JP2020179593A - Fiber reinforced thermoplastic resin filament and molded product thereof - Google Patents

Fiber reinforced thermoplastic resin filament and molded product thereof Download PDF

Info

Publication number
JP2020179593A
JP2020179593A JP2019084175A JP2019084175A JP2020179593A JP 2020179593 A JP2020179593 A JP 2020179593A JP 2019084175 A JP2019084175 A JP 2019084175A JP 2019084175 A JP2019084175 A JP 2019084175A JP 2020179593 A JP2020179593 A JP 2020179593A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
filament
resin filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019084175A
Other languages
Japanese (ja)
Other versions
JP2020179593A5 (en
JP7268467B2 (en
Inventor
鈴木 康司
Yasuji Suzukii
康司 鈴木
成瀬 恵寛
Yoshihiro Naruse
恵寛 成瀬
翔馬 石田
Shoma ISHIDA
翔馬 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2019084175A priority Critical patent/JP7268467B2/en
Publication of JP2020179593A publication Critical patent/JP2020179593A/en
Publication of JP2020179593A5 publication Critical patent/JP2020179593A5/ja
Application granted granted Critical
Publication of JP7268467B2 publication Critical patent/JP7268467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a fiber reinforced thermoplastic resin filament suitable for three-dimensional printer usage.SOLUTION: There is provided a fiber reinforced thermoplastic resin filament in which continuous reinforcing fibers are impregnated with a thermoplastic resin. A dispersion parameter d of the reinforcing fibers to be evaluated in the following order is 30% or more and less than 90%: (i) a lateral cross-sectional photograph including the entire area substantially perpendicular to the orientation direction of the fiber reinforced thermoplastic resin filament is taken, (ii) the lateral cross-sectional photograph is divided into square units having one side length specified by 1.5a≤t≤2.5a (a: the diameter of the fiber, t: the length of one side of the unit), (iii) a dispersion parameter d defined by the following is calculated: the dispersion parameter d(%)=the total number of units in which the reinforcing fiber(s) is included in a section (when the cross-sectional photograph is divided, the number of units in which the reinforcing fiber(s) is included in the photograph connected to one)/the number of the entire units including the filament(s) or a part of the filament(s) (when the cross-sectional photograph is divided, the total number of units including the filament(s) or a part of the filament(s) included in the photograph connected to one)×100.SELECTED DRAWING: None

Description

本発明は、繊維強化熱可塑性樹脂フィラメントおよびその成形品に関するものである。 The present invention relates to a fiber-reinforced thermoplastic resin filament and a molded product thereof.

連続した強化繊維に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材は、比強度、比剛性に優れ、軽量化効果が高い上に、耐熱性、耐薬品性が高いため、航空機、自動車等の輸送機器や、スポーツ、電気・電子部品などの各種用途へ好ましく用いられている。近年、軽量化に対する需要の高まりにより、航空機、自動車用途を中心に、金属部品から樹脂部品への代替や、部品の小型化・モジュール化が進みつつあることから、成形加工性に優れ、かつ、機械特性に優れる材料開発が求められている。 The fiber-reinforced thermoplastic resin base material, which is made by impregnating continuous reinforcing fibers with a thermoplastic resin, has excellent specific strength and rigidity, has a high weight-reducing effect, and has high heat resistance and chemical resistance. It is preferably used in various applications such as transportation equipment such as automobiles, sports, and electrical / electronic parts. In recent years, due to the increasing demand for weight reduction, replacement of metal parts with resin parts and miniaturization / modularization of parts are progressing mainly for aircraft and automobile applications, so that the molding processability is excellent and There is a demand for the development of materials with excellent mechanical properties.

近年、繊維強化熱可塑性樹脂基材の成形方法として3Dプリンティング法などの熱可塑性樹脂を溶融積層する成形方法が注目されている。熱可塑性樹脂を溶融積層させながら形状を作製する方式は、コスト面で有利であること等から、各方面で開発が進められている(例えば、特許文献1)。このような成形方法に、適用される繊維強化熱可塑性樹脂基材は、短繊維にカットした強化繊維を熱可塑性樹脂とともに押し出し繊維強化熱可塑性樹脂ストランドを製造する方法が主流であった。しかしながら、短繊維強化熱可塑性樹脂基材は繊維含有率を向上させることが困難であり、また、繊維長が短いことから補強効果が限定的であった。 In recent years, as a molding method for a fiber-reinforced thermoplastic resin base material, a molding method in which a thermoplastic resin is melt-laminated, such as a 3D printing method, has attracted attention. A method of producing a shape while melt-laminating a thermoplastic resin is being developed in various fields because it is advantageous in terms of cost and the like (for example, Patent Document 1). As the fiber-reinforced thermoplastic resin base material applied to such a molding method, a method of producing a fiber-reinforced thermoplastic resin strand by extruding a reinforcing fiber cut into short fibers together with a thermoplastic resin has been the mainstream. However, it is difficult to improve the fiber content of the short fiber reinforced thermoplastic resin base material, and the reinforcing effect is limited due to the short fiber length.

高い補強効果を発現させる方法として、特許文献2に示す通り連続繊維強化熱可塑性樹脂基材を適用する方法が検討されている。 As a method for exhibiting a high reinforcing effect, a method of applying a continuous fiber reinforced thermoplastic resin base material as shown in Patent Document 2 has been studied.

特表2009−500194号公報Special Table 2009-500194 特開2017−128072号公報JP-A-2017-128072

しかしながら、分散性が高いフィラメントを製造するには、製造工程において生産ライン速度を落とす必要があり、そのため生産性が低下するという課題があった。 However, in order to produce a filament having high dispersibility, it is necessary to reduce the production line speed in the production process, which causes a problem that the productivity is lowered.

本発明は、従来技術の背景に鑑み、3Dプリンタによる造形時に安定したプロセス条件で造形すれば、取り扱い性や強度物性に優れ、且つ低コストで大量生産に適した繊維強化熱可塑性樹脂フィラメントを提供することを目的とする。また、3Dプリンタによる造形では、特に積層した際の層間の強度低下が問題となるが、本発明の繊維強化熱可塑性樹脂フィラメントを用いることで、造形に適した温度と圧力で造形することで、十分な層間強度を有する成形品を実現できる。 In view of the background of the prior art, the present invention provides a fiber-reinforced thermoplastic resin filament that is excellent in handleability and strength physical properties and suitable for mass production at low cost if it is molded under stable process conditions during molding with a 3D printer. The purpose is to do. Further, in modeling with a 3D printer, a decrease in strength between layers is a problem, especially when laminated. However, by using the fiber-reinforced thermoplastic resin filament of the present invention, it is possible to model at a temperature and pressure suitable for modeling. A molded product having sufficient interlayer strength can be realized.

[1]連続した強化繊維に熱可塑性樹脂を含浸させた繊維強化熱可塑性樹脂フィラメンが下記方法によって評価される強化繊維の分散パラメータdが30%以上90%未満である繊維強化熱可塑性樹脂フィラメント。
(i)該繊維強化熱可塑性樹脂フィラメントの配向方向とほぼ垂直な全領域を含む横断面写真を撮影する。
(ii)該横断面写真を式(1)で規定された一辺の長さを有する正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメータdを算出する。
1.5a≦t≦2.5a (a: 繊維直径、t: ユニットの一辺の長さ) (1)
分散パラメータd=区画内に強化繊維が含まれるユニットの個数(断面写真を分割した際には一枚に連結した写真に強化繊維が含まれるユニットの個数の合計)/フィラメント若しくはフィラメントの一部を含むユニット全体の個数(断面写真を分割した際には一枚 に連結した写真に含まれるフィラメント若しくはフィラメントの一部を含むユニット数の合計)×100 (2)
[2]前記繊維強化熱可塑性樹脂フィラメントが下記(a)〜(c)の条件を満たす[1]に記載の繊維強化熱可塑性樹脂フィラメント。
(a)繊維強化熱可塑性樹脂フィラメント中の強化繊維の重量割合が20〜80%、熱可塑性樹脂の体積割合が80〜20%
(b)繊維強化熱可塑性樹脂フィラメントの厚みが0.01〜3mm
(c)繊維強化熱可塑性樹脂フィラメントに含まれるフィラメント長が1m以上
[3]前記繊維強化熱可塑性樹脂フィラメントの曲げ剛性が1N・m以下である[1]または[2]に記載の繊維強化熱可塑性樹脂フィラメント。
[4]前記強化繊維が炭素繊維、ガラス繊維、アラミド繊維のから選ばれる少なくとも1種である[1]〜[3]のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。
[5]前記熱可塑性樹脂がポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルイミド樹脂(PEI)、ポリエーテルスルホン樹脂(PES)、液晶ポリマー樹脂(LCP)から選ばれる少なくとも1種である[1]〜[4]のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。
[6]前記繊維強化熱可塑性樹脂フィラメントの断面形状が円形、楕円形、星形のいずれかの形状である[1]〜[5]のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。
[7]前記繊維強化熱可塑性樹脂フィラメントの最外層に熱可塑性樹脂層が被覆されてなる[1]〜[6]のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。
[8] [1]〜[7]のいずれかに記載の繊維強化熱可塑性樹脂フィラメントからなる成形品。
[1] A fiber-reinforced thermoplastic resin filament in which a fiber-reinforced thermoplastic resin filament in which continuous reinforcing fibers are impregnated with a thermoplastic resin has a dispersion parameter d of the reinforcing fibers evaluated by the following method of 30% or more and less than 90%.
(I) A cross-sectional photograph including the entire region substantially perpendicular to the orientation direction of the fiber-reinforced thermoplastic resin filament is taken.
(Ii) The cross-sectional photograph is divided into square units having a side length defined by the formula (1).
(Iii) The variance parameter d defined by the equation (2) is calculated.
1.5a ≤ t ≤ 2.5a (a: fiber diameter, t: length of one side of the unit) (1)
Dispersion parameter d = number of units containing reinforcing fibers in the compartment (when the cross-sectional photograph is divided, the total number of units containing reinforcing fibers in the photographs connected to one sheet) / filament or part of the filament Number of total units including (when the cross-sectional photograph is divided, the total number of filaments included in the photographs connected to one sheet or a part of the filaments) × 100 (2)
[2] The fiber-reinforced thermoplastic resin filament according to [1], wherein the fiber-reinforced thermoplastic resin filament satisfies the following conditions (a) to (c).
(A) The weight ratio of the reinforcing fibers in the fiber-reinforced thermoplastic resin filament is 20 to 80%, and the volume ratio of the thermoplastic resin is 80 to 20%.
(B) The thickness of the fiber-reinforced thermoplastic resin filament is 0.01 to 3 mm.
(C) The fiber reinforced according to [1] or [2], wherein the filament length contained in the fiber-reinforced thermoplastic resin filament is 1 m or more [3] and the bending rigidity of the fiber-reinforced thermoplastic resin filament is 1 N · m 2 or less. Thermoplastic resin filament.
[4] The fiber-reinforced thermoplastic resin filament according to any one of [1] to [3], wherein the reinforcing fiber is at least one selected from carbon fiber, glass fiber, and aramid fiber.
[5] At least the thermoplastic resin is selected from polyphenylene sulfide resin (PPS), polyarylene ether ketone resin (PAEK), polyetherimide resin (PEI), polyethersulfone resin (PES), and liquid crystal polymer resin (LCP). The fiber-reinforced thermoplastic resin filament according to any one of [1] to [4].
[6] The fiber-reinforced thermoplastic resin filament according to any one of [1] to [5], wherein the fiber-reinforced thermoplastic resin filament has a cross-sectional shape of any of a circular shape, an elliptical shape, and a star shape.
[7] The fiber-reinforced thermoplastic resin filament according to any one of [1] to [6], wherein the outermost layer of the fiber-reinforced thermoplastic resin filament is coated with a thermoplastic resin layer.
[8] A molded product made of the fiber-reinforced thermoplastic resin filament according to any one of [1] to [7].

本発明によれば、連続した強化繊維に熱可塑性樹脂を含浸させた繊維強化熱可塑性樹脂フィラメントは、厚みが薄く、一定長以上のフィラメント長を有することから成形時の取り扱い性に優れ、繊維含有量が高く、ボイドが少ないため3Dプリンタによる造形後に高い補強効果が期待できる。 According to the present invention, the fiber-reinforced thermoplastic resin filament obtained by impregnating continuous reinforcing fibers with a thermoplastic resin has a thin thickness and a filament length of a certain length or more, so that it is easy to handle during molding and contains fibers. Since the amount is high and the voids are small, a high reinforcing effect can be expected after modeling with a 3D printer.

以下、本発明の実施形態を詳細に説明する。本発明の実施形態の繊維強化熱可塑性樹脂フィラメントは、連続した強化繊維に、熱可塑性樹脂を含浸させてなるものである。 Hereinafter, embodiments of the present invention will be described in detail. The fiber-reinforced thermoplastic resin filament of the embodiment of the present invention is formed by impregnating continuous reinforcing fibers with a thermoplastic resin.

本発明の実施形態において、連続した強化繊維とは、繊維強化熱可塑性樹脂中で当該強化繊維が実質的に途切れのないものをいう。フィラメント内の単糸全てが途切れていないことが理想であるが、単糸数の80%以上が途切れてなければ、「途切れのない」状態であるといえる。本発明の実施形態における強化繊維の形態および配列としては、例えば、一方向に引き揃えられたもの、組み紐、トウ等が挙げられる。中でも、特定方向の機械特性を効率よく高められることから、強化繊維が一方向に配列してなることが好ましい。 In the embodiment of the present invention, the continuous reinforcing fiber means a fiber-reinforced thermoplastic resin in which the reinforcing fiber is substantially uninterrupted. Ideally, all the single yarns in the filament are not interrupted, but if 80% or more of the single yarns are not interrupted, it can be said that the state is "uninterrupted". Examples of the form and arrangement of the reinforcing fibers in the embodiment of the present invention include those aligned in one direction, braids, tow and the like. Above all, it is preferable that the reinforcing fibers are arranged in one direction because the mechanical properties in a specific direction can be efficiently enhanced.

強化繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。 The type of the reinforcing fiber is not particularly limited, and examples thereof include carbon fiber, metal fiber, organic fiber, and inorganic fiber. Two or more of these may be used.

炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。 Examples of carbon fibers include PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers, pitch-based carbon fibers made from petroleum tar and petroleum pitch, and cellulose-based carbons made from biscous rayon and cellulose acetate. Examples thereof include vapor-phase growth-based carbon fibers made from fibers and hydrocarbons, and these graphitized fibers. Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.

金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。 Examples of the metal fiber include fibers made of a metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.

有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン−3,4’−オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。 Examples of the organic fiber include fibers made of an organic material such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene. Examples of the aramid fiber include para-aramid fiber having excellent strength and elastic modulus, and meta-aramid fiber having excellent flame retardancy and long-term heat resistance. Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, and examples of the meta-type aramid fiber include polymetaphenylene isophthalamide fiber. Can be mentioned. As the aramid fiber, a para-aramid fiber having a higher elastic modulus than the meta-aramid fiber is preferably used.

無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeOを9〜25重量%、チタンの化合物であるTiOまたはTiOを1〜6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。 Examples of the inorganic fiber include fibers made of an inorganic material such as glass, basalt, silicon carbide, and silicon nitride. Examples of the glass fiber include E glass fiber (for electricity), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength and high elastic modulus). Basalt fiber is a fiber of basalt, which is a mineral, and has extremely high heat resistance. Basalt, generally the FeO or FeO 2 which is a compound of iron 9-25% by weight, although the TiO or TiO 2 which is a compound of titanium containing 1-6 wt%, increase of these components in the molten state It is also possible to make it into fibers.

本発明の実施形態における繊維強化熱可塑性樹脂フィラメントは、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維として炭素繊維を含むことが好ましい。 Since the fiber-reinforced thermoplastic resin filament in the embodiment of the present invention is often expected to serve as a reinforcing material, it is desirable to exhibit high mechanical properties, and in order to exhibit high mechanical properties, the reinforcing fiber It is preferable to contain carbon fiber as a material.

繊維強化熱可塑性樹脂フィラメントにおいて、強化繊維は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維の単繊維本数は、500〜50,000本が好ましい。取扱性の観点からは、強化繊維の単繊維本数は、1,000〜50,000本がより好ましく、1,000〜40,000本がさらに好ましく、1,000〜30,000本が特に好ましい。 In the fiber-reinforced thermoplastic resin filament, the reinforcing fiber is usually composed of one or a plurality of reinforcing fiber bundles in which a large number of single fibers are bundled. The number of single fibers of the reinforcing fibers when one or a plurality of reinforcing fiber bundles are arranged is preferably 500 to 50,000. From the viewpoint of handleability, the number of single fibers of the reinforcing fiber is more preferably 1,000 to 50,000, further preferably 1,000 to 40,000, and particularly preferably 1,000 to 30,000. ..

本発明の繊維強化熱可塑性樹脂フィラメントの断面形状としては、特に限定されるものではないが、円形断面や、楕円形断面、三角形断面、Y字断面、四角形断面、十字断面、中空断面、C型断面、田型断面、星型断面などいかなる異形断面も採用できる。特に、溶融積層時の接着性のために、円形断面や四角形断面、楕円形断面、星型断面が好ましい。 The cross-sectional shape of the fiber-reinforced thermoplastic resin filament of the present invention is not particularly limited, but is limited to a circular cross section, an elliptical cross section, a triangular cross section, a Y-shaped cross section, a quadrangular cross section, a cross cross section, a hollow cross section, and a C shape. Any irregular cross section such as cross section, paddy cross section, star cross section can be adopted. In particular, a circular cross section, a quadrangular cross section, an elliptical cross section, and a star cross section are preferable because of the adhesiveness at the time of melt lamination.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントは、再外層を熱可塑性樹脂で被覆することができる。外周部を熱可塑性樹脂で被覆することにより、成形時の接着性を向上させることができる。被覆する樹脂は繊維強化熱可塑性樹脂フィラメントと同じであってもよいし、異なる樹脂であってもよい。 In the fiber-reinforced thermoplastic resin filament of the embodiment of the present invention, the outer layer can be coated with the thermoplastic resin. By coating the outer peripheral portion with a thermoplastic resin, the adhesiveness at the time of molding can be improved. The resin to be coated may be the same as the fiber-reinforced thermoplastic resin filament, or may be a different resin.

1本の強化繊維束は、好ましくは平均直径5〜10μmである強化繊維の単繊維を500〜50,000本束ねて構成されたものである。 One reinforcing fiber bundle is formed by bundling 500 to 50,000 single fibers of reinforcing fibers having an average diameter of 5 to 10 μm.

本発明に使用される熱可塑性樹脂としては例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステルや、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。とりわけ、耐熱性、長期耐久性の観点からは、ポリフェニレンスルフィド樹脂、ポリアリーレンエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、液晶ポリマー樹脂がより好ましい。 Examples of the thermoplastic resin used in the present invention include polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN) resin, liquid crystal polyester resin and the like. Polyethylene, polyolefins such as polyethylene (PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate (PC) resin, poly Methylene methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, polyimide (PI) resin, polyamideimide (PAI) resin, polyetherimide ( PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone resin, polyketone (PK) resin, polyetherketone (PEK) resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin , Polyetherlate (PAR) resin, polyethernitrile (PEN) resin, phenol-based resin, phenoxy resin, polytetrafluoroethylene resin and other fluorine-based resins, and polystyrene-based resin, polyolefin-based resin, polyurethane-based resin, polyester-based resin. , Polyetherketone resin, polybutadiene resin, polyisoprene resin, fluororesin and other thermoplastic elastomers, copolymers and modified products thereof, and resins blended with two or more of these may be used. In particular, from the viewpoint of heat resistance and long-term durability, polyphenylene sulfide resin, polyarylene ether ketone resin, polyetherimide resin, polyether sulfone resin, and liquid crystal polymer resin are more preferable.

前記ポリアリーレンエーテルケトン樹脂(PAEK)としては、例えば、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)、ポリエーテエーテルルケトンエーテルケトン(PEEKEK)、ポリエーテルエーテルエーテルケトン(PEEEK)、及びポリエーテルジフェニルエーテルケトン(PEDEK)等やこれらの共重合体、変性体、および2種以上ブレンドした樹脂などであってもよい。 Examples of the polyetherketone resin (PAEK) include polyetherketone (PEK), polyetheretherketone (PEEK), polyetheretherketoneketone (PEEKK), polyetherketoneketone (PEKK), and polyetherketoneether. Ketoneketone (PEKEKK), Polyetheretherketone Etherketone (PEEKEK), Polyetheretheretherketone (PEEEK), Polyetherdiphenyletherketone (PEDEK), etc., their copolymers, modified products, and blends of two or more. It may be made of resin or the like.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントは、連続した強化繊維に前述の熱可塑性樹脂を含浸させてなるものであり、必要に応じて、さらに、充填材、他種ポリマー、各種添加剤などを含有させてもよい。 The fiber-reinforced thermoplastic resin filament of the embodiment of the present invention is formed by impregnating continuous reinforcing fibers with the above-mentioned thermoplastic resin, and further, if necessary, a filler, other kinds of polymers, various additives. Etc. may be contained.

充填材としては、一般に樹脂用フィラーとして用いられる任意のものを用いることができ、繊維強化熱可塑熱可塑性樹脂基材やそれを用いた成形品の強度、剛性、耐熱性、寸法安定性をより向上させることができる。充填材としては、例えば、ガラス繊維、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状無機充填材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、タルク、クレー、パイロフィライト、ベントナイト、モンモリロナイト、アスベスト、アルミノシリケート、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、シリカなどの非繊維状無機充填材などが挙げられる。これらを2種以上含有してもよい。これら充填材は中空であってもよい。また、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で処理されていてもよい。また、モンモリロナイトとして、有機アンモニウム塩で層間イオンをカチオン交換した有機化モンモリロナイトを用いてもよい。なお、繊維状充填材は、不連続繊維からなるものであれば、連続繊維からなる強化繊維の補強効果を損なうことなく機能を付与できる。 As the filler, any material generally used as a filler for resin can be used, and the strength, rigidity, heat resistance, and dimensional stability of the fiber-reinforced thermoplastic thermoplastic resin base material and the molded product using the same can be improved. Can be improved. Examples of the filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber and the like. Fibrous inorganic filler, wallastenite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, oxidation Non-fibrous inorganic fillers such as iron, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride, silicon carbide, silica, etc. Can be mentioned. Two or more of these may be contained. These fillers may be hollow. Further, it may be treated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound. Further, as montmorillonite, organic montmorillonite in which interlayer ions are cation-exchanged with an organic ammonium salt may be used. If the fibrous filler is made of discontinuous fibers, the function can be imparted without impairing the reinforcing effect of the reinforcing fibers made of continuous fibers.

各種添加剤としては、例えば、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、可塑剤(p−オキシ安息香酸オクチル、N−ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)などが挙げられる。これらを2種以上配合してもよい。 Examples of various additives include antioxidants, heat stabilizers (hindered phenol-based, hydroquinone-based, phosphite-based and their substitutes, copper halide, iodine compounds, etc.), and weather-resistant agents (resorcinol-based, salicylate-based). , Bentriazole-based, benzophenone-based, hindered amine-based, etc.), mold retardants and lubricants (aliphatic alcohol, aliphatic amide, aliphatic bisamide, bisurea and polyethylene wax, etc.), pigments (cadmium sulfide, phthalocyanine, carbon black, etc.) , Dyes (niglocin, aniline black, etc.), plasticizers (octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.), antistatic agents (alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents) Antistatic agents, non-ionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine-based antistatic agents, etc.), flame retardants (hydroxides such as melamine cyanurate, magnesium hydroxide, aluminum hydroxide, polyphosphoric acid) Ammonium, brominated polystyrene, brominated polyphenylene oxide, brominated polycarbonate, brominated epoxy resin, or a combination of these brominated flame retardants and trioxide antimonium, etc.) and the like. Two or more of these may be blended.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントは、連続した強化繊維に熱可塑性樹脂を含浸させることにより得ることができる。 The fiber-reinforced thermoplastic resin filament of the embodiment of the present invention can be obtained by impregnating continuous reinforcing fibers with a thermoplastic resin.

含浸方法としては、例えば、フィルム状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるフィルム法、繊維状の熱可塑性樹脂と強化繊維束とを混紡した後、繊維状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるコミングル法、粉末状の熱可塑性樹脂を強化繊維束における繊維の隙間に分散させた後、粉末状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる粉末法、溶融した熱可塑性樹脂中に強化繊維束を浸し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化熱可塑性樹脂フィラメントを作製できることから、引き抜き法が好ましい。 Examples of the impregnation method include a film method in which a film-shaped thermoplastic resin is melted and pressed to impregnate the reinforcing fiber bundle with the thermoplastic resin, and a fibrous thermoplastic resin and a reinforcing fiber bundle are mixed and then spun. Comingle method in which a fibrous thermoplastic resin is melted and pressed to impregnate the reinforcing fiber bundle with the thermoplastic resin. After dispersing the powdered thermoplastic resin in the gaps between the fibers in the reinforcing fiber bundle, the fibrous thermoplastic resin is powdered. A powder method in which a thermoplastic resin is melted and pressed to impregnate the reinforcing fiber bundle with the thermoplastic resin, and a reinforcing fiber bundle is immersed in the molten thermoplastic resin and pressed to impregnate the reinforcing fiber bundle with the thermoplastic resin. There is a pull-out method to make it. The drawing method is preferable because it is possible to produce various kinds of fiber-reinforced thermoplastic resin filaments having various thicknesses and fiber volume contents.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントの長さは1m以上が必要である。1m以上であることにより熱可塑性樹脂を連続的に成形することが可能である。 The length of the fiber-reinforced thermoplastic resin filament of the embodiment of the present invention needs to be 1 m or more. When it is 1 m or more, the thermoplastic resin can be continuously molded.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントの厚さは、0.01〜3mmである。厚さが0.01mm以上であれば、繊維強化熱可塑性樹脂フィラメントを用いて得られる成形品の強度を向上させることができる。0.1mm以上がより好ましい。一方、厚さが3mm以下であれば、繊維強化熱可塑性樹脂フィラメントの柔軟性が確保でき成形時の取り扱い性が向上するだけでなく、フィラメントをボビンやリールに巻き付ける際に巻き径をより小さくできるため、例えば製品出荷時の荷姿をコンパクトにまとめることができる。フィラメントの厚さは1mm以下がより好ましく、0.7mm以下がさらに好ましい。 The thickness of the fiber-reinforced thermoplastic resin filament of the embodiment of the present invention is 0.01 to 3 mm. When the thickness is 0.01 mm or more, the strength of the molded product obtained by using the fiber-reinforced thermoplastic resin filament can be improved. 0.1 mm or more is more preferable. On the other hand, if the thickness is 3 mm or less, not only the flexibility of the fiber-reinforced thermoplastic resin filament can be ensured and the handleability at the time of molding is improved, but also the winding diameter can be made smaller when winding the filament around the bobbin or reel. Therefore, for example, the packaging at the time of product shipment can be compactly organized. The filament thickness is more preferably 1 mm or less, further preferably 0.7 mm or less.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントの曲げ剛性は1N・m以下が好ましい。曲げ剛性が1N・m以下であればフィラメントの柔軟性が確保でき成形時の取り扱い性が向上する。0.1N・m以下がより好ましく、0.01N・m以下がさらに好ましく、0.005N・m以下が特に好ましい。 The flexural rigidity of the fiber-reinforced thermoplastic resin filament of the embodiment of the present invention is preferably 1 N · m 2 or less. If the flexural rigidity is 1 N · m 2 or less, the flexibility of the filament can be ensured and the handleability at the time of molding is improved. Less, more preferably 0.1 N · m 2, more preferably 0.01 N · m 2 or less, particularly preferably 0.005 N · m 2 or less.

また、本発明の実施形態の繊維強化熱可塑性樹脂フィラメントの体積含有率(Vf)は、繊維強化熱可塑性樹脂フィラメント全体を100体積%とした時、強化繊維を20体積%以上80体積%以下含有する。強化繊維を20体積%以上含有することにより、繊維強化熱可塑性樹脂フィラメントを用いて得られる成形品の強度をより向上させることができる。Vfは40体積%以上がより好ましく、50体積%以上がさらに好ましい。一方、強化繊維を80体積%以下含有することにより、強化繊維に熱可塑性をより含浸させやすい。繊維強化熱可塑性樹脂フィラメント中の強化繊維は75体積%以下がより好ましく、70体積%以下がさらに好ましい。 Further, the volume content (Vf) of the fiber-reinforced thermoplastic resin filament of the embodiment of the present invention is 20% by volume or more and 80% by volume or less of the reinforcing fiber when the whole fiber-reinforced thermoplastic resin filament is 100% by volume. To do. By containing 20% by volume or more of the reinforcing fibers, the strength of the molded product obtained by using the fiber-reinforced thermoplastic resin filament can be further improved. Vf is more preferably 40% by volume or more, further preferably 50% by volume or more. On the other hand, by containing 80% by volume or less of the reinforcing fibers, it is easier to impregnate the reinforcing fibers with thermoplasticity. The reinforcing fibers in the fiber-reinforced thermoplastic resin filament are more preferably 75% by volume or less, further preferably 70% by volume or less.

繊維強化熱可塑性樹脂フィラメントの体積含有率Vfは、繊維強化熱可塑性樹脂フィラメントの質量W0(g)を測定したのち、該連続繊維強化熱可塑性樹脂フィラメントを空気中550℃で3時間加熱して熱可塑性樹脂成分を焼き飛ばし、残った強化繊維の質量W1(g)を測定し、式(3)により算出した。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0−W1)/ρ1}×100・・・(3)
ρf:強化繊維の密度(g/cm
ρr:熱可塑性樹脂の密度(g/cm
For the volume content Vf of the fiber-reinforced thermoplastic resin filament, after measuring the mass W0 (g) of the fiber-reinforced thermoplastic resin filament, the continuous fiber-reinforced thermoplastic resin filament is heated in air at 550 ° C. for 3 hours to heat it. The plastic resin component was burnt off, and the mass W1 (g) of the remaining reinforcing fiber was measured and calculated by the formula (3).
Vf (volume%) = (W1 / ρf) / {W1 / ρf + (W0-W1) / ρ1} × 100 ... (3)
ρf: Density of reinforcing fibers (g / cm 3 )
ρr: Thermoplastic resin density (g / cm 3 )

繊維強化熱可塑性樹脂フィラメントの分散パラメータは、繊維強化熱可塑性樹脂フィラメントの断面を以下のように観察して求めた。維強化熱可塑性樹脂フィラメントをエポキシ樹脂で包埋したサンプルを用意し、繊維強化熱可塑性樹脂フィラメントの断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX−6000(コントローラー部)/VH−ZST(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化熱可塑性樹脂フィラメントの厚みの範囲とした。 The dispersion parameters of the fiber-reinforced thermoplastic resin filament were obtained by observing the cross section of the fiber-reinforced thermoplastic resin filament as follows. A sample in which the fiber-reinforced thermoplastic resin filament was embedded with an epoxy resin was prepared, and the sample was polished until the cross section of the fiber-reinforced thermoplastic resin filament could be observed well. The polished sample was photographed at a magnification of 400 times using an ultra-depth color 3D shape measuring microscope VHX-6000 (controller unit) / VH-ZST (measurement unit) (manufactured by KEYENCE CORPORATION). The imaging range was the thickness range of the fiber-reinforced thermoplastic resin filament.

本発明の繊維強化熱可塑性樹脂フィラメントは下記の方法で定義される分散パラメータdが30%以上90%未満であることが好ましい。分散パラメータが30%以上90%未満であっても3Dプリンタによる造形後の機械特性のバラつきを低減することができる。 The fiber-reinforced thermoplastic resin filament of the present invention preferably has a dispersion parameter d defined by the following method of 30% or more and less than 90%. Even if the dispersion parameter is 30% or more and less than 90%, it is possible to reduce the variation in mechanical characteristics after modeling by the 3D printer.

(分散パラメータdの算出)
(i)繊維強化熱可塑性樹脂フィラメントの配向方向とほぼ垂直な全領域を含む横断面を撮影する。
(ii)該横断面写真を式(1)で規定された一辺の長さを有する正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメータdを算出する。
1.5a≦t≦2.5a (a:繊維直径、t:ユニットの1辺の長さ) (1)
分散パラメータd=区画内に強化繊維が含まれるユニットの個数/ユニット全体の個数 ×100 (2)
(Calculation of variance parameter d)
(I) A cross section including the entire region substantially perpendicular to the orientation direction of the fiber-reinforced thermoplastic resin filament is photographed.
(Ii) The cross-sectional photograph is divided into square units having a side length defined by the formula (1).
(Iii) The variance parameter d defined by the equation (2) is calculated.
1.5a ≤ t ≤ 2.5a (a: fiber diameter, t: length of one side of the unit) (1)
Dispersion parameter d = Number of units containing reinforcing fibers in the compartment / Number of total units x 100 (2)

(評価方法)
試料である繊維強化熱可塑性樹脂フィラメントを、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化熱可塑性樹脂フィラメントにおける強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで研磨面を超深度カラー3D形状測定顕微鏡VHX−6000(コントローラー部)/VH−ZST(測定部)((株)キーエンス製)で、位置を変えながら撮影する。
(Evaluation methods)
The fiber-reinforced thermoplastic resin filament as a sample is embedded in the epoxy resin "Epoquick" (registered trademark: manufactured by Buehler) and cured at room temperature for 24 hours, and then in the orientation direction of the reinforcing fibers in the fiber-reinforced thermoplastic resin filament. Polish an almost vertical cross section, and then photograph the polished surface with an ultra-depth color 3D shape measurement microscope VHX-6000 (controller unit) / VH-ZST (measurement unit) (manufactured by Keyence Co., Ltd.) while changing the position. ..

撮影された繊維熱可塑性樹脂フィラメントの横断面写真についてImage Jを用いて画像解析を行い、式(1)を1辺の長さとする、相互に重なり合わない略正方形のユニットに分割した。この略正方形ユニットを順に画像解析し、略正方形ユニット内に強化繊維を含むユニットをカウントして、式(2)より分散パラメータdを算出した。 Image analysis was performed on the photographed cross-sectional view of the fiber thermoplastic resin filament using Image J, and the photograph was divided into substantially square units having the length of one side and not overlapping each other. The substantially square units were image-analyzed in order, the units containing the reinforcing fibers in the substantially square units were counted, and the dispersion parameter d was calculated from the equation (2).

上記の画像処理は、区画された略正方形ユニットの総数に対するユニット内に強化繊維を含むユニットの数を算出することによって求められる。2値化は原則として判別分析法を採用するが、場合によっては撮影写真と対比しつつ手動で実施することも可能である。 The above image processing is obtained by calculating the number of units containing reinforcing fibers in the unit with respect to the total number of partitioned substantially square units. In principle, the binarization method adopts the discriminant analysis method, but in some cases, it can be performed manually while comparing with the photographed photograph.

また、ユニット内に含まれる強化繊維は、強化繊維の一部でも含まれていればカウントされ、二つ以上の強化繊維が含まれていてもユニットとしては1つとしてカウントされる。 Further, the reinforcing fibers contained in the unit are counted if even a part of the reinforcing fibers is contained, and even if two or more reinforcing fibers are contained, the unit is counted as one.

1つの研磨面において、一枚若しくは複数の画像でフィラメントの断面の全領域に亘って撮影し、横断面写真から得られる繊維強化熱可塑性樹脂フィラメントの分散パラメータをdとして求める。その値から、繊維強化熱可塑性樹脂フィラメントにおける強化繊維の分布状態を定量的に評価することが可能となる。 On one polished surface, one or a plurality of images are taken over the entire region of the cross section of the filament, and the dispersion parameter of the fiber-reinforced thermoplastic resin filament obtained from the cross-sectional photograph is determined as d. From that value, it becomes possible to quantitatively evaluate the distribution state of the reinforcing fibers in the fiber-reinforced thermoplastic resin filament.

式(1)で求められるユニットの大きさは、観察される強化繊維の直径との関係により規定される。ユニットの大きさが式(1)の範囲より小さければ、分散パラメータは体積含有率に収斂され分散性を正確に表現できない。一方、式(1)の範囲より大きければ、分散性の良否に関わらず値は一定となり、正確ではない。従って、ユニットの大きさは式(1)の範囲であることが好ましい。 The size of the unit determined by the formula (1) is defined by the relationship with the diameter of the observed reinforcing fibers. If the size of the unit is smaller than the range of the equation (1), the dispersion parameter is converged on the volume content and the dispersibility cannot be accurately expressed. On the other hand, if it is larger than the range of the equation (1), the value is constant regardless of whether the dispersibility is good or bad, and is not accurate. Therefore, the size of the unit is preferably in the range of the formula (1).

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントを、任意の構成で1枚以上積層後、必要に応じて熱および/または圧力を付与しながら成形することにより成形品が得られる。 A molded product is obtained by laminating one or more fiber-reinforced thermoplastic resin filaments of the embodiment of the present invention in an arbitrary configuration and then molding while applying heat and / or pressure as necessary.

熱および/または圧力を付与する方法としては、例えば、任意の構成で積層した成形材料を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した連続繊維強化熱可塑性樹脂に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した連続繊維強化熱可塑性樹脂を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法、成形材料を加熱・加圧し、溶融積層しながら3次元形状を成形する3Dプリンティング法等があげられる。とりわけ、複雑形状の成形に適した3Dプリンティング法が好ましく用いられる。 Examples of the method of applying heat and / or pressure include a press molding method in which a molding material laminated in an arbitrary configuration is placed in a mold or on a press plate, and then the mold or the press plate is closed and pressed. The autoclave molding method, in which the molded material laminated in step 1 is put into an autoclave and pressurized and heated, the molding material laminated in any configuration is wrapped in a film, etc., and the inside is depressurized and heated in an oven while pressurizing at atmospheric pressure. Bagging molding method, wrapping tape method in which tape is wound while applying tension to continuous fiber reinforced thermoplastic resin laminated in any configuration, and heated in an oven, continuous fiber reinforced thermoplastic resin laminated in any configuration is placed in the mold. Internal pressure molding method that injects gas or liquid into the core that is also installed in the mold and pressurizes it, 3D printing method that heats and pressurizes the molding material and forms a three-dimensional shape while melting and laminating. Can be given. In particular, a 3D printing method suitable for molding complex shapes is preferably used.

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントおよびその成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明の実施形態の繊維強化熱可塑性樹脂フィラメントおよびその成形品は、とりわけ、安定した機械特性が要求される航空機エンジン周辺部品、航空機用部品外装部品、自動車ボディー部品車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。具体的には、本発明の実施形態の繊維強化熱可塑性樹脂フィラメントおよびその成形品は、ファンブレードなどの航空機エンジン周辺部品、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、各種シート、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、エンジンカバー、エアインテークパイプ、タイミングベルトカバー、インテークマニホールド、フィラーキャップ、スロットルボディ、クーリングファンなどの自動車エンジン周辺部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、廃ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、エアインテークマニホールド、インタークーラーインレット、ターボチャージャ、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディなどの吸排気系部品、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オイルネーター、及びデリバリーパイプなどのエンジン冷却水系部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、他極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギヤ、各種ケース、キャビネットなどの電気部品、コネクタ、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクタ、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。 The fiber-reinforced thermoplastic resin filament and its molded product according to the embodiment of the present invention make use of its excellent properties, such as aircraft parts, automobile parts, electrical / electronic parts, building parts, various containers, daily necessities, household goods and sanitary goods. It can be used for various purposes. The fiber-reinforced thermoplastic resin filament and its molded product according to the embodiment of the present invention include, among other things, aircraft engine peripheral parts, aircraft parts exterior parts, automobile body parts, vehicle frames, automobile engine peripheral parts, which require stable mechanical properties. It is particularly preferably used for automobile underhood parts, automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automobile electrical parts, and electric / electronic parts. Specifically, the fiber-reinforced thermoplastic resin filament and its molded product according to the embodiment of the present invention include aircraft engine peripheral parts such as fan blades, landing gear pods, winglets, spoilers, edges, rudder, elevators, failing, and so on. Aircraft-related parts such as ribs, various seats, front body, underbody, various pillars, various members, various frames, various beams, various supports, various rails, various hinges and other automobile body parts, engine covers, air intake pipes, timing Automotive engine peripheral parts such as belt covers, intake manifolds, filler caps, throttle bodies, cooling fans, cooling fans, radiator tank tops and bases, cylinder head covers, oil pans, brake pipes, fuel pipe tubes, waste gas system parts, etc. Automotive gear parts such as automobile underhood parts, gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering lock brackets, key cylinders, door inner handles, door handle cowls, interior mirror brackets, Automotive interior parts such as air conditioner switches, instrumental panels, console boxes, glove boxes, steering wheels, trims, front fenders, rear fenders, fuel lids, door panels, cylinder head covers, door mirror stays, tailgate panels, licensed garnishes, roof rails, engine mounts. Brackets, rear garnishes, rear spoilers, trunk lids, rocker moldings, moldings, lamp housings, front grilles, mudguards, side bumpers and other automotive exterior parts, air intake manifolds, intercooler inlets, turbochargers, exhaust pipe covers, inner bushes, bearings. Intake and exhaust system parts such as retainers, engine mounts, engine head covers, resonators, and throttle bodies, engine cooling water system parts such as chain covers, thermostat housings, outlet pipes, radiator tanks, oil nator, and delivery pipes, connectors and wire harness connectors. , Motor parts, lamp sockets, sensor in-vehicle switches, combination switches, and other automobile electrical components As electrical and electronic components, for example, generators, electric motors, transformers, current transformers, voltage regulators, rectifiers, resistors, inverters, relays, power contacts, switches, breakers, switches, knife switches, etc. Other pole rods, motor cases, TV housings, laptop housings and internal parts, CRT display housings and internal parts, printer housings and internal parts, mobile terminal housings and internal parts such as mobile phones, mobile PCs, handheld mobiles, ICs and LED compatible housing, condenser seat plate, fuse holder, various gears, various cases, cabinets and other electrical components, connectors, SMT compatible connectors, card connectors, jacks, coils, coil bobbins, sensors, LED lamps, sockets, resistors, relays , Relay case, reflector, small switch, power supply parts, coil bobbin, condenser, variable condenser case, optical pickup chassis, oscillator, various terminal boards, transformer, plug, printed board, tuner, speaker, microphone, headphone, small motor, magnetic It is preferably used for electronic parts such as head bases, power modules, Si power modules, SiC power modules, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, transformer members, parabolic antennas, and computer-related parts.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における特性評価は下記の方法にしたがって行った。 Examples will be shown below and the present invention will be described in more detail, but the present invention is not limited to the description of these examples. The characteristic evaluation in each Example and Comparative Example was performed according to the following method.

「体積含有率(Vf)」
各実施例および比較例により得られた繊維強化熱可塑性樹脂フィラメントの体積含有率Vfは、繊維強化熱可塑性樹脂フィラメントの質量W0を測定したのち、該繊維強化熱可塑性樹脂フィラメントを空気中500℃で30分間加熱して熱可塑性樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、式(3)により算出した。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0−W1)/ρ1}×100・・・(3)
ρf:強化繊維の密度(g/cm
ρr:熱可塑性樹脂の密度(g/cm
"Volume content (Vf)"
The volume content Vf of the fiber-reinforced thermoplastic resin filaments obtained in each Example and Comparative Example was determined by measuring the mass W0 of the fiber-reinforced thermoplastic resin filaments and then placing the fiber-reinforced thermoplastic resin filaments in air at 500 ° C. The thermoplastic resin component was burned off by heating for 30 minutes, and the mass W1 of the remaining reinforcing fibers was measured and calculated by the formula (3).
Vf (volume%) = (W1 / ρf) / {W1 / ρf + (W0-W1) / ρ1} × 100 ... (3)
ρf: Density of reinforcing fibers (g / cm 3 )
ρr: Thermoplastic resin density (g / cm 3 )

[均一性]
各実施例および比較例により得られた繊維強化熱可塑性樹脂フィラメントの断面を以下のように観察した。繊維強化熱可塑性樹脂フィラメントをエポキシ樹脂で包埋したサンプルを用意し、繊維強化熱可塑性樹脂フィラメントの断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX−6000(コントローラー部)/VH―ZST(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化熱可塑性樹脂フィラメントの厚みの範囲とした。
(i)繊維強化熱可塑性樹脂フィラメントの配向方向とほぼ垂直な全領域を含む横断面を撮影する。
(ii)該横断面写真を式(1)で規定された一辺の長さを有する正方形ユニットに分割する。繊維強化熱可塑性樹脂フィラメントが1枚の写真に収まらない際には、分割して撮影すること。
(iii)式(2)で定義する分散パラメータdを算出する。
1.5a≦t≦2.5a (a:繊維直径、t:ユニットの1辺の長さ)・・・(1)
分散パラメータd=区画内に強化繊維が含まれるユニットの個数(断面写真を分割した際には同一断面内のユニット数の合計)/繊維束内若しくは繊維束の一部を含むユニット全体の個数(断面写真を分割した際には同一断面内のユニット数の合計)×100・・・(2)
[Homogeneity]
The cross sections of the fiber-reinforced thermoplastic resin filaments obtained in each Example and Comparative Example were observed as follows. A sample in which the fiber-reinforced thermoplastic resin filament was embedded in the epoxy resin was prepared, and the sample was polished until the cross section of the fiber-reinforced thermoplastic resin filament could be observed well. The polished sample was photographed at a magnification of 400 times using an ultra-depth color 3D shape measurement microscope VHX-6000 (controller unit) / VH-ZST (measurement unit) (manufactured by KEYENCE CORPORATION). The imaging range was the thickness range of the fiber-reinforced thermoplastic resin filament.
(I) A cross section including the entire region substantially perpendicular to the orientation direction of the fiber-reinforced thermoplastic resin filament is photographed.
(Ii) The cross-sectional photograph is divided into square units having a side length defined by the formula (1). If the fiber-reinforced thermoplastic resin filament does not fit in one photo, divide the photo.
(Iii) The variance parameter d defined by the equation (2) is calculated.
1.5a ≤ t ≤ 2.5a (a: fiber diameter, t: length of one side of the unit) ... (1)
Dispersion parameter d = Number of units containing reinforcing fibers in the compartment (total number of units in the same cross section when the cross-sectional photograph is divided) / Number of units in the fiber bundle or the total number of units including a part of the fiber bundle ( When the cross-section photograph is divided, the total number of units in the same cross-section) x 100 ... (2)

(評価方法)
試料である繊維強化熱可塑性樹脂フィラメントを、エポキシ樹脂に埋め込み、室温で24時間硬化させた後、繊維強化熱可塑性樹脂フィラメントにおける強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで該研磨面を超深度カラー3D形状測定顕微鏡VHX−6000(コントローラー部)/VH−ZST(測定部)((株)キーエンス製)で撮影した。
(Evaluation methods)
The fiber-reinforced thermoplastic resin filament as a sample is embedded in an epoxy resin and cured at room temperature for 24 hours, and then the cross section of the fiber-reinforced thermoplastic resin filament substantially perpendicular to the orientation direction of the reinforcing fibers is polished, and then the polishing is performed. The surface was photographed with an ultra-deep color 3D shape measuring microscope VHX-6000 (controller unit) / VH-ZST (measurement unit) (manufactured by Keyence Co., Ltd.).

撮影された各繊維熱可塑性樹脂フィラメントの横断面写真を画像解析ソフト(Image J)を用いて相互に重なり合わない式(1)を1辺の長さとする略正方形にユニットに分割した。該略正方形ユニット画像処理を行い、概略正方形ユニット内に強化繊維を含むユニットを測定し、式(2)より分散パラメータdを算出した。 The cross-sectional photographs of each fiber thermoplastic resin filament taken were divided into units using image analysis software (Image J) into substantially square units having the equation (1) which does not overlap with each other and having the length of one side. The substantially square unit image processing was performed, the unit containing the reinforcing fiber in the substantially square unit was measured, and the dispersion parameter d was calculated from the equation (2).

[曲げ剛性]
各実施例および比較例により得られた繊維強化熱可塑性樹脂フィラメントの曲げ剛性は下記(1)式により算出した。
曲げ剛性=E×I (5)
にて計算した。ここで、
E:繊維強化熱可塑性樹脂フィラメントの曲げ弾性率
I:断面二次モーメント
である。
[Flexural rigidity]
The flexural rigidity of the fiber-reinforced thermoplastic resin filaments obtained in each Example and Comparative Example was calculated by the following equation (1).
Flexural rigidity = E × I (5)
Calculated in. here,
E: Flexural modulus of the fiber-reinforced thermoplastic resin filament I: Moment of inertia of area.

繊維強化熱可塑性樹脂フィラメントの曲げ弾性率はJIS K7074(2012)に準拠して測定を行った。なお、測定はフィラメントの軸方向にそって曲げ試験を行った。 The flexural modulus of the fiber-reinforced thermoplastic resin filament was measured according to JIS K7074 (2012). The measurement was performed by a bending test along the axial direction of the filament.

[取り扱い性]
各実施例および比較例により得られた繊維強化熱可塑性樹脂フィラメントの取り扱い性は繊維強化熱可塑性樹脂フィラメントを内径150mmのロールに巻き付け、巻き付けた繊維強化熱可塑性樹脂フィラメントの折れやたるみを判断基準とし、以下の2段階で評価し、〇を合格とした
〇:折れ、たわみなし
×:折れ、たわみあり
[Handling]
The handleability of the fiber-reinforced thermoplastic resin filaments obtained in each Example and Comparative Example is determined by winding the fiber-reinforced thermoplastic resin filament around a roll having an inner diameter of 150 mm and using the broken or slack of the wound fiber-reinforced thermoplastic resin filament as a criterion. , Evaluated in the following two stages, and passed 〇: No breakage, no bending ×: Folding, bending

[原料]
実施例および比較例において、原料は以下に示すものを用いた。
炭素繊維束 :東レ(株)製 PAN系炭素繊維“トレカ(登録商標)”
熱可塑性樹脂
〔a〕:東レ(株)製 ポリフェニレンスルフィド(PPS)樹脂“トレリナ(登録商標)”
〔b〕:ビクトレックス・ジャパン(株)製 ポリエーテルエーテルケトン(PEEK)樹脂“VICTREX(登録商標)”
〔c〕:アルケマ(株)製 ポリエーテルケトンケトン(PEKK)“KEPSTAN(登録商標)”
〔d〕:サビック(株)製 ポリエーテルイミド(PEI)“ULTEM(登録商標)”
[material]
In the examples and comparative examples, the raw materials shown below were used.
Carbon fiber bundle: PAN-based carbon fiber "Trading Card (registered trademark)" manufactured by Toray Industries, Inc.
Thermoplastic resin [a]: Polyphenylene sulfide (PPS) resin "Trelina (registered trademark)" manufactured by Toray Industries, Inc.
[B]: Polyetheretherketone (PEEK) resin "VICTREX (registered trademark)" manufactured by Victrex Japan Co., Ltd.
[C]: Polyetherketone Ketone (PEKK) "KEPSTAN (registered trademark)" manufactured by Arkema Co., Ltd.
[D]: Polyetherimide (PEI) "ULTEM (registered trademark)" manufactured by SABIC Co., Ltd.

炭素繊維束が巻かれたボビンを1本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において、充填したフィーダーから定量供給された、表1に示す樹脂を含浸させた。含浸ダイ内で含浸した炭素繊維を、引取ロールを用いて含浸ダイのノズルから1m/minの引き抜き速度で連続的に引き抜いた。引き抜かれた炭素繊維束は、冷却ロールを通過して熱可塑樹脂が冷却固化され、連続した繊維強化ポリ熱可塑性樹脂フィラメントとして巻取機に巻き取られた。得られた繊維強化熱可塑性樹脂フィラメントは断面形状が円形若しくは四角形であり、強化繊維方向は一方向に配列していた。得られた繊維強化熱可塑性樹脂フィラメントを前記評価に供した。評価結果を表1に示す。 One bobbin wrapped with a carbon fiber bundle was prepared, and the carbon fiber bundle was continuously sent out from each bobbin through a thread guide. The continuously delivered carbon fiber bundle was impregnated with the resin shown in Table 1 which was quantitatively supplied from the filled feeder in the impregnation die. The carbon fibers impregnated in the impregnated die were continuously withdrawn from the nozzle of the impregnated die using a take-up roll at a drawing speed of 1 m / min. The drawn carbon fiber bundle passed through a cooling roll to cool and solidify the thermoplastic resin, and was wound up by a winder as a continuous fiber-reinforced poly thermoplastic resin filament. The obtained fiber-reinforced thermoplastic resin filament had a circular or quadrangular cross-sectional shape, and the reinforcing fiber directions were arranged in one direction. The obtained fiber-reinforced thermoplastic resin filament was subjected to the above evaluation. The evaluation results are shown in Table 1.

Figure 2020179593
Figure 2020179593

本発明の実施形態の繊維強化熱可塑性樹脂フィラメントは、プレス成形法や3Dプリンティング法など任意の方法によりにより所望の形状に成形することができる特に3Dプリンティング法は高い補強効果と成形時の取り扱い性を両立させる必要があり、本発明の繊維強化熱可塑性樹脂フィラメントの成形方法として好適である。繊維強化熱可塑性樹脂フィラメントを成形して得られる成形品は、例えば、航空機エンジン周辺部品、航空機内装部品、航空機外装部品、車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品、自動車電装部品などの自動車用途、LEDリフレクタやSMTコネクタなどの電気・電子部品用途などに加工することが有効である。 The fiber-reinforced thermoplastic resin filament of the embodiment of the present invention can be molded into a desired shape by any method such as a press molding method or a 3D printing method. In particular, the 3D printing method has a high reinforcing effect and handleability at the time of molding. It is necessary to achieve both, and it is suitable as a method for molding the fiber-reinforced thermoplastic resin filament of the present invention. Molded products obtained by molding fiber-reinforced thermoplastic resin filaments include, for example, aircraft engine peripheral parts, aircraft interior parts, aircraft exterior parts, vehicle frames, automobile engine peripheral parts, automobile underhood parts, automobile gear parts, and automobile interiors. It is effective to process parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automobile electrical parts and other automobile applications, and electrical and electronic parts such as LED reflectors and SMT connectors.

Claims (8)

連続した強化繊維に熱可塑性樹脂を含浸させた繊維強化熱可塑性樹脂フィラメンが下記方法によって評価される強化繊維の分散パラメータdが30%以上90%未満である繊維強化熱可塑性樹脂フィラメント。
(i)該繊維強化熱可塑性樹脂フィラメントの配向方向とほぼ垂直な全領域を含む横断面写真を撮影する。
(ii)該横断面写真を式(1)で規定された一辺の長さを有する正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメータdを算出する。
1.5a≦t≦2.5a (a: 繊維直径、t: ユニットの一辺の長さ) (1)
分散パラメータd=区画内に強化繊維が含まれるユニットの個数(断面写真を分割した際には一枚に連結した写真に強化繊維が含まれるユニットの個数の合計)/フィラメント若しくはフィラメントの一部を含むユニット全体の個数(断面写真を分割した際には一枚に連結した写真に含まれるフィラメント若しくはフィラメントの一部を含むユニット数の合計)×100 (2)
A fiber-reinforced thermoplastic resin filament in which a fiber-reinforced thermoplastic resin filament in which continuous reinforcing fibers are impregnated with a thermoplastic resin has a dispersion parameter d of the reinforcing fibers of 30% or more and less than 90% evaluated by the following method.
(I) A cross-sectional photograph including the entire region substantially perpendicular to the orientation direction of the fiber-reinforced thermoplastic resin filament is taken.
(Ii) The cross-sectional photograph is divided into square units having a side length defined by the formula (1).
(Iii) The variance parameter d defined by the equation (2) is calculated.
1.5a ≤ t ≤ 2.5a (a: fiber diameter, t: length of one side of the unit) (1)
Dispersion parameter d = Number of units containing reinforcing fibers in the compartment (when the cross-sectional photograph is divided, the total number of units containing reinforcing fibers in one connected photograph) / Filament or a part of filament Number of total units including (when the cross-sectional photograph is divided, the total number of filaments included in the photographs connected to one sheet or a part of the filaments) × 100 (2)
前記繊維強化熱可塑性樹脂フィラメントが下記(a)〜(c)の条件を満たす請求項1に記載の繊維強化熱可塑性樹脂フィラメント。
(a)繊維強化熱可塑性樹脂フィラメント中の強化繊維の重量割合が20〜80%、熱可塑性樹脂の体積割合が80〜20%
(b)繊維強化熱可塑性樹脂フィラメントの厚みが0.01〜3mm
(c)繊維強化熱可塑性樹脂フィラメントに含まれるフィラメント長が1m以上
The fiber-reinforced thermoplastic resin filament according to claim 1, wherein the fiber-reinforced thermoplastic resin filament satisfies the following conditions (a) to (c).
(A) The weight ratio of the reinforcing fibers in the fiber-reinforced thermoplastic resin filament is 20 to 80%, and the volume ratio of the thermoplastic resin is 80 to 20%.
(B) The thickness of the fiber-reinforced thermoplastic resin filament is 0.01 to 3 mm.
(C) The filament length contained in the fiber-reinforced thermoplastic resin filament is 1 m or more.
前記繊維強化熱可塑性樹脂フィラメントの曲げ剛性が1N・m以下である請求項1または2に記載の繊維強化熱可塑性樹脂フィラメント。 The fiber-reinforced thermoplastic resin filament according to claim 1 or 2, wherein the flexural rigidity of the fiber-reinforced thermoplastic resin filament is 1 N · m 2 or less. 前記強化繊維が炭素繊維、ガラス繊維、アラミド繊維のから選ばれる少なくとも1種である請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。 The fiber-reinforced thermoplastic resin filament according to any one of claims 1 to 3, wherein the reinforcing fiber is at least one selected from carbon fiber, glass fiber, and aramid fiber. 前記熱可塑性樹脂がポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルイミド樹脂(PEI)、ポリエーテルスルホン樹脂(PES)、液晶ポリマー樹脂(LCP)から選ばれる少なくとも1種である請求項1〜4のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。 The thermoplastic resin is at least one selected from polyphenylene sulfide resin (PPS), polyarylene ether ketone resin (PAEK), polyetherimide resin (PEI), polyethersulfone resin (PES), and liquid crystal polymer resin (LCP). The fiber-reinforced thermoplastic resin filament according to any one of claims 1 to 4. 前記繊維強化熱可塑性樹脂フィラメントの断面形状が円形、楕円形、星形のいずれかの形状である請求項1〜5のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。 The fiber-reinforced thermoplastic resin filament according to any one of claims 1 to 5, wherein the fiber-reinforced thermoplastic resin filament has a cross-sectional shape of any of a circular shape, an elliptical shape, and a star shape. 前記繊維強化熱可塑性樹脂フィラメントの最外層に熱可塑性樹脂層が被覆されてなる請求項1〜6のいずれかに記載の繊維強化熱可塑性樹脂フィラメント。 The fiber-reinforced thermoplastic resin filament according to any one of claims 1 to 6, wherein the outermost layer of the fiber-reinforced thermoplastic resin filament is coated with a thermoplastic resin layer. 請求項1〜7のいずれかに記載の繊維強化熱可塑性樹脂フィラメントからなる成形品。 A molded product made of the fiber-reinforced thermoplastic resin filament according to any one of claims 1 to 7.
JP2019084175A 2019-04-25 2019-04-25 Fiber-reinforced thermoplastic resin filament and molded article thereof Active JP7268467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019084175A JP7268467B2 (en) 2019-04-25 2019-04-25 Fiber-reinforced thermoplastic resin filament and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084175A JP7268467B2 (en) 2019-04-25 2019-04-25 Fiber-reinforced thermoplastic resin filament and molded article thereof

Publications (3)

Publication Number Publication Date
JP2020179593A true JP2020179593A (en) 2020-11-05
JP2020179593A5 JP2020179593A5 (en) 2022-04-13
JP7268467B2 JP7268467B2 (en) 2023-05-08

Family

ID=73023552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019084175A Active JP7268467B2 (en) 2019-04-25 2019-04-25 Fiber-reinforced thermoplastic resin filament and molded article thereof

Country Status (1)

Country Link
JP (1) JP7268467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139494A1 (en) * 2020-12-22 2022-06-30 주식회사 삼양사 Polycarbonate resin composition for 3d printing having excellent shape retention ability and interfacial adhesion, and pellet and filament for 3d printing comprising same
WO2022270320A1 (en) 2021-06-24 2022-12-29 Dic株式会社 Fiber-reinforced thermoplastic resin filament and fabricated article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094710A (en) * 2015-08-25 2017-06-01 ザ・ボーイング・カンパニーThe Boeing Company Composite feedstock strips for additive manufacturing, and methods for forming thereof
WO2018061597A1 (en) * 2016-09-29 2018-04-05 東レ株式会社 Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom
JP2019018399A (en) * 2017-07-13 2019-02-07 フドー株式会社 Manufacturing method and manufacturing apparatus of molded article
JP2019031083A (en) * 2013-03-22 2019-02-28 マーク,グレゴリー,トーマス Three-dimentional printing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031083A (en) * 2013-03-22 2019-02-28 マーク,グレゴリー,トーマス Three-dimentional printing method
JP2017094710A (en) * 2015-08-25 2017-06-01 ザ・ボーイング・カンパニーThe Boeing Company Composite feedstock strips for additive manufacturing, and methods for forming thereof
WO2018061597A1 (en) * 2016-09-29 2018-04-05 東レ株式会社 Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom
JP2019018399A (en) * 2017-07-13 2019-02-07 フドー株式会社 Manufacturing method and manufacturing apparatus of molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022139494A1 (en) * 2020-12-22 2022-06-30 주식회사 삼양사 Polycarbonate resin composition for 3d printing having excellent shape retention ability and interfacial adhesion, and pellet and filament for 3d printing comprising same
WO2022270320A1 (en) 2021-06-24 2022-12-29 Dic株式会社 Fiber-reinforced thermoplastic resin filament and fabricated article
KR20240025605A (en) 2021-06-24 2024-02-27 디아이씨 가부시끼가이샤 Fiber-reinforced thermoplastic resin filaments and sculptures

Also Published As

Publication number Publication date
JP7268467B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
JP7033271B2 (en) Fiber reinforced thermoplastic resin base material and molded products using it
JP7284930B2 (en) Fiber-reinforced thermoplastic resin filament and molded article thereof
US11739185B2 (en) Fiber-reinforced polymer alloy substrate and molded article using same
WO2020040121A1 (en) Fiber-reinforced thermoplastic resin substrate and laminate using same
JP7336079B2 (en) Fiber-reinforced thermoplastic resin filament for 3D printer and its molded product
JP7196464B2 (en) Fiber-reinforced thermoplastic resin substrate and molded article using the same
JP2020179593A (en) Fiber reinforced thermoplastic resin filament and molded product thereof
WO2021187043A1 (en) Laminated body and welded body using same
CN113727824B (en) Fiber-reinforced thermoplastic resin filament for 3D printer and molded article thereof
JP2022098042A (en) Fiber-reinforced thermoplastic resin filament for 3d printer and molded article of the same
JP2022098043A (en) Fiber-reinforced thermoplastic resin filament for 3d printer and molded article of the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R151 Written notification of patent or utility model registration

Ref document number: 7268467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151