JP2020182455A - Novel serum type vaccine for prevention of fish chain coccus disease - Google Patents

Novel serum type vaccine for prevention of fish chain coccus disease Download PDF

Info

Publication number
JP2020182455A
JP2020182455A JP2020077248A JP2020077248A JP2020182455A JP 2020182455 A JP2020182455 A JP 2020182455A JP 2020077248 A JP2020077248 A JP 2020077248A JP 2020077248 A JP2020077248 A JP 2020077248A JP 2020182455 A JP2020182455 A JP 2020182455A
Authority
JP
Japan
Prior art keywords
vaccine
strain
kctc
fish
serotype
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020077248A
Other languages
Japanese (ja)
Other versions
JP7021283B2 (en
Inventor
ヒョンジャ ハン
Hyun Ja Han
ヒョンジャ ハン
スンヒ チョン
Sung Hee Jung
スンヒ チョン
ヘソン チェ
Hye Sung Choi
ヘソン チェ
ミヨン チョ
Miyoung Cho
ミヨン チョ
ミョンスク キム
Myoung Sug Kim
ミョンスク キム
クァンイル キム
Kwang Il Kim
クァンイル キム
ウニョン ミン
Eun Young Min
ウニョン ミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Fisheries Research and Development Institute
National Institute of Fisheries Science
Original Assignee
National Fisheries Research and Development Institute
National Institute of Fisheries Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190049050A external-priority patent/KR102047911B1/en
Priority claimed from KR1020190130734A external-priority patent/KR102106168B1/en
Application filed by National Fisheries Research and Development Institute, National Institute of Fisheries Science filed Critical National Fisheries Research and Development Institute
Publication of JP2020182455A publication Critical patent/JP2020182455A/en
Application granted granted Critical
Publication of JP7021283B2 publication Critical patent/JP7021283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

To provide novel Streptococcus bacterial strain and, a vaccine for prevention of a chain coccus disease using the novel Streptococcus bacterial strain.SOLUTION: There are provided an inactivation vaccine for prevention of a chain coccus disease of fish including a novel Streptococcus bacterial strain, inactivated Streptococcus parauberis bacterial strain, a production method thereof and an administration method thereof.EFFECT: As an effect, it is possible to effectively prevent a chain coccus disease of fishes, especially cultivated flatfishes for significantly preventing death of fishes due to a chain coccus disease. Therefore, it is possible to increase productivity of fishes, and save cost required for use of an antibiotic. In addition, by a vaccine for preventing bacterial diseases of fishes, it is possible to produce healthy fishes for which no antibiotic has to be used, for contributing to development of a fish breeding industry, for improving significantly fish consumption.SELECTED DRAWING: Figure 9

Description

本発明は、新規ストレプトコッカス菌株及びこれを用いた連鎖球菌病予防用ワクチンに関し、より詳細には、新規ストレプトコッカス菌株、不活性化されたストレプトコッカスパラウベリス菌株を含む魚類の連鎖球菌病予防用不活性化ワクチン、その製造方法及び投与方法に関する。 The present invention relates to a novel streptococcal strain and a vaccine for preventing streptococcus using the same, and more specifically, inactivating a novel streptococcal strain and an inactivated streptococcal disease preventive vaccine in fish including an inactivated streptococcal strain. Regarding vaccine, its production method and administration method.

連鎖球菌病(Streptococcosis)は天然及び養殖の淡水魚及び海産魚の敗血症を誘発する疾病である。海産魚類であるブリ(Yellowtail;Seriolae spp.)、ウナギ(Eel;Anguilla japonica)を含めて全世界の様々な魚種に感染されて疾病を誘発する。ストレプトコッカスパラウベリス(Streptococcus parauberis)、ストレプトコッカスイニエ(Streptococcus iniae)、ストレプトコッカスアガラクティエ(Streptococcus agalactiae)、ストレプトコッカスディスガラクティエ(Streptococcus dysgalactiae)種は、国と地域を問わず魚類に発生して深刻な被害を与えている。 Streptococcus disease is a disease that induces sepsis in natural and farmed freshwater and marine fish. It is infected with various fish species in the world including yellowtail (Seriolae spp.) And eel (Eel; Angulla japonica), which are marine fish, and induces diseases. Streptococcus parauberis, Streptococcus iniae, Streptococcus agaractiae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus agalactiae Giving.

2014年度世界水産物生産量は1億9,572万トンであった。そのうち漁獲生産量は9,463万トンであり、ここ数年間類似の漁獲生産量を示しているが、養殖生産量は1億109万トンで年毎増え、2025年では1億200万トンとなり、2013〜2015年比で39%増加すると予想されている(FAO)。2017年の韓国魚類養殖生産量は86,387トンであり、魚種別生産量はヒラメが41,207トン(全生産量の47.7%)で、同年生産金額もヒラメが5,845億ウォン(57.9%)を記録し、ヒラメが韓国の代表魚類養殖品種であることが分かる(漁業生産統計、統計庁、2018)。ヒラメは、韓国海洋水産部が推進する水産分野の10代輸出戦略品目として指定されたもので、現在、養殖水産物戦略品目育成研究開発事業で推進されている付加価値の高い品種である。 The world production of marine products in 2014 was 195.72 million tons. Of this, the catch production is 94.63 million tons, showing similar catch production for the past few years, but the aquaculture production is 101.09 million tons, increasing annually to 102 million tons in 2025. , Is expected to increase by 39% compared to 2013-2015 (FAO). In 2017, Korean fish farming production was 86,387 tons, and the production by fish type was 41,207 tons (47.7% of the total production), and the production value of the same year was 584.5 billion won. (57.9%) was recorded, indicating that flounder is a representative fish farming variety in Korea (Fish Production Statistics, Statistics Agency, 2018). Flounder is designated as a teenage export strategic item in the fisheries field promoted by the Ministry of Oceans and Fisheries of Korea, and is a high-value-added variety currently being promoted in the aquaculture product strategic item development research and development project.

養殖ヒラメの疾病による被害は、年間生産量の30%に至る年間1.2万余トン程度と推定され、2018年に養殖ヒラメの斃死を最も誘発した疾病として、寄生虫性疾病であるスクーチカ病(44.5%)、やつれ症(12%)、ウイルス性出血性敗血症(16.6%)、細菌性疾病である連鎖球菌病(9.7%)が確認されている(養殖生物斃死動向調査及び活魚輸送用消毒装置効果検証研究、国立水産科学院研究用役、2018)。最近韓国でヒラメに最も多発する疾病として寄生虫性疾病であるスクーチカ病(61%)、ウイルス性出血性敗血症(10.6%)、S.parauberisによって発生する連鎖球菌病(9.8%)が報告されている(養殖場斃死現況及び斃死体処理方案研究、2014−2016、国立水産科学院)。ヒラメ養殖で問題となる連鎖球菌はS.iniae,S.parauberisとして知られており、2003年〜2005年にジェジュ地域の養殖ヒラメから分離された連鎖球菌を同定した結果、S.parauberis 54%、S.iniae 46%の比率で分離された。しかし、2000年代後半から現在まで病めるヒラメにおいてS.iniaeの比率が低くなり、最近ではほとんど分離されておらず、たいていS.parauberisが分離されている実情である。 The damage caused by the disease of cultured flatfish is estimated to be about 12,000 tons per year, which is 30% of the annual production, and scoutica disease, which is a parasitic disease, is the disease that most induced the death of farmed flatfish in 2018. (44.5%), sickness (12%), viral hemorrhagic septicemia (16.6%), and streptococcal disease (9.7%), which is a bacterial disease, have been confirmed (aquaculture mortality trends). Survey and effect verification research of disinfecting equipment for transporting live fish, National Fisheries Science Institute research role, 2018). Recently, the most common diseases of flatfish in Korea are parasitic diseases such as scoutica disease (61%), viral hemorrhagic septicemia (10.6%), and S. cerevisiae. Streptococcal disease (9.8%) caused by parauberis has been reported (Aquaculture Farm Death Status and Dead Body Treatment Plan Research, 2014-2016, National Academy of Fisheries Science). Streptococci, which are problematic in flatfish farming, are S. cerevisiae. iniae, S.M. Known as parauberis, the identification of streptococci isolated from cultured flounder in the Jeju region between 2003 and 2005 revealed that S. cerevisiae. paraubilis 54%, S.A. Iniae was separated at a ratio of 46%. However, in the sick flounder from the latter half of the 2000s to the present, S. The ratio of iniae has decreased, and recently it has hardly been separated, and usually S.I. It is the fact that parauberis is separated.

養殖魚類の病原体検出率は毎年増加しつつあり、現在ヒラメに商用化されている連鎖球菌(S.parauberis)ワクチンの普及にもかかわらず、当該疾病が依然として発生しており、現ワクチン抗原の改良が必要な実情である。抗生・抗菌剤の誤・乱用による薬剤耐性菌及び多剤耐性菌の出現によって治療効能が減少しているため、疾病が発生した後に化学療法剤で治療することは益々難しくなると見られ、疾病を事前予防できるワクチンの開発が必要である。実際に韓国ではヒラメに対するS.parauberisのワクチンが2009年から商業化して普及されているが、ワクチン普及後にもS.parauberisは依然として発生している(水産生物疾病特性研究、2012−2017)。一般に、ヒラメに最も高い斃死を誘発するスクーチカ病は稚魚期に発生するが、連鎖球菌病は中間育成魚、成魚などに発生し、より大きい経済的な被害をもたらしている。最近に養殖ヒラメに発生した疾病による斃死原因分析によると、細菌性疾病による斃死が13%で、そのうち連鎖球菌病による斃死が67.1%と最も高かった。 The pathogen detection rate of farmed fish is increasing every year, and despite the spread of the streptococcal (S. paraubilis) vaccine currently commercialized for flatfish, the disease is still occurring and the current vaccine antigen is improved. Is the actual situation that is necessary. Since the therapeutic efficacy is decreasing due to the emergence of drug-resistant bacteria and multidrug-resistant bacteria due to misuse and abuse of antibiotics and antibacterial agents, it is expected that it will become more difficult to treat with chemotherapeutic agents after the onset of the disease. It is necessary to develop a vaccine that can be prevented in advance. In fact, in South Korea, S. The paraubelis vaccine has been commercialized and spread since 2009, but even after the vaccine spread, S. Parauberis is still occurring (Aquatic Disease Characteristics Study, 2012-2017). In general, scoutica disease, which induces the highest mortality in flatfish, occurs in the fry stage, but streptococcal disease occurs in intermediate breeding fish, adult fish, etc., causing greater economic damage. According to an analysis of the causes of mortality due to diseases that recently occurred in cultured flounder, mortality due to bacterial diseases was the highest at 13%, of which 67.1% was mortality due to streptococcal disease.

韓国ではS.parauberis不活化ワクチン、組換えタンパク質ワクチン、弱毒化ワクチンなどの様々な研究が着実に進行しているが、現在、他の細菌病原体と混合ワクチンの形態で製作された不活化ワクチンが商用化して販売されているだけである(6社の9個製品)。スペインでタルボット対象にS.parauberisを抗原とするHipra社のICTHIOVAC(R)−STR不活化注射ワクチンが開発されて販売されているが、韓国ではS.parauberisに対する単独ワクチンは販売されていない。魚類養殖産業の特性上、低費用の魚類ワクチンの開発は必須であり、色々な細菌病原体を一度に予防可能な混合ワクチンが商用化されているが、実際に混合ワクチン使用後のワクチン効果に対する調査はわずかな実情である。ヒラメではS.parauberisによる連鎖球菌病がワクチン普及以後にも発生しており、現在商用化されたワクチンの効能に対する検証が必要である。 In Korea, S. Various studies such as parauberis inactivated vaccines, recombinant protein vaccines, and attenuated vaccines are steadily progressing, but at present, inactivated vaccines produced in the form of combination vaccines with other bacterial pathogens are commercialized and sold. It is only (9 products from 6 companies). S.A. for Talbots in Spain Hipra's ICTHIOVAC (R) -STR inactivated injectable vaccine using paraubelis as an antigen has been developed and sold, but in South Korea, S.A. No single vaccine against paraubelis is sold. Due to the characteristics of the fish farming industry, the development of low-cost fish vaccines is indispensable, and a combination vaccine that can prevent various bacterial pathogens at once has been commercialized, but a survey on the vaccine effect after using the combination vaccine is actually conducted. Is a slight fact. In flatfish, S. Streptococcal disease caused by paraubilis has occurred even after the spread of the vaccine, and it is necessary to verify the efficacy of the vaccine currently on the market.

ヒトに対するインフルエンザーワクチンやポリオワクチンのように同種の多数の型、すなわち、インフルエンザーではA1型、A2型、B型、ポリオではI型、II型、III型を混ぜて作るワクチンを多価ワクチン(polyvalent vaccine)という。このような病原体は抗原型がいくつかに分けられているので、別々に含まれているワクチン(単価ワクチン)で予防接種した場合、疾病類型がワクチンと全く異なる類型で発生すると役に立たず、多価ワクチンを活用しているわけである。ヒトに肺炎を誘発する連鎖球菌であるS.pneumoniaeは様々な血清型があるが、これを全て予防できる23価多価被膜多糖類ワクチンが使用されている(ソン・ジュンヨン、ジョン・ヒジン、2014、肺炎球菌ワクチン、J.Korean Med Assoc 57(9)、780−788)。 Multivalent vaccines that are made by mixing many types of the same type, such as influenza vaccines and polio vaccines for humans, that is, A1, A2, and B types for influenza and I, II, and III types for polio. It is called (poliovalent vaccine). Since these pathogens are divided into several antigen types, it is useless if the disease type occurs in a completely different type from the vaccine when vaccinated with a vaccine (unit price vaccine) contained separately, and it is multivalent. We are using vaccines. S. is a streptococcus that induces pneumonia in humans. There are various serotypes of pneumoniae, but a 23-valent polyvalent-capped polysaccharide vaccine that can prevent all of them is used (Song Jun-young, John Hee-jin, 2014, Streptococcus pneumoniae vaccine, J. Korean Med Assoc 57 ( 9), 780-788).

そこで、本発明者らは、ヒラメに疾病を誘発するS.parauberisに対してMLST(Multilocus sqquecne typing)方法を用いて分子力学及び血清型調査を実施し、韓国で発生するヒラメ連鎖球菌S.parauberisワクチンに適する菌株を選定するための基礎資料を確保し、それぞれの血清型別単価ワクチンを製作して交差ワクチン効能を評価した。また、交差ワクチン効能評価結果に基づいてS.parauberis多価ワクチン開発のために、血清型の異なるS.parauberis菌株を混合してワクチン効能を評価し、本発明を完成した。 Therefore, the present inventors have introduced S. cerevisiae to induce diseases in flatfish. Molecular mechanics and serotyping were carried out on paraubelis using the MLST (Multilocus sqquecne typing) method, and the flounder streptococcus S. We secured basic data for selecting a strain suitable for the parauberis vaccine, produced a unit price vaccine for each serotype, and evaluated the efficacy of the cross-vaccine. In addition, based on the cross-vaccine efficacy evaluation result, S. For the development of paraubelis multivalent vaccines, S. serotypes of different serotypes. The paraubelis strain was mixed and the vaccine efficacy was evaluated to complete the present invention.

この背景技術部分に記載された上記の情報は、単に本発明の背景に対する理解を向上させるためのもので、本発明の属する技術分野における通常の知識を有する者にとって既に知られた先行技術を形成する情報を含まなくてもよい。 The above information described in this background art portion is merely for the purpose of improving the understanding of the background of the present invention and forms the prior art already known to those having ordinary knowledge in the technical field to which the present invention belongs. It is not necessary to include the information to be used.

本発明の目的は、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)菌株を提供することにある。 An object of the present invention is to provide a strain of Streptococcus paraubelis isolated from a streptococcal-infected scallop.

本発明の他の目的は、不活性化されたストレプトコッカスパラウベリス(Streptococcus parauberis)菌株を抗原として含む連鎖球菌病予防用不活性化ワクチンを提供することにある。 Another object of the present invention is to provide an inactivated vaccine for the prevention of streptococcal disease, which comprises an inactivated Streptococcus paraubellis strain as an antigen.

本発明のさらに他の目的は、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)菌株をホルマリンで不活性化させてワクチンを得る段階を含むことを特徴とする連鎖球菌病予防用不活性化ワクチンの製造方法を提供することにある。
本発明のさらに他の目的は、前記ワクチンを魚類に投与することを含む、魚類を免疫する方法を提供することにある。
Yet another object of the present invention is streptococcal disease comprising the step of inactivating a Streptococcus paraubellis strain isolated from a streptococcal-infected flatfish with formalin to obtain a vaccine. The purpose is to provide a method for producing a preventive inactivated vaccine.
Yet another object of the present invention is to provide a method of immunizing a fish, which comprises administering the vaccine to the fish.

上記の目的を達成するために、本発明は、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株を提供する。 In order to achieve the above object, the present invention provides Streptococcus paraubellis KTCC 13800BP strain, CKTC 13801BP strain, CKTC 13802BP strain and KCTC 13802BP strain isolated from streptococcal-infected flatfish.

本発明はまた、不活性化されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株又はKCTC 13803BP菌株を抗原として含む連鎖球菌病予防用不活性化ワクチンを提供する。 The present invention also provides an inactivated streptococcal disease-preventing vaccine comprising an inactivated Streptococcus paraubellis KCTC 13800BP strain, KCTC 13801BP strain, KCTC 13802BP strain or KCTC 13803BP strain as an antigen.

本発明はまた、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株又はKCTC 13803BP菌株をホルマリンで不活性化させてワクチンを得る段階を含むことを特徴とする連鎖球菌病予防用不活性化ワクチンの製造方法を提供する。
本発明はまた、前記ワクチンを魚類に投与することを含む、魚類を免疫する方法を提供する。
The present invention also obtains Streptococcus paraubellis KCTC 13800BP strain, KCTC 13801BP strain, KCTC 13802BP strain, or KCTC 13802BP BP strain or KCTC 13803BP inactivated vaccine isolated from streptococcal-infected flatfish. Provided is a method for producing an inactivated vaccine for preventing streptococcal disease, which comprises.
The present invention also provides a method of immunizing a fish, comprising administering the vaccine to the fish.

本発明は、魚類、特に養殖ヒラメの連鎖球菌病を効果的に予防し、連鎖球菌病による魚類の斃死を顕著に低減できる効果を奏する。したがって、魚類の生産性増大はもとより、抗生剤使用による費用も節減することができる。また、本発明は、魚類の細菌性疾病を予防できるワクチンを使用することによって、抗生剤を使用しない健康な魚類の生産を可能にして養殖業の発展に貢献し、魚類消費を大きく向上させることができる。 INDUSTRIAL APPLICABILITY The present invention has an effect of effectively preventing streptococcal disease of fish, particularly cultured flounder, and remarkably reducing the mortality of fish due to streptococcal disease. Therefore, not only the productivity of fish can be increased, but also the cost of using antibiotics can be reduced. The present invention also contributes to the development of aquaculture by enabling the production of healthy fish that do not use antibiotics by using a vaccine that can prevent bacterial diseases in fish, and greatly improves fish consumption. Can be done.

S.parauberisの64個菌株の遺伝子5種[DNA gyrase subunit B(gyrB)、Surface M−protein(simA)、autolysin、capsular polysaccharide biosynthesis protein、tyrosine−protein kinase(wze)]に対する塩基配列(約4,120bp)の系統樹分析結果を示す図である。S. Five genes of 64 strains of parauberis [DNA gyrase subunit B (gyrB), Surface M-protein (simA), autolysin, capsular polysaccharide biosynthesis protein (about 120system) sequence for palaubilis (gyrB), surface (simA), capsular polysaccharide biosystem It is a figure which shows the phylogenetic tree analysis result of. S.parauberis血清型分析を示すもので、図2(A)はスライド凝集反応(I:陽性反応、II:陰性反応)、図2(B)はマイクロタイター(Microtiter)凝集反応を示す図である。S. The serotype analysis of parauberis is shown, FIG. 2 (A) is a diagram showing a slide agglutination reaction (I: positive reaction, II: negative reaction), and FIG. 2 (B) is a diagram showing a microtiter agglutination reaction. 韓国の2002年〜2017年S.parauberis菌の血清型分布を示すグラフである。Korea 2002-2017 S.A. It is a graph which shows the serotype distribution of parauberis bacterium. 韓国の2002年〜2017年S.parauberis菌の地域別、分離年度別分離比率を示す図である。Korea 2002-2017 S.A. It is a figure which shows the isolation ratio by region and isolation year of parauberis bacterium. 韓国で販売されているS.parauberis抗原を含む不活化ワクチンの血清型PCR(serotype−PCR)結果を示す図である。S. sold in South Korea. It is a figure which shows the serotype PCR (serotype-PCR) result of the inactivated vaccine containing parauberis antigen. S.parauberisの7個菌株の人工感染後、ヒラメの累積斃死量を示すグラフである。S. It is a graph which shows the cumulative mortality amount of flatfish after artificial infection of 7 strains of parauberis. S.parauberisの4個菌株の濃度別ヒラメの累積斃死量を示すグラフである。S. It is a graph which shows the cumulative mortality amount of flatfish by the concentration of 4 strains of parauberis. ヒラメのS.parauberisワクチン接種及び人工感染実験日程を図式化した図である。Flounder S. It is a diagram which schematized the parauberis vaccination and artificial infection experiment schedule. S.parauberis多価ワクチン接種2週後、抗体測定結果を示すグラフである。S. It is a graph which shows the antibody measurement result 2 weeks after parauberis multivalent vaccination. S.parauberis多価ワクチン接種1週後、内部臓器の病理組織検査結果である。S. One week after the parauberis multivalent vaccination, it is the result of histopathological examination of internal organs. S.parauberis多価ワクチン接種2週後、内部臓器の病理組織検査結果である。S. Two weeks after the parauberis multivalent vaccination, the results of histopathological examination of internal organs. S.parauberis多価ワクチン接種3週後、内部臓器の病理組織検査結果である。S. 3 weeks after parauberis multivalent vaccination, the results of histopathological examination of internal organs.

特に定義されない限り、本明細書で使われた技術的及び科学的用語はいずれも、本発明の属する技術の分野における熟練した専門家によって通常理解されるのと同じ意味を有する。一般に、本明細書で使われた命名法は、この技術分野で周知且つ通常のものである。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by skilled professionals in the art of the invention. In general, the nomenclature used herein is well known and common in the art.

本発明の一実施例において、連鎖球菌病に感染したヒラメから分離されたStreptococcus parauberis 19FBSPa0003(PR5)菌株、Streptococcus parauberis FP2331菌株、Streptococcus parauberis FPa4365菌株及びStreptococcus parauberis FPa4870菌株を不活性化させた後、これを抗原として含むワクチンを魚類に接種した結果、全てのワクチン接種区で低い斃死率を示し、血清型別交差ワクチン効能もあることを確認した。また、前記異なる血清型別抗原を含む多価ワクチンの場合、単一血清型ワクチンに比べてワクチン効能がより増加することを確認した。 In one example of the present invention, Streptococcus vaccine 19FBSPa0003 (PR5) strain, Streptococcus vaccine FP2331 strain, Streptococcus vaccine serotype serotype serotype serotype serotype serotype strain FP2331 strain, and serotyped serotype strain FP2331 strain As a result of inoculating fish with a vaccine containing the above-mentioned antigen, it was confirmed that all the vaccinated plots showed a low mortality rate and that there was also a cross-vaccination effect by serotype. It was also confirmed that the multivalent vaccine containing the different serotype antigens had a higher vaccine efficacy than the single serotype vaccine.

したがって、本発明は一観点において、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株に関する。 Therefore, the present invention relates, in one aspect, to the Streptococcus paraubellis KCTC 13800BP strain isolated from streptococcal-infected scallops.

本発明は他の観点において、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13801BP菌株に関する。 In another aspect, the present invention relates to the Streptococcus paraubellis KCTC 13801BP strain isolated from streptococcal-infected scallops.

本発明はさらに他の観点において、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13802BP菌株に関する。 In yet another aspect, the present invention relates to the Streptococcus paraubellis KCTC 13802BP strain isolated from streptococcal-infected scallops.

本発明はさらに他の観点において、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13803BP菌株に関する。 In yet another aspect, the present invention relates to the Streptococcus paraubellis KCTC 13803BP strain isolated from streptococcal-infected scallops.

本発明において、前記KCTC 13800BP菌株は、韓国生物資源センター(Korean Collection for Type Culture)に2019年1月30日付で寄託されたStreptococcus parauberis 19FBSPa0003菌株であり、本明細書で19FBSPa0003はPR5と同じ菌株を意味する。 In the present invention, the KCTC 13800BP strain is a Streptococcus parauberis 19FBSPa0003 strain deposited on January 30, 2019 at the Korean Collection for Type Culture, and the same strain as 19FBSPa0003 is used in the present specification. means.

本発明において、前記KCTC 13801BP菌株は、韓国生物資源センターに2019年1月30日付で寄託されたStreptococcus parauberis FP2331菌株であり、前記KCTC 13802BP菌株は、韓国生物資源センターに2019年1月30日付で寄託されたStreptococcus parauberis FPa4365菌株であり、前記KCTC 13803BP菌株は韓国生物資源センターに2019年1月30日付で寄託されたStreptococcus parauberis FPa4870菌株である。 In the present invention, the KCTC 13801BP strain is the Streptococcus parauberis FP2331 strain deposited at the Korea Biological Resources Center on January 30, 2019, and the KCTC 13802BP strain is the KCTC 13802BP strain deposited at the Korea Bioresource Center on January 30, 2019. The deposited Streptococcus parauberis FPa4365 strain, and the KCTC 13803BP strain is the Streptococcus parauberis FPa4870 strain deposited at the Korea Biological Resources Center on January 30, 2019.

本発明は、さらに他の観点において、不活性化されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株で構成された群から選ばれるいずれか一つ以上の菌株を抗原として含む連鎖球菌病予防用不活性化ワクチンに関する。 The present invention is further selected from the group composed of inactivated Streptococcus vaccine CKTC 13800BP strain, CKTC 13801BP strain, CKTC 13802BP strain and one or more KCTC 13803BP strains from still another viewpoint. The present invention relates to an inactivated vaccine for preventing streptococcal disease containing a strain of Streptococcus as an antigen.

本発明において、前記ワクチンは、KCTC 13802BP菌株及びKCTC 13803BP菌株が1:1の比率で混合されることを特徴とし得るが、これに制限されるものではない。 In the present invention, the vaccine may be characterized by, but is not limited to, a mixture of the KCTC 13802BP strain and the KCTC 13803BP strain in a ratio of 1: 1.

本発明において、前記ワクチンは、KCTC 13800BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株が1:1:1の比率で混合されることを特徴とし得るが、これに制限されるものではない。 In the present invention, the vaccine may be characterized by, but is not limited to, a mixture of the CKTC 13800BP strain, the CKTC 13802BP strain and the CKTC 13803BP strain in a ratio of 1: 1: 1.

本発明において、前記ワクチンの抗原濃度は、0.5〜30mg/fishであることを特徴とし得る。好ましくは、1〜3mg/fishであることを特徴とし得るが、これに制限されるものではない。 In the present invention, the antigen concentration of the vaccine may be 0.5 to 30 mg / fish. Preferably, it may be characterized by being 1-3 mg / fish, but is not limited thereto.

本発明の一実施例において、Streptococcus parauberis 19FBSPa0003(PR5)菌株、FP2331菌株、FPa4365菌株又はFPa4870菌株を含むワクチン接種後、抗原種類別(血清型Ia〜II)に血清の抗体価を測定した結果、いずれも対照区(PBS)に比して有意に高い抗体価を形成した。各ワクチン区は同一血清型の抗原で抗体価を測定する場合、最も高い抗体価を示した。 In one example of the present invention, after vaccination containing Streptococcus parauberis 19FBSPa0003 (PR5) strain, FP2331 strain, FPa4365 strain or FPa4870 strain, the antibody titer of serum was measured by antigen type (serotypes Ia to II). Both formed significantly higher antibody titers than the control group (PBS). Each vaccine group showed the highest antibody titer when measuring antibody titers with antigens of the same serotype.

また、S.parauberis血清型Ia+Icワクチン区とIa+Ib+Icワクチン区で人工感染すれば、対照区に比して高い生存率を示し、S.parauberis単一血清型ワクチン区に比しても高い相対生存率を示した。 In addition, S. Artificial infection with the parauberis serotype Ia + Ic vaccine group and the Ia + Ib + Ic vaccine group showed a higher survival rate than the control group. It also showed a higher relative survival rate than the parauberis single serotype vaccine group.

本発明で用語“ワクチン”とは、感染疾患を予防するための免疫のために用いられる抗原を指し、弱毒化させた微生物又はウイルスで製造され、特定感染症に対して人工的に免疫原性を獲得するために弱化又は死滅させた病原微生物を個体内に投与することを意味する。ワクチンによって刺激を受けると、個体内の免疫システムが働いて抗体を生成し、その感受性を維持するが、再感染がおきると、短時間内に抗体を効果的に生成することによって疾患を克服することができる。 In the present invention, the term "vaccine" refers to an antigen used for immunization to prevent an infectious disease, which is manufactured by an attenuated microorganism or virus and is artificially immunogenic to a specific infectious disease. It means to administer a weakened or killed pathogenic microorganism into an individual in order to obtain the virus. When stimulated by a vaccine, the immune system within the individual works to produce antibodies and maintain their susceptibility, but reinfection overcomes the disease by effectively producing antibodies within a short period of time. be able to.

前記不活性化ワクチンは、当該技術分野に公知の方法を用いて製造でき、例えば、当該技術分野に知られた不活性化剤を用いて製造することができる。好ましくは、ホルマリン処理によって不活性化させることを特徴とし得るが、これに制限されるものではない。 The inactivated vaccine can be produced by a method known in the art, for example, using an inactivating agent known in the art. Preferably, it may be characterized by being inactivated by formalin treatment, but is not limited thereto.

本発明に係る混合不活性化ワクチンは、補助剤(adjuvant)をさらに含むことができる。前記補助剤は、当該技術分野に周知である如何なるものも使用可能であり、好ましくは、モンタナイド(Montanide)ISA35又はGel01が使用できる。 The mixed inactivated vaccine according to the present invention can further contain an adjuvant. Any of the auxiliary agents known in the art can be used, preferably Montandide ISA35 or Gel01.

また、安定化剤又は添加剤として、糖類やアミノ酸類、鉱物油、植物油、明礬、リン酸アルミニウム、ベントナイト、シリカ、ムラミルジペプチド(muramyl dipeptide)誘導体、チモシン、インターロイキンなどが使用されてもよい。 Further, as the stabilizer or additive, sugars and amino acids, mineral oil, vegetable oil, sardine, aluminum phosphate, bentonite, silica, muramyl dipeptide derivative, thymosin, interleukin and the like may be used. ..

本発明において、前記ワクチンは、適当な容積の、例えば約10〜500ml体積のバイアルにワクチン液を分注した後、密封して使用することができる。このようなワクチンは、液状の他に、分けて注入したのち凍結乾燥して乾燥製剤として使用されてもよい。前記乾燥製剤は、使用直前に添加した減菌液で乾燥物質を完全に再溶解して使用してもよい。 In the present invention, the vaccine can be used by dispensing the vaccine solution into a vial having an appropriate volume, for example, about 10 to 500 ml, and then sealing the vaccine. In addition to the liquid vaccine, such a vaccine may be injected separately and then freeze-dried to be used as a dry preparation. The dried preparation may be used by completely redissolving the dried substance with a sterilizing solution added immediately before use.

本発明において、前記混合不活性化ワクチンは、感染の危険性がある任意の年齢の魚類に使用することができる。これに制限されるものではないが、稚魚を含む中間育成魚、成魚に使用可能である。 In the present invention, the mixed inactivated vaccine can be used for fish of any age at risk of infection. Although not limited to this, it can be used for intermediate breeding fish including fry and adult fish.

本発明は、さらに他の観点において、連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株で構成された群から選ばれるいずれか一つ以上の菌株をホルマリンで不活性化させてワクチンを得る段階を含むことを特徴とする、連鎖球菌病予防用不活性化ワクチンの製造方法に関する。 From still another point of view, the present invention is composed of Streptococcus paraubellis KCTC 13800BP strain, KCTC 13801BP strain, KCTC 13802BP strain and KCTC 13803BP strain selected from streptococcal disease-infected flatfish. The present invention relates to a method for producing an inactivated vaccine for preventing streptococcal disease, which comprises a step of inactivating any one or more of the strains with formalin to obtain a vaccine.

本発明において、前記ワクチンは、Streptococcus parauberis KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株又はKCTC 13803BP菌株を培養して不活性化させた後、濃度を調節して製造する。本発明の一実施例において、凍結保存されたS.parauberisの4個菌株を培養し、培養された菌液に37%(v/v)ホルマリン(Merck,Germany)を各培養液の0.5%(v/v)となるように添加し、撹拌培養器で150rpm、20℃で24時間不活化した。不活化が確認された菌液を遠心分離した後、滅菌生理食塩水で洗浄した後、菌体を回収し、最終的に湿菌体の重さを測定して実験区によって濃度を異ならせてワクチンを製造した。 In the present invention, the vaccine is produced by culturing and inactivating the Streptococcus parauberis KCTC 13800BP strain, KCTC 13801BP strain, KCTC 13802BP strain or KCTC 13803BP strain, and then adjusting the concentration. In one embodiment of the present invention, cryopreserved S. cerevisiae. Four strains of parauberis were cultured, 37% (v / v) formalin (Merck, Germany) was added to the cultured bacterial solution so as to be 0.5% (v / v) of each culture solution, and the mixture was stirred. It was inactivated in an incubator at 150 rpm and 20 ° C. for 24 hours. After centrifuging the inactivated bacterial solution, washing with sterile physiological saline, collecting the bacterial cells, and finally measuring the weight of the wet bacterial cells and varying the concentration depending on the experimental group. Produced a vaccine.

本発明は、さらに他の観点において、前記連鎖球菌病予防用不活性化ワクチンを魚類に投与することを含む、魚類を免疫する方法に関する。 The present invention relates to a method for immunizing fish, which comprises administering the inactivated vaccine for preventing streptococcal disease to fish from still another viewpoint.

本発明において、前記ワクチンを魚類の腹腔に注射することを特徴とし得るが、これに制限されるものではない。 The present invention may feature, but is not limited to, injecting the vaccine into the abdominal cavity of fish.

本発明において、前記魚類は、感染の危険性があるヒラメなどの魚類を含むが、これに制限されるものではない。 In the present invention, the fish include, but are not limited to, fish such as flatfish at risk of infection.

本発明の一実施例において、4種のS.parauberisワクチン処理後、それぞれの血清型に対する人工感染試験を行った結果、ワクチンを接種していない対照区に比べて全ワクチン接種区で低い斃死率を示し、血清型別交差ワクチン効能もあることを確認した。また、S.parauberis血清型Ia〜Icを含む多価ワクチン接種区の場合、単一血清型ワクチン接種区に比して高いワクチン効能を示すことを確認した。 In one embodiment of the present invention, four types of S.A. After treatment with paraubelis vaccine, artificial infection tests were conducted for each serotype, and as a result, it was found that the mortality rate was lower in all vaccinated groups than in the non-vaccinated control group, and that there was also cross-vaccination efficacy by serotype. confirmed. In addition, S. It was confirmed that the multivalent vaccination group containing parauberis serotypes Ia to Ic showed higher vaccine efficacy than the single serotype vaccination group.

以下、実施例を用いて本発明をより詳細に説明する。それらの実施例は単に本発明を例示するためのもので、本発明の範囲がそれらの実施例によって制限されると解釈されないことは当業界で通常の知識を有する者にとって明らかであろう。 Hereinafter, the present invention will be described in more detail with reference to Examples. It will be apparent to those of ordinary skill in the art that these examples are merely exemplary of the invention and are not to be construed as limiting the scope of the invention by those examples.

実施例1:連鎖球菌S.parauberisの分離及び同定 Example 1: Streptococcus S. Separation and identification of paraubilis

国立水産科学院病理研究科で保存していた2002年〜2017年韓国の病める養殖ヒラメから分離されたS.parauberis菌株199個から、分離年度及び地域別に代表菌株64個を選定して分析に使用した。 2002-2017 S.A. isolated from sick cultured flounder in South Korea, which was preserved at the National Graduate School of Fisheries Sciences. From 199 parauberis strains, 64 representative strains were selected by year of isolation and region and used for analysis.

菌株を、1%NaClを添加したトリプティックソイ寒天培地(tryptic soy agar)(TSA,Becton Dickinson,USA)又はブレインハートインフュージョン寒天培地(brain heart infusion agar)(BHIA,Becton Dickinson,USA)に塗抹した後、25℃で24時間培養して菌の性状を確認し、これを継代培養して表現型、血清型、遺伝学的分析などを行った。
分析した菌株の分離地域及び年度を表1に示す。
Strains were coated on tryptic soy agar (TSA, Becton Dickinson, USA) or brain heart infusion agar (BHIA, Becton Dick) (BHIA, Becton Dick) supplemented with 1% NaCl. After that, the cells were cultured at 25 ° C. for 24 hours to confirm the properties of the bacteria, which were subcultured to perform phenotype, serum type, genetic analysis and the like.
Table 1 shows the isolated areas and years of the analyzed strains.

実施例2:S.parauberisの表現型分析 Example 2: S.A. Phenotypic analysis of paraubilis

生化学的特性を分析するために、S.parauberis菌株を、1% NaClが添加されたBHIA培地で25℃、24時間培養した。API 20strepキット(BIOMERIEUX,France)とAPI ZYMキット(BIOMERIEUX,France)実験方法は、純粋培養された菌集落をメーカーの方法に従ってストリップに接種培養して試験した。 To analyze the biochemical properties, S. The parauberis strain was cultured in BHIA medium supplemented with 1% NaCl at 25 ° C. for 24 hours. The API 20 strep kit (BIOMERIEUX, France) and API ZYM kit (BIOMERIEUX, France) experimental methods were tested by inoculating and culturing purely cultured bacterial colonies on strips according to the manufacturer's method.

S.parauberis菌株64個のAPI 20strep、API zymキット分析の結果、調べた全菌株は非運動性のグラム陽性球菌(gram−positive cocci)で、カタラーゼ(catalase)、オキシダーゼ(oxidase)陰性と確認された(表2)。 S. As a result of analysis of 64 API 20strep and API zym kits of paraubelis strains, it was confirmed that all the strains examined were non-motile gram-positive cocci, which were negative for catalase and oxidase (oxidase). Table 2).

PA: alkaline phospatase, AD: arginine dihydrorase, RI: ribose acidification, MA: mannitol acidification, SO: sorbitol acidification, LA: lactose acidification, TR: trehalose acidification, IN: inulin acidification, AM: starch acidification, 2: alkaline phospatase, 3: esterase(C4), 4: esterase lipase(C8), 5: lipase(C14), 7: valine arylamidase, 8: crystine arylamidase, 10: α-chymotrypsin, 11: acid phosphatase, 14: β-galactosidase, 16: α-glucosidase. PA: alkaline phosphatase, AD: arginine dihydrorase, RI: ribose acidification, MA: mannitol acidification, SO: sorbitol acidification, LA: lactose acidification, TR: trehalose acidification, IN: inulin acidification, AM: starch acidification, 2: alkaline phosphatase, 3: esterase (C4), 4: esterase lipase (C8), 5: lipase (C14), 7: valine arylamidase, 8: crystine arylamidase, 10: α-chymotrypsin, 11: acid phosphatase, 14: β-galactosidase, 16 : α-glucosidase.

API 20strep生化学的特性を分析した結果、全菌株は、VP(pyruvate acetoin production)、HIP(hippurate hydrolysis)、ESC(β−glucosidase)、PYRA(pyrrolidonyl arylamidase)、LAP(leucine arylamidase)陽性、αGAL(α−galactosidase)、βGUR(β−galactosidase)、ARA(L−arabinose acidification)、RAF(Raffinose acidification)、GLYG(Glycogen acidification)陰性反応を示した(表3)。 As a result of analyzing the biochemical properties of API 20strep, all the strains were found to be VP (pyruvate acetatein production), HIP (hippurate hydrorysis), ESC (β-glucosidase), PYRA (pyruvic acid arabinose), PYRA (pyruvic acidyla) α-galactosidase), βGUR (β-galactosidase), ARA (L-arabinose hydrolysis), RAF (Raffinose hydrolysis), and GLYG (Glycogen activation) negative reactions were shown (Table 3).

API zymキット生化学的特性を分析した結果、全菌株は、leucine acrylamidase、Naphtol−AS−BI−phosphohydrolase陽性、typsin、β−galactosidase、β−glucuronidase、β−glucosidase、N−acetyl−β−glucosaminidase、α−mannosidase、α−fucosidase陰性反応を示した(表4)。 As a result of analyzing the biochemical properties of the API zym kit, all strains were found to be leucine acetylamide, naphthol-AS-BI-phosphohydrose positive, typsin, β-galactosidase, β-glucuronidase, β-glucuronidase, β-glucuronidase, β-glucuronidase. Negative reactions of α-mannosidase and α-fucosidase were shown (Table 4).

実施例3:S.parauberisの遺伝型分析
実施例3−1:プライマー作製及び遺伝子塩基配列分析
遺伝的特性分析のために、各分離菌株を、1%NaClが添加されたBHIB培地で24時間培養した後、13,000rpmで2分間遠心分離、上澄液を除去して細菌ペレットを作製した。細菌ペレットは、Promega Genomic DNA精製キット(Promega,USA)を用いてDNAを抽出した。Housekeeping gene groEL,gyrBは、既に報告されたプライマーを使用し、S.parauberis KCTC 11537(Nho et al.,2011)及びKCTC 11980(Park et al.,2013)ゲノムから、抗原性・病原性に関連すると推定される遺伝子6種(capsule polysaccharide 4種、autolysin 1種、M−like protein 1種)を選定して、特異的に増幅できるプライマーを作製して分析した(表5)。
Example 3: S.A. Genotype analysis of paraubilis
Example 3-1: Primer preparation and gene base sequence analysis For genetic characteristic analysis, each isolated strain was cultured in BHIB medium supplemented with 1% NaCl for 24 hours, and then centrifuged at 13,000 rpm for 2 minutes. , The supernatant was removed to prepare bacterial pellets. Bacterial pellets were DNA extracted using the Promega Genomic DNA Purification Kit (Promega, USA). Housekeeping gene groEL, gyrB used the previously reported primers and used S. cerevisiae. From the genomes of parauberis CKTC 11537 (Nho et al., 2011) and CKTC 11980 (Park et al., 2013), 6 genes presumed to be related to antigenicity / pathogenicity (capsule polysaccharide 4 species, autolysis 1 species, M) -Like protein 1 type) was selected to prepare primers that can be specifically amplified and analyzed (Table 5).

前記表5で、塩基配列はIUPACヌクレオチドコード(Nucleotide ambiguity code)で表示し、RはA又はG、i(配列目録にはSと表記)はInosine、HはA、C又はTを意味する。Nはany base、YはC又はT、WはA又はTを意味する。 In Table 5 above, the base sequence is represented by the IUPAC nucleotide code (Nucleotide ambiguity code), R means A or G, i (denoted as S in the sequence list) means Inosine, and H means A, C or T. N means any base, Y means C or T, and W means A or T.

作製したプライマーでPCR増幅し、PCR産物は、EtBrが含まれた1.5%アガロースゲル(agarose gel)(Bioneer,Korea)を用いて電気泳動した後、UVトランスルミネーター(transilluminator)(Alpha Innotech,USA)を用いてバンド(band)を確認し、塩基配列を分析した(表6〜表14)。 PCR amplification was performed with the prepared primers, and the PCR product was electrophoresed on a 1.5% agarose gel (Bioneer, Korea) containing EtBr, and then a UV transluminator (Alpha Innotech). , USA) was used to confirm the band, and the nucleotide sequence was analyzed (Tables 6 to 14).

遺伝子塩基配列分析は、MEGA6プログラムとGENETYX Ver.8.0(SDC Software Development,Japan)を使用し、決定された各塩基配列はNCBI(National Center for Biotechnology Institute)で提供するBLAST(Basic Local Alignment Search Tool)を用いて、既存に報告されたS.parauberis菌株の遺伝子及び本実施例で分析した菌株の遺伝子を比較分析した。Blast検索の塩基配列情報に基づいてBioedit Ver.7.2.1を使用して多重アラインメント(multiple alignment)を実施し、MEGA6プログラム(http://www.megasoftware.net;Tamura et al.,2013)を使用した近隣結合分析(NJ;neighbor−joining analysis,1,000 rounds of boostrap)によって各塩基配列間遺伝的距離と系統図(phylogenetic tree)を作成した(図1)。 For gene sequence analysis, use the MEGA6 program and GENETYX Ver. Using 8.0 (SDC Software Development, Japan), each nucleotide sequence determined is provided by NCBI (National Center for Biotechnology Information). .. The gene of the paraubelis strain and the gene of the strain analyzed in this example were comparatively analyzed. Based on the nucleotide sequence information of the Blast search, Bioedit Ver. Perform multiple alignment using 7.2.1 and neighbor-joining analysis (NJ; neighbor-) using the MEGA6 program (http://www.megasoftware.net; Tamura et al., 2013). A genetic distance between each base sequence and a phylogenetic tree were created by joining analysis (1,000 rounds of boostrap) (Fig. 1).

実施例3−2:遺伝型分析結果
ヒラメから分離された菌株64個の16S rRNA分析の結果、S.parauberisと確認され、同じ塩基配列と確認された。S.parauberis菌株64個に対するMLST(multilocus sequence typing)分析を行った。Soa(Sugar O−acryltransferase sialic acid)、PB(Polysaccharide biosynthesis protein)遺伝子は、一部菌株では増幅がなかった。分析した64個菌株において16S rRNA、groEL遺伝子はいずれも塩基配列が同一であり、菌株ごとに塩基配列が異なるgyrB及び抗原性・病原性関連遺伝子4種のみに対してMLST分析を行った。ヒラメから分離されるS.parauberis菌株64個は、大きく2つのMLST遺伝型に区別されるが、MLST−1グループの36個菌株、MLST−2グループの28個菌株と確認された(図1)。菌株別遺伝型分析結果は、下表15に示す。
Example 3-2: Results of genotype analysis As a result of 16S rRNA analysis of 64 strains isolated from flatfish, S. It was confirmed to be paraubilis, and it was confirmed to have the same base sequence. S. MLST (multilocus sequence typing) analysis was performed on 64 paraubelis strains. The Soa (Sugar O-acrytranstranslation sialic acid) and PB (Polysaccharide bioscience protein) genes were not amplified in some strains. In the 64 strains analyzed, the 16S rRNA and groEL genes all had the same nucleotide sequence, and MLST analysis was performed only on gyrB and 4 antigenic / pathogenic related genes having different nucleotide sequences for each strain. S. separated from flatfish. The 64 parauberis strains were roughly classified into two MLST genotypes, and were confirmed to be 36 strains in the MLST-1 group and 28 strains in the MLST-2 group (Fig. 1). The results of genotype analysis by strain are shown in Table 15 below.

CPB及びSOA項目で‘−’は、PCR増幅されなかったことを示す。 A'-' in the CPB and SOA items indicates that PCR was not amplified.

実施例4:S.parauberisの血清型分析
実施例4−1:血清型分析方法
スライド凝集反応で血清型を分析したが、参照菌株(S.parauberis serotype I FPa4164及びS.parauberis serotype O2 S53)に対するウサギ抗血清を作製し、分析に使用した。スライドガラスにS.parauberisに対する2種のウサギ抗血清をそれぞれ70μLずつ落とし、ヒラメ由来S.parauberis菌株64個をMcFarland no.6 standardで滅菌生理食塩水に懸濁した菌液を各10μL落としてよく混ぜて30秒以内に凝集形成の有無を確認した(図2(A))。凝集は、暗い背景でスライドを側面から観察し、対照群は、菌を懸濁しなかった滅菌生理食塩水を使用した。
Example 4: S. Serotype analysis of paraubilis
Example 4-1: Serotype analysis method Although the serotype was analyzed by a slide agglutination reaction, rabbit antisera against the reference strains (S. paraubelis serotype I FPa4164 and S. paraubelis serotype O2 S53) were prepared and used for the analysis. .. On a slide glass, S. 70 μL of each of the two rabbit antisera against paraubelis was dropped, and the flounder-derived S. 64 parauberis strains were collected from McFarland no. In 6 standard, 10 μL of each bacterial solution suspended in sterile physiological saline was dropped and mixed well, and the presence or absence of aggregate formation was confirmed within 30 seconds (FIG. 2 (A)). Aggregation was observed from the side of the slides on a dark background and the control group used sterile saline that did not suspend the fungus.

S.parauberisの血清型Iの亜血清型(subserotype)を区分するためにマイクロタイター凝集反応によってS.parauberis菌株64個の血清型分析を試みた(図2(B))。S.parauberis遺伝型と表現型の特性が異なる4の菌株DK14、DW1、FPa4870、FP4743に対するウサギ抗血清を作製し、Kanai et al.(2015)の方法でマイクロタイター凝集反応を用いた亜血清型分類(sub−serotyping)を行った。96ウェルプレートにウサギ抗血清をPBSで2倍ずつ順次に希釈した後、4種のS.parauberis FKC懸濁液(2mg/mL PBS)を同一容量25μlずつ添加して混合し、4℃でO/Nインキュベーションした後、凝集抗体価を測定した。抗血清の交差吸収テスト(cross−absorbed test)のために、吸収抗血清を作製し(Kanai at al.,(2015)Fish pathology 50(2)、75−80)、吸収抗血清は凝集抗体価4未満と作製した。Tu et al.(2015)の方法によってS.parauberisに対する血清型分類PCR(serotyping PCR)を行った。PCRプライマーの塩基配列は、前記表2に示した通りである。 S. S. by microtiter agglutination to distinguish subserotypes of serotype I of paraubilis. An attempt was made to analyze the serotypes of 64 paraubelis strains (Fig. 2 (B)). S. Rabbit antisera against four strains DK14, DW1, FPa4870, and FP4743, which differ in genotype and phenotypic characteristics from parauberis, were prepared and described by Kanai et al. Subserotyping using the microtiter agglutination reaction was performed by the method of (2015). Rabbit antisera were diluted 2-fold with PBS in a 96-well plate in sequence, and then 4 types of S. The perauberis FKC suspension (2 mg / mL PBS) was added in the same volume of 25 μl each, mixed, O / N incubated at 4 ° C., and then the agglutinated antibody titer was measured. For a cross-absorbed test of antisera, absorbed antisera were prepared (Kanai at al., (2015) Fish pathology 50 (2), 75-80) and the absorbed antisera had agglutinated antibody titers. It was prepared as less than 4. Tu et al. According to the method of (2015), S.I. Serotyping PCR was performed on paraubelis. The base sequence of the PCR primer is as shown in Table 2 above.

実施例4−2:血清型分析結果
スライド凝集反応結果、S.parauberis菌株は、血清型Iの58個菌株、血清型IIの4個菌株、型別できない血清型(untypable serotype)の2個菌株と確認された。64個菌株の血清型分類PCR結果は、前記表15の通りである。
Example 4-2: Serotype analysis result Slide agglutination reaction result, S. The paraubelis strains were confirmed to be 58 strains of serotype I, 4 strains of serotype II, and 2 strains of serotype (untypeable serology). The results of serotyping PCR of 64 strains are shown in Table 15 above.

S parauberisの4菌株DK14、DW1、FPa4870、FP4743に対するウサギ抗血清を作製してマイクロタイター凝集反応によって亜血清型分類を行った結果、血清型Iの58個菌株はanti−DK14、anti−DW1、anti−FPa4870抗血清と凝集反応を示すが、凝集価は抗血清種類によって異なり、血清型I内に亜血清型(subserotype)が存在することが示唆された。凝集価によってS.parauberisの血清型Iの亜血清型分類をした結果、Ia 25個菌株、Ib 25個菌株、Ic 8個菌株、Non−typeable 2個菌株と確認された(表16)。 As a result of preparing rabbit antisera against 4 strains DK14, DW1, FPa4870, and FP4743 of Spalaberis and subserotyping by microtiter agglutination reaction, 58 strains of serum type I were anti-DK14, anti-DW1, It shows an agglutination reaction with anti-FPa4870 antiserum, but the agglutination value differs depending on the antiserum type, suggesting that a subserotype is present in serotype I. Depending on the agglutination value, S. As a result of subserotyping of serotype I of parauberis, it was confirmed that Ia 25 strain, Ib 25 strain, Ic 8 strain, and Non-typeable 2 strain (Table 16).

S.parauberisの血清型Iで亜血清型の分類のためにanit−DK14、anti−DW1、anti−FPa4870抗血清を交差凝集素吸収方法で菌株別吸収抗血清(absorbed−antiserum)を作製し、再び凝集価を測定した。交差凝集素吸収方法で分析した結果、血清型Iで3つの亜型(subtype)が存在し、亜血清型Ic型の場合、Ia型に比べてIb型で高い凝集価を示した(表17)。 S. Anit-DK14, anti-DW1, and anti-FPa4870 antisera were prepared by a cross-aggregate absorption method for strain-specific absorption antisera (absorbed-antiserum) for classification of subserotypes with serotype I of paraubelis, and aggregated again. The valence was measured. As a result of analysis by the cross-aggregate absorption method, three subtypes (subtypes) were present in serotype I, and in the case of subserotype Ic type, the aggregation value of Ib type was higher than that of Ia type (Table 17). ).

血清型Ibの菌株はいずれもMLST−2グループに含まれ、血清型II及びIaはMLST−1グループに含まれ、血清型Icは遺伝型と相関性がなかった(図1)。 All strains of serotype Ib were included in the MLST-2 group, serotypes II and Ia were included in the MLST-1 group, and serotype Ic was not correlated with genotype (Fig. 1).

S.parauberis分離地域による血清型(遺伝型)分布を分析した結果、分離地域による特定血清型が確認されず、分離地域に関係なく様々な血清型が確認された(表18、図3及び図4)。 S. As a result of analyzing the serotype (genotype) distribution by the parauberis isolated area, no specific serotype was confirmed by the isolated area, and various serotypes were confirmed regardless of the isolated area (Table 18, FIG. 3 and FIG. 4). ..

S.parauberis分離年度による血清型分布を分析した結果、2010年以前には血清型Ibが優点的であったが、2010年以後には血清型Ia(MLST−1グループ)が持続的に分離されており、最近では血清型Ic分離率が増加したことを確認した(表19)。 S. As a result of analyzing the serotype distribution by the parauberis separation year, serotype Ib was dominant before 2010, but serotype Ia (MLST-1 group) was continuously isolated after 2010. Recently, it was confirmed that the serotype Ic separation rate increased (Table 19).

特に、血清型IaとIcの場合、2009年にS.parauberisのヒラメワクチンが商用化されて以来、分離比率が増加することが確認された。これは、商用化されたワクチンの効果がないというよりは、ワクチンの使用によるS.parauberisの血清型の変化によるものと推定される(図3及び図4)。 In particular, in the case of serotypes Ia and Ic, S.I. Since the commercialization of the paraubelis flounder vaccine, it has been confirmed that the isolation ratio has increased. This is due to the use of the vaccine, rather than the ineffectiveness of the commercialized vaccine. It is presumed to be due to changes in the serotype of paraubelis (FIGS. 3 and 4).

実施例5:市販商業用ワクチンの血清型調査
2018年韓国で販売されているヒラメS.parauberis抗原を含む不活化ワクチン7種を購入した。遠心分離してPromega Genomic DNA精製キット(Promega,USA)でDNAを抽出した後、血清型PCR(serotype−PCR)(Tu et al.,2015)で血清型を分析した。PCR増幅し、PCR産物は、EtBrが含まれた1.5%アガロースゲル(Bioneer,Korea)を用いて電気泳動した後、UVトランスルミネーター(Alpha Innotech,USA)を用いてバンド(band)を確認した。
その結果、いずれも血清型Ib及び血清型Ib+IIと確認された(図5及び表20)。
Example 5: Serotyping of commercial commercial vaccines Flounder S. cerevisiae sold in South Korea in 2018. Seven inactivated vaccines containing paraubelis antigen were purchased. After centrifugation and extraction of DNA with the Promega Generic DNA Purification Kit (Promega, USA), the serotype was analyzed by serotype PCR (Tu et al., 2015). PCR amplification was performed and the PCR product was electrophoresed on a 1.5% agarose gel (Bioneer, Korea) containing EtBr, and then banded using a UV transluminator (Alpha Innotech, USA). confirmed.
As a result, both were confirmed to be serotype Ib and serotype Ib + II (FIGS. 5 and 20).

実施例6:S.parauberisの病原性分析
血清型が異なる代表菌株7個(FPa4870、FP4743、FP2331、FPa4365、PR5(19FBSPa0003)、DK14、DW)を選定し、ヒラメ(16.5±0.7cm)に10cfu/fish濃度で人工感染実験(水温23±1℃、皮下注射法、試験区当たり10匹)を行った。皮下注射を用いた人工感染実験はMori et al.(2010)Fish Pathology,45(1)、37−42の方法で行った。
Example 6: S. Pathogenicity analysis of parauberis Seven representative strains (FPa4870, FP4743, FP2331, FPa4365, PR5 (19FBSPa0003), DK14, DW) with different serotypes were selected and 10 6 cfu / in flatfish (16.5 ± 0.7 cm). An artificial infection experiment (water temperature 23 ± 1 ° C., subcutaneous injection method, 10 animals per test group) was carried out at a fish concentration. Artificial infection experiments using subcutaneous injection are described in Mori et al. (2010) Fish Pathology, 45 (1), 37-42.

1次感染実験で血清型別に比較的高い斃死率を示したPR5、FPa4365、FPa4870、FP2331菌株で2次感染実験を行った(図6)。4個菌株をヒラメ(11.6±0.5cm)に10〜1010cfu/fish人工感染(水温25±0.5℃、皮下注射法)させた後、2週間の累積斃死率を測定した。その結果、S.parauberisの血清型Iに含まれるFPa4365(Ia)、PR5(Ib)、FPa4870(Ic)はいずれもヒラメに高い病原性を示した(図7)。血清型IIのFP2331(II)菌株を1010cfu/fishでヒラメに皮下注射したが、高濃度でもヒラメには斃死が発生しなかったので、FP2331菌株はヒラメに病原性がないか低いと判断される。最終的に、血清型Ia、Ib、Ic菌株は10cfu/fish、血清型IIは1010cfu/fishの濃度をワクチン効能検証のための人工感染濃度として設定した。 A secondary infection experiment was conducted with PR5, FPa4365, FPa4870, and FP2331 strains that showed a relatively high mortality rate by serotype in the primary infection experiment (Fig. 6). After artificially infecting 4 strains of flounder (11.6 ± 0.5 cm) with 10 5 to 10 cfu / fish (water temperature 25 ± 0.5 ° C, subcutaneous injection), the cumulative mortality rate for 2 weeks was measured. did. As a result, S. FPa4365 (Ia), PR5 (Ib), and FPa4870 (Ic) contained in serotype I of parauberis all showed high pathogenicity to flatfish (Fig. 7). The serotype II FP2331 (II) strain was subcutaneously injected into the flounder at 10 10 cfu / fish, but the flounder did not die even at high concentrations, so the FP2331 strain was judged to be non-pathogenic or low in the flounder. Will be done. Finally, serotypes Ia, Ib, and Ic strains were set at 10 8 cfu / fish and serotype II at 10 10 cfu / fish as artificial infection concentrations for vaccine efficacy verification.

実施例7:血清型間S.parauberisワクチンの効能分析
実施例7−1:ワクチン作製及び効能分析方法
S.parauberis血清型Ia、Ib、Ic、II菌株(FPa4870、FP2331、FPa4365、PR5(19FBSPa0003))にホルマリンを処理した不活化ワクチン(FKC)を作製してヒラメに腹腔接種(1mg/fish)し、対照区はPBSを腹腔注射した。
Example 7: Interserotype S. Efficacy analysis of paraubelis vaccine
Example 7-1: Vaccine preparation and efficacy analysis method S. Parauberis serotypes Ia, Ib, Ic, II strains (FPa4870, FP2331, FPa4365, PR5 (19FBSPa0003)) were treated with formalin to prepare an inactivated vaccine (FKC), which was intraperitoneally inoculated (1 mg / fish) into flatfish and controlled. The plot injected PBS intraperitoneally.

凍結保存されたS.parauberis菌株4個を、1.5%(v/v)NaClが添加されたBHIA培地で30℃温度で24時間培養した。培養された平板培地の集落を、無菌的に1.5%NaClが添加されたBHIBに接種後、撹拌培養器(JS Research Inc.)で150rpm、30℃温度で48時間培養した。培養された菌液に37%(v/v)ホルマリン(Merck,Germany)を各培養液の0.5%(v/v)になるように添加して撹拌培養器で150rpm、20℃で24時間不活化した。培養菌の不活化をBHIA(Difco,USA)で最終確認した。不活化が確認された菌液を12,000RCFで遠心分離した後、滅菌生理食塩水で3回洗浄して菌体を回収し、最終的に湿菌体重量を測定して実験区によって濃度を異ならせて懸濁した。ワクチン接種2週後に尾部静脈から血液を採取し、ELISA法で抗体価を測定した。ELISA法を用いた抗体価調査方法で96ウェルプレートにS.parauberis FKCを10μg/wellの濃度になるように調節して分注し、4℃で一晩おいてプレート底に抗原を付着させた。S.parauberis血清型別ELISA値を測定するために4つの異なる血清型のS.parauberisのFKCを作製し、各血清に対する抗体価を調べた。3%スキムミルクを用いて室温で1時間ブロッキングを行い、1次抗体でヒラメ血清と腸粘液を10倍希釈して分注した後1時間反応させる。その後、PBSTを用いて3回洗浄した後、2次抗体はAnti−Japanese flounder IgM Mabを1:1000に希釈して分注した後、1時間37℃で反応させる。洗浄後、AP結合抗マウスIgG(AP−conjugated anti−mouse IgG)(whole molecule)を1:1000に希釈して分注した後37℃で1時間反応させ、洗浄した後、基質(PNPP substrate solution)を添加して20分後、405nmで吸光度を確認した。ワクチン接種4週後にそれぞれのワクチン接種区に血清型Ia、Ib、Ic、II菌株でそれぞれ人工感染実験し、3週間累積斃死率を測定した(図8)。相対生存率は下記のように計算した。
相対生存率(%)={1−(試験区の累積斃死率/対照区の累積斃死率)}×100
Cryopreserved S. Four parauberis strains were cultured in BHIA medium supplemented with 1.5% (v / v) NaCl at a temperature of 30 ° C. for 24 hours. The cultured plate medium colonies were aseptically inoculated into BHIB supplemented with 1.5% NaCl, and then cultured in a stirring incubator (JS Research Inc.) at 150 rpm at a temperature of 30 ° C. for 48 hours. 37% (v / v) formalin (Merck, Germany) was added to the cultured bacterial solution so as to be 0.5% (v / v) of each culture solution, and 24 at 150 rpm and 20 ° C. in a stirring incubator. Time was inactivated. The inactivation of the cultured bacteria was finally confirmed by BHIA (Difco, USA). After centrifuging the bacterial solution confirmed to be inactivated at 12,000 RCF, the cells were washed 3 times with sterile physiological saline to collect the cells, and finally the wet cell weight was measured and the concentration was adjusted by the experimental group. It was suspended differently. Blood was collected from the tail vein 2 weeks after vaccination, and the antibody titer was measured by the ELISA method. By the antibody titer investigation method using the ELISA method, S.I. Paraubelis FKC was adjusted to a concentration of 10 μg / well and dispensed, and the antigen was attached to the bottom of the plate at 4 ° C. overnight. S. Parauberis Serotype-specific ELISA values of four different serotypes of S. FKC of paraubelis was prepared and the antibody titer against each serum was examined. Block with 3% skim milk at room temperature for 1 hour, dilute flatfish serum and intestinal mucus 10-fold with a primary antibody, dispense and react for 1 hour. Then, after washing 3 times with PBST, the secondary antibody is diluted 1: 1000 with Anti-Japanese flounder IgM Mab and dispensed, and then reacted at 37 ° C. for 1 hour. After washing, AP-conjugated anti-mouse IgG (AP-conjuged anti-mouse IgG) (where molecule) was diluted 1: 1000 and dispensed, reacted at 37 ° C. for 1 hour, washed, and then the substrate (PNPP substrate solution). ) Was added, and the absorbance was confirmed at 405 nm 20 minutes later. Four weeks after vaccination, artificial infection experiments were performed on each vaccinated group with serotypes Ia, Ib, Ic, and II strains, and the cumulative mortality rate was measured for 3 weeks (Fig. 8). The relative survival rate was calculated as follows.
Relative survival rate (%) = {1- (cumulative mortality rate in test plot / cumulative mortality rate in control plot)} x 100

実施例7−2:血清型別ワクチンの効能及び交差ワクチン効能分析
血清型別ワクチン接種2週後に採血して抗原種類別(血清型Ia〜II)に血清の抗体価を測定した結果、対照区と比較していずれも有意に高い抗体価を形成し、各ワクチン区は同一血清型の抗原で抗体価を測定したとき、最も高い抗体価を示した(表21)。
Example 7-2: Efficacy and cross -vacuum efficacy analysis of serotyped vaccine Blood was collected 2 weeks after serotyped vaccination and the antibody titer of the serum was measured by antigen type (serotypes Ia to II). All of them formed significantly higher antibody titers, and each vaccine group showed the highest antibody titer when the antibody titers were measured with antigens of the same serotype (Table 21).

ヒラメに対する4つの血清型の異なるS.parauberisワクチン処理後、各血清型に対する人工感染試験を行った結果、ワクチンを接種していない対照区に比べて全ワクチン接種区で低い斃死率を示した(表22)。 Four different serotypes of S. flounder for flatfish. As a result of performing an artificial infection test for each serotype after treatment with the paraubelis vaccine, a lower mortality rate was shown in all vaccinated plots as compared with the non-vaccinated control plot (Table 22).

血清型間交差ワクチン効能を対照区と比較した相対生存率を比較した結果、全試験区で同一血清型のワクチン接種後に同一血清型の菌株を人工感染したとき、最も高かい相対生存率を示した(表23)。血清型IbとIcは相互間の交差ワクチン効能反応が高いこと(相対生存率:73.9〜82.5%)が確認されたが、IaとIb、Icとは比較的低い交差ワクチン効能(相対生存率:0〜30.8%)を示した(表23)。 As a result of comparing the relative survival rate of the cross-serotype cross-vaccination efficacy with that of the control group, the highest relative survival rate was shown when a strain of the same serotype was artificially infected after vaccination with the same serotype in all test groups. (Table 23). It was confirmed that serotypes Ib and Ic had a high cross-vaccine efficacy response between each other (relative survival rate: 73.9 to 82.5%), but Ia, Ib, and Ic had relatively low cross-vaccine efficacy (relative survival rate: 73.9 to 82.5%). Relative survival rate: 0 to 30.8%) (Table 23).

実施例8:S.parauberis多価ワクチンの効能分析
実施例8−1:多価ワクチン作製及び効能分析方法
S.parauberis血清型IIはヒラメに対する病原性がなく、最近ヒラメ養殖場では分離されていないので、多価ワクチン開発のためのワクチン対象菌株から除外した。S.parauberisの3つの血清型(血清型Ia(FPa4365)、血清型Ib(PR5)、血清型Ic(FPa4870))菌株をホルマリン処理した不活化ワクチン(FKC)を作製して実験を行った。
Example 8: S. Efficacy analysis of parauberis multivalent vaccine
Example 8-1: Multivalent vaccine preparation and efficacy analysis method S.A. Since paraubelis serotype II is not pathogenic to flounder and has not recently been isolated in flounder farms, it was excluded from the vaccine target strains for the development of multivalent vaccines. S. An inactivated vaccine (FKC) was prepared by formalinizing three serotypes of paraubelis (serotype Ia (FPa4365), serotype Ib (PR5), and serotype Ic (FPa4870)) and conducted experiments.

凍結保存されたS.parauberis菌株を、1.5%(v/v)NaClが添加されたBHIA培地で30℃、24時間培養した。培養された平板培地の集落を無菌的に1.5%NaClが添加されたBHIBに接種後、撹拌培養器(JS Research Inc.)で150rpm、30℃、48時間培養した。培養された菌液に37%(v/v)ホルマリン(Merck,Germany)を各培養液の0.5%(v/v)となるように添加し、撹拌培養器で150rpm、20℃で24時間不活化した。培養菌の不活化をBHIA(Difco,USA)で最終確認した。不活化が確認された菌液を12,000RCFで遠心分離した後、滅菌生理食塩水で3回洗浄した後に菌体を回収し、最終的に湿菌体重量を測定して実験区によって濃度を異ならせて懸濁した。各S.parauberis血清型別不活化単独ワクチン研究結果から血清型IbとIcは相互交差ワクチン効能があると確認され、表24の抗原組合せ及び濃度でヒラメ(平均全長:15.05±0.9cm、平均体重:26.7±4.74g)に腹腔注射方法でワクチンを接種した。実験区当たり総80匹のヒラメを実験に使用した。 Cryopreserved S. The parauberis strain was cultured in BHIA medium supplemented with 1.5% (v / v) NaCl at 30 ° C. for 24 hours. The colonies of the cultured plate medium were aseptically inoculated into BHIB supplemented with 1.5% NaCl, and then cultured in a stirring incubator (JS Research Inc.) at 150 rpm, 30 ° C., and 48 hours. 37% (v / v) formalin (Merck, Germany) was added to the cultured bacterial solution so as to be 0.5% (v / v) of each culture solution, and 24 at 150 rpm and 20 ° C. in a stirring incubator. Time was inactivated. The inactivation of the cultured bacteria was finally confirmed by BHIA (Difco, USA). After centrifuging the inactivated bacterial solution at 12,000 RCF, the cells were washed 3 times with sterile physiological saline, and then the cells were collected. Finally, the wet cell weight was measured and the concentration was determined by the experimental group. It was suspended differently. Each S. Parauberis Serotype-specific inactivated single vaccine research results confirmed that serotypes Ib and Ic have cross-vaccine efficacy, and the antigen combinations and concentrations in Table 24 show hirame (average total length: 15.05 ± 0.9 cm, average body weight). : 26.7 ± 4.74 g) was vaccinated by the peritoneal injection method. A total of 80 flounders per experimental plot were used in the experiment.

ワクチン接種して2週後に尾部静脈から血液を採血(n=10)し、ELISA法でS.parauberisに対する抗体価を測定した。ELISA法を用いた抗体価調査方法で96ウェルプレートにS.parauberis FKCを10μg/wellの濃度となるように調節して分注し、4℃一晩おいてプレート底に抗原を付着させた。S.parauberis血清型別ELISA値を測定するために、3つの異なる血清型のS.parauberisのFKCを作製し、各血清に対する抗体価を調べた。3%スキムミルクを用いて室温で1時間ブロッキングを行い、1次抗体でヒラメ血清と腸粘液を10倍希釈して分注した後1時間反応させた。その後、PBSTを用いて3回洗浄した後、2次抗体はAnti−Japanese flounder IgM Mabを1:1000に希釈して分注した後、1時間37℃で反応させた。洗浄後、AP結合抗マウスIgG(AP−conjugated anti−mouse IgG)(whole molecule)を1:1000に希釈して分注した後37℃で1時間反応させ、洗浄した後、基質(PNPP substrate solution)を添加して20分後、405nmで吸光度を確認した。ワクチン接種2週後に抗体価を測定した結果、対照区では抗体価が確認されず、Ia+Ic区及びIa+Ib+Ic区で対照区に比して有意に高い抗体価を形成した(表25、図9)。 Two weeks after vaccination, blood was collected from the tail vein (n = 10), and S.I. The antibody titer against paraubelis was measured. By the antibody titer investigation method using the ELISA method, S.I. Parauberis FKC was adjusted to a concentration of 10 μg / well and dispensed, and the antigen was attached to the bottom of the plate at 4 ° C. overnight. S. To measure the serotype-specific ELISA value of parauberis, three different serotypes of S. FKC of paraubelis was prepared and the antibody titer against each serum was examined. Blocking was performed at room temperature for 1 hour using 3% skim milk, and the flounder serum and intestinal mucus were diluted 10-fold with a primary antibody, dispensed, and then reacted for 1 hour. Then, after washing three times with PBST, the secondary antibody was diluted 1: 1000 with Anti-Japanese flounder IgM Mab and dispensed, and then reacted at 37 ° C. for 1 hour. After washing, AP-conjugated anti-mouse IgG (AP-conjuged anti-mouse IgG) (where molecule) was diluted 1: 1000 and dispensed, reacted at 37 ° C. for 1 hour, washed, and then the substrate (PNPP substrate solution). ) Was added, and the absorbance was confirmed at 405 nm 20 minutes later. As a result of measuring the antibody titer 2 weeks after vaccination, the antibody titer was not confirmed in the control group, and the antibody titer was significantly higher in the Ia + Ic group and the Ia + Ib + Ic group than in the control group (Table 25, FIG. 9).

実施例8−2:多価ワクチンの効能分析
ワクチン接種3週後にS.parauberis Ia FPa4365(5.2×10cfu/fish)、Ib PR5(7×10cfu/fish)、Ic FPa4870(1.4×10cfu/fish)の3つの菌株で水温26〜27℃を維持しながら人工感染実験を行い、3週間斃死率を確認した(表26)。
Example 8-2: Efficacy analysis of multivalent vaccine S. cerevisiae 3 weeks after vaccination. Parauberis Ia FPa4365 (5.2 × 10 8 cfu / fish), Ib PR5 (7 × 10 8 cfu / fish), Ic FPa4870 (1.4 × 10 8 cfu / fish), water temperature 26-27 ° C. An artificial infection experiment was conducted while maintaining the above, and the mortality rate was confirmed for 3 weeks (Table 26).

S.parauberis血清型Ia+Icワクチン区とIa+Ib+Icワクチン区に3つの異なる血清型のS.parauberisで人工感染すると、対照区に比して高い生存率を示し、また、表23のS.parauberis単一血清型Ia及びIbワクチン区と比して高い相対生存率を示した(表27)。 S. The parauberis serotypes Ia + Ic vaccine group and the Ia + Ib + Ic vaccine group have three different serotypes of S. cerevisiae. When artificially infected with parauberis, the survival rate was higher than that of the control group, and S.I. Parauberis showed higher relative survival rates compared to single serotypes Ia and Ib vaccine groups (Table 27).

例えば、Ia単一血清型ワクチン接種後、S.parauberis Ia血清型のFPa4365菌株で人工感染すると、対照区と比較して55.6%の相対生存率を示したが、Ia+Icワクチン区とIa+Ib+Ic区にFPa4365菌株で人工感染すると、対照区と比較して93.4%及び66.7%の相対生存率を示した。また、Ic単一血清型ワクチン接種後にS.parauberis Ic血清型のFPa4870菌株で人工感染すると、対照区と比較して75.1%の相対生存率を示したが、Ia+Icワクチン区とIa+Ib+Ic区にFPa4365菌株で人工感染すると、対照区と比較して50%及び30%の相対生存率を示し、Ic単一血清型ワクチンに比べて低い効能を示した。血清型を混合した多価ワクチン間のワクチン効能比較では、Ia+Icワクチン区はIa+Ib+Icワクチン区に比べて、3つの全ての血清型の菌株において高い相対生存率を示し、また、S.parauberisに対する特異抗体価は、Ia+Ib+Icワクチン区がIa+Icワクチン区に比べて高い抗体価を示した。 For example, after Ia single serotype vaccination, S. cerevisiae. Artificial infection with the parauberis Ia serotype FPa4365 strain showed a relative survival rate of 55.6% compared to the control group, but artificial infection with the Ia + Ic vaccine group and Ia + Ib + Ic group with the FPa4365 strain compared with the control group. The relative survival rates were 93.4% and 66.7%. In addition, after Ic single serotype vaccination, S. Artificial infection with the parauberis Ic serotype FPa4870 strain showed a relative survival rate of 75.1% compared to the control group, but artificial infection with the Ia + Ic vaccine group and Ia + Ib + Ic group with the FPa4365 strain compared with the control group. It showed a relative survival rate of 50% and 30%, and showed a lower efficacy than the Ic single serotype vaccine. In a comparison of vaccine efficacy between multiserotyped multivalent vaccines, the Ia + Ic vaccine group showed higher relative survival in all three serotype strains than the Ia + Ib + Ic vaccine group. As for the specific antibody titer against parauberis, the Ia + Ib + Ic vaccine group showed a higher antibody titer than the Ia + Ic vaccine group.

実施例9:S.parauberis多価ワクチンの安定性分析
実施例9−1:多価ワクチン安定性分析方法
多価ワクチン安全性調査のために、ヒラメ(平均全長:15.83±1.04cm、平均体重:27.2±4.75g)にワクチン効能調査時に使用した抗原濃度の2倍、5倍、10倍濃度で腹腔に注射接種して安全性を評価した(表28)。腹腔接種後3週までの斃死率を確認したが、毎週、ヒラメの尾部静脈から採血して(n=5)、血液生化学的性状及び病理組織学的検査によって安全性を確認した。血液性状は、自動血液分析機を用いてグルコース、ALT、AST及び総タンパクの濃度を測定し、病理組織学的調査は、腎臓、脾臓、肝などを中性ホルマリンに固定後、常法によって調査した。
Example 9: S. Stability analysis of parauberis multivalent vaccine
Example 9-1: Multivalent vaccine stability analysis method For multivalent vaccine safety investigation, vaccine efficacy against flatfish (average total length: 15.83 ± 1.04 cm, average weight: 27.2 ± 4.75 g) The safety was evaluated by inoculating the abdominal cavity at twice, five, and ten times the antigen concentration used at the time of the survey (Table 28). The mortality rate was confirmed up to 3 weeks after peritoneal inoculation, but the safety was confirmed by blood biochemical properties and histopathological examination every week by collecting blood from the tail vein of the flatfish (n = 5). Blood properties are measured by measuring the concentrations of glucose, ALT, AST and total protein using an automatic blood analyzer, and histopathological investigation is performed by a conventional method after fixing the kidney, spleen, liver, etc. to neutral formalin. did.

実施例9−2:多価ワクチンの安定性分析結果
S.parauberis Ia+Icワクチン区、Ia+Ib+Icワクチン区の抗原量を2倍、5倍、10倍の高農度でワクチンを注射して3週間、全実験区で斃死が発生しなかった。血液生化学的性状(AST、ALT、GLU、TP)は、全ワクチン接種区でワクチン接種後1週、2週、3週において対照区と有意の差が見られず、投与濃度はヒラメに安全なものと確認された(P>0.05、表29)。
Example 9-2: Stability analysis result of multivalent vaccine S. No mortality occurred in all the experimental plots for 3 weeks after injecting the vaccine at a high farming rate of 2 times, 5 times, and 10 times the antigen levels of the parauberis Ia + Ic vaccine group and the Ia + Ib + Ic vaccine group. The blood biochemical properties (AST, ALT, GLU, TP) were not significantly different from those of the control group at 1, 2, and 3 weeks after vaccination in all vaccinated groups, and the administration concentration was safe for flatfish. It was confirmed that the vaccine was (P> 0.05, Table 29).

多価ワクチン接種後の病理組織学的検査の結果、ワクチン区と対照区の肝、腎臓及び脾臓の病理組織学的検査で差が見られず、多価ワクチンはヒラメに安全なものと確認された(図10〜図12)。 As a result of histopathological examination after multivalent vaccination, there was no difference in histopathological examination of liver, kidney and spleen between the vaccine group and the control group, confirming that the multivalent vaccine is safe for flatheads. (FIGS. 10 to 12).

以上、本発明内容の特定の部分を詳細に記述したところ、当業界の通常の知識を有する者にとって、このような具体的記述は単に好ましい実施様態であるだけで、これによって本発明の範囲が制限されない点は明らかであろう。したがって、本発明の実質的な範囲は添付する請求項とそれらの等価物によって定義されるだろう。 As described above, when a specific part of the content of the present invention is described in detail, such a specific description is merely a preferable embodiment for a person having ordinary knowledge in the art, thereby expanding the scope of the present invention. It will be clear that there are no restrictions. Therefore, the substantial scope of the invention will be defined by the appended claims and their equivalents.

Claims (10)

連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株。 Streptococcus paraubellis KCTC 13800BP strain isolated from streptococcal-infected scallops. 連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13801BP菌株。 Streptococcus paraubellis KCTC 13801BP strain isolated from streptococcal-infected scallops. 連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13802BP菌株。 Streptococcus paraubellis KCTC 13802BP strain isolated from streptococcal-infected scallops. 連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13803BP菌株。 Streptococcus paraubellis KCTC 13803BP strain isolated from streptococcal-infected scallops. 不活性化されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株からなる群から選ばれるいずれか一つ以上の菌株を抗原として含む連鎖球菌病予防用不活性化ワクチン。 A chain containing any one or more inactivated strains selected from the group consisting of inactivated Streptococcus paraubellis KCTC 13800BP strain, KCTC 13801BP strain, KCTC 13802BP strain and KCTC 13803BP strain as an antigen. Activated vaccine. 前記ワクチンは、KCTC 13802BP菌株及びKCTC 13803BP菌株が1:1の比率で混合されることを特徴とする、請求項5に記載の連鎖球菌病予防用不活性化ワクチン。 The inactivated vaccine for the prevention of streptococcal disease according to claim 5, wherein the vaccine is a mixture of the KCTC 13802BP strain and the KCTC 13803BP strain in a ratio of 1: 1. 前記ワクチンは、KCTC 13800BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株が1:1:1の比率で混合されることを特徴とする、請求項5に記載の連鎖球菌病予防用不活性化ワクチン。 The inactivated vaccine for the prevention of streptococcal disease according to claim 5, wherein the vaccine is a mixture of the KCTC 13800BP strain, the KCTC 13802BP strain and the KCTC 13803BP strain in a ratio of 1: 1: 1. 前記ワクチンの抗原濃度は、0.5〜30mg/fishであることを特徴とする、請求項5に記載の連鎖球菌病予防用不活性化ワクチン。 The inactivated vaccine for preventing streptococcal disease according to claim 5, wherein the antigen concentration of the vaccine is 0.5 to 30 mg / fish. 連鎖球菌病に感染したヒラメから分離されたストレプトコッカスパラウベリス(Streptococcus parauberis)KCTC 13800BP菌株、KCTC 13801BP菌株、KCTC 13802BP菌株及びKCTC 13803BP菌株からなる群から選ばれるいずれか一つ以上の菌株をホルマリンで不活性化させてワクチンを得る段階を含むことを特徴とする連鎖球菌病予防用不活性化ワクチンの製造方法。 Streptococcus vaccine isolated from streptococcal disease-infected strains KCTC 13800BP strain, KCTC 13801BP strain, KCTC 13802BP strain or KCTC 13803BP strain selected from one of the marine strains A method for producing an inactivated vaccine for preventing streptococcal disease, which comprises a step of activating to obtain a vaccine. 請求項5のワクチンを魚類に投与することを含む、魚類を免疫する方法。
A method for immunizing a fish, which comprises administering the vaccine of claim 5 to the fish.
JP2020077248A 2019-04-26 2020-04-24 A new serotype vaccine for the prevention of streptococcal disease in fish Active JP7021283B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190049050A KR102047911B1 (en) 2019-04-26 2019-04-26 Inactivated Vaccine Against Streptococcal Disease in Fish, Preparing Method Thereof and Administrating Method Thereof
KR10-2019-0049050 2019-04-26
KR1020190130734A KR102106168B1 (en) 2019-10-21 2019-10-21 Combination Vaccines Against Streptococcal Disease in Fish
KR10-2019-0130734 2019-10-21

Publications (2)

Publication Number Publication Date
JP2020182455A true JP2020182455A (en) 2020-11-12
JP7021283B2 JP7021283B2 (en) 2022-02-16

Family

ID=73044054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077248A Active JP7021283B2 (en) 2019-04-26 2020-04-24 A new serotype vaccine for the prevention of streptococcal disease in fish

Country Status (1)

Country Link
JP (1) JP7021283B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110029286A (en) * 2009-09-15 2011-03-23 주식회사 고려비엔피 Vaccine composition against streptococcus in fishes
KR20110111154A (en) * 2010-04-02 2011-10-10 대한민국(관리부서:국립수산과학원) Combined inactivated vaccine against streptococcal disease in fish and preparing method thereof
KR20130012461A (en) * 2011-07-25 2013-02-04 대한민국(관리부서:국립수산과학원) Novel streptococcus strain and combined inactivated vaccine against bacterial diseases in fish using the streptococcus strain and montanide adjuvant
KR20180106570A (en) * 2017-03-21 2018-10-01 주식회사 코미팜 Method and apparatus for preparing inhibitable vaccine for prevention of stability bacterial disease including protected serum form of new streptococcus paraberis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110029286A (en) * 2009-09-15 2011-03-23 주식회사 고려비엔피 Vaccine composition against streptococcus in fishes
KR20110111154A (en) * 2010-04-02 2011-10-10 대한민국(관리부서:국립수산과학원) Combined inactivated vaccine against streptococcal disease in fish and preparing method thereof
KR20130012461A (en) * 2011-07-25 2013-02-04 대한민국(관리부서:국립수산과학원) Novel streptococcus strain and combined inactivated vaccine against bacterial diseases in fish using the streptococcus strain and montanide adjuvant
KR20180106570A (en) * 2017-03-21 2018-10-01 주식회사 코미팜 Method and apparatus for preparing inhibitable vaccine for prevention of stability bacterial disease including protected serum form of new streptococcus paraberis

Also Published As

Publication number Publication date
JP7021283B2 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
Liu et al. Immune responses and protection induced by Brucella suis S2 bacterial ghosts in mice
CN104258386A (en) Combination of mink viral enteritis inactivated vaccine and canine distemper live vaccine
CN106834308A (en) The preparation method and applications of Rofe source of fish Streptococcusagalactiae recombinant C BP protein vaccines
CN113943714A (en) Cat calicivirus strain and application thereof
CN106834168B (en) A kind of streptococcus suis 2-type low virulent strain and its application
CN105733987A (en) Mycoplasma synoviae
CN105154377B (en) Recombinant salmonella pullorum, preparation method and application
JP7021283B2 (en) A new serotype vaccine for the prevention of streptococcal disease in fish
CN109735504B (en) Canine distemper virus attenuated vaccine strain and application thereof
KR102106168B1 (en) Combination Vaccines Against Streptococcal Disease in Fish
CN101829321B (en) Vaccine for preventing red head disease of Pseudobagrus fulvidraco
CN104208666A (en) Vaccine composition, and preparation method and application thereof
CN108718523A (en) The vaccine strain of Brachyspira hyodysenteriae
EP2912198B1 (en) Immunogenic composition against aeromonas hydrophila
CN115887631A (en) Haemophilus parasuis and streptococcus suis combined vaccine
CN113801812B (en) Pasteurella multocida and application thereof
CN105886429B (en) A kind of Aeromonas hydrophila attenuation bacterium of antibiotic-free label and application
US8647640B2 (en) Vaccine compositions and methods of use to protect against infectious disease
CN110862938B (en) Porcine pathogenic escherichia coli strain and inactivated vaccine thereof
CN109735477B (en) Preparation and application of three-gene deletion attenuated mutant strain of Listeria monocytogenes
KR102047911B1 (en) Inactivated Vaccine Against Streptococcal Disease in Fish, Preparing Method Thereof and Administrating Method Thereof
CN101962625A (en) Salmonella choleraesuis gene deletion mutant without resistant marker and vaccine thereof
CN103421733B (en) A kind of haemophilus parasuis-Salmonella choleraesuls bigeminy gene engineering vaccine
CN108939060B (en) Oral vaccine for bacterial parotitis of Chinese softshell turtle
US10857218B2 (en) Attenuated Piscirickettsia salmonis bacterium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7021283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150