JP2020182485A - Method and pharmaceutical composition for continuously growing motor neuron precursor cell - Google Patents

Method and pharmaceutical composition for continuously growing motor neuron precursor cell Download PDF

Info

Publication number
JP2020182485A
JP2020182485A JP2020122746A JP2020122746A JP2020182485A JP 2020182485 A JP2020182485 A JP 2020182485A JP 2020122746 A JP2020122746 A JP 2020122746A JP 2020122746 A JP2020122746 A JP 2020122746A JP 2020182485 A JP2020182485 A JP 2020182485A
Authority
JP
Japan
Prior art keywords
cells
motor neuron
cell
neuron progenitor
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020122746A
Other languages
Japanese (ja)
Inventor
蘇鴻麟
Hong-Lin Su
潘宏川
Hung Chuan Pan
李▲しゅう▼琴
Hsiu Chin Lee
庄峻偉
Chun Wei Chuang
韓鴻志
Horng-Jyh Harn
林欣栄
Shinn-Zong Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Grain Wire Application Tech Co Ltd
Taiwan Grain Wire Application Technology Co Ltd
Original Assignee
Taiwan Grain Wire Application Tech Co Ltd
Taiwan Grain Wire Application Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Grain Wire Application Tech Co Ltd, Taiwan Grain Wire Application Technology Co Ltd filed Critical Taiwan Grain Wire Application Tech Co Ltd
Priority to JP2020122746A priority Critical patent/JP2020182485A/en
Publication of JP2020182485A publication Critical patent/JP2020182485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

To provide a method for continuously growing a motor neuron precursor cell.SOLUTION: There is provided a method comprising: a step for acquiring motor neuron precursor cells, in which the motor neuron precursor cells are acquired from a vertebrate animal; a step for producing a culture niche, in which the culture niche includes an olfactory nerve sheath cell; a step for culturing on the culture niche, the motor neuron precursor cells, in which the motor neuron precursor cells are continuously grown on the culture niche so that the motor neuron precursor cells have differentiation ability to a matured motor nerve cell and do not differentiate to the matured motor nerve cell, wherein a culture density of the motor neuron precursor cells is 100 cells/mL or greater and the motor neuron precursor cells contact the olfactory nerve.SELECTED DRAWING: None

Description

本発明は、神経幹細胞の成長を維持する方法に関し、特に運動ニューロン前駆細胞を持続的に成長させる方法、及び医薬組成物に関する。 The present invention relates to a method for maintaining the growth of neural stem cells, particularly to a method for sustainably growing motor neuron progenitor cells, and a pharmaceutical composition.

全能胚性幹細胞は所望した神経細胞コミュニティー(cell community)を生産する材料として使用でき、今まで、有望な細胞置換療法である(Kozubenko N et al., 2010; Mandai M et al., 2010; Boddington SE et al., 2010)。一般的には、胚性幹細胞の分化ステップには、神経誘導因子及び領域形成因子(regional patterning factors)を順に提供して、細胞分化及び細胞運命転換(cell fate conversion)を誘導し、発達段階の胚シングルを与えることを含み、それによって、胚性幹細胞が体外で個体の体内での初期発育を再現できる(Muguruma K et al., 2012; Willerth SM、 2011)。例えば、BMPシグナルを抑制することによって、単一胚と胚性幹細胞のいずれにも原始神経上皮前駆細胞(neuroepithelial progenitor cells、EPCs)を発生できる。EPCsに更にソニックヘッジホッグ(sonic hedgehog、SHH)及びレチノイン酸(retinoic acid、RA)を供給することによって、脊髄運動ニューロンを発生できる。以前の研究に示すように、胚性幹細胞から誘導する神経細胞は胚における正常なニューロンに類似し、ニューロンの正常な生理機能、例えば神経伝達物質の放出及び活動電位(action potential)の発生の機能を有する。疾患モデル動物に胚性幹細胞から誘導するニューロンを移植することで、その運動能力と挙動を回復できるものの、その成功率は移植されたニューロンの高活性と高生存率に依存する(Lopez−Gonzalez R et al., 2009; Harper JM et al., 2004; Chiba S et al., 2003)。 Pluripotent embryonic stem cells can be used as a material to produce the desired cell community and have been a promising cell replacement therapy to date (Kozubenko Net al., 2010; Mandai M et al., 2010; Boddington). SE et al., 2010). In general, in the differentiation step of embryonic stem cells, nerve inducing factors and region forming factors are provided in order to induce cell differentiation and cell fate conversion, and to induce cell fate conversion in the developmental stage. Includes feeding embryonic singles, whereby embryonic stem cells can reproduce early development in the body of an individual in vitro (Mugruma K et al., 2012; Willerth SM, 2011). For example, by suppressing BMP signals, primordial neuroepithelial progenitor cells (EPCs) can be generated in both single embryos and embryonic stem cells. Spinal motor neurons can be generated by further supplying EPCs with sonic hedgehog (SHH) and retinoic acid (RA). As shown in previous studies, neurons derived from embryonic stem cells resemble normal neurons in the embryo and function in the normal physiology of the neurons, such as the release of neurotransmitters and the development of action potentials. Has. By transplanting neurons derived from embryonic stem cells into disease model animals, their motor ability and behavior can be restored, but the success rate depends on the high activity and high survival rate of the transplanted neurons (Lopez-Gonzelez R). et al., 2009; Harper JM et al., 2004; Chiba S et al., 2003).

脊髄及び脳幹の運動ニューロンは生理的且つ病理学的に重要であるため、特別なニューロン集団として幅広く研究されている(Lopez−Gonzalez R et al., 2012; Chipman PH et al., 2012; Jessell TM et al., 2011; Thonhoff JR et al., 2009)。発達過程において、複数の運動ニューロンの特異的転写因子(lineage−specific transcription factors)が発見されたが(Chipman PH et al., 2012; Wu CY et al., 2012; Takazawa T et al., 2012; Wada T et al., 2009)、脳室周囲と海馬回の神経幹細胞集団に比べて、従来、運動ニューロン群の自己複製及び維持に対する分子基礎についての研究がほぼなかった。遺伝子組換えマウスの研究結果から明らかなように、ソニックヘッジホッグ及びその下流Gli経路は運動ニューロン前駆細胞成長の重要因子である(Wu SM et al., 2012; Oh S et al., 2009; Ruiz i Altaba A、 1998)が、ただし、現在、運動ニューロン前駆細胞集団の成長がその他の分泌因子に繋がるかどうかはまだ不明である。この他、運動ニューロン集団の低収率及び低純度が原因で、運動ニューロン増殖についての研究が制限されてしまう。脊髄ニューロンとマウスN18神経芽細胞を融合することによって、不死化運動ニューロンのハイブリッド細胞株を作成して入手できるが(Raimondi A et al., 2006; Cashman NR et al., 1992)、該不死化ハイブリッド運動ニューロン細胞株は多核を有するとともに遺伝子が異常で、持続的に増殖でき、さらに、たとえば長細い軸索と伝導活動電位を有するような運動ニューロンの典型的な形態や機能を反映できない。 Because of the physiological and pathological importance of motor neurons in the spinal cord and brainstem, they have been extensively studied as a special neuron population (Lopez-Gonzelez R et al., 2012; Chipman PH et al., 2012; Jessell TM). et al., 2011; Thonhof JR et al., 2009). During development, specific transcription factors (lineage-specific transcription factors) of multiple motor neurons were discovered (Chipman PH et al., 2012; Wu CY et al., 2012; Takazawa T et al. Compared to Wada T et al., 2009), periventricular and hippocampal neural stem cell populations, there have been few studies on the molecular basis for self-renewal and maintenance of motor neurons. As is clear from the results of studies on recombinant mice, sonic hedgehog and its downstream Gli pathway are important factors in motor neuron progenitor cell growth (Wu SM et al., 2012; Oh S et al., 2009; Ruiz. i Altaba A, 1998), however, it is currently unclear whether the growth of the motor neuron progenitor cell population is linked to other secretory factors. In addition, the low yield and purity of the motor neuron population limits research on motor neuron proliferation. A hybrid cell line of immortalizing motor neurons can be prepared and obtained by fusing spinal cord neurons with mouse N18 neuroblasts (Raimondi A et al., 2006; Cashman NR et al., 1992). Hybrid motor neuron cell lines are multinucleated, have abnormal genes, can proliferate sustainably, and cannot reflect the typical morphology and function of motor neurons, such as those with elongated axons and conduction action potentials.

嗅神経鞘細胞(Olfactory ensheathing cells、OECs)は、末梢神経系のシュワン細胞(Schwann cells)に類似し、嗅神経細胞繊維に分布している神経膠細胞である(Mackay−Sim A et al., 2011; Su Z et al., 2010; Raisman G et al., 2007)。嗅神経鞘細胞は、嗅神経軸索が間質組織を介して成長し且つ嗅覚ニューロンを保護する神経栄養因子を複数種分泌するように誘導する。嗅神経鞘細胞を同定するには、グリア線維性酸性タンパク質(glial fibrillary acidic protein、GFAP)、s100、p75及び中間フィラメントタンパク質(nestin intermediate filaments)の発現によって認識される。嗅神経鞘細胞と神経幹細胞を共培養することにより、神経幹細胞の分化と神経突起(neurites)の形成を促進できるが、神経幹細胞の成長と複製を促進できない。 Olfactory nerve sheath cells (OECs) are glial cells distributed in the olfactory nerve cell fibers, similar to Schwann cells of the peripheral nervous system (Mackay-Sim A et al., 2011; Su Z et al., 2010; Raisman G et al., 2007). Olfactory nerve sheath cells induce olfactory nerve axons to grow through stromal tissue and secrete multiple neurotrophic factors that protect olfactory neurons. To identify olfactory nerve sheath cells, they are recognized by the expression of glial fibrillary acidic proteins (GFAP), s100, p75 and intermediate filament proteins (nestin intermediate filaments). Co-culture of olfactory nerve sheath cells and neural stem cells can promote the differentiation of neural stem cells and the formation of neurites, but cannot promote the growth and replication of neural stem cells.

幹細胞移植は退行性神経疾患及び中枢神経系病変に有効な治療方法として期待される。具体的に、幹細胞移植とは、幹細胞を損傷された中枢神経部位又はその付近に送達して、損傷された中枢神経系の神経細胞を再生することである。従来の研究から分かるように、嗅神経鞘細胞又は神経前駆細胞の移植は、脳損傷、たとえば筋萎縮性側索硬化症(amyotrophic lateral sclerosis、ALS)や脊髄損傷(Mackay−Sim A et al., 2011)に罹る実験用げっ歯動物の機能的改善に有用である。しかしながら、従来の研究では実験時間が数ヶ月だけで、且つ神経損傷の関連症状を一時的に改善する効果だけを果たし、該短期間の治療効果は移植細胞の低生存率との関連性が高い。具体的には、対象は被移植細胞に対し局所的炎症や拒否反応を発生させることから、被移植細胞の生存に適当なニッチや成長因子を提供できない場合が多く、被移植細胞が複製できなかったり細胞活性が低下したりすると、被移植細胞が宿主の細胞と統合できなくなる。従って、移植細胞の低生存率によって、治療効果が持続できないことを招く恐れがある。 Stem cell transplantation is expected as an effective treatment method for degenerative neurological diseases and central nervous system lesions. Specifically, stem cell transplantation is the delivery of stem cells to or near the injured central nervous system to regenerate injured central nervous system neurons. As can be seen from previous studies, transplantation of olfactory nerve sheath cells or neural progenitor cells can result in brain damage such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (Mackay-Sim A et al., It is useful for improving the function of experimental rodents suffering from 2011). However, in previous studies, the experimental time was only a few months, and only the effect of temporarily improving the symptoms related to nerve damage was achieved, and the short-term therapeutic effect was highly associated with the low survival rate of transplanted cells. .. Specifically, since the subject causes local inflammation and rejection of the transplanted cells, it is often impossible to provide suitable niches and growth factors for the survival of the transplanted cells, and the transplanted cells cannot replicate. Or when cell activity is reduced, the transplanted cell cannot integrate with the host cell. Therefore, the low survival rate of transplanted cells may lead to unsustainable therapeutic effects.

本発明の主な目的は、運動ニューロン前駆細胞を嗅神経鞘細胞で構築されたニッチにおいて培養して、運動ニューロン前駆細胞が自己複製を長期間維持するとともに成熟ニューロンへの誘導分化能力を有するようにし、それによって、運動ニューロンに対する保護効果を効果的に果たす、運動ニューロン前駆細胞を持続的に成長させる方法を提供することである。 A main object of the present invention is to culture motor neuron progenitor cells in a niche constructed of olfactory nerve sheath cells so that the motor neuron progenitor cells maintain self-renewal for a long period of time and have the ability to induce differentiation into mature neurons. To provide a method for the sustainable growth of motor neuron progenitor cells, thereby effectively exerting a protective effect on motor neurons.

本発明の別の目的は、有効量の運動ニューロン前駆細胞及び少なくとも1種の薬学的に許容可能な担体を含む医薬組成物を提供することである。該医薬組成物を運動ニューロン損傷の関連疾患、たとえば脳卒中、脊髄損傷、神経退化性疾患等に罹る患者に投予することによって、対象の神経機能回復及び運動ニューロン成長促進の効果を果たす。 Another object of the present invention is to provide a pharmaceutical composition comprising an effective amount of motor neuron progenitor cells and at least one pharmaceutically acceptable carrier. By predicting the pharmaceutical composition to a patient suffering from a disease related to motor neuron injury such as stroke, spinal cord injury, neurodegenerative disease, etc., the effect of recovering the nerve function of the subject and promoting the growth of the motor neuron is achieved.

上記目的を達成させるために、本発明に係る一実施例は、運動ニューロン前駆細胞を嗅神経鞘細胞で構築されて成長に適合する培養ニッチにおいて培養して、該運動ニューロン前駆細胞が自己複製を維持するとともに成熟運動神経細胞への分化能力を有するようにする、運動ニューロン前駆細胞の活性を持続的に維持する方法を提供する。 In order to achieve the above object, in one embodiment of the present invention, motor neuron progenitor cells are cultured in a culture niche constructed of olfactory nerve sheath cells and suitable for growth, and the motor neuron progenitor cells self-renew. Provided is a method for sustainably maintaining the activity of motor neuron progenitor cells so as to maintain and have the ability to differentiate into mature motor neurons.

好ましくは、該培養ニッチは嗅神経鞘細胞を含む培地である。 Preferably, the culture niche is a medium containing olfactory nerve sheath cells.

ここで、低密度で運動ニューロン前駆細胞を培養する。 Here, the motor neuron progenitor cells are cultured at a low density.

ここで、少なくとも1つの該運動ニューロン前駆細胞を嗅神経鞘細胞に接種して培養する。 Here, at least one of the motor neuron progenitor cells is inoculated into the olfactory nerve sheath cells and cultured.

好ましくは、該培養ニッチは嗅神経鞘細胞を前処理したものの、嗅神経鞘細胞を含まない培地であり、ここで、高密度で運動ニューロン前駆細胞を培養する。 Preferably, the culture niche is a medium that has been pretreated with olfactory nerve sheath cells but does not contain olfactory nerve sheath cells, in which motor neuron progenitor cells are cultured at high density.

本発明に係る方法によれば、該運動ニューロン前駆細胞を該培養ニッチにおいて連続的に10世代以上拡大培養し、且つ、1つの該運動ニューロン前駆細胞は細胞コミュニティー(cell community)を形成できる。 According to the method according to the present invention, the motor neuron progenitor cells can be continuously expanded and cultured for 10 generations or more in the culture niche, and one motor neuron progenitor cell can form a cell community.

本発明の別の実施例は、有効量の運動ニューロン前駆細胞及び少なくとも1種の薬学的に許容可能な担体を含む医薬組成物を開示する。該運動ニューロン前駆細胞を嗅神経鞘細胞で構築されたニッチにおいて前処理する。 Another embodiment of the invention discloses a pharmaceutical composition comprising an effective amount of motor neuron progenitor cells and at least one pharmaceutically acceptable carrier. The motor neuron progenitor cells are pretreated in a niche constructed of olfactory nerve sheath cells.

好ましくは、該運動ニューロン前駆細胞を嗅神経鞘細胞で前処理する。 Preferably, the motor neuron progenitor cells are pretreated with olfactory nerve sheath cells.

好ましくは、該運動ニューロン前駆細胞を嗅神経鞘細胞を先に処理して得た培地で前処理する。 Preferably, the motor neuron progenitor cells are pretreated with a medium obtained by previously treating the olfactory nerve sheath cells.

好ましくは、該医薬組成物はさらに嗅神経鞘細胞を含む。 Preferably, the pharmaceutical composition further comprises olfactory nerve sheath cells.

好ましくは、該運動ニューロン前駆細胞と該嗅神経鞘細胞を等比率にして前処理する。 Preferably, the motor neuron progenitor cells and the olfactory nerve sheath cells are pretreated in equal proportions.

本発明に係る医薬組成物は運動ニューロン疾患を治療する用途がある。 The pharmaceutical composition according to the present invention has an application for treating a motor neuron disease.

好ましくは、該疾患は脳卒中、脊髄損傷、退行性神経疾患、筋萎縮性側索硬化症又は運動ニューロンが死亡していく任意の疾患である。 Preferably, the disease is stroke, spinal cord injury, degenerative neurological disease, amyotrophic lateral sclerosis or any disease in which motor neurons die.

本発明の有益な効果は、本発明で提供した運動ニューロン前駆細胞を持続的に成長させる方法及び医薬組成物は、運動ニューロン前駆細胞が自己複製を長期間維持するとともに成熟ニューロンへの誘導分化能力を有するようにし、それによって、運動ニューロンに対する保護効果を効果的に果たし、更に対象の神経損傷部位を修復又は再生し、運動ニューロン疾患を効果的に治療するという効果を実現することである。 The beneficial effect of the present invention is that the method and pharmaceutical composition provided in the present invention for the continuous growth of motor neuron progenitors have the ability of motor neuron progenitors to maintain self-renewal for a long period of time and to induce differentiation into mature neurons. It is intended to effectively achieve a protective effect on motor neurons, repair or regenerate a target nerve injury site, and effectively treat a motor neuron disease.

嗅神経鞘細胞を培養した4日目の外形である。It is the outline of the 4th day when the olfactory nerve sheath cells were cultured. 嗅神経鞘細胞を培養した7日目の外形である。It is the outline of the 7th day when the olfactory nerve sheath cells were cultured. 嗅球の嗅神経鞘細胞、嗅粘膜の嗅神経鞘細胞及び子ハムスターの線維芽細胞のそれぞれの免疫細胞染色結果である。It is the result of each immune cell staining of the olfactory nerve sheath cell of the olfactory bulb, the olfactory nerve sheath cell of the olfactory mucosa, and the fibroblast of the offspring hamster. 蛍光活性化細胞選別技術によりp75抗体で染色した嗅神経鞘細胞を分析し、ここで、赤色はp75抗体で染色された嗅神経鞘細胞、青色は未染色細胞を示す。The olfactory nerve sheath cells stained with the p75 antibody are analyzed by the fluorescence activated cell selection technique, where red indicates the olfactory nerve sheath cells stained with the p75 antibody and blue indicates the unstained cells. 嗅神経鞘細胞の成長曲線図である。It is a growth curve diagram of an olfactory nerve sheath cell. HB9::GFP胚性幹細胞とマウス骨芽細胞株PA6の共培養プロセスの模式図である。It is a schematic diagram of the co-culture process of HB9 :: GFP embryonic stem cell and mouse osteoblast line PA6. マウス骨芽細胞株と共培養した8日目のHB9::GFP細胞である。Day 8 HB9 :: GFP + cells co-cultured with a mouse osteoblast line. HB9::GFP胚性幹細胞を異なる処理条件で培養するプロセスの模式図である。It is a schematic diagram of the process of culturing HB9 :: GFP embryonic stem cells under different treatment conditions. 1つのHB9::GFP細胞を嗅神経鞘細胞に接種して一週間培養して形成する細胞コミュニティー(cell community)の結果である。It is the result of a cell community formed by inoculating one HB9 :: GFP + cell into an olfactory nerve sheath cell and culturing it for one week. 1つのHB9::GFP細胞をマイトマイシンCで処理した嗅神経鞘細胞に接種して、一週間培養した後の結果である。This is the result after inoculating one HB9 :: GFP + cell into olfactory nerve sheath cells treated with mitomycin C and culturing for one week. 嗅神経鞘細胞で増殖したHB9::GFP細胞をPA6細胞に接種して培養した後の結果である。This is the result after inoculating PA6 cells with HB9 :: GFP + cells proliferated in olfactory nerve sheath cells and culturing them. 免疫染色法による各群ラットのCD11b発現の分析結果である。It is the analysis result of the CD11b expression of each group rat by the immunostaining method. 各群ラットのCD11b発現の統計分析結果であり、ここで、*はP<0.05、**はP<0.01を示す。It is the statistical analysis result of the expression of CD11b of each group rat, and here, * indicates P <0.05, ** indicates P <0.01. 免疫染色法による各群ラットの運動ニューロンのコリンアセチルトランスフェラーゼ発現の分析結果である。It is the analysis result of choline acetyltransferase expression of motor neurons of each group rat by immunostaining method. 各群ラットの運動ニューロンのコリンアセチルトランスフェラーゼ発現の統計分析結果であり、ここで、*はP<0.05、**はP<0.01を示す。It is the result of statistical analysis of choline acetyltransferase expression in motor neurons of each group rat, where * indicates P <0.05 and ** indicates P <0.01.

断らない限り、本発明の明細書及び請求項に使用される技術及び科学用語の意味は、本発明の当業者の普通の理解と同様である。矛盾になる場合は、本発明の内容を基準にする。 Unless otherwise noted, the meanings of the technical and scientific terms used in the specification and claims of the invention are similar to those of ordinary skill in the art. In case of contradiction, the content of the present invention is used as a reference.

「HB9::GFP 胚性幹細胞」は未分化で且つ蛍光をもっていない胚性幹細胞であり、その染色体にHB9遺伝子のプロモーター及び緑色蛍光タンパク質(green fluorescent protein、 GFP)を有する外来遺伝子を持っている。 "HB9 :: GFP embryonic stem cell" is an undifferentiated and non-fluorescent embryonic stem cell, and has a foreign gene having an HB9 gene promoter and a green fluorescent protein (GFP) on its chromosome.

「HB9::GFP 細胞」は胚性幹細胞から誘導する運動ニューロン前駆細胞又は成熟した運動ニューロンであり、緑色蛍光を有する。該緑色蛍光タンパク質の発現は運動ニューロン特異的プロモーターHB9により制御される(Miles GB et al., 2004; Wichterle H et al., 2002)。HB9は運動ニューロンの特異的転写因子(Arber S et al., 1999)であり、従って、運動ニューロンでしか緑色蛍光蛋白の発現が検出できない(Miles GB et al., 2004; Soundararajan P et al., 2006)。本発明の実施例では、HB9::GFP細胞について、嗅神経鞘細胞による運動ニューロンの増殖効率への影響を検討し、さらに嗅神経鞘細胞と共培養する運動ニューロンの増殖能力を量化する。 "HB9 :: GFP + cells" are motor neuron progenitor cells or mature motor neurons derived from embryonic stem cells and have green fluorescence. Expression of the green fluorescent protein is regulated by the motor neuron-specific promoter HB9 (Miles GB et al., 2004; Witchtale Het al., 2002). HB9 is a specific transcription factor for motor neurons (Arber S et al., 1999) and therefore expression of green fluorescent protein can only be detected in motor neurons (Miles GB et al., 2004; Soundararan P et al., 2006). In the examples of the present invention, for HB9 :: GFP + cells, the effect of olfactory nerve sheath cells on the proliferation efficiency of motor neurons is examined, and the proliferation ability of motor neurons co-cultured with olfactory nerve sheath cells is quantified.

「有効量」とは、期待される特定効果を果たすのに必要な化合物又は活性成分の量を意味し、組成物に対する重量比率で表示する。本発明の当業者であれば、該有効量は特定効果を果たすための投予方法によって異なることが理解されるべきである。一般的には、活性成分又は化合物の組成物における量は、該組成物の重量の約1%−約100%、好ましくは約30%−約100%である。 "Effective amount" means the amount of a compound or active ingredient required to achieve the expected specific effect and is expressed as a weight ratio to the composition. Those skilled in the art of the present invention should understand that the effective amount depends on the method of investment for achieving a specific effect. Generally, the amount of the active ingredient or compound in the composition is from about 1% to about 100%, preferably about 30% to about 100% by weight of the composition.

「薬学的に許容可能な担体」は、医薬製品に使用可能な任意の担体を意味し、該担体は組成物の形態に応じて、固体、半固体又は液体とする。例として、担体は、ゼラチン、乳化剤、炭化水素類混合物、水、グリセリン、生理食塩水、緩衝生理食塩水、ラノリン、パラフィン、蜜蝋、シメチコン、エタノールを含むが、これらに制限されない。 "Pharmaceutically acceptable carrier" means any carrier that can be used in a pharmaceutical product, which carrier may be solid, semi-solid or liquid, depending on the form of the composition. By way of example, carriers include, but are not limited to, gelatin, emulsifiers, hydrocarbon mixtures, water, glycerin, saline, buffered saline, lanolin, paraffin, beeswax, cymethicone, ethanol.

「医薬組成物」は、有効量の特定効果を果たすのに必要な化合物又は活性成分、及び少なくとも1種の担体を含む。本発明の当業者であれば、組成物の剤型は、特定効果を果たすための投予方法によって異なることが理解されるべきであり、例えば、錠剤、粉剤、注射剤等が挙げられ、さらに、該担体は、組成物の剤型に応じて固体、半固体又は液体である。 A "pharmaceutical composition" comprises an effective amount of a compound or active ingredient necessary to achieve a particular effect, and at least one carrier. Those skilled in the art of the present invention should understand that the dosage form of the composition differs depending on the method of investment for achieving a specific effect, and examples thereof include tablets, powders, injections, and the like. , The carrier is solid, semi-solid or liquid depending on the dosage form of the composition.

「投予」とは薬物を対象の特定部位、特定細胞、特定ターゲットに送達する手段、又はそれと対象を接触させて作用する方法を意味し、一般的には、投予方法は、経口投与、塗布投与、噴霧投与、吸入投与、注射投与等を含むが、これらに制限されない。 "Injection" means a means of delivering a drug to a specific site, a specific cell, a specific target of a subject, or a method of contacting the subject to act, and in general, the injection method is oral administration, It includes, but is not limited to, application administration, spray administration, inhalation administration, injection administration, and the like.

以下、本発明の効能を詳細に説明するために、いくつかの実施例をもって詳細説明するが、該実施例は説明するための示例に過ぎず、使用されるいずれの用語も本発明の明細書及び請求項の範囲や意味を制限するものではない。 Hereinafter, in order to explain the efficacy of the present invention in detail, some examples will be described in detail, but the examples are merely examples for explaining, and any term used is the specification of the present invention. And does not limit the scope or meaning of the claims.

なお、以下、動物試験に関わる実施例はすべて、台湾台中栄民総医院の論理委員会の審査を通過する。また、断らない限り、以下の実施例における幹細胞を培養・分化するためのすべての基本培地及び添加成分は市販品(Invitrogen)である。 In the following, all examples related to animal testing will pass the examination of the logic committee of Taichung Veterans General Hospital, Taiwan. Unless otherwise noted, all basal media and additive components for culturing and differentiating stem cells in the following examples are commercially available products (Invitrogen).

実施例1:胚性幹細胞の維持及び分化
米国のコロンビア大学から、HB9::GFP遺伝子組換えマウスから分離したHB9遺伝子組換え胚性幹細胞(以下、HB9::GFP 胚性幹細胞と略称する)を入手し、該細胞は運動ニューロン前駆細胞及び成熟運動ニューロン(以下、HB9::GFP 細胞と略称する)に分化できる。
Example 1: Maintenance and differentiation of embryonic stem cells HB9 recombinant embryonic stem cells (hereinafter abbreviated as HB9 :: GFP embryonic stem cells) isolated from HB9 :: GFP recombinant mice from Columbia University in the United States. Obtained, the cells can be differentiated into motor neuron progenitor cells and mature motor neurons (hereinafter abbreviated as HB9 :: GFP + cells).

該HB9::GFP 胚性幹細胞を、マイトマイシンC(mitomycin C)で処理したマウス胚線維芽細胞を含有する高グルコースDMEM培地に保持し、15%ウシ胎仔血清、2mMのグルタミン、0.1mMの非必須アミノ酸、1mMのピルビン酸、0.1mMの2−メルカプトエタノール(2−mercaptoethanol、Sigma−Aldrich)及び1000U/mlの白血病阻害因子(Chemicon)を添加する。 The HB9 :: GFP embryonic stem cells were kept in high glucose DMEM medium containing mouse embryonic fibroblasts treated with mitomycin C, 15% bovine fetal serum, 2 mM glutamine, 0.1 mM non-. Essential amino acids, 1 mM pyruvate, 0.1 mM 2-mercaptoethanol (2-mercaptoethanol, Sigma-Aldrich) and 1000 U / ml leukemia inhibitor (Chemicon) are added.

詳細な神経分化方法は、本発明の当業者が先行技術の内容に基づいて周知することであり、無血清胚様体様(serum−free embryoid−body−like、SFEB)(Watanabe K et al., 2005)、neurobasal/N2B27培地(Ying QL et al., 2003)及び間質細胞由来誘導活性方法(stroma cell−derived inducing activity methods、SDIA methods)(Kawasaki H et al., 2000)が含まれる。 The detailed method of neural differentiation is known to those skilled in the art based on the contents of the prior art, and is serum-free embryoid-body-like (SFEB) (Watanabe K et al.). , 2005), neurobasal / N2B27 medium (Ying QL et al., 2003) and stromal cell-derived inducing activity methods (stroma cell-developed inducing activity methods, SDIA methods) (Kawataka.

胚性幹細胞の分化が開始する初日を0日目とし、3−5日目に0.1μMのレチノイン酸(Sigma−Aldrich)を分化培地に加え、培養する5−7日のそれぞれに、200μMの外因性ソニックヘッジホッグ(R&D Systems)又は2μMの2,6,9−三置換プリン化合物(Purmorphamine、PU、Tocris)を添加して置換する。 The first day when embryonic stem cell differentiation begins is day 0, and on days 3-5, 0.1 μM retinoic acid (Sigma-Aldrich) is added to the differentiation medium, and 200 μM is added to each of 5-7 days of culturing. Substitute with exogenous sonic hedgehog (R & D Systems) or 2 μM 2,6,9-trisubstituted purine compounds (Purmorphamine, PU, Tocris).

実施例2:嗅神経鞘細胞の培養及び精製
約250〜300グラムのSDラット(Sprague−Dawley Rat)を用いて、該ラットの嗅粘膜(olfactory mucosa、OM)又は嗅球から嗅神経鞘細胞を分離した。該嗅神経鞘細胞を選択培地において連続的に培養して、顕微鏡下で4日目と7日目の細胞外形を観察し、結果を図1に示す。図1から明らかなように、該嗅神経鞘細胞は典型的な紡錘状である。
Example 2: Culture and purification of olfactory nerve sheath cells Approximately 250 to 300 grams of SD rats (Sprague-Dawley Rat) are used to isolate olfactory nerve sheath cells from the olfactory mucosa (OM) or olfactory bulb of the rats. did. The olfactory nerve sheath cells were continuously cultured in a selective medium, and the cell outlines on days 4 and 7 were observed under a microscope, and the results are shown in FIG. As is clear from FIG. 1, the olfactory nerve sheath cells are typical spindle-shaped.

次に、嗅粘膜及び嗅球から分離した嗅神経鞘細胞及び子ハムスターの線維芽細胞(baby hamster kidney fibroblast cells、BHK−21 cell)を免疫細胞染色法で分析した。上記各該細胞を4%パラホルムアルデヒド(paraformaldehyde)で固定して、0.3%のトリトン(Triton−X 100)で各該細胞を貫通した後、S100及びp75の一次抗体で免疫反応を行い、次に0.1%Tween−20のリン酸緩衝液で洗浄し、さらに蛍光標識を有する適当な二次抗体と反応させ、DAPIで核反応染色を行い、最後に正立顕微鏡(Nikon ECLIPSE 80I)又は共焦点顕微鏡(LSM510 Meta、 Zeiss)で免疫染色結果を観察し、結果を図2に示す。ここで、図中、上方の赤色はp75抗体で染色された結果、図中、下方の赤色はS100で免疫染色された結果、図中、青色はすべてDAPI染色結果である。 Next, olfactory nerve sheath cells and fibroblasts of offspring hamsters (baby hamster kidney fibroblast cells, BHK-21 cells) separated from the olfactory mucosa and the olfactory bulb were analyzed by immunocellular staining. Each of the above cells was fixed with 4% paraformal dye, penetrated with 0.3% Triton (Triton-X 100), and then immunoreactive with S100 and p75 primary antibodies. It was then washed with 0.1% Tween-20 phosphate buffer, further reacted with a suitable secondary antibody with a fluorescent label, subjected to nuclear reaction staining with DAPI, and finally with an upright microscope (Nikon ECLIPSE 80I). Alternatively, the immunostaining result is observed with a confocal microscope (LSM510 Meta, Zeiss), and the result is shown in FIG. Here, in the figure, the upper red color is the result of staining with the p75 antibody, the lower red color in the figure is the result of immunostaining with S100, and the blue color in the figure is the result of DAPI staining.

該嗅神経鞘細胞をp75抗体で染色して、蛍光活性化細胞選別技術(Fluorescence Activated Cell Sorter、FACS)により分析し、次に、トリパンブルー(trypan blue)で死亡細胞を除去し、該嗅神経鞘細胞の細胞数を分析して、その成長曲線を記録し、結果を図3A及び図3Bに示す。 The olfactory nerve sheath cells are stained with p75 antibody and analyzed by a fluorescence activated cell selection technique (Flow cytosequence Activated Cell Sorter, FACS), and then dead cells are removed with trypan blue to remove the olfactory nerve. The number of sheath cells was analyzed, the growth curve was recorded, and the results are shown in FIGS. 3A and 3B.

図2の結果から明らかなように、培養された嗅神経鞘細胞はほぼすべて、嗅神経鞘細胞マーカー、たとえばp75、s100を示す。それに対して、子ハムスターの線維芽細胞はp75及びs100抗原を示さない。それは、本培養方法が高純度嗅神経鞘細胞を発生できることを示す。また、図3Aの結果から明らかなように、未染色嗅神経鞘細胞(図中の青色部分)に比べて、大部分の嗅神経鞘細胞はp75抗体で染色でき(図中の赤色部分)、さらに、該嗅神経鞘細胞は増殖でき、細胞数が二倍になる時間(a double time)は約28〜32時間であった。 As is clear from the results of FIG. 2, almost all cultured olfactory nerve sheath cells show olfactory nerve sheath cell markers such as p75 and s100. In contrast, offspring hamster fibroblasts do not show p75 and s100 antigens. It is shown that this culture method can generate high-purity olfactory nerve sheath cells. In addition, as is clear from the results of FIG. 3A, most of the olfactory nerve sheath cells can be stained with the p75 antibody (red part in the figure) as compared with the unstained olfactory nerve sheath cells (blue part in the figure). Furthermore, the olfactory nerve sheath cells were able to proliferate, and the time for doubling the number of cells (a double time) was about 28 to 32 hours.

実施例3:マウス骨芽細胞株と胚性幹細胞から誘導する運動ニューロンとの共培養
図4に示すように、実施例1におけるマウス由来のHB9::GFP胚性幹細胞とマウス骨芽細胞株(PA6細胞)を先行文献(Pan HC et al., 2011)に開示された下記培養プロセスによって共培養する。0−3日に10%のKSR(Knockout serum replacement)培地、3−5日にレチノイン酸を含有するKSR培地、5−7日にレチノイン酸及び2,6,9−三置換プリン化合物を含有するNB培地(neurobasal medium、Invitrogen)を用いて、共培養した。次に、NB培地で培養し、8日目の該HB9::GFP 細胞を観察して、図5に示す。
Example 3: Co-culture of mouse osteoblastic cell line and motor neurons derived from embryonic stem cells As shown in FIG. 4, mouse-derived HB9 :: GFP embryonic stem cell and mouse osteoblastic cell line in Example 1 ( PA6 cells) are co-cultured by the following culture process disclosed in the prior literature (Pan HC et al., 2011). Contains 10% KSR (Knockout serum replacement) medium on days 0-3, KSR medium containing retinoic acid on days 3-5, retinoic acid and 2,6,9-3 substituted purine compounds on days 5-7. It was co-cultured using NB medium (neurobasal medium, Invitrogen). Next, the cells were cultured in NB medium, and the HB9 :: GFP + cells on the 8th day were observed and shown in FIG.

図5の結果から明らかなように、マウス骨芽細胞株PA6と共培養する該HB9::GFP 細胞は運動ニューロンに分化して緑色蛍光タンパク質を発現できるようになり、運動ニューロンとして典型的な外形をしている。また、本願の発明人等による以前の研究から分かるように、マウス胚性幹細胞から誘導する運動ニューロンはコリンアセチルトランスフェラーゼ及び運動ニューロンの特異的タンパク質MNR2(Pan HC et al., 2011)を発現でき、それにより、HB9::GFP胚性幹細胞はマウス骨芽細胞株PA6と共培養した後に、機能を有する成熟運動ニューロンに分化することが明らかなになった。 As is clear from the results of FIG. 5, the HB9 :: GFP + cells co-cultured with the mouse osteoblast line PA6 can differentiate into motor neurons and express green fluorescent protein, which is typical of motor neurons. It has an outer shape. In addition, as can be seen from previous studies by the inventors of the present application, motor neurons derived from mouse embryonic stem cells can express choline acetyltransferase and motor neuron specific protein MNR2 (Pan HC et al., 2011). It was revealed that HB9 :: GFP embryonic stem cells differentiate into functional mature motor neurons after co-culturing with mouse osteoblast line PA6.

実施例4:嗅神経鞘細胞によるHB9::GFP細胞の自己複製能力の維持
図6に示すように、まず、実施例1又は実施例3で開示された方法によりHB9::GFP胚性幹細胞を5日間培養した。この時、緑色蛍光が分化した胚性幹細胞に反映し始め、緑色蛍光を示す細胞は卵円形で、神経突起がなく、従って、この段階の緑色蛍光細胞は運動ニューロン前駆細胞であり、8日間培養した成熟運動ニューロンと異なる。
Example 4: Maintenance of HB9 :: GFP + cell self-renewal ability by olfactory nerve sheath cells As shown in FIG. 6, first, HB9 :: GFP embryonic stem cells by the method disclosed in Example 1 or Example 3. Was cultured for 5 days. At this time, green fluorescence begins to be reflected in differentiated embryonic stem cells, and the cells exhibiting green fluorescence are oval and have no neurites. Therefore, the green fluorescent cells at this stage are motor neuron progenitor cells and are cultured for 8 days. Different from mature motor neurons.

培養の5日目に、フローサイトメーター(Influx、nozzle 100 m、25 psi、Becton−Dickinson)を用いて緑色蛍光を示す単一のHB9::GFP細胞を選別した。次に、100 cells/mLの低密度条件で細胞培養を行い、単一のHB9::GFP細胞をそれぞれ嗅神経鞘細胞、PA6細胞及びマトリゲルに接種して、1週間培養した。 On day 5 of culture, single HB9 :: GFP + cells exhibiting green fluorescence were screened using a flow cytometer (Influx, nozzle 100 m, 25 psi, Becton-Dickinson). Next, cell culture was performed under a low density condition of 100 cells / mL, and a single HB9 :: GFP + cell was inoculated into olfactory nerve sheath cells, PA6 cells and Matrigel, respectively, and cultured for 1 week.

1週間培養したところ、単一のHB9::GFP細胞は図7に示すように嗅神経鞘細胞でしかコロニー(colony)を形成できず、且つ、該HB9::GFP細胞が形成する細胞コミュニティー(cell community)は嗅神経鞘細胞で10世代以上継代しても緑色蛍光タンパク質を発現でき、それに対して、該HB9::GFP細胞はPA6細胞又はマトリゲルに接種する場合は、均一に分布して成熟運動神経細胞に分化できるものの、自己複製及び成長ができなかったことを見出した。 After culturing for 1 week, a single HB9 :: GFP + cell can form a colony only with olfactory nerve sheath cells as shown in FIG. 7, and the cells formed by the HB9 :: GFP + cell. The cell community can express green fluorescent protein in olfactory nerve sheath cells for more than 10 generations, whereas the HB9 :: GFP + cells are uniformly inoculated into PA6 cells or Matrigel. It was found that although it could be distributed and differentiated into mature motor nerve cells, it could not self-replicate and grow.

さらに、選別した単一のHB9::GFP細胞をマイトマイシンCで処理した嗅神経鞘細胞に接種して、その細胞複製能力を失わせた。1週間培養後、結果は図8に示されるとおりである。図8の結果から明らかなように、細胞複製ができない嗅神経鞘細胞はHB9::GFP細胞の増殖効率を低下させ、HB9::GFP細胞は5世代以下しか継代できない。 In addition, a single selected HB9 :: GFP + cell was inoculated into olfactory nerve sheath cells treated with mitomycin C to impair their ability to replicate. After culturing for 1 week, the results are as shown in FIG. As can be seen from the results of FIG. 8, olfactory ensheathing cells can not cell replication reduces the growth efficiency of the HB9 :: GFP + cells, HB9 :: GFP + cells can only passaged five generations following.

この他、選別した単一のHB9::GFP細胞を、10000 cells/mLの高密度条件下で培養して、嗅神経鞘細胞と接触させずに、嗅神経鞘細胞で1日間培養した条件培地(conditional media)と共培養した。2日間毎に培養液を交換して、2週間培養した。この培養結果から、単一のHB9::GFP細胞は嗅神経鞘細胞と接触させなくても、細胞コミュニティー(cell community)を形成して複製し、さらに継代し続けることができることを見出した。 In addition, a single selected HB9 :: GFP + cell was cultured under a high density condition of 10000 cells / mL and cultured in the olfactory nerve sheath cells for 1 day without contact with the olfactory nerve sheath cells. It was co-cultured with a medium (conditional media). The culture solution was changed every 2 days, and the cells were cultured for 2 weeks. From this culture result, it was found that a single HB9 :: GFP + cell can form a cell community, replicate, and continue to subculture without contact with olfactory nerve sheath cells. ..

上記結果から示すように、健康な嗅神経鞘細胞と共培養し、又は嗅神経鞘細胞を培養した条件培地と培養することにより、それぞれ運動ニューロン前駆細胞の自己複製を保持できる特異的ニッチ(niches)を提供できるため、HB9::GFP細胞を保持する重要なニッチ因子となっている。 As shown in the above results, specific niches capable of retaining self-renewal of motor neuron progenitor cells by co-culturing with healthy olfactory nerve sheath cells or by culturing the olfactory nerve sheath cells in a cultured conditioned medium. ) Is an important niche factor for retaining HB9 :: GFP + cells.

実施例5:運動ニューロンの分化能力
フローサイトメーター(Influx、nozzle 100 μm、25 psi、Becton−Dickinson)を用いて、嗅神経鞘細胞と共培養して得た単一の5世代目のHB9::GFP細胞を選別した。選別した該HB9::GFP細胞をPA6細胞に接種して、3日間培養後、観察したところ、大部分の細胞が、図9に示すように、迅速に軸索を延ばして、成熟運動ニューロンになり、分化した運動ニューロンとして典型的な形態を示す。図9に示すように、嗅神経鞘細胞で増殖するHB9::GFP細胞はまだ分化能力を維持し、成熟運動ニューロンに分化できる。
Example 5: Differentiation ability of motor neurons
Single fifth generation HB9 :: GFP + cells obtained by co-culturing with olfactory nerve sheath cells were selected using a flow cytometer (Influx, nozzle 100 μm, 25 psi, Becton-Dickinson). When the selected HB9 :: GFP + cells were inoculated into PA6 cells, cultured for 3 days, and then observed, most of the cells rapidly extended axons and matured motor neurons as shown in FIG. And show a typical morphology as a differentiated motor neuron. As shown in FIG. 9, HB9 :: GFP + cells proliferating in olfactory nerve sheath cells still maintain their differentiation ability and can differentiate into mature motor neurons.

実施例6:脊髄損傷動物モデルの作成
本実施例では、脊髄損傷動物モデルの作成方法について、先行文献(Cheng FC、 et al., 2012; Cheng FC et al., 2010; Yang DY et al., 2012)を参照すればよい。
Example 6: Creation of Spinal Cord Injury Animal Model In this example, a method for creating a spinal cord injury animal model is described in the prior art (Cheng FC, et al., 2012; Cheng FC et al., 2010; Yang DY et al., 2012) may be referred to.

250〜300グラムのSDラットを用いて、4%イソフルランで麻酔導入し、次に、1−2%イソフルランで麻酔状態を維持した。鎖骨に平行した胸骨から腋下までの水平方向の切開部を介して右側の腕神経叢と接触した。大胸筋を除去して、完全な頭部静脈を得た。鎖骨下における血管を固定して、胴体下部を解剖した。鉗子を用いてC7神経根を脊髄から5分間抜いた後、傷口を縫合して、脊髄損傷ラットの作成に供した。 Using 250-300 grams of SD rats, anesthesia was introduced with 4% isoflurane and then maintained anesthetized with 1-2% isoflurane. It contacted the right brachial plexus through a horizontal incision from the sternum parallel to the clavicle to the axilla. The pectoralis major muscle was removed to obtain a complete head vein. The blood vessels under the clavicle were fixed and the lower torso was dissected. After removing the C7 nerve root from the spinal cord for 5 minutes using forceps, the wound was sutured and used for preparation of a spinal cord injured rat.

実施例7:動物試験
実施例6で作成した脊髄損傷ラットを4群に分けて、脊髄損傷2週間後、該ラットのそれぞれについて脊椎T7−T8で完全椎弓切除術を行って、損傷を引き起こす脊髄前角(ventral horn)及び反対側の健康な部位で、条件が異なる細胞移植を行い、そのうち、第1群では、2μlのリン酸塩緩衝液を用い、第2群では、5x10個の嗅神経鞘細胞を移植し、第3群では、5x10個のHB9::GFP細胞を移植し、第4群では、2.5x10個の移植嗅神経鞘細胞を用いて2.5 x10個のHB9::GFP細胞を1日間前処理(pretreatment)して、HB9::GFP細胞を複製させ、次に移植する。
Example 7: Animal test The spinal cord injured cells prepared in Example 6 are divided into 4 groups, and 2 weeks after the spinal cord injury, complete vertebral resection is performed on each of the rats with spinal cord T7-T8 to cause injury. Cell transplantation under different conditions was performed at the ventral horn and the contralateral healthy site, of which 2 μl phosphate buffer was used in the first group and 5x10 5 cells in the second group. The olfactory nerve sheath cells were transplanted, and in the third group, 5x10 5 HB9 :: GFP + cells were transplanted, and in the fourth group, 2.5x10 and 2.5x10 using 5 transplanted olfactory nerve sheath cells. Five HB9 :: GFP + cells are pretreated for one day to replicate HB9 :: GFP + cells and then transplant.

細胞移植手段としてマイクロインジェクションが使用される。脊柱右側のマイクロインジェクションは、細胞を、脊椎T8及びT9の正中線からの0.75ミリメートル及び深さ1.2ミリメートルで白質に、20分間かけて注射し、注射が終了した後、5分間保持し、脊柱左側のマイクロインジェクションは、細胞を、脊椎T8及びT9の正中線からの0.5ミリメートル及び深さ1.2ミリメートルで、前角に20分間かけて注射し、注射が終了した後、5分間保持した。各群ラットに移植して1週間後、各群ラットを麻酔して、25ミリリットルのリン酸塩緩衝液及び100ミリリットルの4%パラホルムアルデヒドで灌流して、それぞれ脊髄を取って免疫組織化学染色を行い、CD11b、コリンアセチルトランスフェラーゼの発現を観察し、結果を図10A、図10B及び図11A、図11Bに示す。 Microinjection is used as a means of cell transplantation. Microinjection on the right side of the spinal column injects cells into the white matter 0.75 mm from the midline of the spine T8 and T9 and 1.2 mm deep over 20 minutes and holds for 5 minutes after the injection is complete. Microinjection on the left side of the spinal column then injects the cells 0.5 mm from the midline of the spine T8 and T9 and 1.2 mm deep into the anterior horn over 20 minutes, after the injection is complete. It was held for 5 minutes. One week after transplantation into each group of rats, each group of rats was anesthetized, perfused with 25 ml of phosphate buffer and 100 ml of 4% paraformaldehyde, and the spinal cord was removed for immunohistochemical staining. Then, the expression of CD11b and choline acetyltransferase was observed, and the results are shown in FIGS. 10A, 10B and 11A, 11B.

脊髄損傷ラットのミクログリア細胞(microglial cells)が過度に活性化されて、神経細胞炎症を引き起こすため、ミクログリア細胞はCD11bを大量で発現させ、且つ運動ニューロンは破壊される。図10A、図10B及び図11A、図11Bの結果から明らかなように、第1群のラットはCD11b発現量が他の群より遥かに高く、且つ、コリンアセチルトランスフェラーゼで脊髄前角の運動ニューロンをキャリブレーションした結果、第1群のラットの運動ニューロンが深刻に損傷されていることを示した。第1群ラットに比べ、第4群のラットは、CD11b発現量が著しく低下し、コリンアセチルトランスフェラーゼを発現させる大量の運動ニューロンが検出できることにより、その内在性運動ニューロンの大部分が損傷されていないことを示した。また、第4群のラットと第2群のラット又は第3群のラットを比較して明らかなように、運動ニューロン又は嗅神経鞘細胞単独を移植する場合に比べて、運動ニューロンと嗅神経鞘細胞の両方の移植は宿主の運動ニューロンに対し相乗した修復効果を果たす。 Since microglial cells of spinal cord injured rats are overactivated and cause nerve cell inflammation, microglial cells express a large amount of CD11b and motor neurons are destroyed. As is clear from the results of FIGS. 10A, 10B and 11A, 11B, the rats in the first group had much higher CD11b expression levels than the other groups, and choline acetyltransferase was used to generate motor neurons in the anterior horn of the spinal cord. As a result of calibration, it was shown that the motor neurons of the first group of rats were seriously damaged. Compared to group 1 rats, group 4 rats had significantly reduced CD11b expression and were able to detect a large number of motor neurons expressing choline acetyltransferase, so that most of their endogenous motor neurons were not damaged. I showed that. In addition, as is clear by comparing the rats in the 4th group with the rats in the 2nd group or the 3rd group, the motor neurons and the olfactory nerve sheath are compared with the case where the motor neurons or the olfactory nerve sheath cells are transplanted alone. Transplantation of both cells has a synergistic repair effect on the host motor neurons.

上記実施例の結果から明らかなように、本発明に係る運動ニューロン前駆細胞の活性を持続的に維持する方法は、運動ニューロン前駆細胞が健康な嗅神経鞘細胞の存在するニッチにおいて、その自己複製能力を維持できるようにし、運動ニューロンに先行技術より優れた保護効果を提供する。さらに、培養過程において得られた該運動ニューロン前駆細胞は、分化条件でも成熟運動ニューロンに分化でき、運動ニューロンの成長及び神経機能の回復に寄与する。上記方法によれば、本発明で提供した医薬組成物及び処理方式は、自己複製能力と分化能力を有する運動ニューロン前駆細胞を対象に移植して、まず該運動ニューロン前駆細胞を複製して、次に対象の神経損傷部位を修復又は再生することによって、運動ニューロン疾患を効果的に治療する効能を実現する。 As is clear from the results of the above examples, the method of sustainably maintaining the activity of the motor neuron progenitor cells according to the present invention is such that the motor neuron progenitor cells self-replicate in a niche in which healthy olfactory nerve sheath cells are present. It enables the maintenance of ability and provides motor neurons with a better protective effect than the prior art. Furthermore, the motor neuron progenitor cells obtained in the culture process can differentiate into mature motor neurons even under differentiation conditions, and contribute to the growth of motor neurons and the recovery of neural function. According to the above method, the pharmaceutical composition and treatment method provided in the present invention transplant a motor neuron progenitor cell having self-renewal ability and differentiation ability into a subject, first replicate the motor neuron progenitor cell, and then By repairing or regenerating the target nerve damage site, the effect of effectively treating motor neuron disease is realized.

以上は各該実施例をもって本発明を詳細に説明したが、当業者が本発明の精神を脱逸することなく、明細書の実施例についてなさる簡単な修正や変化はいずれも本案の請求項に含まれるべきである。 Although the present invention has been described in detail with reference to the above embodiments, any simple modifications or changes made to the examples of the specification by those skilled in the art without deviating from the spirit of the present invention are claimed in the present invention. Should be included.

参照文献
Kozubenko N, Turnovcova K, Kapcalova M, Butenko O, Anderova M, et al. (2010) Analysis of in vitro and in vivo characteristics of human embryonic stem cell−derived neural precursors. Cell Transplant 19: 471−486.
Mandai M, Ikeda H, Jin ZB, Iseki K, Ishigami C, et al. (2010) Use of lectins to enrich mouse ES−derived retinal progenitor cells for the purpose of transplantation therapy. Cell Transplant 19: 9−19.
Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, et al. (2010) Labeling human embryonic stem cell−derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA−compatible alternative to firefly luciferase. Cell Transplant 19: 55−65.
Muguruma K, Sasai Y (2012) In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis. Dev Growth Differ 54: 349−357.
Willerth SM (2011) Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Res Ther 2: 17.
Lopez−Gonzalez R, Kunckles P, Velasco I (2009) Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant 18: 1171−1181.
Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, et al. (2004) Axonal growth of embryonic stem cell−derived motoneurons in vitro and in motoneuron−injured adult rats. Proc Natl Acad Sci U S A 101: 7123−7128.
Chiba S, Iwasaki Y, Sekino H, Suzuki N (2003) Transplantation of motoneuron−enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant 12: 457−468.
Lopez−Gonzalez R, Velasco I (2012) Therapeutic potential of motor neurons differentiated from embryonic stem cells and induced pluripotent stem cells. Arch Med Res 43: 1−10.
Chipman PH, Toma JS, Rafuse VF (2012) Generation of motor neurons from pluripotent stem cells. Prog Brain Res 201: 313−331.
Jessell TM, Surmeli G, Kelly JS (2011) Motor neurons and the sense of place. Neuron 72: 419−424.
Thonhoff JR, Ojeda L, Wu P (2009) Stem cell−derived motor neurons: applications and challenges in amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 4: 178−199.
Wu CY, Whye D, Mason RW, Wang W (2012) Efficient differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp: e3813.
Takazawa T, Croft GF, Amoroso MW, Studer L, Wichterle H, et al. (2012) Maturation of spinal motor neurons derived from human embryonic stem cells. PLoS One 7: e40154.
Wada T, Honda M, Minami I, Tooi N, Amagai Y, et al. (2009) Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One 4: e6722.
Wu SM, Tan KS, Chen H, Beh TT, Yeo HC, et al. (2012) Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by overexpression of sonic hedgehog in human embryonic stem cells. Stem Cells Dev 21: 729−741.
Oh S, Huang X, Liu J, Litingtung Y, Chiang C (2009) Shh and Gli3 activities are required for timely generation of motor neuron progenitors. Dev Biol 331: 261−269.
Ruiz i Altaba A (1998) Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125: 2203−2212.
Raimondi A, Mangolini A, Rizzardini M, Tartari S, Massari S, et al. (2006) Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS−linked G93ASOD1. Eur J Neurosci 24: 387−399.
Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, et al. (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194: 209−221.
Raisman G, Li Y (2007) Repair of neural pathways by olfactory ensheathing cells. Nat Rev Neurosci 8: 312−319.
Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, et al. (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24: 7848−7858.
Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385−397.
Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, et al. (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23: 659−674.
Pan HC, Wu YT, Shen SC, Wang CC, Tsai MS, et al. (2011) Characterization of axon formation in the embryonic stem cell−derived motoneuron. Cell Transplant 20: 493−502.
Cheng FC, Sheu ML, Su HL, Chen YJ, Chen CJ, et al. (2012) The effect of exercise on mobilization of hematopoietic progenitor cells involved in the repair of sciatic nerve crush injury. J Neurosurg.
Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, et al. (2010) Enhancement of regeneration with glia cell line−derived neurotrophic factor−transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg 112: 868−879.
Yang DY, Sheu ML, Su HL, Cheng FC, Chen YJ, et al. (2012) Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid−derived mesenchymal stem cells regulated by stromal cell−derived factor−1alpha in a sciatic nerve injury model. J Neurosurg 116: 1357−1367.
Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF (2006) Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci 26: 3256−3268.
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8: 288−296.
Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21: 183−186.
Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell−derived inducing activity. Neuron 28: 31−40.
References Kozubenko N, Turnovkova K, Kapcalova M, Butenko O, Anderova M, et al. (2010) Analysis of in vitro and in vivo precursors of human embryonic stem cell-derivated neural precursors. Cell Transplant 19: 471-486.
Mandai M, Ikeda H, Jin ZB, ISEKI K, Ishigami C, et al. (2010) Use of lectins to enrich mouse ES-developed retinal progenitor cells for the purpose of transplantation therapy. Cell Transplant 19: 9-19.
Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrusow L, et al. (2010) Labeling human embryonic stem cell-derivated cardiomyocytes with indocyanine green for non-invasive trailing with optical optical tactical luciferase luciferase luciferase Cell Transplant 19: 55-65.
Muguruma K, Sasai Y (2012) In vitro recapitulation of neural development embryonic stem cells: from neurogenesis to histogenesis. Dev Growth Differ 54: 349-357.
Willerth SM (2011) Natural tissue engineering emerging embryonic and induced pluripotent stem cells. Stem Cell Res Ther 2: 17.
Lopez-Gonzelez R, Kunkles P, Velasco I (2009) Transient recovery in a rat model of familial amyotropic lateral scholosis before tract Cell Transplant 18: 1171-1181.
Harper JM, Krishan C, Darman JS, Deshpanda DM, Peck S, et al. (2004) Axonal growth of embryonic stem cell-derived motoneurons in in vitro and in motoneuron-injured adults. Proc Natl Acad Sci USA 101: 7123-7128.
Chiba S, Iwasaki Y, Sekino H, Suzuki N (2003) Transplantation of motoneuron-enriched neuron cells diverd from motion motor engine Cell Transplant 12: 457-468.
Lopez-Gonzelez R, Velasco I (2012) Therapeutic potential of motor neurons differentiated from embryo embryonic stem cells and integrated plez-Gonzelez R, Velasco I (2012) Therapeutic potential of motor neurons differentiated stem cells and integrated. Arch Med Res 43: 1-10.
Chipman PH, Toma JS, Rafuse VF (2012) Generation of motor neurons from pleripotent stem cells. Prog Brain Res 201: 313-331.
Jessell TM, Surmelli G, Kelly JS (2011) Motor neurons and the sense of place. Neuron 72: 419-424.
Thonhof JR, Ojeda L, Wu P (2009) Stem cell-developed motor neurons: applications and challenges in amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 4: 178-199.
Wu CY, Why D, Mason RW, Wang W (2012) Effective differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp: e3813.
Takazawa T, Croft GF, Amoroso MW, Studio L, Wichterle H, et al. (2012) Measurement of spinal motor neurons developed from human embryonic stem cells. PLoS One 7: e40154.
Wada T, Honda M, Minami I, Tooi N, Amagai Y, et al. (2009) Highly effective differentiation and enrichment of spinal motor neurons divided from human and mnkey embryonic stem cells. PLoS One 4: e6722.
Wu SM, Tan KS, Chen H, Beh TT, Yeo HC, et al. (2012) Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by overexperience of sonic hedgehog Stem Cells Dev 21: 729-741.
Oh S, Hung X, Liu J, Lightingting Y, Chang C (2009) Sh and Gli3 activities are requiered for timely generation of motor neuron. Dev Biol 331: 261-269.
Ruiz i Altaba A (1998) Combinatorical Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125: 2203-2212.
Raimondo A, Mangolini A, Rizzardini M, Tatari S, Massari S, et al. (2006) Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to family ALS-linked G93ASOD1. Eur J Neuroscience 24: 387-399.
Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, et al. (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194: 209-221.
Raisman G, Li Y (2007) Repair of neuronial pathways by olfaction ensheathing cells. Nat Rev Neurosci 8: 312-319.
Miles GB, John DC, Witchale H, Jesusell TM, Rafuse VF, et al. (2004) Fundamental products of motor neurons distributed from mouse embryonic stem cells. J Neuroscience 24: 7884-7858.
Wikiterle H, Leeberam I, Porter JA, Jessell TM (2002) Directed differentation of embryonic stem cells into motor neurons. Cell 110: 385-397.
Arber S, Han B, Mendelson M, Smith M, Jesusell TM, et al. (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23: 659-674.
Pan HC, Wu YT, Shen SC, Wang CC, Tsai MS, et al. (2011) Kernelization of axon formation in the embryonic stem cell-developed motorone. Cell Transplant 20: 493-502.
Chen FC, Sheu ML, Su HL, Chen YJ, Chen CJ, et al. (2012) The effect of exercise on mobilization of hematopoietic progenitor cells in volved in the repair of sciatic nerve crush. J Neurosurg.
Chen FC, Tai MH, Sheu ML, Chen CJ, Yang DY, et al. (2010) Engineering of regeneration with glia cell line-derivated neurotrophic factor-transduced human amniotic fluid mesenchymal cell culture cell line. J Neurosurg 112: 868-879.
Yang DY, Sheu ML, Su HL, Chen FC, Chen YJ, et al. (2012) Dual regeneration of muscle and nerve by intravenous administration of human animal fluid-derived mesenchymal sciatic nerve sciatic nerve sciatic nerve sciatic nerve sciatic nerve sciatic nerve sciatic nerve sciatic nerve. J Neurosurg 116: 1357-1367.
Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF (2006) Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neuroscience 26: 3256-3268.
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. (2005) Directed differentiation of radiation physical precursors from embryombryonic stem cells. Nat Neurosci 8: 288-296.
Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectoderm precursor. Nat Biotechnology 21: 183-186.
Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-developed inducing activity. Neuron 28: 31-40.

Claims (9)

体外で運動ニューロン前駆細胞を持続的に成長させる方法であって、
運動ニューロン前駆細胞を取得するステップであって、前記運動ニューロン前駆細胞が脊椎動物から取得するステップaと、
培養ニッチを作製するステップであって、前記培養ニッチには、嗅神経鞘細胞を含有するステップbと、
前記運動ニューロン前駆細胞を前記培養ニッチにおいて培養するステップであって、前記運動ニューロン前駆細胞を前記培養ニッチにおいて持続的に増殖させ、且つ成熟運動神経細胞への分化能力を有し、成熟運動神経細胞にまで分化させないようにし、前記運動ニューロン前駆細胞の培養密度が100cells/mL以上であり、且つ嗅神経鞘細胞に接触するステップcと、を含む方法。
A method for the continuous growth of motor neuron progenitor cells in vitro.
A step of acquiring a motor neuron progenitor cell, which is a step a obtained by the motor neuron progenitor cell from a vertebrate,
A step of preparing a culture niche, wherein the culture niche includes step b containing olfactory nerve sheath cells, and
A step of culturing the motor neuron progenitor cells in the culture niche, in which the motor neuron progenitor cells are continuously proliferated in the culture niche and have the ability to differentiate into mature motor neurons, and are mature motor neurons. A method including step c in which the culture density of the motor neuron progenitor cells is 100 cells / mL or more and the cells come into contact with the olfactory nerve sheath cells.
前記ステップcにおいて、少なくとも1つの前記運動ニューロン前駆細胞を嗅神経鞘細胞において培養することを特徴とする請求項1に記載の体外で運動ニューロン前駆細胞を持続的に成長させる方法。 The method for continuously growing motor neuron progenitor cells in vitro according to claim 1, wherein in step c, at least one motor neuron progenitor cell is cultured in an olfactory nerve sheath cell. 前記運動ニューロン前駆細胞は、多能性幹細胞を分化誘導して得られた細胞であって、細胞の形態が卵円形であり、且つ神経突起がない細胞であることを特徴とする請求項1に記載の体外で運動ニューロン前駆細胞を持続的に成長させる方法。 The motor neuron progenitor cell is a cell obtained by inducing differentiation of a pluripotent stem cell, and is characterized in that the cell morphology is oval and there is no neurite. A method of sustainably growing motor neuron progenitor cells in vitro as described. 体外で運動ニューロン前駆細胞を持続的に成長させる方法であって、
運動ニューロン前駆細胞を取得するステップであって、前記運動ニューロン前駆細胞が脊椎動物から取得するステップaと、
培養ニッチを作製するステップであって、前記培養ニッチは、嗅神経鞘細胞を培養するように使用した培養ニッチであり、且つ、前記培養ニッチには、嗅神経鞘細胞を含有しないステップbと、
前記運動ニューロン前駆細胞を前記培養ニッチにおいて培養するステップであって、前記運動ニューロン前駆細胞を前記培養ニッチにおいて持続的に増殖させ、且つ成熟運動神経細胞への分化能力を有し、成熟運動神経細胞にまで分化させないようにし、前記運動ニューロン前駆細胞の培養密度が100cells/mL以上であり、且つ嗅神経鞘細胞に接触するステップcと、を含む方法。
A method for the continuous growth of motor neuron progenitor cells in vitro.
A step of acquiring a motor neuron progenitor cell, which is a step a obtained by the motor neuron progenitor cell from a vertebrate,
A step of preparing a culture niche, wherein the culture niche is a culture niche used for culturing olfactory nerve sheath cells, and the culture niche does not contain olfactory nerve sheath cells.
A step of culturing the motor neuron progenitor cells in the culture niche, in which the motor neuron progenitor cells are continuously proliferated in the culture niche and have the ability to differentiate into mature motor neurons, and are mature motor neurons. A method including step c in which the culture density of the motor neuron progenitor cells is 100 cells / mL or more and the cells come into contact with the olfactory nerve sheath cells.
前記運動ニューロン前駆細胞は、多能性幹細胞を分化誘導して得られた細胞であって、細胞の形態が卵円形であり、且つ神経突起がない細胞であることを特徴とする請求項4に記載の体外で運動ニューロン前駆細胞を持続的に成長させる方法。 The motor neuron progenitor cell is a cell obtained by inducing differentiation of a pluripotent stem cell, and is characterized in that the cell morphology is oval and there is no neurite. A method of sustainably growing motor neuron progenitor cells in vitro as described. 有効量の運動ニューロン前駆細胞及び少なくとも1種の薬学的に許容可能な担体を含む医薬組成物であって、
前記運動ニューロン前駆細胞は、請求項1または請求項4の方法で培養した運動ニューロン前駆細胞であることを特徴とする医薬組成物。
A pharmaceutical composition comprising an effective amount of motor neuron progenitor cells and at least one pharmaceutically acceptable carrier.
A pharmaceutical composition, wherein the motor neuron progenitor cell is a motor neuron progenitor cell cultured by the method of claim 1 or 4.
嗅神経鞘細胞を更に含有することを特徴とする請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, further containing olfactory nerve sheath cells. 請求項6に記載の医薬組成物の運動ニューロン疾患を治療する薬物の製造における用途。 Use in the manufacture of a drug for treating a motor neuron disease of the pharmaceutical composition according to claim 6. 前記疾患は、脳卒中、脊髄損傷、退行性神経疾患、筋萎縮性側索硬化症及び運動ニューロンが死亡していくことを症状とする疾患からなる群から選ばれることを特徴とする請求項8に記載の用途。 8. Claim 8 is characterized in that the disease is selected from the group consisting of stroke, spinal cord injury, degenerative neurological disease, amyotrophic lateral sclerosis, and a disease symptomatic of death of motor neurons. Described use.
JP2020122746A 2020-07-17 2020-07-17 Method and pharmaceutical composition for continuously growing motor neuron precursor cell Pending JP2020182485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020122746A JP2020182485A (en) 2020-07-17 2020-07-17 Method and pharmaceutical composition for continuously growing motor neuron precursor cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020122746A JP2020182485A (en) 2020-07-17 2020-07-17 Method and pharmaceutical composition for continuously growing motor neuron precursor cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017527287A Division JP2018501782A (en) 2014-11-21 2014-11-21 Method and pharmaceutical composition for continuously growing motor neuron progenitor cells

Publications (1)

Publication Number Publication Date
JP2020182485A true JP2020182485A (en) 2020-11-12

Family

ID=73044039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020122746A Pending JP2020182485A (en) 2020-07-17 2020-07-17 Method and pharmaceutical composition for continuously growing motor neuron precursor cell

Country Status (1)

Country Link
JP (1) JP2020182485A (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOMATERIALS SCIENCE, 2014.06.30, VOL.2, NO.11, PP.1672-1682, JPN6021029869, ISSN: 0004564916 *
BIOMATERIALS, 2012, VOL.33, PP.6345-6354, JPN6018020645, ISSN: 0004564913 *
STEM CELL REVIEW AND REPORTS, 2014.07.05, VOL.10, PP.772-785, JPN6018020647, ISSN: 0004564914 *
TISSUE AND CELL, 2013, VOL.45, PP.295-305, JPN6018020649, ISSN: 0004564915 *

Similar Documents

Publication Publication Date Title
Kim et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair
KR102625865B1 (en) Methods for differentiating pluripotent cells
Brewer Isolation and culture of adult rat hippocampal neurons
di Summa et al. Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions
JP4371179B2 (en) Lineage-restricted neuron precursor
JP2022084697A (en) Methods and compositions for treating neural degeneration
JP5700301B2 (en) Method for inducing differentiation of neural crest cells from pluripotent stem cells
JP2014509192A (en) Methods and compositions for generating patient-specific pluripotent neuronal stem cells
CN105392881A (en) Small molecule based conversion of somatic cells into neural crest cells
US20190010455A1 (en) Isolation And Use Of Pluripotent Stem Cell Population From Adult Neural Crest-Derived Tissues
Baehr et al. Growth of adult rat retinal ganglion cell neurites on astrocytes
US20090175835A1 (en) Composition for treating damage of central or peripheral nerve system
CN109219441A (en) Express the purposes of dental pulp stem cell of mesenchyma and neuronal marker and combinations thereof treatment neurological disease
WO2021224496A1 (en) Methods for differentiating stem cells into dopaminergic progenitor cells
JP2004511266A (en) Therapeutic uses for mesenchymal stromal cells
Abdolahi et al. Improvement of rat spinal cord injury following lentiviral vector-transduced neural stem/progenitor cells derived from human epileptic brain tissue transplantation with a self-assembling peptide scaffold
Charalambous et al. Engrafted Chicken Neural Tube–Derived Stem Cells Support the Innate Propensity for Axonal Regeneration within the Rat Optic Nerve
Stern et al. Stem cells for retinal repair
Xie et al. Co-transplantation of MRF-overexpressing oligodendrocyte precursor cells and Schwann cells promotes recovery in rat after spinal cord injury
TWI575069B (en) A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition
JP2020182485A (en) Method and pharmaceutical composition for continuously growing motor neuron precursor cell
CN107250350B (en) Method and pharmaceutical composition for continuously maintaining growth of motor neuron precursor cells
Yang et al. Transplantation of Schwann cells differentiated from adipose-derived stem cells modifies reactive gliosis after contusion brain injury in rats
KR102568532B1 (en) Method for producing neural stem cells via 3d culture
Viktorov et al. Multipotent stem and progenitor cells of the olfactory epithelium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308