JP2020180454A - Ground improvement foundation structure - Google Patents

Ground improvement foundation structure Download PDF

Info

Publication number
JP2020180454A
JP2020180454A JP2019083014A JP2019083014A JP2020180454A JP 2020180454 A JP2020180454 A JP 2020180454A JP 2019083014 A JP2019083014 A JP 2019083014A JP 2019083014 A JP2019083014 A JP 2019083014A JP 2020180454 A JP2020180454 A JP 2020180454A
Authority
JP
Japan
Prior art keywords
ground
improvement
foundation structure
improved
improved body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019083014A
Other languages
Japanese (ja)
Other versions
JP7235579B2 (en
Inventor
新吾 西村
Shingo Nishimura
新吾 西村
和貴 二川
Kazuki Futagawa
和貴 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019083014A priority Critical patent/JP7235579B2/en
Publication of JP2020180454A publication Critical patent/JP2020180454A/en
Application granted granted Critical
Publication of JP7235579B2 publication Critical patent/JP7235579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a ground improvement foundation structure that can efficiently reduce the vibrating of the superstructure due to the surface ground amplification of seismic motion.SOLUTION: The present invention is a ground improvement foundation structure constructed by an improved body in which the ground and a cement-based solidifying material are mixed and agitated. In short, by making the total cross-sectional area of a plurality of large-diameter improved bodies 2 10% -80%, which is the ratio to the total area when the lower ground of a building 3 is set to an improvement range 31, adjustments have been made to deviate a predominant eigenperiod of the improvement range from an eigenperiod of the building.SELECTED DRAWING: Figure 1

Description

本発明は、地盤と固化材とを混合撹拌させた改良体によって構築される地盤改良基礎構造に関するものである。 The present invention relates to a ground improvement foundation structure constructed by an improved body obtained by mixing and stirring the ground and a solidifying material.

地盤上に住宅などの建物を建てる際には、建物の重量を支持できるだけの地耐力(支持力)があるか否かを調査することに加えて、地震によって被害を受ける地盤でないかどうかを調査することが望ましい。例えば、特許文献1には、地震基盤の加速度応答スペクトルと表層地盤の増幅率を求めて、その結果に基づいて求められた固有周期(卓越固有周期)を使用して建築物の耐震設計を行う方法が開示されている。 When building a building such as a house on the ground, in addition to investigating whether the ground has enough bearing capacity to support the weight of the building, it also investigates whether the ground is damaged by the earthquake. It is desirable to do. For example, in Patent Document 1, the acceleration response spectrum of the seismic foundation and the amplification factor of the surface layer ground are obtained, and the seismic design of the building is performed using the natural period (excellent natural period) obtained based on the result. The method is disclosed.

また、特許文献2では、液状化被害軽減を目的として上部構造物の下方地盤が囲まれるように壁状改良体を備えた地盤改良基礎構造に関して、鉛直荷重を負担する部分と液状化に対して剛性を高めるために配置される部分とを明確にすることによって、合理的かつ経済的な構造となることを提案している。 Further, in Patent Document 2, regarding the ground improvement foundation structure provided with a wall-shaped improved body so as to surround the lower ground of the superstructure for the purpose of reducing liquefaction damage, the portion bearing the vertical load and the liquefaction It is proposed that the structure will be rational and economical by clarifying the parts to be arranged to increase the rigidity.

ここで、地震動の表層地盤増幅が懸念されると判定された場合、増幅を軽減するためには単純に地盤の剛性を高めることが考えられる。小規模建築物の地盤改良は敷地の制約や経済性から、その多くは、小口径の鋼管杭又は地盤とセメント系固化材とを混合撹拌させた改良体によるものとなる。 Here, when it is determined that there is concern about surface ground amplification of seismic motion, it is conceivable to simply increase the rigidity of the ground in order to reduce the amplification. Due to site restrictions and economic efficiency, ground improvement of small-scale buildings is mostly due to small-diameter steel pipe piles or improved bodies in which the ground and cement-based solidifying material are mixed and agitated.

特開2011−80905号公報Japanese Unexamined Patent Publication No. 2011-80905 特開2015−200173号公報Japanese Unexamined Patent Publication No. 2015-200173

しかしながら、改良体の構築によって支持地盤の剛性が変化すると、上部構造物の振動特性に近似することがあるので、建物に共振が起きないように調整することが求められる。 However, if the rigidity of the supporting ground changes due to the construction of the improved body, it may approximate the vibration characteristics of the superstructure, so it is necessary to adjust so that resonance does not occur in the building.

そこで、本発明は、地震動の表層地盤増幅による上部構造物の揺れを効率的に軽減させることが可能な地盤改良基礎構造を提供することを目的としている。 Therefore, an object of the present invention is to provide a ground improvement foundation structure capable of efficiently reducing the shaking of the superstructure due to the surface ground amplification of the seismic motion.

前記目的を達成するために、本発明の地盤改良基礎構造は、地盤とセメント系固化材とを混合撹拌させた改良体によって構築される地盤改良基礎構造であって、複数が配置される前記改良体の合計断面積が、上部構造物の下方地盤を改良範囲としたときの全体面積との割合となる改良率で10%−80%にすることで、前記改良範囲の卓越固有周期と前記上部構造物の固有周期とを乖離させるように調整がされていることを特徴とする。 In order to achieve the above object, the ground improvement foundation structure of the present invention is a ground improvement foundation structure constructed by an improved body obtained by mixing and stirring the ground and a cement-based solidifying material, and a plurality of the above-mentioned improvements are arranged. By setting the total cross-sectional area of the body to 10% -80%, which is the ratio of the total area of the lower ground of the superstructure to the improvement range, the predominant natural period of the improvement range and the upper part It is characterized in that it is adjusted so as to deviate from the natural period of the structure.

ここで、前記改良体は円柱状であって、杭径が0.7m−2.0mである構成とすることができる。さらに、前記改良体の杭長は、1.0m−8.0mとすることができる。 Here, the improved body may have a columnar shape and a pile diameter of 0.7 m-2.0 m. Further, the pile length of the improved body can be 1.0 m-8.0 m.

このように構成された本発明の地盤改良基礎構造は、地盤と固化材とを混合撹拌させた改良体によって構築される地盤改良基礎構造であって、改良体を含む支持地盤の卓越固有周期と上部構造物の固有周期とを乖離させるような調整がなされる。そして、その調整は、改良範囲の全体面積に占める改良体の合計断面積の割合である改良率を、10%−80%に設定するものである。 The ground improvement foundation structure of the present invention constructed in this way is a ground improvement foundation structure constructed by an improved body obtained by mixing and stirring the ground and a solidifying material, and has an excellent natural period of the supporting ground including the improved body. Adjustments are made to deviate from the natural period of the superstructure. Then, the adjustment is to set the improvement rate, which is the ratio of the total cross-sectional area of the improved body to the total area of the improved range, to 10% -80%.

このような改良率の設定にすることによって、建物などの上部構造物の振動特性が支持地盤に近似して共振が起きるような状態の発生が回避され、地震動の表層地盤増幅による上部構造物の揺れを軽減させることができる地盤改良基礎構造を、効率的に構築することができる。 By setting such an improvement rate, it is possible to avoid the occurrence of a state in which the vibration characteristics of the superstructure such as a building resemble the supporting ground and cause resonance, and the superstructure is amplified by the surface ground of the seismic motion. It is possible to efficiently construct a ground improvement foundation structure that can reduce shaking.

本実施の形態の地盤改良基礎構造の概略構成を説明する斜視図である。It is a perspective view explaining the schematic structure of the ground improvement foundation structure of this embodiment. 本実施の形態の別の地盤改良基礎構造の概略構成を説明する斜視図である。It is a perspective view explaining the schematic structure of another ground improvement foundation structure of this embodiment. 地盤調査方法の処理の流れを説明するフローチャートである。It is a flowchart explaining the process flow of the ground investigation method. 地盤改良がされていない地盤のモデルを模式的に示した説明図である。It is explanatory drawing which showed typically the model of the ground which has not improved the ground. 表層改良がされた地盤のモデルを模式的に示した説明図である。It is explanatory drawing which showed typically the model of the ground which improved the surface layer. 柱状改良がされた地盤のモデルを模式的に示した説明図である。It is explanatory drawing which showed typically the model of the ground which improved the columnar. 地盤改良がされていない地盤において、地震の揺れ低減対策の要否を判定するための図表の一例である。This is an example of a chart for determining the necessity of earthquake shaking reduction measures in the ground where the ground has not been improved. 表層改良がされた地盤において、地震の揺れ低減対策の要否を判定するための図表の一例である。This is an example of a chart for determining the necessity of earthquake shaking reduction measures in the ground with surface improvement. 柱状改良がされた地盤において、地震の揺れ低減対策の要否を判定するための図表の一例である。This is an example of a chart for determining the necessity of earthquake shaking reduction measures in the ground with columnar improvement.

以下、本発明の実施の形態について図面を参照して説明する。
本実施の形態の地盤改良基礎構造は、住宅や小規模集合住宅などのような上部構造物となる建物の基礎として地盤に構築される。ここで、上部構造物を下方から支える地盤改良基礎構造が設けられる地盤を「支持地盤」と呼び、その地表面に投影される領域を「改良範囲」と呼ぶこととする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The ground improvement foundation structure of the present embodiment is constructed on the ground as the foundation of a building that becomes an upper structure such as a house or a small-scale apartment building. Here, the ground on which the ground improvement foundation structure that supports the superstructure from below is provided is referred to as "supporting ground", and the area projected on the ground surface is referred to as "improvement range".

地盤改良基礎構造が設けられる地盤に対しては、改良範囲又はその周辺の1地点又は複数地点において地盤調査が行われる。地盤調査としては、表面波探査試験や貫入試験などが行われる。 Ground improvement For the ground on which the foundation structure is provided, a ground survey is conducted at one or more points in or around the improvement area. Ground surveys include surface wave exploration tests and penetration tests.

地盤調査の1手法である表面波探査試験とは、地盤の表面に当てた起振機によって人工的に発生させたレイリー波を、起振機から離れた位置に設置された複数のセンサ(検出器)で測定することで、地盤の硬さを調べる調査方法である。要するに、物質が硬質になれば伝播速度も速くなることを利用して、調査対象地盤が硬質であるか軟質であるかなどの硬さの度合いを、伝播速度の大きさから推定する方法である。 The surface wave exploration test, which is one method of ground investigation, is a method of detecting Rayleigh waves artificially generated by a shaker applied to the surface of the ground by multiple sensors (detection) installed at a position away from the shaker. It is a survey method to check the hardness of the ground by measuring with a vessel). In short, it is a method to estimate the degree of hardness such as whether the ground to be surveyed is hard or soft from the magnitude of the propagation speed by utilizing the fact that the propagation speed increases as the substance becomes hard. ..

詳細には、起振機から異なる距離に設置された2つのセンサによって、起振機から地盤に付与されたレイリー波を検出した時間を検出する。ここで、2つのセンサは異なる位置に設置されているため、検出時間には時間差が生じる。 Specifically, two sensors installed at different distances from the oscillator detect the time when the Rayleigh wave applied to the ground from the oscillator is detected. Here, since the two sensors are installed at different positions, there is a time lag in the detection time.

そこで、2つのセンサ間の距離と検出時間の時間差とから、表面波の伝播速度(S波速度)を算出する。この時間差を正確に求めるためには、スペクトルアナライザーを使用して、検出信号からノイズを完全に除去する必要がある。 Therefore, the propagation velocity of the surface wave (S wave velocity) is calculated from the distance between the two sensors and the time difference of the detection time. In order to accurately determine this time difference, it is necessary to use a spectrum analyzer to completely remove noise from the detection signal.

一方、貫入試験には、例えば標準貫入試験のように、対象層までボーリングを行い、当該層に対して錘を落下させたときの貫入量でその土層の硬軟を評価する動的貫入試験がある。また、スウェーデン式サウンディング試験のように、ロッドに錘を載荷したときの沈下の有無や回転貫入させたときの抵抗度合いから、間接的に当該層の支持性能を評価する静的貫入試験などがある。 On the other hand, the penetration test includes a dynamic penetration test, such as a standard penetration test, in which boring is performed to the target layer and the hardness of the soil layer is evaluated by the penetration amount when the weight is dropped on the layer. is there. In addition, as in the Swedish sounding test, there is a static penetration test that indirectly evaluates the support performance of the layer from the presence or absence of subsidence when a weight is loaded on the rod and the degree of resistance when rotating and penetrating. ..

ここで、ボーリングやスウェーデン式サウンディング試験の貫入装置に加振機を取り付けて、調査対象となる土層を動的に打撃する機構とした場合、いわば動的な載荷試験を行っていることと同じになり、地震時の当該層の剛性を評価していることになる。このため、これと相関性のあるS波速度が得られるという考え方ができる。 Here, if a vibration exciter is attached to the penetration device of the boring or Swedish sounding test to dynamically hit the soil layer to be investigated, it is the same as performing a dynamic loading test. Therefore, the rigidity of the layer at the time of an earthquake is being evaluated. Therefore, it is possible to think that an S-wave velocity correlating with this can be obtained.

これらの地盤調査の結果から得られたS波速度から、地震時に地盤の揺れが大きく増幅されるか否かの判定を行うことができる。ここで、「地盤の揺れ(地震動)の増幅」とは、切土盛土などの地盤条件によって局所的に地震波が大きく増幅することをいう。 From the S-wave velocity obtained from the results of these ground surveys, it is possible to determine whether or not the ground shaking is greatly amplified during an earthquake. Here, "amplification of ground motion (earthquake motion)" means that seismic waves are greatly amplified locally depending on ground conditions such as cut embankment.

このような地震動の増幅がある地盤を事前に特定しておくことで、地震被害を低減又は防止することができるようになる。要するに「揺れ低減対策」とは、大地震時に地盤が大きく揺れることで誘引される建物被害を低減するための対策を指す。 By identifying in advance the ground where such ground motion is amplified, it becomes possible to reduce or prevent earthquake damage. In short, "sway reduction measures" refer to measures to reduce building damage caused by large ground shaking during a large earthquake.

地震動の増幅が起きるか否かの増幅判定は、例えば表層地盤増幅率を基準に行われる。表層地盤増幅率とは、地表近くの表層地盤の地震時の揺れの大きさを数値化したものであり、地震に対する地盤の弱さを示す。 Amplification determination as to whether or not seismic motion is amplified is made based on, for example, the surface ground amplification factor. The surface ground amplification factor is a numerical value of the magnitude of shaking of the surface ground near the ground surface during an earthquake, and indicates the weakness of the ground against an earthquake.

この表層地盤増幅率は、例えば表面波探査試験又は貫入試験によって得られた調査対象地盤のS波速度から算出することができる。そして、これを解析することによって、周期ごとの表層地盤増幅率を求めることができる。 This surface layer ground amplification factor can be calculated from, for example, the S-wave velocity of the surveyed ground obtained by a surface wave exploration test or a penetration test. Then, by analyzing this, the surface layer ground amplification factor for each cycle can be obtained.

表層地盤増幅率は、数値が大きいほど地盤が弱く揺れも大きくなるといわれている。また、建築される構造物の固有周期が当該地盤の表層地盤増幅率の高い周期帯にある場合には、構造物の固有周期に合致する地震動がより大きくなり、想定以上の変形を生じて被害を及ぼす可能性がある。 It is said that the larger the value of the surface layer ground amplification factor, the weaker the ground and the greater the shaking. In addition, when the natural period of the structure to be built is in the period zone where the surface layer ground amplification factor of the ground is high, the seismic motion that matches the natural period of the structure becomes larger, causing more deformation than expected and causing damage. May affect.

こうしたことから、建物の特性や過去の実験結果等の知見に基づいて、例えば周期0.5secにおいて表層地盤増幅率α=2.0倍を基準値として、その基準値以上の表層地盤増幅率が算出された場合は揺れ低減対策が必要とし、基準値未満であれば揺れ低減対策が不要であると判定することが考えられる。 From these facts, based on the knowledge of the characteristics of the building and the results of past experiments, for example, the surface ground amplification factor α = 2.0 times was used as the reference value in a period of 0.5 sec, and the surface ground amplification factor above the reference value was calculated. In that case, it may be judged that the shaking reduction measures are necessary, and if it is less than the standard value, the shaking reduction measures are unnecessary.

ここで、深度ごとのS波速度の値は地盤ごとに様々である。住宅において表層地盤増幅率を求める場合には、充分な硬さをもつ土層(硬質地盤)を「工学的基盤」とする。例えば、S波速度VS=400m/s程度の地盤が工学的基盤に該当する。 Here, the value of the S-wave velocity for each depth varies from ground to ground. When determining the surface ground amplification factor in a house, the soil layer (hard ground) with sufficient hardness is used as the "engineering foundation". For example, the ground with S -wave velocity V S = 400 m / s corresponds to the engineering foundation.

そして、この工学的基盤を底盤として、それ以浅の地盤のS波速度と、密度と、減衰定数と、土質とを設定する。ここで、表層地盤増幅率の検討においては、軟弱地盤を対象とするのであれば、例えば「小規模建築物基礎設計指針」(日本建築学会,2008年)などの文献を参考にすることができる。例えば、粘性土地盤を想定し、密度1.7t/m3、減衰定数は過大とならない0.03程度と仮定し、変数である工学的基盤以浅のS波速度に応じた検討を予め行うことができる。 Then, using this engineering foundation as the base, the S-wave velocity, density, attenuation constant, and soil quality of the shallower ground are set. Here, in examining the surface layer ground amplification factor, if the target is soft ground, for example, documents such as "Guidelines for Basic Design of Small Buildings" (Architectural Institute of Japan, 2008) can be referred to. .. For example, assuming a viscous land, the density is 1.7t / m 3 , and the damping constant is assumed to be about 0.03, which is not excessive, and it is possible to conduct a study in advance according to the S-wave velocity shallower than the engineering base, which is a variable.

以下では、図3を参照しながら地盤調査方法の処理の流れを説明する。地盤調査を行うにあたっては、それまでに蓄積されてきた既存の地盤調査結果や、文献などから得られる既存の地盤データなどが利用される。 In the following, the processing flow of the ground survey method will be described with reference to FIG. In conducting a ground survey, the existing ground survey results accumulated up to that point and the existing ground data obtained from literature and the like are used.

ステップS1では、実際に建物3を建設する調査対象地盤において、地盤調査を行う。地盤調査は、例えば表面波探査試験が行われる。この表面波探査試験によって、調査対象地盤の深度ごとのS波速度が測定される。 In step S1, a ground survey is conducted on the survey target ground on which the building 3 is actually constructed. For the ground survey, for example, a surface wave exploration test is conducted. By this surface wave exploration test, the S-wave velocity for each depth of the surveyed ground is measured.

そこで、S波速度が400m/s以上となる深さを、工学的基盤までの深さとして特定する(ステップS2)。続いてステップS3では、工学的基盤までのS波速度を平均して、表層地盤の平均S波速度として算定する。なお、平均S波速度を使用しない場合は、このステップを省略することができる。 Therefore, the depth at which the S-wave velocity is 400 m / s or more is specified as the depth to the engineering base (step S2). Subsequently, in step S3, the S-wave velocities up to the engineering foundation are averaged and calculated as the average S-wave velocities of the surface layer ground. If the average S-wave velocity is not used, this step can be omitted.

そして、ステップS4では、上述したような既存の地盤データを使用して、調査対象地盤の特定された工学的基盤までの深さと平均S波速度との関係などから表層地盤増幅率を推定する。 Then, in step S4, the surface ground amplification factor is estimated from the relationship between the depth to the specified engineering base of the surveyed ground and the average S-wave velocity, etc., using the existing ground data as described above.

この推定された表層地盤増幅率が、揺れ低減対策の要否判定の基準値となる。例えば周期0.5secにおいてα=2.0倍以上であれば、揺れ低減対策が必要であると判定される(ステップS5)。 This estimated surface ground amplification factor serves as a reference value for determining the necessity of shaking reduction measures. For example, if α = 2.0 times or more in a cycle of 0.5 sec, it is determined that shaking reduction measures are necessary (step S5).

このように地盤調査の結果から揺れ低減対策が必要と判定された場合、上部構造物の固有周期と、支持地盤の卓越固有周期とを乖離させた地盤改良基礎構造を設ける必要がある。基本的には、水平剛性を高めると短周期側に遷移することになる。 When it is determined from the results of the ground survey that measures to reduce shaking are necessary, it is necessary to provide a ground improvement foundation structure in which the natural period of the superstructure and the predominant natural period of the supporting ground are separated. Basically, if the horizontal rigidity is increased, the transition will occur on the short cycle side.

そこで、図1に示すように、上部構造物となる建物3の下方地盤を改良範囲31として、改良範囲31に地盤改良基礎構造1を設けることで、地震動の表層地盤増幅が軽減された支持地盤にする。 Therefore, as shown in FIG. 1, the lower ground of the building 3 as the superstructure is set as the improvement range 31, and the ground improvement foundation structure 1 is provided in the improvement range 31, so that the surface ground amplification of the seismic motion is reduced. To.

本実施の形態の地盤改良基礎構造1は、地盤とセメント系固化材とを混合撹拌させた改良体によって構築される。このような改良体は、例えば深層混合処理工法によって構築することができる。これらの工法では、セメントミルクのようなスラリー状のセメント系固化材を、切削された原位置の地盤の中に混入させて、混合撹拌させることによって改良体(ソイルセメント)を構築する。 The ground improvement foundation structure 1 of the present embodiment is constructed by an improved body obtained by mixing and stirring the ground and a cement-based solidifying material. Such an improved body can be constructed by, for example, a deep mixing treatment method. In these construction methods, a slurry-like cement-based solidifying material such as cement milk is mixed into the ground in the original position where it was cut, and mixed and stirred to construct an improved body (soil cement).

図1に示した改良体は、比較的に直径が大きい円柱状の太径改良体2である。例えば、一般的に戸建て住宅で構築される改良体の杭径を0.5m-0.6mとすると、0.7m-2.0m程度の杭径に構築される。 The improved body shown in FIG. 1 is a columnar large-diameter improved body 2 having a relatively large diameter. For example, if the pile diameter of an improved body generally constructed in a detached house is 0.5m-0.6m, it will be constructed with a pile diameter of about 0.7m-2.0m.

一方、杭長は、必要に応じて短くすることができる。すなわち、地震動の表層地盤増幅の低減に寄与しない分は、短くすることで工費を削減することができるようになる。例えば、一般的な戸建て住宅の改良体の杭長が2.0m-8.0mとすると、1.0m-8.0m程度の杭長に構築される。 On the other hand, the pile length can be shortened if necessary. That is, the construction cost can be reduced by shortening the portion that does not contribute to the reduction of the surface ground amplification of the earthquake motion. For example, if the pile length of an improved version of a general detached house is 2.0m-8.0m, the pile length will be about 1.0m-8.0m.

杭長を短くするためには、改良率を上げて地震動の表層地盤増幅を低減させる必要がある。ここで、「改良率」とは、改良範囲31の全体面積(平面積)に対する複数の改良体の合計断面積の割合で、10%−80%に設定される。例えば、改良体間で重なりがない場合は、改良率=(改良体の断面積×本数)/(改良範囲31全体の平面積)×100となる。他方、改良体同士にラップがある場合は、重複する箇所の断面積が2重に加算されないように改良体の合計断面積が算定される。 In order to shorten the pile length, it is necessary to increase the improvement rate and reduce the surface ground amplification of seismic motion. Here, the "improvement rate" is the ratio of the total cross-sectional area of the plurality of improved bodies to the total area (flat area) of the improved range 31, and is set to 10% -80%. For example, when there is no overlap between the improved bodies, the improvement rate = (cross-sectional area of the improved bodies × number) / (flat area of the entire improvement range 31) × 100. On the other hand, when the improved bodies have wraps, the total cross-sectional area of the improved bodies is calculated so that the cross-sectional areas of the overlapping portions are not added twice.

図1に示した地盤改良基礎構造1を構成する太径改良体2は、杭径が1.0mで、一般的な戸建て住宅の改良体の杭径0.5mの2倍であり、断面積は4倍になる。また、太径改良体2の杭長は1.0mで、通常よりも短尺に形成されている。 The large-diameter improved body 2 constituting the ground improvement foundation structure 1 shown in FIG. 1 has a pile diameter of 1.0 m, which is twice the pile diameter of 0.5 m of the improved body of a general detached house, and has a cross-sectional area of 4. Double. The pile length of the large diameter improved body 2 is 1.0 m, which is shorter than usual.

そして、改良範囲31には、水平方向に間隔を置いて複数の太径改良体2,・・・が構築され、改良率は23%程度となっている。太径改良体2は、建物3の柱の下方など、鉛直荷重が集中しやすい箇所に重点的に配置される。 Then, in the improvement range 31, a plurality of large-diameter improved bodies 2, ... Are constructed at intervals in the horizontal direction, and the improvement rate is about 23%. The large diameter improved body 2 is mainly arranged in a place where a vertical load is likely to be concentrated, such as below a pillar of a building 3.

一方、図2には、別の地盤改良基礎構造1Aを示した。改良範囲31Aに間隔を置いて構築される改良体は、一般の改良体の杭径及び杭長に近い円柱状の長尺改良体2Aである。例えば、杭径が0.7m、杭長が7.0mの長尺改良体2Aが構築される。 On the other hand, FIG. 2 shows another ground improvement foundation structure 1A. The improved body constructed at intervals of the improved range 31A is a columnar long improved body 2A that is close to the pile diameter and pile length of the general improved body. For example, a long improved body 2A having a pile diameter of 0.7 m and a pile length of 7.0 m is constructed.

そして、改良範囲31Aに水平方向に間隔を置いて配置される複数の長尺改良体2A,・・・による改良率は、10%程度となっている。また、この長尺改良体2Aの支持力は、下端面の地盤抵抗である先端支持力と、地盤との付着による周面摩擦抵抗との合計である。 The improvement rate of the plurality of long improved bodies 2A, ... Arranged at intervals in the horizontal direction in the improvement range 31A is about 10%. The bearing capacity of the long improved body 2A is the sum of the tip bearing capacity, which is the ground resistance of the lower end surface, and the peripheral friction resistance due to adhesion to the ground.

このようにして改良範囲31,31Aの改良率を調整することによって卓越固有周期が調整される支持地盤に建つ建物3は、例えば工場で部材が製作されるユニット住宅などである。例えば、間隔を置いて配置される柱間に梁を架け渡すことで、構造部材となる骨組構造体が形成される。 The building 3 built on the supporting ground whose predominant natural period is adjusted by adjusting the improvement rate of the improvement ranges 31 and 31A in this way is, for example, a unit house in which members are manufactured in a factory. For example, by bridging beams between columns arranged at intervals, a skeleton structure serving as a structural member is formed.

この骨組構造体を構成する柱及び梁は、例えばH形鋼、溝形鋼(C形鋼)又は角形鋼管などの鋼材によって形成することができる。また、骨組構造体は、柱と梁とをボルトで接合させる鉄骨構造体であってもよいし、柱と梁とを溶接によって剛接合させるラーメン構造体であってもよい。 The columns and beams constituting this framework structure can be formed of steel materials such as H-shaped steel, channel steel (C-shaped steel), and square steel pipes. Further, the frame structure may be a steel structure in which columns and beams are joined by bolts, or a rigid frame structure in which columns and beams are rigidly joined by welding.

このような柱と梁によって骨組構造体が形成される建物の自重などの鉛直荷重は、柱脚部から集中的に基礎に伝達される。図1,2に示した太径改良体2及び長尺改良体2Aの配置は、柱などから集中荷重が作用する位置及びその周辺である。 Vertical loads such as the weight of the building in which the skeleton structure is formed by such columns and beams are intensively transmitted from the column base to the foundation. The arrangement of the large diameter improved body 2 and the long diameter improved body 2A shown in FIGS. 1 and 2 is at and around the position where the concentrated load acts from the pillar or the like.

そして、工場などでユニット化された部材が製作されることによって構築される建物3は、予め固有周期が判明しているため、支持地盤の卓越固有周期と建物3の固有周期とを乖離させるような調整を行うことができる。 Since the natural period of the building 3 constructed by manufacturing the unitized members in a factory or the like is known in advance, the predominant natural period of the supporting ground and the natural period of the building 3 should be separated from each other. Can be adjusted.

基本的には、地盤の剛性を上げることで増幅を軽減することができるが、支持地盤の振動特性が建物3の振動特性に近似して、共振が起きやすい状態になるのを避けるように設計が行われる。 Basically, amplification can be reduced by increasing the rigidity of the ground, but it is designed so that the vibration characteristics of the supporting ground are close to the vibration characteristics of the building 3 and resonance is likely to occur. Is done.

小規模な住宅を対象とする場合、中〜大規模建築物が対象とする土層と比較すると、対象層は浅く、また全体の層厚も薄くなる。さらに、対象とする土層は大小があっても全体的に剛性は低く、簡便化して検討を行っても影響度は小さいと言える。そこで、平均S波速度をその層厚ごとに予め算出しておくこととする。 When targeting small-scale houses, the target layer is shallower and the overall layer thickness is thinner than the soil layer targeted for medium to large-scale buildings. Furthermore, even if the target soil layer is large or small, the rigidity is low as a whole, and it can be said that the degree of influence is small even if a simple study is conducted. Therefore, the average S-wave velocity is calculated in advance for each layer thickness.

図4が、平均S波速度が適用された地盤のモデルを模式的に示した説明図である。この地盤モデルは、地盤改良がされていない原地盤(無補強地盤)をモデル化している。一方、例えばセメント系固化材を用いて現地盤の土と撹拌することで地盤を補強する浅層改良や、柱状の改良体を連続して構築して地盤を補強する深層改良を行うと、地震時の地盤の揺れ方が変化する。 FIG. 4 is an explanatory diagram schematically showing a model of the ground to which the average S-wave velocity is applied. This ground model models the original ground (unreinforced ground) that has not been improved. On the other hand, for example, if a shallow layer improvement is performed to reinforce the ground by stirring with the soil of the local ground using a cement-based solidifying material, or a deep layer improvement is performed by continuously constructing columnar improved bodies to reinforce the ground, an earthquake will occur. The way the ground sways at the time changes.

図5は、地盤改良として表層改良M1がされている地盤のモデルを模式的に示した説明図である。地盤改良を行う場合、従来からある軟弱地盤対策工法であってその改良地盤の水平剛性が予測可能な場合には、改良対象層を考慮して検討することも可能である。すなわち、改良部分のみ別途、平均S波速度を算出し、明らかに剛性に差がある範囲が平均化されるのを防ぎ、実際の地盤に近いモデル化を行うことができる。 FIG. 5 is an explanatory diagram schematically showing a model of the ground where the surface layer improvement M1 is performed as the ground improvement. When improving the ground, if the conventional soft ground countermeasure method is used and the horizontal rigidity of the improved ground can be predicted, it is possible to consider the layer to be improved. That is, it is possible to separately calculate the average S-wave velocity only for the improved portion, prevent the range where there is a clear difference in rigidity from being averaged, and perform modeling close to the actual ground.

一方図6は、地盤改良として柱状改良M2がされている地盤のモデルを模式的に示した説明図である。そして、これらの地盤モデルについて、工学的基盤までの深さを変化させるとともに、表層地盤の平均S波速度を変化させて、2つの関係に基づく表層地盤増幅率をそれぞれ算出する。 On the other hand, FIG. 6 is an explanatory view schematically showing a model of the ground in which the columnar improvement M2 is performed as the ground improvement. Then, for these ground models, the depth to the engineering foundation is changed, and the average S-wave velocity of the surface ground is changed to calculate the surface ground amplification factor based on the two relationships.

図7に、原地盤の表層地盤増幅率を検討するためのマトリクス化した図表の一例を示した。ここで、例えば基準値を1.7倍とした場合、平均S波速度と工学的基盤までの深度とから該当する箇所の表層地盤増幅率が基準値を超えている場合(図7で濃く示したマス目の範囲)には、揺れ低減対策が必要と判定する。他方、該当する箇所の表層地盤増幅率が基準値未満であれば、揺れ低減対策が不要であると判定することができる。 FIG. 7 shows an example of a matrixed chart for examining the surface ground amplification factor of the original ground. Here, for example, when the reference value is set to 1.7 times, the surface ground amplification factor of the corresponding portion exceeds the reference value from the average S wave velocity and the depth to the engineering foundation (the mass shown darkly in FIG. 7). It is judged that measures to reduce shaking are necessary for the area of the eyes). On the other hand, if the surface layer ground amplification factor of the corresponding portion is less than the reference value, it can be determined that the shaking reduction measures are unnecessary.

例えば、工学的基盤までの深さが6mで、当該深度までの平均S波速度がVS=50m/sである地盤の場合、図7によれば、現地盤のままであれば、表層地盤増幅率は基準値未満であるので、地震の揺れ低減としての地盤補強は不要である。 For example, in depth 6m to engineering bedrock, when the average S wave velocity until said depth of ground is V S = 50 m / s, according to FIG. 7, if left local board, surface ground Since the amplification factor is less than the standard value, ground reinforcement is not necessary to reduce the shaking of the earthquake.

ここで参考までに、浅層地盤改良である表層改良M1がされている図5の地盤モデルについても、工学的基盤までの深さを変化させるとともに、表層地盤の平均S波速度を変化させて、2つの関係に基づく表層地盤増幅率をそれぞれ算出する。 For reference, also for the ground model of FIG. 5 in which the surface improvement M1 which is a shallow ground improvement is performed, the depth to the engineering foundation is changed and the average S-wave velocity of the surface ground is changed. The surface ground amplification factor based on the two relationships is calculated respectively.

図8に、層厚2m程度の表層改良M1を施した場合の表層地盤増幅率を検討するためのマトリクス化した図表の一例を示した。このマトリクス化された判定データベースを使用することで、原地盤のままでは地震の揺れが大きくなる場合に、浅層地盤改良によって地震の揺れ低減が可能かどうかを判定することができる。 FIG. 8 shows an example of a matrixed chart for examining the surface layer ground amplification factor when the surface layer improvement M1 having a layer thickness of about 2 m is applied. By using this matrix-based determination database, it is possible to determine whether or not it is possible to reduce the shaking of an earthquake by improving the shallow ground when the shaking of the earthquake becomes large with the original ground as it is.

要するに、軟弱地盤であることを理由に、地耐力等の確保のために地盤改良を施す必要がある場合に、表層改良M1によって地震の揺れが大きくなる可能性がないかを予め予測することができるようになる。そして、揺れが大きくなると予測された場合には、深層地盤改良や水平剛性の小さい杭状地盤補強などの他の工法に切り替えることを検討することができる。 In short, when it is necessary to improve the ground in order to secure the bearing capacity because of the soft ground, it is possible to predict in advance whether the surface improvement M1 may increase the shaking of the earthquake. become able to. Then, when it is predicted that the shaking will increase, it is possible to consider switching to other construction methods such as deep ground improvement and pile-shaped ground reinforcement with low horizontal rigidity.

同様に図9には、深さ4m程度までの水平剛性を高める連続した柱状改良M2を施した場合の表層地盤増幅率を検討するためのマトリクス化した図表の一例を示した。このマトリクス化された判定データベースを使用することで、柱状改良M2によって地震の揺れ低減が可能かどうかを判定することができるようになる。 Similarly, FIG. 9 shows an example of a matrixed chart for examining the surface layer ground amplification factor when continuous columnar improved M2 for increasing the horizontal rigidity up to a depth of about 4 m is applied. By using this matrixed determination database, it becomes possible to determine whether or not it is possible to reduce the shaking of an earthquake by the columnar improvement M2.

さらに、軟弱地盤のために柱状改良M2を施す必要がある場合に、地震の揺れが大きくなる可能性を予め予測することもできるようになる。そして、揺れが大きくなると予想された場合には、水平剛性の小さい杭状地盤補強など他の工法に切り替えることを検討することができる。 Furthermore, when it is necessary to apply the columnar improvement M2 for soft ground, it becomes possible to predict in advance the possibility that the shaking of the earthquake will increase. Then, if it is expected that the shaking will increase, it is possible to consider switching to another construction method such as pile-shaped ground reinforcement with low horizontal rigidity.

要するに、図6に示した連続した柱状改良M2を、杭状の太径改良体2や長尺改良体2Aに置き換えることで、支持地盤の水平剛性を調整することができるようになる。そこで、工学的基盤までの深度が2.5m-20mの範囲で、平均S波速度が110m/s-290m/sの範囲の大きな増幅を示す地盤に、上述したような本実施の形態の地盤改良基礎構造1,1Aを構築する。 In short, the horizontal rigidity of the supporting ground can be adjusted by replacing the continuous columnar improved M2 shown in FIG. 6 with a pile-shaped thick-diameter improved body 2 or a long-diameter improved body 2A. Therefore, the ground improvement of the present embodiment as described above is applied to the ground showing a large amplification in the range of the depth to the engineering foundation of 2.5 m-20 m and the average S wave velocity of 110 m / s-290 m / s. The foundation structure 1, 1A is constructed.

次に、本実施の形態の地盤改良基礎構造1,1Aの作用について説明する。
このように構成された本実施の形態の地盤改良基礎構造1,1Aは、地盤とセメント系固化材とを混合撹拌させた改良体(2,2A)によって構成される。
Next, the operation of the ground improvement foundation structures 1, 1A of the present embodiment will be described.
The ground improvement foundation structure 1, 1A of the present embodiment configured as described above is composed of an improved body (2, 2A) in which the ground and the cement-based solidifying material are mixed and agitated.

そして、改良体(2,2A)を含む支持地盤の卓越固有周期と建物3の固有周期とを乖離させるような調整がされる。この調整は、例えば改良体(2,2A)を太径化させることで、改良率が10%−80%に設定されるように行われる。また、改良体の本数や杭長で調整することもできる。 Then, adjustments are made so as to dissociate the predominant natural period of the supporting ground including the improved body (2, 2A) from the natural period of the building 3. This adjustment is performed so that the improvement rate is set to 10% -80%, for example, by increasing the diameter of the improved body (2, 2A). It can also be adjusted by the number of improved bodies and the pile length.

要するに、建物3などの上部構造物の振動特性と支持地盤の振動特性とが近似して共振が起きるような状態の発生を回避することで、地震動の表層地盤増幅による建物3の揺れを軽減させることが可能な地盤改良基礎構造1,1Aを構築する。 In short, by avoiding the occurrence of a state in which the vibration characteristics of the superstructure such as the building 3 and the vibration characteristics of the supporting ground are close to each other and resonance occurs, the shaking of the building 3 due to the surface ground amplification of the seismic motion is reduced. Construct a ground improvement foundation structure 1, 1A that is possible.

一方、地震動の表層地盤増幅の軽減に寄与せず、地盤との間の周面摩擦抵抗による支持力の増加がそれほど期待できないような軟弱地盤では、杭長を短くして工費を抑えることもできる。 On the other hand, in soft ground that does not contribute to the reduction of surface ground amplification of seismic motion and the bearing capacity cannot be expected to increase due to the peripheral frictional resistance with the ground, the pile length can be shortened to reduce the construction cost. ..

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
例えば、前記実施の形態では、太径改良体2と長尺改良体2Aを例に説明したが、これに限定されるものではなく、これらの中間的な改良体を構築することもできる。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes to the extent that the gist of the present invention is not deviated are described in the present invention. Included in the invention.
For example, in the above-described embodiment, the large-diameter improved body 2 and the long-diameter improved body 2A have been described as an example, but the present invention is not limited to this, and an intermediate improved body thereof can also be constructed.

1,1A:地盤改良基礎構造
2 :太径改良体(改良体)
2A :長尺改良体(改良体)
3 :建物(上部構造物)
31,31A:改良範囲
1,1A: Ground improvement foundation structure 2: Large diameter improved body (improved body)
2A: Long improved body (improved body)
3: Building (superstructure)
31, 31A: Improvement range

Claims (3)

地盤とセメント系固化材とを混合撹拌させた改良体によって構築される地盤改良基礎構造であって、
複数が配置される前記改良体の合計断面積が、上部構造物の下方地盤を改良範囲としたときの全体面積との割合となる改良率で10%−80%にすることで、前記改良範囲の卓越固有周期と前記上部構造物の固有周期とを乖離させるように調整がされていることを特徴とする地盤改良基礎構造。
It is a ground improvement foundation structure constructed by an improved body in which the ground and a cement-based solidifying material are mixed and agitated.
The improvement range is set by setting the total cross-sectional area of the improved bodies in which a plurality of the improved bodies are arranged to be 10% -80%, which is a ratio to the total area when the lower ground of the superstructure is set as the improvement range. A ground improvement foundation structure characterized in that the predominant natural period of the above is adjusted so as to deviate from the natural period of the superstructure.
前記改良体は円柱状であって、杭径が0.7m−2.0mであることを特徴とする請求項1に記載の地盤改良基礎構造。 The ground improvement foundation structure according to claim 1, wherein the improved body is columnar and has a pile diameter of 0.7 m to 2.0 m. 前記改良体の杭長が1.0m−8.0mであることを特徴とする請求項2に記載の地盤改良基礎構造。 The ground improvement foundation structure according to claim 2, wherein the pile length of the improved body is 1.0 m to 8.0 m.
JP2019083014A 2019-04-24 2019-04-24 Ground improvement foundation structure Active JP7235579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019083014A JP7235579B2 (en) 2019-04-24 2019-04-24 Ground improvement foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019083014A JP7235579B2 (en) 2019-04-24 2019-04-24 Ground improvement foundation structure

Publications (2)

Publication Number Publication Date
JP2020180454A true JP2020180454A (en) 2020-11-05
JP7235579B2 JP7235579B2 (en) 2023-03-08

Family

ID=73023355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019083014A Active JP7235579B2 (en) 2019-04-24 2019-04-24 Ground improvement foundation structure

Country Status (1)

Country Link
JP (1) JP7235579B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080905A (en) * 2009-10-08 2011-04-21 Asahi Kasei Homes Co Response analysis method for building at earthquake, and the building
JP2012241499A (en) * 2011-05-24 2012-12-10 Kajima Corp Ground for fighting subsidence due to shaking by travelable inclination, and method for creating the same
JP2013231309A (en) * 2012-04-27 2013-11-14 Takenaka Komuten Co Ltd Soil improvement body and soil improvement method
JP2015010435A (en) * 2013-07-01 2015-01-19 株式会社竹中工務店 Foundation structure and design method for the same
JP2015200173A (en) * 2014-03-31 2015-11-12 積水化学工業株式会社 Ground improvement foundation structure
JP2016196803A (en) * 2015-04-03 2016-11-24 学校法人関東学院 Improved ground and ground improving method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080905A (en) * 2009-10-08 2011-04-21 Asahi Kasei Homes Co Response analysis method for building at earthquake, and the building
JP2012241499A (en) * 2011-05-24 2012-12-10 Kajima Corp Ground for fighting subsidence due to shaking by travelable inclination, and method for creating the same
JP2013231309A (en) * 2012-04-27 2013-11-14 Takenaka Komuten Co Ltd Soil improvement body and soil improvement method
JP2015010435A (en) * 2013-07-01 2015-01-19 株式会社竹中工務店 Foundation structure and design method for the same
JP2015200173A (en) * 2014-03-31 2015-11-12 積水化学工業株式会社 Ground improvement foundation structure
JP2016196803A (en) * 2015-04-03 2016-11-24 学校法人関東学院 Improved ground and ground improving method

Also Published As

Publication number Publication date
JP7235579B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
Rausche Non-destructive evaluation of deep foundations
CN109537580A (en) A kind of engineering pile body design and construction method based on BIM technology
Biswas et al. Experimental and theoretical studies on the nonlinear characteristics of soil-pile systems under coupled vibrations
Oliveira et al. Influence of geotechnical works on neighboring structures
JP2008138514A (en) Method and apparatus for researching ground
Massarsch et al. Ground vibrations from pile and sheet pile driving. Part 1 Building Damage
Mhanna et al. Efficiency of heavy mass technology in traffic vibration reduction: Experimental and numerical investigation
JP6737608B2 (en) Ground evaluation system, ready-made pile with acceleration sensor
JP6832211B2 (en) Ground survey equipment and ground survey method
Svinkin Prediction and calculation of construction vibrations
JP6496642B2 (en) Ground survey method
JP2020180454A (en) Ground improvement foundation structure
JP6921701B2 (en) Ground survey method
Petřík et al. A comparison of numerical models results with in-situ measurement of ground vibrations caused by sheet pile driving
JP2007177557A (en) Method and apparatus for researching ground
Amir Single-tube ultrasonic testing of pile integrity
JP3173790U (en) Ground survey equipment
Rashidyan Characterization of unknown bridge foundations
JP2002318285A (en) Bedrock strength analyzing method
CN108427142A (en) A kind of prefabricated pile stake bottom CAVE DETECTION system and method
JP6223891B2 (en) Ground survey method
JP7132012B2 (en) Ground improvement foundation structure
Masoumi et al. Pile response and free field vibrations due to low strain dynamic loading
Vratsikidis et al. Soil mass participation in soil-structure interaction by field experiments in EuroProteas
JP6997431B2 (en) How to determine the amount of displacement of a building due to an earthquake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230224

R151 Written notification of patent or utility model registration

Ref document number: 7235579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151