JP2020182235A - 通信装置、通信方法及び集積回路 - Google Patents

通信装置、通信方法及び集積回路 Download PDF

Info

Publication number
JP2020182235A
JP2020182235A JP2020123734A JP2020123734A JP2020182235A JP 2020182235 A JP2020182235 A JP 2020182235A JP 2020123734 A JP2020123734 A JP 2020123734A JP 2020123734 A JP2020123734 A JP 2020123734A JP 2020182235 A JP2020182235 A JP 2020182235A
Authority
JP
Japan
Prior art keywords
subframe
epdcch
subframes
uplink
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020123734A
Other languages
English (en)
Other versions
JP7108863B2 (ja
Inventor
綾子 堀内
Ayako Horiuchi
綾子 堀内
鈴木 秀俊
Hidetoshi Suzuki
秀俊 鈴木
リレイ ワン
Lilei Wang
リレイ ワン
一樹 武田
Kazuki Takeda
一樹 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Patent Trust Inc
Original Assignee
Sun Patent Trust Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Patent Trust Inc filed Critical Sun Patent Trust Inc
Priority to JP2020123734A priority Critical patent/JP7108863B2/ja
Publication of JP2020182235A publication Critical patent/JP2020182235A/ja
Application granted granted Critical
Publication of JP7108863B2 publication Critical patent/JP7108863B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】soft combiningを適用する場合のEPDCCHを配置するリソースを適切に設定すること。【解決手段】基地局100は、下り回線の連続するサブフレームのセットにおいてレピティションされる複数のEPDCCH候補の少なくとも1つに配置された制御情報を送信する送信部と、サブフレームのセットのうちの最終サブフレームで送信された下り回線データに関するACK/NACK情報を最終サブフレームに基づいて決定された上り回線のサブフレームで受信する受信部と、を具備する。上り回線のサブフレームにおいて送信すべき上り回線データが存在する場合は上り回線データと多重されたACK/NACK情報が受信され、上り回線のサブフレームにおいて送信すべき上り回線データが存在しない場合は最終サブフレームに配置されたEPDCCH候補に対応づけられたPUCCHリソースでACK/NACK情報が受信される。【選択図】図5

Description

本発明は、通信装置、通信方法及び集積回路に関する。
近年、セルラ移動体通信システムにおいては、情報のマルチメディア化に伴い、音声データのみならず、静止画像データ及び動画像データ等の大容量データを伝送することが一般化しつつある。また、LTE-Advanced(Long Term Evolution Advanced)では、広帯域の無線帯域、Multiple-Input Multiple-Output(MIMO)伝送技術、干渉制御技術を利用して高伝送レートを実現する検討が盛んに行われている。
LTE-Advancedでは、制御信号に使用されるPDCCH(Physical Downlink Control CHannel:下り回線制御チャネル)を拡張したEnhanced PDCCH(EPDCCH)と呼ばれる拡張制御チャネル領域がデザインされた。EPDCCHは、下り回線データが割り当てられるリソース領域(PDSCH(Physical Downlink Shared CHannel)領域)に配置される。また、基地局は、EPDCCHが配置されるリソース領域(EPDCCH領域)において、端末(UE(User Equipment)と呼ばれることもある)毎に周波数リソース(例えば、RB(Resource Block))を定めて信号を送信することができる。このため、セルエッジ付近に存在する端末へ送信される制御信号に対する送信電力制御、又は、送信される制御信号によって自セルから他のセルへ与えられる干渉制御若しくは他のセルから自セルへ与えられる干渉制御が、実現可能となる。
ここで、1RBは、周波数方向には12個のサブキャリアを有し、時間方向には0.5msecの幅を有する。RBを時間方向で2つ組み合わせた単位は、RBペア(RB pair)と呼ばれる。つまり、RBペアは、周波数方向には12個のサブキャリアを有し、時間方向には1msecの幅を有する。また、RBペアが周波数軸上の12個のサブキャリアの塊を表す場合、RBペアは、単にRBと呼ばれることがある。また、物理レイヤでは、RPペアは、PRBペア(Physical RB pair)とも呼ばれる。また、1個のサブキャリアと1つのOFDMシンボルとにより規定される単位が、リソース要素(RE:Resource Element)である。
EPDCCH領域において、各PRBペアを16リソースに分割した単位をEREG(Enhanced Resource Element Group)と呼び、4つ又は8つのEREGにて構成されるリソースの単位をECCE(Enhanced Control Channel Element)と呼ぶ。1つの制御信号を送信するEPDCCHを構成するECCEの数をアグリゲーションレベル(AL: Aggregation level)と呼ぶ。EPDCCHは、複数のALを設定可能である(例えば、非特許文献1参照)。また、各ALでは、予め、「EPDCCH候補」がそれぞれ規定されている。ここで、EPDCCH候補とは、制御信号がマッピングされる領域の候補であり、複数のEPDCCH候補によって、端末によるブラインド復号(モニタ)対象であるサーチスペース(Search Space)が構成される。
LTE-Advancedでは、EPDCCHが配置される可能性のあるECCEの集合(つまり、制御情報の割当候補)で構成されるEPDCCHセットを、1端末あたり複数個設定することが可能である。EPDCCHセット毎に、使用するPRBペアの位置及び個数Nが設定されるので、制御信号配置の柔軟性が高い。
図1は、EPDCCHがリソースにマッピングされる例を示す。EPDCCHが配置されるECCEは、上記複数のEPDCCH候補の中から選択される。図1では、EPDCCH#0及びEPDCCH#1はAggregation level 1(AL1)であり、EPDCCH#2はAggregation level 2(AL2)であり、EPDCCH#3はAggregation level 4(AL4)である。図1では、EPDCCH#0はECCE#0に配置され、EPDCCH#1はECCE#1に配置され、EPDCCH#2はECCE#2及びECCE#3に配置され、EPDCCH#3はECCE#4、ECCE#5、ECCE#6、ECCE#7に配置される。また、図1では、各ECCEは、4つのEREGに配置されるので、4分割される。図1に示すように、localized割当の場合、4つのEREGは同一PRBペアに配置され、distributed割当の場合、4つのEREGは異なるPRBペアに配置される。
また、EPDCCHの割当方法として、EPDCCHを周波数帯域上の互いに近い位置にまとめて割り当てる「localized割当」と、EPDCCHを周波数帯域上に分散させて割り当てる「distributed割当」がある。localized割当は、周波数スケジューリングゲインを得るための割当方法であり、回線品質情報に基づいて回線品質の良いリソースにEPDCCHを割り当てることができる。distributed割当は、周波数軸上にEPDCCHを分散させて周波数ダイバーシチゲインを得ることができる。LTE-Advancedでは、localized割当用のサーチスペース及びdistributed割当用のサーチスペースの双方を設定することができる。
また、LTE-Advancedでは、下り回線(DL:Downlink)のデータ割当を指示するDL assignment、及び、上り回線(UL:Uplink)のデータ割当を指示するUL grantが、PDCCH又はEPDCCHによって送信される。DL assignmentによって、このDL assignmentが送信されたサブフレーム内のリソースが端末に対して割り当てられたことが通知される。一方、UL grantに関しては、UL grantによって予め定められている対象サブフレーム内のリソースが、端末に対して割り当てられたことが通知される。
3GPP TS 36.213 V11.1.0,Physical layer procedures
LTE-Advancedでは、送信電力の低い基地局であるスモールセルを配置して、ホットスポットの高伝送レートを実現することが検討されている。例えば、スモールセルを運用するキャリア周波数として、3.5GHz等の高い周波数が候補となっている。しかしながら、高周波の無線帯域を利用した場合には、近距離では高伝送レートを期待できる一方、遠距離になるにしたがい伝送距離による減衰が大きくなる。よって、高周波の無線帯域を利用した移動体通信システムを運用する場合、スモールセルのカバーエリアが小さくなるという課題がある。また、スモールセルの場合、送信パワーの制約も考慮する必要があり、1サブフレームあたりの送信に使用できるパワーは限定される。セルのカバーエリアは、制御信号が到達する範囲で決まるので、上記スモールセルに対して、制御信号のカバーエリアを広げる技術が求められる。
そこで、例えば、制御情報を含むEPDCCHを複数のサブフレームにまたがって配置するsoft combining(bundlingと呼ばれることもある)を適用することが考えられる。しかしながら、soft combiningを適用する場合のEPDCCHの配置方法に関してこれまで検討されていない。
本発明の目的は、soft combiningを適用する場合のEPDCCHを配置するリソースを適切に設定することができる通信装置、通信方法及び集積回路を提供することである。
本発明の一態様の通信装置は、下り回線における第1のサブフレームのセットを用いて下り回線データの割当を示す1つの制御情報を受信し、前記第1のサブフレームのセットのうちの最終サブフレーム以降の第2のサブフレームのセットを用いて前記下り回線データを受信する受信部と、前記第2のサブフレームのセットで受信された前記下り回線データに関するACK/NACK情報を上り回線のサブフレームにおいて送信する送信部を具備し、前記上り回線のサブフレームにおいて上り回線データが存在する場合は前記上り回線データと多重された前記ACK/NACK情報が送信され、前記上り回線のサブフレームにおいて上り回線データが存在しない場合はPhysical Uplink Control Channel(PUCCH)リソースで前記ACK/NACK情報が送信される。
本発明の一態様の通信装置において、前記上り回線のサブフレームにおいて上り回線データが存在する場合、前記上り回線データと前記ACK/NACK情報が前記上り回線のサブフレームにおけるPhysical Uplink Shared Channel(PUSCH)において受信される。
本発明の一態様の通信方法は、通信装置が、下り回線における第1のサブフレームのセットを用いて下り回線データの割当を示す1つの制御情報を受信し、前記第1のサブフレームのセットのうちの最終サブフレーム以降の第2のサブフレームのセットを用いて前記下り回線データを受信し、前記第2のサブフレームのセットで受信された前記下り回線データに関するACK/NACK情報を上り回線のサブフレームにおいて送信し、前記上り回線のサブフレームにおいて上り回線データが存在する場合は前記上り回線データと多重された前記ACK/NACK情報が送信され、前記上り回線のサブフレームにおいて上り回線データが存在しない場合はPhysical Uplink Control Channel(PUCCH)リソースで前記ACK/NACK情報が送信される。
本発明の一態様の集積回路は、下り回線における第1のサブフレームのセットを用いて下り回線データの割当を示す1つの制御情報を受信する処理と、前記第1のサブフレームのセットのうちの最終サブフレーム以降の第2のサブフレームのセットを用いて前記下り回線データを受信する処理と、前記第2のサブフレームのセットで受信された前記下り回線データに関するACK/NACK情報を上り回線のサブフレームにおいて送信する処理を制御し、前記上り回線のサブフレームにおいて上り回線データが存在する場合は前記上り回線データと多重された前記ACK/NACK情報が送信され、前記上り回線のサブフレームにおいて上り回線データが存在しない場合はPhysical Uplink Control Channel(PUCCH)リソースで前記ACK/NACK情報が送信される。
本発明によれば、soft combiningを適用する場合のEPDCCHを配置するリソースを適切に設定することができる。
EPDCCHの説明に供する図 soft combiningの説明に供する図 本発明の実施の形態1に係る基地局の要部構成を示すブロック図 本発明の実施の形態1に係る端末の要部構成を示すブロック図 本発明の実施の形態1に係る基地局の構成を示すブロック図 本発明の実施の形態1に係る端末の構成を示すブロック図 本発明の実施の形態1に係るPDSCH及びPUCCHのタイミングを示す図 本発明の実施の形態1に係るPUSCHのタイミングを示す図 本発明の実施の形態1に係るsoft combining適用の切替を示す図 本発明の実施の形態2に係るEPDCCH候補の設定例を示す図 本発明の実施の形態2に係るEPDCCHのサーチスペースの設定例を示す図 本発明の実施の形態2に係るEPDCCHのサーチスペースの設定例を示す図 本発明の実施の形態2に係るEPDCCH候補数を示す図 本発明の実施の形態3に係るEPDCCH候補の設定例を示す図 本発明の実施の形態3に係るECCEが配置されるPRBペア(EREG)を示す図 本発明の他の実施の形態に係るEPDCCH候補数の設定例を示す図
以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
[実施の形態1]
[通信システムの概要]
本実施の形態に係る通信システムは、基地局100と端末200とを有する。この通信システムは、例えば、LTE-Advancedシステムである。そして、基地局100は、例えば、LTE-Advancedシステムに対応する基地局であり、端末200は、例えば、LTE-Advancedシステムに対応する端末である。
また、本実施の形態では、基地局100は、端末200向けのEPDCCHを送信する際、複数のサブフレームにまたがりEPDCCH(制御情報)を送信するsoft combiningを適用可能である(図2参照)。受信側(端末200)は、複数のサブフレームにまたがって送信された制御情報を合成し、受信処理をおこなう。複数のサブフレームにまたがって送信されるEPDCCHは、情報ビットに対して誤り訂正符号化して生成された、情報ビットと冗長ビットとを含むビット列から構成される。また、端末200は、複数のサブフレームにまたがり送信されるEPDCCHを受信した際、EPDCCHの受信が完了してから、データの受信又は送信を行い、ACK/NACK(応答信号)の送信又は受信を行うまでのタイミングを定める。
また、EPDCCHのsoft combiningを適用するサブフレームは、上位レイヤのシグナリングによって、端末200に対して予め設定される。当該サブフレームの設定は、端末毎に異なってもよい。また、同一フレーム内に、soft combiningを適用しないサブフレームとsoft combiningを適用するサブフレームとを含んでもよい。このようにすると、干渉の影響が少ないサブフレームではsoft combiningを適用せずに、干渉の多いサブフレームではsoft combiningを適用するというように、サブフレーム毎の受信品質よって、EPDCCHのsoft combiningを適用するか否かを切り替えることができる。
なお、基地局100及び端末200は、PDCCH領域又はEPDCCH領域を用いた制御情報(DL assignment又はUL grant)の送受信が可能であるが、以下の説明では、説明を簡略するために、EPDCCH領域における制御情報の送受信のみについて説明する。
図3は、本実施の形態に係る基地局100の要部構成を示すブロック図である。
基地局100において、設定部102は、複数のサブフレームにまたがって送信される制御情報(割当情報)を割り当てるECCEで構成されるEPDCCHセットを上記複数のサブフレームに設定する。信号割当部105は、複数のサブフレームの各々のPRBペアにおける、ECCEのいずれかに制御情報を割り当てる。
図4は、本実施の形態に係る端末200の要部構成を示すブロック図である。
端末200において、設定部205は、複数のサブフレームにまたがって送信される制御情報(割当情報)が割り当てられるECCEであって、複数のサブフレームに設定されたEPDCCHセットを構成するECCEを特定する。制御信号受信部206は、上記複数のサブフレームの各々のPRBペアにおけるECCEのいずれかに割り当てられた制御情報を受信する。
[基地局100の構成]
図5は、本実施の形態に係る基地局100の構成を示すブロック図である。図5において、基地局100は、割当情報生成部101と、設定部102と、誤り訂正符号化部103と、変調部104と、信号割当部105と、送信部106と、受信部107と、復調部108と、誤り訂正復号部109とを有する。
割当情報生成部101は、送信すべき下り回線データ信号(DLデータ信号)、及び、上り回線(UL)に割り当てる上り回線データ信号(ULデータ信号)が有る場合、データ信号を割り当てるリソース(RB)を決定し、割当情報(DL assignmentおよびUL grant)を生成する。DL assignmentは、DLデータ信号の割当に関する情報を含む。UL grantは、端末200から送信されるULデータ信号の割当リソースに関する情報を含む。DL assignmentは信号割当部105へ出力され、UL grantは信号割当部105及び受信部107へ出力される。
設定部102は、各端末200に対して、1つ又は複数のEPDCCH用のサーチスペースを設定する。具体的には、設定部102は、EPDCCH用のサーチスペースを配置するPRBペア番号、アグリゲーションレベル毎のECCEインデックス、当該サーチスペース(EPDCCH)の割当方法(localized割当又はdistributed割当)を端末200毎に設定する。EPDCCH用サーチスペースは複数の割当候補(EPDCCH候補)によって構成される。各「割当候補」はアグリゲーションレベルと同数のECCEから構成される。
設定部102は、端末200に対して複数のEPDCCH用サーチスペースを設定する場合、サーチスペース毎にECCEインデックスを割り当てる。
設定部102は、soft combiningを適用する端末200に対して、soft combiningを適用するサブフレーム(図2参照)を設定する。また、設定部102は、soft combiningを適用する端末200に対して、soft combiningを適用する複数のサブフレームに、EPDCCHセットを設定する。この際、EPDCCHセットを構成するECCEに対応するPRBペアは、上記複数のサブフレームのそれぞれに配置される。これにより、soft combiningに使用される各サブフレームでは、設定されたEPDCCHセットに基づいて、上述したサーチスペースが設定される。
設定部102は、設定したサーチスペースに関する情報、及び、EPDCCHのsoft combiningが適用されるサブフレーム番号に関する情報を信号割当部105へ出力する。サーチスペースに関する情報には、例えば、PRBペア番号、PRBペア数等が含まれる。また、設定部102は、サーチスペースに設定されたPRBペアに関する情報、及びEPDCCHの割当方法に関する情報を制御情報として誤り訂正符号化部103へ出力する。
誤り訂正符号化部103は、送信データ信号(DLデータ信号)、及び、設定部102から受け取る制御情報を入力とし、入力された信号を誤り訂正符号化し、変調部104へ出力する。
変調部104は、誤り訂正符号化部103から受け取る信号に対して変調処理を施し、変調後のデータ信号を信号割当部105へ出力する。
信号割当部105は、割当情報生成部101から受け取る割当情報(DL assignment及びUL grant)を、設定部102から受け取るサーチスペース情報に示されるPRBペア番号に対応するECCE(割当候補単位のECCE)のうちのいずれかに割り当てる。このとき、信号割当部105は、当該割当情報に対してsoft combiningが設定されている場合、設定部102から受け取るsoft combiningに関する情報に示されるサブフレーム番号に対応する複数のサブフレームの各々のPRBペアにおけるECCEのいずれかに当該割当情報を割り当てる。これにより、割当情報は、ECCEが配置されるPRBペアに割り当てられる(例えば、図1参照)。また、信号割当部105は、変調部104から受け取るデータ信号を、割当情報生成部101から受け取る割当情報(DL assignment)に対応する下り回線リソースに割り当てる。
こうして割当情報及びデータ信号が所定のリソースに割り当てられることにより、送信信号が形成される。形成された送信信号は、送信部106へ出力される。また、信号割当部105は、DL assignmentの送信に使用したECCEのECCEインデックスを受信部107へ通知する。なお、soft combiningを適用する場合には、信号割当部105は、DL assignmentの送信に使用された複数のサブフレームのうち、最後尾のサブフレーム(以下、「最終サブフレーム」と呼ばれることもある)におけるECCEのECCEインデックスを受信部107へ通知する。
送信部106は、入力信号に対してアップコンバート等の無線送信処理を施し、アンテナを介して端末200へ送信する。
受信部107は、端末200から送信された信号をアンテナを介して受信し、復調部108へ出力する。具体的には、受信部107は、割当情報生成部101から受け取ったUL grantが示すリソースに対応する信号を受信信号から分離し、分離された信号に対してダウンコンバート等の受信処理を施した後に復調部108へ出力する。また、受信部107は、信号割当部105から受け取ったECCEインデックスに関連付けられたPUCCHリソースに対応する信号からA/N信号を抽出(受信)する。
復調部108は、入力信号に対して復調処理を施し、得られた信号を誤り訂正復号部109へ出力する。
誤り訂正復号部109は、入力信号を復号し、端末200からの受信データ信号を得る。
[端末200の構成]
図6は、本実施の形態に係る端末200の構成を示すブロック図である。図6において、端末200は、受信部201と、信号分離部202と、復調部203と、誤り訂正復号部204と、設定部205と、制御信号受信部206と、誤り訂正符号化部207と、変調部208と、信号割当部209と、送信部210とを有する。
受信部201は、基地局100から送信された信号をアンテナを介して受信し、ダウンコンバート等の受信処理を施した後に信号分離部202へ出力する。
信号分離部202は、受信部201から受け取る受信信号のうち、リソース割当に関する制御信号を抽出し、抽出された信号を制御信号受信部206へ出力する。また、信号分離部202は、制御信号受信部206から出力されたDL assignmentが示すデータリソースに対応する信号(つまり、DLデータ信号)を受信信号から抽出し、抽出された信号を復調部203へ出力する。なお、信号分離部202は、EPDCCHのsoft combiningが適用されている場合、soft combiningに使用される複数のサブフレームのうちの最終サブフレームに基づいて、データリソースに対応する信号(DLデータ信号)を受信信号から抽出する。
復調部203は、信号分離部202から出力された信号を復調し、当該復調された信号を誤り訂正復号部204へ出力する。
誤り訂正復号部204は、復調部203から出力された復調信号を復号し、得られた受信データ信号を出力する。誤り訂正復号部204は、特に、基地局100から制御信号として送信された、「サーチスペースに設定されたPRBペアに関する情報」及び「EPDCCHのsoft combiningが適用されるサブフレームに関する情報」を設定部205へ出力する。
設定部205は、EPDCCHを使用する自機(端末200)に設定されたサーチスペースを特定する。例えば、設定部205は、まず、誤り訂正復号部204から受け取る情報に基づいて、サーチスペースに設定するPRBペアを特定する。次いで、設定部205は、EPDCCHのsoft combiningが適用されるサブフレームに関する情報に基づいて、soft combiningが適用されるEPDCCHを特定する。そして、設定部205は、PRBペアに対応するサーチスペースのECCEインデックスを決定する。これにより、設定部205は、複数のサブフレームにまたがって送信されるEPDCCHが割り当てられるECCE(上記複数のサブフレームに設定されたEPDCCHセットを構成するECCE)を特定する。なお、この際、設定部205は、複数のEPDCCH用サーチスペースが設定された場合、サーチスペース毎にECCEインデックスを割り振る。また、設定部205は、端末200毎に予め定められている基地局100と端末200との間の共通ルールに従って、アグリゲーションレベル毎にどのECCEインデックスがEPDCCH候補に設定されるかを特定する。例えば、設定部205は、UE ID(端末個別のID)及びsoft combiningの適用があるか否かに基づいて、アグリゲーションレベル毎のEPDCCH候補となるECCEインデックスを特定する。次いで、設定部205は、サーチスペースとして設定されたPRBペアおよびECCEに関する情報を制御信号受信部206へ出力する。
制御信号受信部206は、信号分離部202から受け取る信号成分において、設定部205から受け取る情報に示されるPRBペアに対応するECCEに対してブラインド復号を行うことにより、自機宛の制御信号(DL assignment又はUL grant)を検出する。すなわち、制御信号受信部206は、設定部205で設定されたサーチスペースを構成する複数の割当候補の内の1つに割り当てられた制御信号を受信する。なお、EPDCCHのsoft combiningが適用されている場合、制御信号受信部206は、複数のサブフレームの各々のPRBペアにおけるECCEの何れかに割り当てられた制御信号を受信する。制御信号受信部206は、検出した自機宛のDL assignmentを信号分離部202へ出力し、検出した自機宛のUL grantを信号割当部209へ出力する。また、制御信号受信部206は、DL assignmentが検出されたECCEのECCEインデックスを信号割当部209へ出力する。
誤り訂正符号化部207は、送信データ信号(ULデータ信号)を入力とし、その送信データ信号を誤り訂正符号化し、変調部208へ出力する。
変調部208は、誤り訂正符号化部207から受け取る信号を変調し、変調信号を信号割当部209へ出力する。
信号割当部209は、変調部208から受け取る信号を、制御信号受信部206から受け取るUL grantに従って割り当て、送信部210へ出力する。このとき、EPDCCHのsoft combiningが適用されている場合、信号割当部209は、soft combiningが適用された複数のサブフレームのうちの最終サブフレームに基づいて、当該信号の送信サブフレームを決定する。また、信号割当部209は、誤り訂正復号部204から受け取るA/N信号を、所定のリソースに割り当てる。具体的には、信号割当部209は、送信データ信号が存在する場合には当該送信データ信号にA/N信号を多重して、送信部210へ出力する。一方、信号割当部209は、送信データ信号が存在しない場合には、制御信号受信部206から受け取るECCEインデックスに基づいてPUCCHリソースを特定し、特定したPUCCHリソースにA/N信号を割り当て、送信部210へ出力する。このとき、EPDCCHのsoft combiningが適用されている場合、信号割当部209は、soft combiningが適用された複数のサブフレームのうちの最終サブフレームに基づいて、A/N信号の送信サブフレームを決定する。
送信部210は、入力信号に対してアップコンバート等の送信処理を施し、送信する。
[基地局100及び端末200の動作]
以上の構成を有する基地局100及び端末200の動作について説明する。
以下では、EPDCCHのsoft combiningが適用されている場合における、(1)PDSCHのタイミング、(2)上り回線のA/N信号(UL ACK/NACK)のタイミング、及び、(3)PUSCHのタイミングについてそれぞれ説明する。
[PDSCHのタイミング]
基地局100及び端末200は、soft combiningが適用されたEPDCCHを用いて通知されるDL assignmentが指定するPDSCHの送信タイミング(つまり、PDSCHが配置されるサブフレーム)を、soft combiningが適用されたEPDCCHが配置される複数のサブフレームのうちの最終サブフレームに設定する。
図7は、PDSCHの設定例を示す。図7に示すように、サブフレーム#0及びサブフレーム#1の2つのサブフレームを用いたsoft combiningが適用される場合、基地局100は、端末200に対するPDSCHを、上記2つのサブフレームのうち、最終サブフレームであるサブフレーム#1に配置する。すなわち、図7に示すように、サブフレーム#0及びサブフレーム#1に配置されたEPDCCHを用いて通知されるDL assignmentには、PDSCH用のリソースとして、サブフレーム#1内のリソースが指定される。
すなわち、基地局100(信号割当部105)は、EPDCCH(DL assignment)によって割当を指示される下り回線データ(PDSCH)を、soft combiningに使用される複数のサブフレームのうち、最後尾のサブフレームに割り当てる。
一方、図7では、端末200(制御信号受信部206)は、soft combiningが適用されるサブフレーム#0及びサブフレーム#1に配置されているECCEに対してブラインド復号を行うことにより、端末200向けのDL assignmentを検出する。そして、端末200(信号分離部202)は、検出されたDL assignmentに基づいて、最終サブフレームであるサブフレーム#1において、PDSCH(DLデータ信号)を抽出する。
ここで、端末200において、soft combiningが適用されたEPDCCHを用いて通知されるDL assignmentの検出は、最終サブフレーム受信後に行われる。そして、端末200は、DL assignmentを検出後、DL assignmentにより指定されたPRBペアにPDSCHが割り当てられたと特定し、PDSCHの受信処理を開始する。
従って、仮に、PDSCHが、最終サブフレームよりも前のサブフレームに配置される場合には、端末200は、PDSCHに割り当てられたPRBペアの特定(検出)が完了するまでの間、PDSCHとして割り当てられた可能性があるすべてのPRBペアにおいて受信した受信信号をバッファに格納しなければならない。
これに対して、本実施の形態では、PDSCHは、soft combiningが適用される複数のサブフレームのうちの最終サブフレームに配置される。こうすることで、PDSCHの受信タイミングからEPDCCHの検出完了時までに受信した受信信号をバッファに保存する期間を最小限に抑えることができる。換言すると、EPDCCHのsoft combiningが適用される場合でも、PDSCHの受信タイミングからEPDCCHの検出完了時までに受信した受信信号をバッファに保存する期間を、EPDCCHのsoft combiningを適用しない場合(non soft combining)における当該期間と同様にすることができる。これにより、端末200が備えるべきバッファのサイズが大きくなることを防ぐことができる。
[UL ACK/NACKのタイミング]
LTE-Advancedでは、端末は、PDSCHを受信後に、受信判定(誤り判定)を行い、上り回線のA/N信号(UL ACK/NACK)を基地局100へ送信する(図示せず)。また、上り回線のA/N信号が送信されるサブフレームは予め定められている。具体的には、上り回線のA/N信号が送信されるサブフレームは、FDD(Frequency Division Duplex)システムの場合、PDSCHが割り当てられたサブフレームの4サブフレーム後に設定され、TDD(Time Division Duplex)システムの場合、TDDのUL-DL configuration(1フレームあたりの下り通信(DL)と上り通信(UL)とのサブフレーム単位のタイミング設定)毎に規定されている。ただし、FDDシステム及びTDDシステムの何れにおいても、上り回線のA/N信号の送信タイミングは、必ずPDSCHの4サブフレーム以上後に設定される。
本実施の形態では、上り回線のA/N信号の送信タイミング(UL ACK/NACKを送信するサブフレーム)を、PDSCHの受信サブフレームに従って規定する。FDDシステムの場合、PDSCHの受信サブフレームの4サブフレーム後に設定され、TDDシステムの場合、PDSCHの受信サブフレームを基準とし、TDDのUL-DL configuration毎に規定に従う。上り回線のA/N信号は、PUSCH送信がある場合はPUSCH領域で送信され、PUSCH送信がない場合はPUCCH領域で送信される。
LTE-Advancedでは、PUCCH領域で上り回線のA/N信号を送信する場合、DL assignmentが配置されるEPDCCH(つまり、PDSCHが送信されるサブフレームのEPDCCH)を構成するECCEのうち最小のECCE番号に対応付けられたPUCCHリソース(implisitに指示されるリソース)を指定することで、端末間でのPUCCHリソースが、衝突しないように自動的に(implisitに)割り当てられる。
そこで、基地局100及び端末200は、EPDCCHのsoft combiningが適用された場合、PDSCHが送信されるサブフレームに配置されたEPDCCHのECCE番号に対応付けられたPUCCHリソースを特定する。
すなわち、端末200は、soft combiningに使用される複数のサブフレームのうち、EPDCCH(DL assignment)によって割当を指示される下り回線データ(PDSCH)が割り当てられるサブフレームに配置されたECCEに対応付けられたPUCCHにおいて、当該下り回線データに対するA/N信号(応答信号)を送信する。したがって、サブフレームによって割り当てられるECCE番号が異なる場合、A/N信号の送信に使用されるPUCCHリソースに対応付けられたECCEは、EPDCCHを構成するECCEのうち、最小のECCE番号とは限らない。同様に、基地局100(受信部107)は、soft combiningに使用される複数のサブフレームのうち、EPDCCH(DL assignment)によって割当を指示される下り回線データ(PDSCH)が割り当てられるサブフレームに配置されたECCEに対応付けられたPUCCHにおいて、当該下り回線データに対するA/N信号(応答信号)を受信する。
例えば、EPDCCHのsoft combiningが適用された複数のサブフレームのうち、最終サブフレームにPDSCHが配置される場合、基地局100及び端末200は、最終サブフレームに配置されたEPDCCHのECCE番号を用いて、上記PDSCHに対する上り回線のA/N信号が割り当てられるPUCCHリソースを特定する。具体的には、図7では、EPDCCHのsoft combiningが適用されたサブフレーム#0及びサブフレーム#1のうち、最終サブフレームであるサブフレーム#1にPDSCHが配置される。よって、図7では、基地局100及び端末200は、サブフレーム#1の4サブフレーム後のサブフレーム#5における、サブフレーム#1に配置されたEPDCCHのECCE番号に対応付けられたPUCCHリソースを、PDSCHに対する上り回線のA/N信号が割り当てられるPUCCHリソースとして特定する。
このようにすることで、EPDCCHのsoft combiningが適用された端末と、EPDCCHのsoft combiningが適用されていない端末との間でEPDCCHのサーチスペースを共有している場合でも、基地局100では、双方の端末向けのPDSCHが割り当てられるサブフレームにおいて、これらの端末向けのEPDCCHに用いられるECCE番号の割当が行われる。これにより、当該サブフレームでは、これらの端末に対して、PUCCHリソースの衝突を考慮してECCE番号が割り当てられるので、PUCCHリソースが、端末間で衝突しないように自動的に(implisitに)割り当てられる。
[PUSCHのタイミング]
LTE-Advancedでは、端末は、UL grantを受信後にPUSCHを送信する。PUSCHが送信されるサブフレームは予め定められている。具体的には、PUSCHが送信されるサブフレームは、FDDシステムの場合、UL grantが割り当てられたサブフレームの4サブフレーム後に設定され、TDDシステムの場合、TDDのUL-DL configuration毎にに規定されている。また、1フレームにおいて、DLサブフレーム数よりもULサブフレーム数の方が多い場合には、1つのDLサブフレームにおいて、複数のULサブフレームのPUSCHを指定することも可能である。ただし、この場合も、PUSCHが送信されるサブフレームは、必ずUL grantの4サブフレーム以上後に設定される。
また、端末では、UL grantを検出後、UL grantにより指定されたPRBペアがPUSCHに割り当てられたと特定され、データ(PUSCH)のサイズ及び送信方法が決定される。従って、端末では、EPDCCHのsoft combiningが適用されたサブフレームのうち、最終サブフレーム(UL grantの検出完了時)から一定以上の間隔(LTE-Advancedでは4サブフレーム以上)を設けないと、PUSCHの送信処理を準備することができない。
そこで、本実施の形態では、soft combiningが適用されたEPDCCHを用いて送信されるUL grantが指定するPUSCHの送信タイミングを、soft combiningが適用されたEPDCCHが配置される複数のサブフレームのうちの最終サブフレームを基準として特定する。PUSCHの送信タイミング(PUSCHを送受信するサブフレーム)が、soft combiningの最終サブフレームを基準として特定されることにより、UL grantの検出タイミングからPUSCHの送信準備までの間隔を、EPDCCHのsoft combiningが適用されない場合と同様にすることができる。
特に、TDDシステムでは、UL-DL configuration毎に規定されている、UL grantの送受信タイミングとPUSCHの送受信タイミングとの対応付け(UL grant-PUSCH timing)に従って、DLサブフレームであってもUL grantが送信されないサブフレームが存在する。そこで、TDDシステムの場合、soft combiningに使用される複数のサブフレームのうち、最後尾のサブフレームは、UL grantを含むEPDCCHの送信サブフレームと同一とする。
図8は、一例として、UL-DL configuration #1の場合のサブフレームを示す。図8に示すように、UL-DL configuration #1では、サブフレーム#0, #4, #5, #9がDLサブフレームであり、サブフレーム#1, #6がスペシャルサブフレーム(EPDCCHおよびPDSCHの送信として使用できるサブフレーム)であり、サブフレーム#2, #3, #7, #8がULサブフレームである。また、図8に示すようにUL grant-PUSCH timingが予め規定されており、UL grantを配置できるサブフレームはサブフレーム#1, #4, #6, #9であり、各サブフレームにおいて通知されたUL grantに対して、ULサブフレーム#7, #8, 次のフレーム(図示せず)のサブフレーム#2, 次のフレームのサブフレーム#3においてPDSCHがそれぞれ割り当てられる。
これに対して、図8に示すように、Soft combiningが適用される場合、UL grantが送信されないサブフレームにおいても、UL grantが配置されることがある。そこで、本実施の形態では、UL grantを含むEPDCCHのsoft combiningが適用される場合、Soft combiningが適用されるEPDCCHが配置されるサブフレームのうちの最終サブフレームを、Soft combiningが適用されない場合にUL grantを送信できるサブフレームとする。
こうすることで、UL grantの検出タイミングからPUSCHのタイミングを変更することなくsoft combining を運用することができる。
例えば、図8では、サブフレーム#1, #4, #6, #9のみが、soft combining の最終サブフレームに設定される。具体的には、図8では、サブフレーム#0と#1、及び、サブフレーム#5と#6において、UL grantを含むEPDCCHのsoft combiningがそれぞれ設定されている。図8に示すように、soft combiningが適用されない場合にUL grantが配置されないサブフレーム#0, #5にも、UL grantを含むEPDCCHが配置される。この場合でも、当該EPDCCHを用いて通知されたUL grantに対するPUSCHの送信タイミングは、当該EPDCCHが送信されたサブフレームのうちの最終サブフレームに基づいて特定される。つまり、UL grantを含むsoft combiningが適用される場合、Soft combiningが適用されたEPDCCHを用いて送信されるUL grantが指定するPUSCHのタイミング(PUSCHの先頭送信サブフレーム)は、soft combiningが適用されるEPDCCHが配置される最終サブフレームを基準として定まる。これにより、soft combiningを適用しない場合と比較して、UL grantの検出タイミングからPUSCHのタイミングまでの関係を変更することなく、soft combiningを運用することができる。
なお、EPDCCHのSoft combiningが適用されるサブフレームの指定が、DL assignmentとUL grantとで共通の場合、UL grantに関しては、上記最終サブフレームが、Soft combiningが適用されない場合にUL grantを送信できるサブフレームになっている場合のみ、Soft combiningが行われ、この条件を満たさない場合、soft combiningが行われないとしてもよい。
以上、EPDCCHのsoft combiningが適用されている場合における、各信号(PDSCH、UL ACK/NACK、PUSCH)のタイミングについて説明した。
次に、soft combining適用の有無を切り替える場合について説明する。
例えば、EPDCCHのsoft combiningが適用されるサブフレームにおいて、同一サブフレーム内のEPDCCH候補を、soft combining用のEPDCCH候補と、soft combiningを適用しないEPDCCH候補とに分割してもよい。こうすることで、同一サブフレーム内において使用するEPDCCH候補によって、soft combining適用の有無を瞬時の回線品質に応じて柔軟に切り替えることができる。
ここで、soft combining用のEPDCCH候補数をK1とし、soft combiningを適用しないEPDCCH候補数をK2とする。図9Aは、LTE-Advancedにおける、アグリゲーションレベル(L)及びPRBペアとEPDCCH候補数との関係の一例を示す。
図9Bは、図9Aに示すEPDCCH候補に対して、soft combining適用の有無を切り替える場合のsoft combining用のEPDCCH候補と、soft combiningを適用しないEPDCCH候補とに分割した一例を示す。
例えば、soft combiningを適用しないEPDCCHの運用として、3つの方法1〜方法3のいずれかを適用することが考えられる。
(方法1)
方法1では、soft combiningを適用しないEPDCCHは、どのサブフレームにも配置可能であるが、当該EPDCCHによって通知するPDSCHは、soft combiningが適用されるサブフレームの最終サブフレームに対応するサブフレームに配置され、当該EPDCCHによって通知されるPUSCHは、上記最終サブフレームを基準に特定されるサブフレームに配置される。
この場合、端末200は、最終サブフレーム以外のサブフレームでは、K2個のEPDCCH候補をモニタ(ブラインド復号)し、最終サブフレームではK1+K2個のEPDCCH候補をモニタする。
方法1によれば、soft combining用のPDSCH及びPUSCHの各タイミングを、soft combiningを適用しない場合にも使用できるので、スケジューリングが簡単になる。特に、UL HARQでは、サブフレームによってUL HARQプロセス番号が決まっているので、UL HARQプロセス番号を変更することなく、soft combining適用の有無の切替が可能となる。
(方法2)
方法2では、soft combiningを適用しないEPDCCHは、soft combiningが適用されるサブフレームの最終サブフレームに対応するサブフレーム以外のサブフレームに配置される。具体的には、soft combiningが適用されるサブフレーム数が2個の場合、soft combiningを適用しないEPDCCHは、先頭のサブフレーム(1stサブフレーム)に配置される。
この場合、端末200は、最終サブフレーム以外のサブフレームでは、K2個のEPDCCH候補をモニタし、最終サブフレームではK1個のEPDCCH候補をモニタする。
方法2によれば、soft combiningの適用の有無に応じてEPDCCH候補のモニタ対象となるサブフレームが分散されるので、サブフレーム毎に端末200がモニタするEPDCCH候補数を平均化できる。
また、下り回線では、soft combiningを適用しないEPDCCHが送信されるサブフレームと、当該EPDCCHによって通知されるPDSCHが送信されるサブフレームとを異なるサブフレームに設定してもよい。こうすることで、EPDCCH用のサブフレームとデータ(PDSCH)用のサブフレームとを分けることができるので、データの送信にパワーが必要な場合には、EPDCCHの送信に使用可能なパワーをデータの送信に使用することができる。
(方法3)
方法3では、soft combiningを適用しないEPDCCHは、どのサブフレームにも配置できる。
この場合、端末200は、soft combiningが適用されるサブフレームの最終サブフレームに対応するサブフレーム以外のサブフレームでは、K2個のEPDCCH候補をモニタし、最終サブフレームに対応するサブフレームではK1+K2個のEPDCCH候補をモニタする。
また、PDSCHは、どのサブフレームに配置してもよく、PUSCHは、EPDCCHが検出されたサブフレームを基準に特定されるサブフレームに配置される。
方法3によれば、soft combiningを適用しない場合のPDSCH/PUSCH割当の柔軟性が高くなる。
以上、soft combining適用の有無を切り替える場合について説明した。
以上のように、本実施の形態によれば、soft combiningを適用する場合の各信号の送受信タイミング(各信号のリソース配置)を適切に設定できる。
なお、上述したEPDCCHのsoft combiningと合わせて、PDSCH及びPUSCHのsoft combining(TTI bundlingと呼ばれることもある)が適用されることも考えられる。この場合、DL assignmentを用いて割当が指示されるDLデータ(PDSCH)の先頭位置(先頭サブフレーム)を、DL assignmentを含むEPDCCHが送信される複数のサブフレームのうちの最終サブフレームに配置してもよい。これにより、PDSCHの受信タイミングからEPDCCHの検出処理の完了時までの間に、受信信号(PDSCHである可能性のある信号)をバッファに保存する間隔を、EPDCCHのsoft combiningが適用されない場合と同様にすることができる。
[実施の形態2]
本実施の形態では、soft combiningが適用されるEPDCCHが配置される複数のサブフレームにおけるEPDCCHのリソース配置(サーチスペース設定)について説明する。
なお、本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図5及び図6を援用して説明する。
本実施の形態では、soft combiningに使用される複数のサブフレームの各々に対して、1つのEPDCCHセットがそれぞれ設定される。つまり、複数のサブフレームの各々に設定される複数のEPDCCHセットを連結して、EPDCCHのsoft combiningが行われる。
なお、EPDCCHセット毎にPRBペア数、PRBペア番号(周波数リソース。つまり、PRBペアの位置)が設定される。また、PRBペア数によって、EPDCCHセット内のECCE数であるNECCEが定まり、ECCE#0〜ECCE#NECCE-1のECCEが配置される。
図10は、2つのサブフレームを用いてEPDCCHのsoft combiningが行われる例を示す。なお、送信されるEPDCCHのビット列は、予めアグリゲーションレベルが2以上(AL2以上)に相当するものに設定されている。図10では、EPDCCH#0及びEPDCCH#1はAL2であり、EPDCCH#2はAL4である。
本実施の形態では、各EPDCCHは2分割され、EPDCCHセット0(サブフレーム#0に対応するEPDCCHセット)のECCEと、EPDCCHセット1(サブフレーム#1に対応するEPDCCHセット)のECCEとにそれぞれ配置される。すなわち、各EPDCCHは、ECCE単位で分割される。
例えば、図10では、EPDCCH#0は、EPDCCH#0aとEPDCCH#0bとに分割され、EPDCCHセット0及びEPDCCHセット1のAL1のEPDCCH候補(1つのECCE)にそれぞれ配置される。同様に、EPDCCH#1は、EPDCCH#1aとEPDCCH#1bとに分割され、EPDCCHセット0及びEPDCCHセット1のAL1のEPDCCH候補(1つのECCE)にそれぞれ配置される。同様に、EPDCCH#2は、EPDCCH#2aとEPDCCH#2bとに分割され、EPDCCHセット0及びEPDCCHセット1のAL2のEPDCCH候補(2つのECCE)にそれぞれ配置される。
つまり、基地局100(設定部102)は、soft combiningに使用される複数のサブフレームの各々に対して、EPDCCHセットをそれぞれ設定する。また、基地局100(信号割当部105)は、EPDCCH(制御情報)を上記複数のサブフレーム数と同数だけECCE単位で分割し、分割されたEPDCCHの各々を、上記複数のサブフレームの各々に設定されたEPDCCHセットを構成するECCEのいずれかに割り当てる。
この際、端末200毎のEPDCCH候補は、サブフレーム番号によって異なる。よって、図10に示すように、サブフレーム#0とサブフレーム#1とでは、分割されたEPDCCHはそれぞれ異なるEPDCCH候補に配置される。LTE-Advancedでは、端末200毎のEPDCCH候補を示す式として以下の2式が検討されている。
Figure 2020182235
Figure 2020182235
式(1)及び式(2)において、Lはアグリゲーションレベル(AL)を示し、Yp,kはUE ID(端末ID)を示し、Kはサブフレーム番号を示し、pはサーチスペースセット番号を示す。また、iは0,1,…,L-1の値を採る。
また、m'は、クロスキャリアスケジューリングが設定された際に使用されるパラメータであって、次式で表される。
Figure 2020182235
Mp (L)は、サーチスペースセットpにおいて、アグリゲーションレベル(L)でモニタするEPDCCH候補数を示し、nCIは、クロスキャリアスケジューリングの設定に使用されるパラメータ(carrier indicator field value)を示す。式(3)において、クロススケジューリングが設定されない場合にはm'=mとなる。
また、mは次式で表される。
Figure 2020182235
すなわち、mはアグリゲーションレベル(L)毎のEPDCCH候補の番号を表す。
本実施の形態では、上記分割されたEPDCCHの各々は、soft combiningが適用されるサブフレームの各々において、“m”(サブフレーム間で同一番号)によって示されるEPDCCH候補に配置される。
このようにすると、使用されるEPDCCH候補の番号をsoft combiningが適用されるサブフレーム間で共通化できる。具体的には、soft combiningが適用されるサブフレーム(ここでは、2サブフレーム)では、アグリゲーションレベル(AL)毎に、Mp (L)*Mp (L)パターンとなるEPDCCH候補の組み合わせを、Mp (L)パターンに制限することができる。また、各サブフレームにおいて、同一番号mのEPDCCH候補を用いる場合でも、当該EPDCCH候補(ECCE)はサブフレーム毎に異なる。すなわち、同一番号mのEPDCCH候補(ECCE)であってもサブフレーム毎に割り当てられる周波数リソースが異なるので、周波数ダイバーシチ効果を得ることができる。また、実際に割り当てられるRE数がECCE番号毎に異なる場合には、RE数を平均化することができる。
次に、soft combiningが適用されるサブフレームにおけるEPDCCHのサーチスペースの設定方法1,2について説明する。なお、以下では、一例として、2サブフレームにまたがってsoft combiningが適用される場合について説明する。ただし、soft combiningに使用されるサブフレームは2サブフレームに限らず、3サブフレーム以上であってもよい。
(方法1:2つのサブフレームに設定されるEPDCCHセットが同一の場合)
図11Aは、non soft combining時に設定されるEPDCCHセットを示し、図11Bは、soft combining時に設定されるEPDCCHセットを示す。
図11Bに示すように、soft combiningが適用される2つのサブフレーム(1st subframe及び2nd subframe)にそれぞれ設定される、EPDCCHセット0及びEPDCCHセット1を同一とする。
これにより、図11Bに示すように、サブフレーム毎に配置されるEPDCCHセットは、同一のPRBペア数(4個)、かつ、同一のPRB番号(同一のPRBペア配置位置)となる。ただし、各EPDCCHセットを構成するEPDCCH候補に対応するECCEは、サブフレーム毎に異なる。
こうすることで、アグリゲーションレベル(AL)毎のEPDCCH候補がEPDCCHセット間(つまり、同一EPDCCHが割り当てられるサブフレーム間)で等しくなる。よって、全てのEPDCCH候補をEPDCCHのsoft combining用のサーチスペースとして使用することができる。
また、EPDCCHが複数のサブフレームにおいて同一PRBペアに配置されるので、EPDCCHに使用される参照信号であるDMRS(Demodulation reference signal)のプリコーディングを、soft combiningが適用されるサブフレーム間で共通としてもよい。こうすることで、例えば、端末200の移動速度が遅い場合、連続するサブフレーム間でのチャネルの変動は少ないと仮定できるので、端末200は、複数のサブフレームの参照信号を合成し、チャネル推定制度を向上させることができる。
また、LTE-Advancedでは端末毎に2つのEPDCCHセットを設定することができる。そこで、一方のEPDCCHセットをsoft combining用とし、他方のEPDCCHセットをnon soft combining用とし、運用を動的に切り替えることもできる。
(方法2:2つのサブフレームに設定されるEPDCCHセットが異なる場合)
図12Aは、non soft combining時に設定されるEPDCCHセットを示し、図12Bは、soft combining時に設定されるEPDCCHセットを示す。
図12Bに示すように、soft combiningが適用される2つのサブフレーム(1st subframe及び2nd subframe)にそれぞれ設定される、EPDCCHセット0及びEPDCCHセット1は異なる。
図12Bに示すように、soft combiningが適用されるサブフレームでは、サブフレーム毎に1つのEPDCCHセットが配置され、図12Aに示すように、soft combiningが適用されないサブフレームでは、2つのEPDCCHセットが配置される。
図12A及び図12Bに示すように、soft combiningに使用される複数のサブフレームにそれぞれ設定されたEPDCCHセット毎に、PRBペア数、PRB番号(PRBペアの配置位置)、割当方法(distributed割当又は localized割当)を設定できる。つまり、方法2では、異なるデザインのEPDCCHセットを用いてsoft combiningを行うことができる。
例えば、図12Bでは、EPDCCHのsoft combiningが適用される2つのサブフレームのうち、1st subframeに設定されるEPDCCHセットのPRBペア数は4個(N=4)であり、2nd subframeに設定されるEPDCCHセットのPRBペア数は2個(N=2)である。このように、PRBペア数がサブフレーム間(EPDCCHセット間)で異なるので、アグリゲーションレベル(AL)毎のEPDCCH候補数も異なる。例えば、図13に示すように、PRBペア数N=2のEPDCCH候補数は、AL(L=1,2,4,8,16)毎にそれぞれ4,2,1,1,0であるのに対して、PRBペア数N=4のEPDCCH候補数は、AL(L=1,2,4,8,16)毎にそれぞれ2,3,2,1,1である。
ここで、図13において、AL1(L=1。ただし、soft combiningが適用されるとL=2)に着目すると、PRBペア数N=2のEPDCCHセットのEPDCCH候補は4個(EPDCCH候補番号m=0,1,2,3)であり、PRBペア数N=4のEPDCCHセットのEPDCCH候補数は2個(EPDCCH候補番号m=0,1)である。この場合、基地局100及び端末200では、2つのEPDCCHセットに共通する2つのEPDCCH候補(m=0,1)のみをsoft combining用のEPDCCH候補とし、残りのEPDCCH候補(PRBペア数N=2の2つのEPDCCH候補(m=2,3)をnon soft combining用のEPDCCH候補として使用する。なお、他のALについても同様である。
すなわち、方法2では、AL毎のEPDCCH候補がEPDCCHセット間で異なるので、EPDCCH候補数が異なる場合には、少ない方の候補数分のEPDCCH候補を、soft combing用のサーチスペースとして使用する。この場合、多い方のEPDCCHセットにおける残りのEPDCCH候補を、non soft combing用のサーチスペースとして使用することができる。
また、方法2によれば、EPDCCHに使用する領域をサブフレーム毎に変更できる。例えば、soft combiningに使用されるサブフレームのうち、最終サブフレーム(図12Bでは2nd subframe)にPDSCHが配置される場合、他のサブフレーム(図12Bでは1st subframe)と比較して、最終サブフレームに配置されるEPDCCH領域を少なくすることで、PDSCH領域を確保できる。
以上、サーチスペースの設定方法1,2について説明した。
このように、本実施の形態によれば、soft combiningを適用する場合のEPDCCHを配置するリソース配置を適切に設定できる。
なお、LTE-AdvancedのEPDCCHでは、DCI format、バンド幅、サブフレームの種類、サブキャリア数等の条件によってAL毎のEPDCCH候補数が異なる。具体的には、LTE-Advancedでは、上記条件をCase1,2,3に分けており、Case 1はAL2(L=2)以上をサポートしており、Case 2及びCase 3はAL1(L=1)以上をサポートしている。そこで、本実施の形態では、AL2以上のEPDCCHを想定する場合について説明したが、soft combingを適用することにより、AL1のEPDCCHをAL2以上のEPDCCHとして扱うことができる。すなわち、本実施の形態では、AL2以上のEPDCCH候補数が用意されているcase 1のみでなく、AL1のEPDCCH候補数から用意されているCase2又はCase3を全てのDCI formatに適用してもよい。こうすることで、Soft combining 時にALが大きくなりすぎることを防ぐことができる。
[実施の形態3]
実施の形態2では、soft combiningが適用される複数のサブフレームのそれぞれに設定される複数のEPDCCHセットを連結してsoft combiningを行う場合について説明した。これに対して、本実施の形態では、1つのEPDCCHセットのPRBペアを、soft combiningが適用される複数のサブフレームに振り分ける場合について説明する。
なお、本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局100及び端末200と基本構成が共通するので、図5及び図6を援用して説明する。
具体的には、基地局100(設定部102)は、soft combiningに使用される複数のサブフレーム全体に対して1つのEPDCCHセットを設定する。ただし、当該1つのEPDCCHセットを構成するECCEに対応するPRBペアは、soft combiningに使用される複数のサブフレームに分散して配置される。
例えば、EPDCCHセットのPRBペア数がN個であり、soft combiningに使用されるサブフレーム数がMの場合、1サブフレームあたりN/M個のPRBペアが配置される。
図14は、2つのサブフレーム(M=2)でEPDCCHのsoft combiningが行われる例を示す。図14では、EPDCCHセットのPRBペア数を4(N=4)とする。従って、図14では、1サブフレームあたり2個(=N/M)のPRBペアが配置される。なお、図14では、EPDCCH#0及びEPDCCH#1がAL1であり、EPDCCH#2がAL2である。また、各EPDCCHは、EPDCCHセット0におけるECCEの割当式に従い配置される。
図14では、EPDCH#0がECCE#0に配置され、EPDCCH#1がECCE#1に配置され、EPDCCH#2がECCE#2,#3に配置される。そして、各ECCEは、EPDCCHセット0の4つのPRBペア(例えば、PRB index #0,#1,#2,#3)にそれぞれ配置される。ただし、図14では、PRB index #0,#2は、サブフレーム#0に配置され、PRB index #1,#3は、サブフレーム#1に配置される。つまり、1つのEPDCCHセット0が、soft combiningが適用される複数のサブフレームに分割して配置される。
こうすることで、本実施の形態では、AL1を用いてもsoft combiningを適用することができる。また、soft combiningに使用されるサブフレームあたりのEPDCCH領域のリソース量を低減できるので、EPDCCHに使用されないリソースを、PDSCHに使用することができる。
[N=8の場合のバリエーション]
図15は、サーチスペースセットのPRBペア数がN=8であり、ECCEあたりのEREG数が4個の場合における、ECCEとPRBペアとの対応関係の一例を示す。図15では、ECCEによって、配置されるPRBペアが異なる。具体的には、偶数番号(index)のECCEは、偶数番号のPRBペアに配置され、奇数番号のECCEは、奇数番号のPRBペアに配置される。
この場合のsoft combiningに使用される複数のサブフレーム(ここでは2個)へのEPDCCHセット(PRBペア)の分割のバリエーション1,2について説明する。
(バリエーション1)
バリエーション1では、soft combiningを行う際、偶数番号のPRBペアを配置するサブフレームと、奇数番号のPRBペアを配置するサブフレームとに分ける。例えば、2つのサブフレームを用いてsoft combiningが行われる場合、1stサブフレームに偶数番号のPRBペアが配置され、2ndサブフレームに奇数番号のPRBペアが配置される。
こうすることで、1つのECCEで構成されるAL1のEPDCCHは、1stサブフレーム又は2ndサブフレームの一方に配置される。つまり、AL1のEPDCCHに対してのみ、soft combiningが適用されない。これにより、ALを選択することで、soft combiningとnon soft combiningとを切り替えることができる。
なお、上述したように、バリエーション1ではAL2のEPDCCHよりsoft combiningを適用できる。そこで、LTE-Advancedにおいて、AL2のEPDCCH候補数から用意されているCase1(非特許文献1参照)を、全てのDCI formatに適用してもよい。こうすることで、全てのEPDCCH候補に対してsoft combiningを適用することができる。
(バリエーション2)
バリエーション2では、soft combiningを行う際、偶数番号のPRBペアと奇数番号のPRBペアとを含むPRBペアの組を1つのサブフレームに配置する。例えば、2つのサブフレームを用いてsoft combiningが行われる場合、図15において、1stサブフレームに、PRB pair#0,#1,#4,#5のPRBペアが配置され、2ndサブフレームに、PRB pair #2,#3,#6,#7のPRBペアが配置される。
こうすることで、1つのECCEで構成されるAL1のEPDCCHであっても、1stサブフレーム及び2ndサブフレームにそれぞれ配置される。これにより、AL1のEPDCCHについてもsoft combiningを適用することができる。
以上、複数のサブフレームへのEPDCCHセット(PRBペア)の分割のバリエーションについて説明した。
このように、本実施の形態によれば、実施の形態2と同様、soft combiningを適用する場合のEPDCCHを配置するリソース配置を適切に設定できる。
以上、本発明の各実施の形態について説明した。
(他の実施の形態)
[1]soft combiningを適用する場合、AL毎のEPDCCH候補数を変更してもよい。例えば、図16Aは、変更前のAL毎のEPDCCH候補数を示し、図16Bは、変更後のAL毎のEPDCCH候補数(soft combining用)を示す。図16Bでは、図16Aと比較して、低いAL(L=1)のEPDCCH候補数が減少される一方、高いAL(L=8)のEPDCCH候補数が増加されている。このように、特に、高いALのEPDCCH候補を多くすることで、soft combiningの効果が高くなる。
[2]例えば、図7,8に示すように、soft combiningに使用されるサブフレームとして、連続するサブフレームを用いる場合について説明したが、soft combiningに使用されるサブフレームは、必ずしも連続するサブフレームでなく、不連続なサブフレームであってもよい。
[3]実施の形態2,3においてEPDCCHのsoft combiningを行う際、条件に応じて、各サブフレームのDMRSのプリコーディングが同一であると仮定してもよい。
条件の一例としては、例えば、soft combiningが適用されるEPDCCHが配置されるPRBペアがサブフレーム間で同一の場合である。例えば、実施の形態2の(方法1)では、soft combiningに使用される複数のサブフレームにおいて同一のEPDCCHセットが使用されるので、各サブフレームのDMRSのプリコーディングが同一であると仮定できる。
また、他の条件の一例としては、例えば、soft combiningが適用される各サブフレームにおいて、EPDCCHが配置されるPRBペアが一定範囲以内に配置されている場合である。一定範囲以内とは、例えば、隣接するPRB pair indexである。
又は、条件の一例として、soft combiningが適用される各サブフレームにおいて、EPDCCHが配置されるPRBペアがPRB bundlingの範囲以内に配置されている場合である。PRB bundlingの範囲とは、帯域幅によって定まる値であり、1,2,3個のPRBペアのパターンがある。
また、実施の形態3では、複数のサブフレーム間でPRBペア(位置)は必ず異なり、サブフレーム間でDMRSのプリコーディングを同一にすることが困難である。そこで、実施の形態3を適用する場合には、soft combiningに使用されるサブフレーム間では、同一のPRB ペアを使用してもよい。例えば、soft combiningに使用される2つのサブフレームにおいて、2ndサブフレームで使用されるPRBペアを、1stサブフレームで使用されるPRBペアと同一になるように、2ndサブフレームで使用されるPRBペアの位置をシフトさせてもよい。
[4]また、上記実施の形態では、複数のサブフレーム(つまり、時間領域)にまたがってsoft combiningを行う場合について説明した。しかし、上記実施の形態は、周波数領域(例えば、Carrier aggregation)に適用してもよい。この場合、上記実施の形態において複数のサブフレームにEPDCCHを配置した代わりに、複数のComponent Carrier(CC)にまたがってEPDCCHを配置すればよい。また、例えば、実施の形態1では、複数のサブフレームのうちの最終サブフレームに配置されたEPDCCHのECCE(index)によってPUCCHリソースがimplisitに指示された。これに対して、Carrier aggregation時には、複数のCarrier Componentのうち、PCellに配置されたEPDCCHのECCE(index)によってPUCCHリソースをimplisitに指示されてもよい。
[5]また、実施の形態2におけるEPDCCHのsoft combiningを、同一サブフレーム内の2つのEPDCCHセットに適用してもよい。このようにすると、1サブフレーム内における最大ALを大きくすることができ、受信品質が悪いサブフレームにおいて、EPDCCHの受信品質を向上することができる。
[6]上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)又は、LSI内部の回路セルの接続若しくは設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
以上、本開示の基地局は、複数のサブフレームにまたがって送信される制御情報を割り当てるEnhanced Control Channel Element(ECCE)で構成されるEnhanced Physical Downlink Control Channel(EPDCCH)セットを前記複数のサブフレームに設定する設定部と、前記複数のサブフレームの各々のPhysical Resource Block(PRB)ペアにおける前記ECCEのいずれかに前記制御情報を割り当てる割当部と、を具備する構成を採る。
また、本開示の基地局において、前記設定部は、前記複数のサブフレームの各々に対して、前記EPDCCHセットをそれぞれ設定し、前記割当部は、前記制御情報を前記複数のサブフレーム数と同数だけ前記ECCE単位で分割し、前記分割された制御情報の各々を、前記複数のサブフレームの各々に設定された前記EPDCCHセットを構成する前記ECCEのいずれかに割り当てる。
また、本開示の基地局において、前記複数のサブフレームの各々に設定される前記EPDCCHセットは同一である。
また、本開示の基地局において、前記複数のサブフレームの各々に設定される前記EPDCCHセットは異なる。
また、本開示の基地局において、前記設定部は、前記複数のサブフレーム全体に対して1つの前記EPDCCHセットを設定し、前記1つのEPDCCHセットを構成する前記ECCEに対応するPRBペアは、前記複数のサブフレームに分散して配置される。
また、本開示の基地局において、前記割当部は、前記制御情報によって割当を指示される下り回線データを、前記複数のサブフレームのうち、最後尾のサブフレームに割り当てる。
また、本開示の基地局において、前記複数のサブフレームのうち、前記制御情報によって割当を指示される下り回線データが割り当てられるサブフレームに配置された前記ECCEに対応付けられたPhysical Uplink Control Channel(PUCCH)において、前記下り回線データに対する応答信号を受信する受信部、をさらに具備する。
また、本開示の基地局において、上り回線データの割当を指示する前記制御情報の送信サブフレームと、前記上り回線データの受信サブフレームとが対応付けられ、前記複数のサブフレームのうち、最後尾のサブフレームは、前記送信サブフレームと同一である。
また、本開示の端末は、複数のサブフレームにまたがって送信される制御情報が割り当てられるEnhanced Control Channel Element(ECCE)であって、前記複数のサブフレームに設定されたEnhanced Physical Downlink Control Channel(EPDCCH)セットを構成する前記ECCEを特定する設定部と、前記複数のサブフレームの各々のPhysical Resource Block(PRB)ペアにおける前記ECCEのいずれかに割り当てられた前記制御情報を受信する受信部と、を具備する構成を採る。
また、本開示の送信方法は、複数のサブフレームにまたがって送信される制御情報を割り当てるEnhanced Control Channel Element(ECCE)で構成されるEnhanced Physical Downlink Control Channel(EPDCCH)セットを、前記複数のサブフレームに設定し、前記複数のサブフレームの各々のPhysical Resource Block(PRB)ペアにおける前記ECCEのいずれかに割り当てられた前記制御情報を送信する。
また、本開示の受信方法は、複数のサブフレームにまたがって送信される制御情報が割り当てられるEnhanced Control Channel Element(ECCE)であって、前記複数のサブフレームに設定されたEnhanced Physical Downlink Control Channel(EPDCCH)セットを構成する前記ECCEを特定し、前記複数のサブフレームの各々のPhysical Resource Block(PRB)ペアにおける前記ECCEのいずれかに割り当てられた前記制御情報を受信する。
本発明は、移動体通信システムに有用である。
100 基地局
200 端末
101 割当情報生成部
102,205 設定部
103,207 誤り訂正符号化部
104,208 変調部
105,209 信号割当部
106,210 送信部
107,201 受信部
108,203 復調部
109,204 誤り訂正復号部
202 信号分離部
206 制御信号受信部

Claims (27)

  1. 下り回線における第1のサブフレームのセットを用いて下り回線データの割当を示す1つの制御情報を受信し、前記第1のサブフレームのセットのうちの最終サブフレーム以降の第2のサブフレームのセットを用いて前記下り回線データを受信する受信部と、
    前記第2のサブフレームのセットで受信された前記下り回線データに関するACK/NACK情報を上り回線のサブフレームにおいて送信する送信部を具備し、
    前記上り回線のサブフレームにおいて上り回線データが存在する場合は前記上り回線データと多重された前記ACK/NACK情報が送信され、前記上り回線のサブフレームにおいて上り回線データが存在しない場合はPhysical Uplink Control Channel(PUCCH)リソースで前記ACK/NACK情報が送信される、
    通信装置。
  2. 前記上り回線のサブフレームにおいて上り回線データが存在する場合、前記上り回線データと前記ACK/NACK情報が前記上り回線のサブフレームにおけるPhysical Uplink Shared Channel(PUSCH)において送信される、
    請求項1記載の通信装置。
  3. 前記第1のサブフレームのセットにおける各サブフレームにおいて設計されるEPDCCHセットは、複数のPhysical Resource Block (PRB) pairsを占有し、各EPDCCHセットは1つの下り回線のサブフレームにおけるEPDCCH候補の集合である、
    請求項1記載の通信装置。
  4. 前記第1のサブフレームのセットにおける各サブフレームにおいて設計されるEPDCCHセットは、PRB pairsの番号又はPRB pairsの周波数位置の少なくとも1つが異なる、
    請求項1記載の通信装置。
  5. 前記第2のサブフレームのセットにおける各サブフレームのPhysical Downlink Shared Channel (PDSCH)領域に配置された前記下り回線データが受信される、
    請求項1記載の通信装置。
  6. 前記ACK/NACK情報は、前記下り回線データが配置された最終サブフレームに基づいて決定されたサブフレームにおいて送信される、
    請求項1記載の通信装置。
  7. 前記第1のサブフレームのセットにおいて、前記下り回線データの割当を示す1つの制御情報に使用される参照信号のプリコーディングを共通とする、
    請求項1記載の通信装置。
  8. 前記第1のサブフレームのセットにおけるレピティションの数が1以上の場合、前記レピティションの数が1の場合と比較して、少なくとも1つのアグリゲーションレベルに関連するEPDCCH候補の数が小さい、
    請求項1記載の通信装置。
  9. 前記受信部は、下り回線における第3のサブフレームのセットを用いて上り回線データの割当を示す1つの制御情報を受信し、
    前記送信部は、前記第3のサブフレームのセットのうちの最終サブフレームに基づいて決定されるサブフレームを用いて前記上り回線データを送信する、
    請求項1記載の通信装置。
  10. 前記下り回線データの割当を示す1つの制御情報は、前記第2のサブフレームのセットに関する情報を含む、
    請求項1記載の通信装置。
  11. 前記上り回線データの割当を示す1つの制御情報は、前記第3のサブフレームのセットに関する情報を含む、
    請求項9記載の通信装置。
  12. 通信装置が、
    下り回線における第1のサブフレームのセットを用いて下り回線データの割当を示す1つの制御情報を受信し、
    前記第1のサブフレームのセットのうちの最終サブフレーム以降の第2のサブフレームのセットを用いて前記下り回線データを受信し、
    前記第2のサブフレームのセットで受信された前記下り回線データに関するACK/NACK情報を上り回線のサブフレームにおいて送信し、
    前記上り回線のサブフレームにおいて上り回線データが存在する場合は前記上り回線データと多重された前記ACK/NACK情報が送信され、前記上り回線のサブフレームにおいて上り回線データが存在しない場合はPhysical Uplink Control Channel(PUCCH)リソースで前記ACK/NACK情報が送信される、
    通信方法。
  13. 前記上り回線のサブフレームにおいて上り回線データが存在する場合は、前記上り回線データと前記ACK/NACK情報が前記上り回線のサブフレームにおけるPhysical Uplink Shared Channel(PUSCH)において送信される、
    請求項12記載の通信方法。
  14. 前記第1のサブフレームのセットにおける各サブフレームにおいて設計されるEPDCCHセットは、複数のPhysical Resource Block (PRB) pairsを占有し、各EPDCCHセットは1つの下り回線のサブフレームにおけるEPDCCH候補の集合である、
    請求項12記載の通信方法。
  15. 前記第1のサブフレームのセットにおける各サブフレームにおいて設計されるEPDCCHセットは、PRB pairsの番号又はPRB pairsの周波数位置の少なくとも1つが異なる、
    請求項12記載の通信方法。
  16. 前記第2のサブフレームのセットにおける各サブフレームのPhysical Downlink Shared Channel (PDSCH)領域に配置された前記下り回線データが受信される、
    請求項12記載の通信方法。
  17. 前記ACK/NACK情報は、前記下り回線データが配置された最終サブフレームに基づいて決定されたサブフレームにおいて送信される、
    請求項12記載の通信方法。
  18. 前記第1のサブフレームのセットにおいて、前記下り回線データの割当を示す1つの制御情報に使用される参照信号のプリコーディングを共通とする、
    請求項12記載の通信方法。
  19. 前記第1のサブフレームのセットにおけるレピティションの数が1以上の場合、前記レピティションの数が1の場合と比較して、少なくとも1つのアグリゲーションレベルに関連するEPDCCH候補の数が小さい、
    請求項12記載の通信方法。
  20. 下り回線における第1のサブフレームのセットを用いて下り回線データの割当を示す1つの制御情報を受信する処理と、
    前記第1のサブフレームのセットのうちの最終サブフレーム以降の第2のサブフレームのセットを用いて前記下り回線データを受信する処理と、
    前記第2のサブフレームのセットで受信された前記下り回線データに関するACK/NACK情報を上り回線のサブフレームにおいて送信する処理を制御し、
    前記上り回線のサブフレームにおいて上り回線データが存在する場合は前記上り回線データと多重された前記ACK/NACK情報が送信され、前記上り回線のサブフレームにおいて上り回線データが存在しない場合はPhysical Uplink Control Channel(PUCCH)リソースで前記ACK/NACK情報が送信される、
    集積回路。
  21. 前記上り回線のサブフレームにおいて上り回線データが存在する場合、前記上り回線データと前記ACK/NACK情報が前記上り回線のサブフレームにおけるPhysical Uplink Shared Channel(PUSCH)において送信される、
    請求項20記載の集積回路。
  22. 前記第1のサブフレームのセットにおける各サブフレームにおいて設計されるEPDCCHセットは、複数のPhysical Resource Block (PRB) pairsを占有し、各EPDCCHセットは1つの下り回線のサブフレームにおけるEPDCCH候補の集合である、
    請求項20記載の集積回路。
  23. 前記第1のサブフレームのセットにおける各サブフレームにおいて設計されるEPDCCHセットは、PRB pairsの番号又はPRB pairsの周波数位置の少なくとも1つが異なる、
    請求項20記載の集積回路。
  24. 前記第2のサブフレームのセットにおける各サブフレームのPhysical Downlink Shared Channel (PDSCH)領域に配置された前記下り回線データが受信される、
    請求項20記載の集積回路。
  25. 前記ACK/NACK情報は、前記下り回線データが配置された最終サブフレームに基づいて決定されたサブフレームにおいて送信する、
    請求項20記載の集積回路。
  26. 前記第1のサブフレームのセットにおいて、前記下り回線データの割当を示す1つの制御情報に使用される参照信号のプリコーディングを共通とする、
    請求項20記載の集積回路。
  27. 前記第1のサブフレームのセットにおけるレピティションの数が1以上の場合、前記レピティションの数が1の場合と比較して、少なくとも1つのアグリゲーションレベルに関連するEPDCCH候補の数が小さい、
    請求項20記載の集積回路。
JP2020123734A 2020-07-20 2020-07-20 通信装置、通信方法及び集積回路 Active JP7108863B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020123734A JP7108863B2 (ja) 2020-07-20 2020-07-20 通信装置、通信方法及び集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123734A JP7108863B2 (ja) 2020-07-20 2020-07-20 通信装置、通信方法及び集積回路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019104627A Division JP6748894B2 (ja) 2019-06-04 2019-06-04 基地局、通信方法及び集積回路

Publications (2)

Publication Number Publication Date
JP2020182235A true JP2020182235A (ja) 2020-11-05
JP7108863B2 JP7108863B2 (ja) 2022-07-29

Family

ID=73024544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123734A Active JP7108863B2 (ja) 2020-07-20 2020-07-20 通信装置、通信方法及び集積回路

Country Status (1)

Country Link
JP (1) JP7108863B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157981A2 (ko) * 2011-05-17 2012-11-22 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157981A2 (ko) * 2011-05-17 2012-11-22 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT,ALCATEL-LUCENT SHANGHAI BELL: "Remaining aspects of Quasi-co-located Antenna Ports", 3GPP TSG-RAN WG1#70B R1-124409, JPN6021039549, 26 September 2012 (2012-09-26), FR, ISSN: 0004680039 *
ERICSSON, ST-ERICSSON: "PUCCH resource allocation for ePDCCH", 3GPP TSG-RAN WG1#70B R1-124156, JPN6021039550, 26 September 2012 (2012-09-26), FR, ISSN: 0004680038 *
HUAWEI, HISILICON: "Periodic CQI/PMI/RI reporting for CA", 3GPP TSG-RAN WG1#62B R1-105122, JPN6022000492, 5 October 2010 (2010-10-05), FR, ISSN: 0004680041 *
MEDIATEK INC.: "On Required System Functionalities for MTC UEs Operating in Enhanced Coverage Mode", 3GPP TSG-RAN WG1#72 R1-130218, JPN6022000493, 19 January 2013 (2013-01-19), FR, ISSN: 0004680040 *
PANASONIC: "EPDCCH search space and aggregation levels", 3GPP TSG-RAN WG1#70B R1-124241, JPN6022000491, 29 September 2012 (2012-09-29), FR, ISSN: 0004680042 *

Also Published As

Publication number Publication date
JP7108863B2 (ja) 2022-07-29

Similar Documents

Publication Publication Date Title
KR101943389B1 (ko) 이동 통신 시스템 및 그 이동 통신 시스템에서 채널 송수신 방법
US11765740B2 (en) Base station, terminal, transmission method, and reception method
JP6176533B2 (ja) 通信装置、通信方法及び集積回路
EP2562954A1 (en) Search space reconfiguration for enhanced-PDCCH
US11877304B2 (en) Base station, terminal, and communication method
KR102383274B1 (ko) 무선통신 시스템에서 제어 채널 송수신 방법 및 장치
JPWO2013108585A1 (ja) 送信装置、送信方法、及び集積回路
JP7108863B2 (ja) 通信装置、通信方法及び集積回路
JP6748894B2 (ja) 基地局、通信方法及び集積回路
JP6550606B2 (ja) 通信装置、通信方法及び集積回路
JP6365954B2 (ja) 通信装置、通信方法及び集積回路
WO2018173442A1 (ja) 基地局および通信方法
JP2022169685A (ja) 基地局、通信方法及び集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7108863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 7108863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150