄電池11を使用し、エンジン30始動の際にリチウムイオン蓄電池12を使用する例を示したが、各始動に使用される電池の種類はこれに限らない。エンジン30の初回始動時には、初回始動の際の大電流放電に対して安定した電圧を出力できる蓄電池が使用されればよく、エンジン30の再始動の際には、累積充放電に対する耐久性の高い蓄電池が使用されればよい。例えば、第2蓄電池としては、ニッケル水素蓄電池を使用してもよい。また、第1蓄電池と第2蓄電池とは同じ種類の蓄電池であってもよい。 -In the above embodiment, an example is shown in which the lead storage battery 11 is used for the first start of the engine 30 and the lithium ion storage battery 12 is used for the start of the engine 30, but the type of battery used for each start is the same. Not exclusively. When the engine 30 is started for the first time, a storage battery capable of outputting a stable voltage against a large current discharge at the time of the first start may be used, and when the engine 30 is restarted, the durability against cumulative charge / discharge is high. A storage battery may be used. For example, as the second storage battery, a nickel hydrogen storage battery may be used. Further, the first storage battery and the second storage battery may be the same type of storage battery.

・上記実施形態において、回転電機10が発電機能と力行機能との両方の機能を備えている例を示したが、回転電機10が力行機能のみを備えていてもよい。 -In the above embodiment, the rotary electric machine 10 has both the power generation function and the power running function, but the rotary electric machine 10 may have only the power running function.

・上記実施形態において、低効率状態として、エンジン30の高回転状態、回転電機10の高温状態、及び回転電機10にd軸電流Idのみが流れる状態を別々に用いる例を示したが、これらを組み合わせて用いてもよい。例えば、これら3つの状態のうち2つの状態が成立した場合に、低効率状態であると判定してもよい。具体的には、エンジン30の高回転状態下、且つ回転電機10の高温状態下で回転電機10からエンジン30に動力を付与し、リチウムイオン蓄電池12に流れる充放電電流ILを増大させてもよい。 -In the above embodiment, as the low efficiency state, the high rotation state of the engine 30, the high temperature state of the rotary electric machine 10, and the state in which only the d-axis current Id flows through the rotary electric machine 10 are separately used. It may be used in combination. For example, when two of these three states are satisfied, it may be determined that the efficiency state is low. Specifically, power may be applied from the rotary electric machine 10 to the engine 30 under a high rotation state of the engine 30 and a high temperature state of the rotary electric machine 10 to increase the charge / discharge current IL flowing through the lithium ion storage battery 12. ..

・また、これら3つの状態を、相補的に用いてもよい。例えば、エンジン30の初回始動後、所定期間内にエンジン30の高回転状態と回転電機10の高温状態とのいずれの状態にもならないと判定された場合に、回転電機10にd軸電流Idのみが流れる状態としてもよい。これにより、エンジン30の初回始動後、リチウムイオン蓄電池12の電力を用いた再始動が行われる前までの期間に、リチウムイオン蓄電池12の内部抵抗RLを算出しやすい。 -Also, these three states may be used in a complementary manner. For example, if it is determined that neither the high rotation state of the engine 30 nor the high temperature state of the rotary electric machine 10 is reached within a predetermined period after the first start of the engine 30, only the d-axis current Id is applied to the rotary electric machine 10. May be in a flowing state. As a result, it is easy to calculate the internal resistance RL of the lithium ion storage battery 12 in the period after the engine 30 is started for the first time and before the restart using the electric power of the lithium ion storage battery 12 is performed.

・上記実施形態において、リチウムイオン蓄電池12の内部抵抗RLを、リチウムイオン蓄電池12からの電力供給によるエンジン30の再始動を許可するか否かの判定に用いる例を示したが、これに限られず、例えばリチウムイオン蓄電池12の劣化判定など、他の用途に用いられてもよい。 -In the above embodiment, an example is shown in which the internal resistance RL of the lithium ion storage battery 12 is used for determining whether or not to allow the restart of the engine 30 by supplying electric power from the lithium ion storage battery 12, but the present invention is not limited to this. For example, it may be used for other purposes such as deterioration determination of the lithium ion storage battery 12.

・上記実施形態において、リチウムイオン蓄電池12の内部抵抗RLが閾値抵抗Rth以上である場合に、エンジン30が再始動されない例を示したが、これに限られない。例えば、リチウムイオン蓄電池12に代えて鉛蓄電池11からの電力供給によりエンジン30が再始動されてもよい。これにより、リチウムイオン蓄電池12の劣化状態においても、アイドリングストップ制御を適切に実施することができる。 -In the above embodiment, an example is shown in which the engine 30 is not restarted when the internal resistance RL of the lithium ion storage battery 12 is equal to or higher than the threshold resistance Rth, but the present invention is not limited to this. For example, the engine 30 may be restarted by supplying electric power from the lead storage battery 11 instead of the lithium ion storage battery 12. As a result, idling stop control can be appropriately performed even in a deteriorated state of the lithium ion storage battery 12.

・リチウムイオン蓄電池12の内部抵抗RLとリチウムイオン蓄電池12の温度とには相関関係がある。そこで、上記第1実施形態において、リチウムイオン蓄電池12の温度を検出する温度検出部を設け、温度検出部による温度の検出結果に基づいて、算出される内部抵抗RLを補正してもよい。例えば、リチウムイオン蓄電池12の温度が高くなるほど、内部抵抗RLが減少するように補正する。これにより、内部抵抗RLの算出精度を高めることができる。 -There is a correlation between the internal resistance RL of the lithium ion storage battery 12 and the temperature of the lithium ion storage battery 12. Therefore, in the first embodiment, a temperature detection unit for detecting the temperature of the lithium ion storage battery 12 may be provided, and the calculated internal resistance RL may be corrected based on the temperature detection result by the temperature detection unit. For example, the internal resistance RL is corrected so as to decrease as the temperature of the lithium ion storage battery 12 increases. As a result, the calculation accuracy of the internal resistance RL can be improved.

・上記第1実施形態において、要求フラグFDがオンされるタイミングは高回転フラグFHがオンされるタイミングよりも早くてもよい。例えば、エンジン30の初回始動が実施されるのと同時に要求フラグFDがオンされてもよい。これにより、リチウムイオン蓄電池12の内部抵抗RLを早期に算出できる。 -In the first embodiment, the timing at which the request flag FD is turned on may be earlier than the timing at which the high rotation flag FH is turned on. For example, the request flag FD may be turned on at the same time that the engine 30 is started for the first time. As a result, the internal resistance RL of the lithium ion storage battery 12 can be calculated at an early stage.

10…回転電機、11…鉛蓄電池、12…リチウムイオン蓄電池、30…エンジン、40…制御部、100…電源システム。 10 ... rotary electric machine, 11 ... lead storage battery, 12 ... lithium ion storage battery, 30 ... engine, 40 ... control unit, 100 ... power supply system.

Claims (7)

所定条件に応じてエンジン(30)の自動停止及び再始動を行う車両に搭載され、回転電機(10)に対して並列接続され、前記エンジンの初回始動時の電力供給に使用される第1蓄電池(11)と、前記エンジンの自動停止後の再始動の際の電力供給に使用される第2蓄電池(12)と、を備える電源システム(100)に適用される電源装置(40)であって、
前記エンジンの初回始動後において、当該回転電機の効率が所定以下となる低効率状態下で、前記第2蓄電池からの電力供給により前記回転電機を力行駆動状態とする駆動制御部と、
前記駆動制御部により前記低効率状態下で前記回転電機を力行駆動状態とした場合に、前記第2蓄電池の内部抵抗を算出する抵抗算出部と、を備える電源装置。
A first storage battery that is mounted on a vehicle that automatically stops and restarts the engine (30) according to predetermined conditions, is connected in parallel to the rotary electric machine (10), and is used to supply electric power when the engine is first started. A power supply device (40) applied to a power supply system (100) including (11) and a second storage battery (12) used for power supply when the engine is restarted after being automatically stopped. ,
After the engine is started for the first time, a drive control unit that puts the rotary electric machine into a power running state by supplying electric power from the second storage battery under a low efficiency state in which the efficiency of the rotary electric machine is equal to or less than a predetermined value.
A power supply device including a resistance calculation unit that calculates the internal resistance of the second storage battery when the rotary electric machine is put into a power running state under the low efficiency state by the drive control unit.
前記回転電機は、前記車両の走行時において、所定のアシスト条件が成立した場合に動力アシストを行うものであり、
前記駆動制御部は、前記アシスト条件が成立しない場合に、前記低効率状態下で前記回転電機を力行駆動状態とする請求項1に記載の電源装置。
The rotary electric machine performs power assist when a predetermined assist condition is satisfied while the vehicle is traveling.
The power supply device according to claim 1, wherein the drive control unit puts the rotary electric machine into a power running drive state under the low efficiency state when the assist condition is not satisfied.
前記駆動制御部は、エンジン回転数が所定回転数よりも大きい場合に、前記低効率状態であるとして前記回転電機を力行駆動状態とする請求項1または請求項2に記載の電源装置。 The power supply device according to claim 1 or 2, wherein the drive control unit puts the rotary electric machine into a power running drive state as being in the low efficiency state when the engine speed is higher than a predetermined rotation speed. 前記駆動制御部は、前記回転電機の温度が所定温度よりも高温である場合に、前記低効率状態であるとして前記回転電機を力行駆動状態とする請求項1から請求項3までのいずれか一項に記載の電源装置。 Any one of claims 1 to 3 in which the drive control unit puts the rotary electric machine into a power running drive state as being in the low efficiency state when the temperature of the rotary electric machine is higher than a predetermined temperature. The power supply according to the section. 前記駆動制御部は、前記回転電機のd軸及びq軸のうちd軸にのみ電流を流した状態で前記回転電機を力行駆動状態とする請求項1から請求項4までのいずれか一項に記載の電源装置。 The drive control unit according to any one of claims 1 to 4, wherein the rotary electric machine is brought into a power driving state in a state where a current is passed only on the d-axis of the d-axis and the q-axis of the rotary electric machine. The power supply described. 前記抵抗算出部により算出した前記内部抵抗に基づいて、前記第2蓄電池からの電力供給による前記再始動を許可するか否かを判定する再始動判定部を備える請求項1から請求項5までのいずれか一項に記載の電源装置。 Claims 1 to 5 include a restart determination unit that determines whether or not to permit the restart by supplying power from the second storage battery based on the internal resistance calculated by the resistance calculation unit. The power supply device according to any one item. 所定条件に応じてエンジン(30)の自動停止及び再始動を行う車両に搭載される電源システム(100)であって、
回転電機(10)と、
前記回転電機に対して並列接続され、前記エンジンの初回始動時の電力供給に使用される第1蓄電池(11)と、
前記エンジンの自動停止後の再始動の際の電力供給に使用される第2蓄電池(12)と、
前記エンジンの初回始動後において、当該回転電機の効率が所定以下となる低効率状態下で、前記第2蓄電池からの電力供給により前記回転電機を力行駆動状態とする駆動制御部と、
前記駆動制御部により前記低効率状態下で前記回転電機を力行駆動状態とした場合に、前記第2蓄電池の内部抵抗を算出する抵抗算出部と、を備える電源システム。
A power supply system (100) mounted on a vehicle that automatically stops and restarts the engine (30) according to predetermined conditions.
Rotating electric machine (10) and
A first storage battery (11) connected in parallel to the rotary electric machine and used to supply electric power at the first start of the engine.
A second storage battery (12) used to supply electric power when restarting the engine after it is automatically stopped.
After the engine is started for the first time, a drive control unit that puts the rotary electric machine into a power running state by supplying electric power from the second storage battery under a low efficiency state in which the efficiency of the rotary electric machine is equal to or less than a predetermined value.
A power supply system including a resistance calculation unit that calculates the internal resistance of the second storage battery when the rotary electric machine is put into a power running state under the low efficiency state by the drive control unit.
JP2019087728A 2019-05-07 2019-05-07 power supply, power system Active JP7192648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019087728A JP7192648B2 (en) 2019-05-07 2019-05-07 power supply, power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019087728A JP7192648B2 (en) 2019-05-07 2019-05-07 power supply, power system

Publications (2)

Publication Number Publication Date
JP2020183161A true JP2020183161A (en) 2020-11-12
JP7192648B2 JP7192648B2 (en) 2022-12-20

Family

ID=73044511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019087728A Active JP7192648B2 (en) 2019-05-07 2019-05-07 power supply, power system

Country Status (1)

Country Link
JP (1) JP7192648B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046279A (en) * 2004-08-09 2006-02-16 Mitsubishi Motors Corp Engine automatic stop/start control device
JP2007125729A (en) * 2005-11-01 2007-05-24 Momentive Performance Materials Japan Kk Ink jet recording sheet
JP2007131076A (en) * 2005-11-09 2007-05-31 Toyota Motor Corp Battery status diagnostic device
WO2011034060A1 (en) * 2009-09-15 2011-03-24 住友重機械工業株式会社 Control method and control device for hybrid construction machine
JP2012002040A (en) * 2010-06-21 2012-01-05 Hitachi Constr Mach Co Ltd Hybrid construction machinery
US20140214309A1 (en) * 2013-01-31 2014-07-31 Ford Global Technologies, Llc Method for maximizing microhybrid auto start-stop availability
JP2017025709A (en) * 2015-07-15 2017-02-02 株式会社デンソー Power supply system
JP2017125729A (en) * 2016-01-13 2017-07-20 株式会社Gsユアサ Onboard power supply system and method for detecting state of battery included therein

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046279A (en) * 2004-08-09 2006-02-16 Mitsubishi Motors Corp Engine automatic stop/start control device
JP2007125729A (en) * 2005-11-01 2007-05-24 Momentive Performance Materials Japan Kk Ink jet recording sheet
JP2007131076A (en) * 2005-11-09 2007-05-31 Toyota Motor Corp Battery status diagnostic device
WO2011034060A1 (en) * 2009-09-15 2011-03-24 住友重機械工業株式会社 Control method and control device for hybrid construction machine
JP2012002040A (en) * 2010-06-21 2012-01-05 Hitachi Constr Mach Co Ltd Hybrid construction machinery
US20140214309A1 (en) * 2013-01-31 2014-07-31 Ford Global Technologies, Llc Method for maximizing microhybrid auto start-stop availability
JP2017025709A (en) * 2015-07-15 2017-02-02 株式会社デンソー Power supply system
JP2017125729A (en) * 2016-01-13 2017-07-20 株式会社Gsユアサ Onboard power supply system and method for detecting state of battery included therein

Also Published As

Publication number Publication date
JP7192648B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP6380171B2 (en) Power system
US9649950B2 (en) Power supply apparatus
JP6011135B2 (en) Power system
US11342769B2 (en) Control device
JP2001268708A (en) Hybrid vehicle control device
JP6459913B2 (en) Power system controller
JPH10290535A (en) Battery charger
JP2001078306A (en) Controller of hybrid vehicle
CN109314399B (en) Vehicle-mounted power supply system
JP6459774B2 (en) Control device for internal combustion engine
JP6493167B2 (en) Power system controller
JP2019173665A (en) Control device
JP6277859B2 (en) Power control device
JP6481483B2 (en) Power supply
JP6468104B2 (en) Power system
KR100906872B1 (en) Method for battery performance improvement and SOC reset of HEV
JP2016220305A (en) Hybrid automobile and charge control device therefor
JP7192648B2 (en) power supply, power system
JP2001224103A (en) Hybrid vehicle control device
JP6488995B2 (en) Control device for in-vehicle power supply system
JPH10271695A (en) Battery residual capacity detector and generation controller of hybrid electric car
JP5541189B2 (en) Current sensor abnormality determination device
JP6724812B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R151 Written notification of patent or utility model registration

Ref document number: 7192648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151