JP2020179362A - Treatment method of organic waste water - Google Patents

Treatment method of organic waste water Download PDF

Info

Publication number
JP2020179362A
JP2020179362A JP2019085123A JP2019085123A JP2020179362A JP 2020179362 A JP2020179362 A JP 2020179362A JP 2019085123 A JP2019085123 A JP 2019085123A JP 2019085123 A JP2019085123 A JP 2019085123A JP 2020179362 A JP2020179362 A JP 2020179362A
Authority
JP
Japan
Prior art keywords
bod
tank
carrier
sludge
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019085123A
Other languages
Japanese (ja)
Inventor
愛之 林
Yoshiyuki Hayashi
愛之 林
悠 鵜飼
Yu Ukai
悠 鵜飼
吉原 資二
Sukeji Yoshihara
資二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2019085123A priority Critical patent/JP2020179362A/en
Publication of JP2020179362A publication Critical patent/JP2020179362A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Abstract

To provide a method of treating organic wastewater capable of treating soluble BOD and non-soluble BOD and improving sedimentation property of sludge while suppressing the amount of sludge generated.SOLUTION: A method of treating organic wastewater includes the steps of: treating water to be treated in an aeration tank equipped with a carrier; treating the water to be treated, which has been treated in the aeration tank, in an activated sludge tank; separating the water to be treated, which has been treated in the activated sludge tank, from the activated sludge in a sedimentation tank; and returning a part of the sludge settled in the sedimentation tank to the activated sludge tank. The soluble BOD sludge in the activated sludge tank has the load of less than or equal to 0.01 kg-BOD/kg-MLSS/d and the total BOD sludge load in the range of 0.02 to 0.6 kg-BOD/kg-MLSS/d.SELECTED DRAWING: Figure 1

Description

本発明は、生物処理が可能なSS(Suspended Solid:浮遊物質)である非溶解性BOD(Biological Oxygen Demand:生物学的酸素要求量)成分を含んだ有機性排水を安定して処理することが可能な処理方法に関するものである。 The present invention can stably treat organic wastewater containing an insoluble BOD (Biochemical Oxygen Demand) component which is a bioprocessable SS (Suspended Solid). It relates to possible processing methods.

有機性排水の処理方法としては主として活性汚泥法が用いられており、一般的に活性汚泥を保持した曝気槽と汚泥を沈降させる沈殿槽で構成され、曝気槽の活性汚泥濃度を維持するために沈殿槽の汚泥の一部を曝気槽に返送し、一部を余剰汚泥として引き抜くことによって、BOD容積負荷が0.5〜1.0kg/m3/d程度の条件でBOD除去率90%以上の運転が可能であることが知られている(例えば、非特許文献1参照)。 The activated sludge method is mainly used as a treatment method for organic wastewater, and is generally composed of an aeration tank holding active sludge and a sedimentation tank for sedimenting sludge, in order to maintain the activated sludge concentration in the aeration tank. By returning a part of the sludge from the settling tank to the aeration tank and pulling out a part as excess sludge, the BOD removal rate is 90% or more under the condition that the BOD volume load is about 0.5 to 1.0 kg / m 3 / d. Is known to be capable of operation (see, for example, Non-Patent Document 1).

一方で、微生物を高濃度で保持することができる担体の開発が進んでおり、これを用いた余剰汚泥の発生を低減させる処理方法が知られている。例えば、担体処理法には以下の方法をとるものがある。有機性排水を、担体を流動させる曝気槽、活性汚泥槽および沈殿槽の順で流し、沈殿槽で沈降した汚泥の一部を活性汚泥槽へ返送する処理方法であって、担体を流動させる曝気槽における溶解性BOD容積負荷が1kg/m3/d以上であり、活性汚泥槽における溶解性BOD汚泥負荷が0.05〜0.6kg−BOD/kg−MLSS/dの範囲で処理する方法であり、これにより、曝気槽をコンパクトにし、菌の自己酸化により余剰汚泥量を低減できるとされている(例えば、特許文献1参照)。 On the other hand, the development of a carrier capable of retaining a high concentration of microorganisms is progressing, and a treatment method using the carrier for reducing the generation of excess sludge is known. For example, some carrier treatment methods take the following methods. This is a treatment method in which organic wastewater is flowed in the order of an aeration tank for flowing a carrier, an activated sludge tank, and a settling tank, and a part of the sludge settled in the settling tank is returned to the activated sludge tank. By a method in which the soluble BOD volume load in the tank is 1 kg / m 3 / d or more and the soluble BOD sludge load in the activated sludge tank is in the range of 0.05 to 0.6 kg-BOD / kg-MLSS / d. It is said that this makes the aeration tank compact and reduces the amount of excess sludge by self-oxidation of bacteria (see, for example, Patent Document 1).

有機性排水に含まれる物質は溶解成分と、固形物に分けられ、更に固形物の中には有機固形物と無機固形物に分けられる。有機固形物の中には生物処理が可能なSSである非溶解性BODと、生物処理が困難なSSに分けられる。有機性排水の固形物は主として生物処理槽に導入される前に、スクリーンで夾雑物を除去し、前沈殿で0.5mm以上程度の固形物を沈降分離させることにより、余剰汚泥の発生の抑止と生物処理の安定化を行うことが通常である(例えば、非特許文献2参照)。 The substances contained in the organic wastewater are divided into dissolved components and solids, and the solids are further divided into organic solids and inorganic solids. Organic solids are divided into insoluble BOD, which is an SS that can be biologically treated, and SS, which is difficult to biologically treat. Before the solid matter of organic wastewater is introduced into the biological treatment tank, impurities are removed by a screen, and the solid matter of about 0.5 mm or more is settled and separated by pre-sedimentation to suppress the generation of excess sludge. It is usual to stabilize the biological treatment (see, for example, Non-Patent Document 2).

生物処理が可能なSSを前処理で除去せずに生物処理をする方法として、例えば、有機物と微生物との混合液中に、空気、酸素、又はこれらの混合物を導入して有機物と微生物との混合液のDO(Dissolved Oxygen:溶存酸素)を2mg/L以上、BOD汚泥負荷を0.07±0.02kg−BOD/kg−MLVSSに維持しながら有機物を生分解処理すると共に窒素成分を硝化処理する曝気工程と、硝化された窒素成分を有機物の存在下で嫌気処理する脱窒工程とを有することで、汚泥の発生量を抑制し、余剰汚泥の廃棄に関わるランニングコストを軽減することができるとされている。(例えば、特許文献2参照)。 As a method of performing biological treatment without removing SS that can be biologically treated by pretreatment, for example, air, oxygen, or a mixture thereof is introduced into a mixed solution of organic matter and microorganisms to obtain organic matter and microorganisms. While maintaining the DO (Dissolved Oxygen: dissolved oxygen) of the mixed solution at 2 mg / L or more and the BOD sludge load at 0.07 ± 0.02 kg-BOD / kg-MLVSS, the organic matter is biodecomposed and the nitrogen component is nitrified. By having an aeration step of aeration and a denitrification step of anaerobically treating the vitrified nitrogen component in the presence of organic matter, it is possible to suppress the amount of sludge generated and reduce the running cost related to the disposal of excess sludge. It is said that. (See, for example, Patent Document 2).

特許第4663064号公報Japanese Patent No. 4663064 特開2006−346572号公報Japanese Unexamined Patent Publication No. 2006-346572

新・公害防止の技術と法規2018(水質編)技術編、産業環境管理協会発行、平成30年2月10日、P67New Pollution Control Technology and Regulations 2018 (Water Quality) Technology, Published by Industrial Environment Management Association, February 10, 2018, P67 水環境工学 水処理とマネージメントの基礎、共立出版発行、初版1刷、平成22年12月10日、P226Water Environmental Engineering Basics of Water Treatment and Management, Published by Kyoritsu Shuppan, First Edition, 1st Edition, December 10, 2010, P226

非特許文献2に記載のような従来の担体処理法では、曝気槽の後段の活性汚泥槽は溶解性BOD汚泥負荷で設計されており非溶解性BODは考慮されていなかった。そのため、沈殿処理等による前処理により比較的大きなSSを取り除き非溶解性BODを除去する必要があったが、前処理設備が必要となるため初期投資コストが増加する。また、修繕等のメンテナンス費用がかかるという問題が生じる。また、特許文献2に記載の方法では、DOを高く保つためのブロワ―電力や、BOD汚泥負荷を低く保つために槽容積が大きくなる等のコストが増加するという問題があった。 In the conventional carrier treatment method as described in Non-Patent Document 2, the activated sludge tank in the subsequent stage of the aeration tank is designed with a soluble BOD sludge load, and the non-soluble BOD is not considered. Therefore, it is necessary to remove a relatively large SS by pretreatment such as precipitation treatment to remove insoluble BOD, but the initial investment cost increases because a pretreatment facility is required. In addition, there is a problem that maintenance costs such as repairs are required. Further, the method described in Patent Document 2 has a problem that costs such as a blower electric power for keeping DO high and a tank volume for keeping BOD sludge load low increase.

そこで、本発明の目的は、有機性排水にSSを含む場合において、前沈殿設備を備えない場合でも、溶解性BODおよび非溶解性BODを処理することが可能で、汚泥発生量を抑えつつ汚泥の沈降性を良好なものとすることができ、有機性排水の処理方法を提供することである。 Therefore, an object of the present invention is that when the organic wastewater contains SS, it is possible to treat soluble BOD and insoluble BOD even when the pre-sedimentation facility is not provided, and sludge while suppressing the amount of sludge generated. It is possible to improve the sedimentation property of the organic wastewater and provide a method for treating organic wastewater.

上記目的は、被処理水を、担体を備えた曝気槽で処理する工程、該曝気槽で処理された被処理水を活性汚泥槽で処理する工程、前記活性汚泥槽で処理された処理水と活性汚泥とを沈殿槽で分離する工程、沈殿槽で沈降した汚泥の一部を活性汚泥槽に返送する工程を備え、前記活性汚泥槽の溶解性BOD汚泥負荷が0.01kg−BOD/kg−MLSS/d以下、かつ、全BOD汚泥負荷が0.02〜0.6kg−BOD/kg−MLSS/dの範囲である、有機性排水の処理方法により達成することができる。 The above objectives are a step of treating the water to be treated in an aeration tank equipped with a carrier, a step of treating the water to be treated in the aeration tank in an activated sludge tank, and the treated water treated in the activated sludge tank. A step of separating the activated sludge from the settling tank and a step of returning a part of the sludge settled in the settling tank to the activated sludge tank are provided, and the soluble BOD sludge load of the activated sludge tank is 0.01 kg-BOD / kg-. It can be achieved by a method for treating organic wastewater, which is MLSS / d or less and the total BOD sludge load is in the range of 0.02 to 0.6 kg-BOD / kg-MLSS / d.

前記担体を備えた曝気槽で処理する工程において被処理水の溶解性BODを70%以上除去することが好ましい。 It is preferable to remove 70% or more of the soluble BOD of the water to be treated in the step of treating in the aeration tank provided with the carrier.

前記担体を備えた曝気槽で処理する工程の前に、沈殿工程を有さないことが好ましい。 It is preferable not to have a precipitation step before the step of treating in the aeration tank provided with the carrier.

担体がゲル状担体、プラスチック担体および繊維状担体からなる群から選ばれた一種類以上の担体であることが好ましい。 The carrier is preferably one or more types of carriers selected from the group consisting of gel-like carriers, plastic carriers and fibrous carriers.

担体がゲル状担体であり、該ゲル状担体がポリビニルアルコール架橋ゲル担体であることが好ましい。 It is preferable that the carrier is a gel-like carrier, and the gel-like carrier is a polyvinyl alcohol cross-linked gel carrier.

本発明によれば、有機性排水にSSを含む場合において、前沈殿設備を備えない場合でも、溶解性BODおよび非溶解性BODを処理することが可能で、汚泥発生量を抑えつつ汚泥の沈降性を良好なものとすることができ、有機性排水の処理方法を提供できる。 According to the present invention, when SS is contained in organic wastewater, it is possible to treat soluble BOD and insoluble BOD even when a pre-sedimentation facility is not provided, and sludge sedimentation while suppressing the amount of sludge generated. It can be made to have good properties and can provide a method for treating organic wastewater.

本発明を実施するための一例のフローを模式的に表した図である。It is a figure which represented typically the flow of an example for carrying out this invention. 実施例1と比較例2の累計余剰汚泥量の推移を示すグラフである。It is a graph which shows the transition of the cumulative surplus sludge amount of Example 1 and Comparative Example 2.

本発明は、被処理水を、担体を備えた曝気槽で処理する工程、該曝気槽で処理された被処理水を活性汚泥槽で処理する工程、前記活性汚泥槽で処理された処理水と活性汚泥とを沈殿槽で分離する工程、沈殿槽で沈降した汚泥の一部を活性汚泥槽に返送する工程を備え、前記活性汚泥槽の溶解性BOD汚泥負荷が0.01kg−BOD/kg−MLSS/d以下、かつ、全BOD汚泥負荷が0.02〜0.6kg−BOD/kg−MLSS/dの範囲である、有機性排水の処理方法である。この方法によれば、有機性排水にSSを含む場合に、担体を備えた曝気槽では主として溶解性BODを除去し、分解されずに残った非溶解性BODが後段の活性汚泥槽の負荷となり処理されることで、汚泥発生量を抑えつつ汚泥の沈降性が良好なまま運転を行うことが可能となると推測される。そのため、被処理水である有機性排水は非溶解性BODを含んでいる必要があり、被処理水の有機性排水のBOD成分は、非溶解性BOD/全BODが0.17以上であることが好ましく、0.33以上であることがより好ましい。また、全BOD濃度は5000mg/L以下であることが好ましく、2000mg/L以下であることがより好ましい。また、全BOD濃度は100mg/L以上であることが好ましい。SS濃度は2000mg/L以下であることが好ましく、1000mg/L以下であることがより好ましい。また、SS濃度は100mg/L以上であることが好ましい。 The present invention includes a step of treating the water to be treated in an aeration tank equipped with a carrier, a step of treating the water to be treated in the aeration tank in an activated sludge tank, and the treated water treated in the activated sludge tank. A step of separating the activated sludge from the settling tank and a step of returning a part of the sludge settled in the settling tank to the activated sludge tank are provided, and the soluble BOD sludge load of the activated sludge tank is 0.01 kg-BOD / kg-. This is a method for treating organic wastewater, which is MLSS / d or less and the total BOD sludge load is in the range of 0.02 to 0.6 kg-BOD / kg-MLSS / d. According to this method, when SS is contained in the organic wastewater, the soluble BOD is mainly removed in the aeration tank equipped with the carrier, and the insoluble BOD remaining without being decomposed becomes the load of the activated sludge tank in the subsequent stage. It is presumed that the treatment makes it possible to operate the sludge with good sedimentation while suppressing the amount of sludge generated. Therefore, the organic wastewater to be treated must contain insoluble BOD, and the BOD component of the organic wastewater to be treated must have an insoluble BOD / total BOD of 0.17 or more. Is preferable, and 0.33 or more is more preferable. The total BOD concentration is preferably 5000 mg / L or less, and more preferably 2000 mg / L or less. Moreover, the total BOD concentration is preferably 100 mg / L or more. The SS concentration is preferably 2000 mg / L or less, and more preferably 1000 mg / L or less. The SS concentration is preferably 100 mg / L or more.

有機性排水に夾雑物が含まれる場合は排水処理設備の運転に支障がでることがあるため、爆気槽に有機性排水を導入する前にスクリーン等で夾雑物を除去することが好ましい。 If the organic wastewater contains impurities, it may interfere with the operation of the wastewater treatment facility. Therefore, it is preferable to remove the impurities with a screen or the like before introducing the organic wastewater into the aeration tank.

生物処理が可能なSSを含む有機性排水(被処理水)は担体が流動する曝気槽へ導入された際、被処理水中の溶解性BODの70%以上が細菌により酸化分解されることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましく、95%以上であることが特に好ましい。曝気槽においても、非溶解性BODは一部が分解されうる。 When organic wastewater (water to be treated) containing SS capable of biological treatment is introduced into an aeration tank in which a carrier flows, it is preferable that 70% or more of the soluble BOD in the water to be treated is oxidatively decomposed by bacteria. , 80% or more, more preferably 90% or more, and particularly preferably 95% or more. Even in the aeration tank, the insoluble BOD can be partially decomposed.

担体が流動する曝気槽のpHは生物反応の反応性の点から5〜9が好ましく、6〜8であることがより好ましい。該曝気槽中の温度は生物反応の反応性の点から10〜35℃であることが好ましく、20〜30℃であることがより好ましい。該曝気槽中のDOは1mg/L以上であることが好ましく、2mg/L以上であることがより好ましく、3mg/L以上であることが更に好ましい。また、該DOは、9mg/L以下であることが好ましい。 The pH of the aeration tank through which the carrier flows is preferably 5 to 9 and more preferably 6 to 8 from the viewpoint of the reactivity of the biological reaction. The temperature in the aeration tank is preferably 10 to 35 ° C., more preferably 20 to 30 ° C. from the viewpoint of the reactivity of the biological reaction. The DO in the aeration tank is preferably 1 mg / L or more, more preferably 2 mg / L or more, and further preferably 3 mg / L or more. Moreover, the DO is preferably 9 mg / L or less.

本発明の排水処理フローの一例を図1に示す。このシステムにおいて、担体が流動する曝気槽における全BOD容積負荷は1kg/m3/d以上であることが好ましい。 また該全BOD容積負荷は10kg/m3/d以下であることが好ましく、5kg/m3/d以下であることがより好ましい。全BOD容積負荷が高いほど、担体が流動する曝気槽を小型化することができる。全BOD容積負荷とは流入する有機性排水の全BOD濃度に1日あたりの流量を積算し、担体が流動する曝気槽容積で除算したものである。 An example of the wastewater treatment flow of the present invention is shown in FIG. In this system, the total BOD volume load in the aeration tank in which the carrier flows is preferably 1 kg / m 3 / d or more. The total BOD volume load is preferably 10 kg / m 3 / d or less, and more preferably 5 kg / m 3 / d or less. The higher the total BOD volume load, the smaller the size of the aeration tank through which the carrier flows. The total BOD volume load is obtained by adding the flow rate per day to the total BOD concentration of the inflowing organic wastewater and dividing by the volume of the aeration tank in which the carrier flows.

この曝気槽に用いられる担体とは、微生物が付着する固体であり、公知の各種の微生物固定化担体を使用することができるが、ゲル状担体、プラスチック担体および繊維状担体からなる群より選ばれた少なくとも1種の微生物固定化担体を使用することが好ましい。その素材としては、ポリビニルアルコールといったビニルアルコール系樹脂;ポリエチレングリコールといったエーテル系樹脂;ポリメタクリル酸といったアクリル系樹脂;ポリアクリルアミドといったアクリルアミド系樹脂;ポリエチレン、ポリプロピレンといったオレフィン系樹脂、ポリスチレンといったスチレン系樹脂;ポリエチレンテレフタレートやポリブチレンテレフタレートといったエステル系樹脂;ポリアクリロニトリルといったアクリロニトリル系樹脂;ポリウレタンスポンジといったウレタン系樹脂;アルギン酸カルシウム、κ(カッパ)カラギーナン、寒天、セルロース誘導体といった多糖類;ポリエステルエアクリレート、エポキシアクリレート、ウレタンアクリレートといった光硬化性樹脂;活性炭といった多孔質無機化合物などを例示することができる。中でも、微生物の固定化に優れる観点から、ゲル状担体が好ましく、内部に至るまで多孔質で網目状となった構造を有する点、及びゲル内に多量の水を取り込むことができる点で、ポリビニルアルコール系樹脂を素材としたポリビニルアルコール系含水ゲル担体が好ましく、ホルマール化ポリビニルアルコール系含水ゲルやアセタール化ポリビニルアルコール系含水ゲルなどのポリビニルアルコール架橋ゲル担体であることがより好ましい。微生物固定化担体は、1種類でも、組み合わせても使用することができる。その充填率としては、排水処理効率と担体流動性の観点から、槽容積の5%以上50%以下であることが好ましく、10%以上30%以下であることがより好ましい。 The carrier used in this aeration tank is a solid to which microorganisms adhere, and various known microbial-immobilized carriers can be used, but the carrier is selected from the group consisting of gel-like carriers, plastic carriers and fibrous carriers. It is preferable to use at least one microbial immobilization carrier. The materials include vinyl alcohol resins such as polyvinyl alcohol; ether resins such as polyethylene glycol; acrylic resins such as polymethacrylic acid; acrylamide resins such as polyacrylamide; olefin resins such as polyethylene and polypropylene, and styrene resins such as polystyrene; polyethylene. Ester resins such as terephthalate and polybutylene terephthalate; Acrylonitrile resins such as polyacrylonitrile; Urethane resins such as polyurethane sponge; Polysaccharides such as calcium alginate, κ (kappa) carrageenan, agar, and cellulose derivatives; polyester acrylate, epoxy acrylate, urethane acrylate Photocurable resin such as; Porous inorganic compound such as activated carbon can be exemplified. Among them, a gel-like carrier is preferable from the viewpoint of excellent immobilization of microorganisms, and polyvinyl has a porous and network-like structure up to the inside and a large amount of water can be taken into the gel. A polyvinyl alcohol-based hydrogel carrier made of an alcohol-based resin is preferable, and a polyvinyl alcohol cross-linked gel carrier such as a formalized polyvinyl alcohol-based hydrogel or an acetalized polyvinyl alcohol-based hydrogel is more preferable. The microbial immobilization carrier can be used alone or in combination. From the viewpoint of wastewater treatment efficiency and carrier fluidity, the filling rate is preferably 5% or more and 50% or less, and more preferably 10% or more and 30% or less of the tank volume.

担体の球相当径は、1〜10mmであることが好ましい。球相当径が小さい場合、曝気槽に担体の流出を防ぐためのスクリーンを設置した場合に、スクリーンの網目を小さくする必要があり、目詰まりを起こすおそれがある。そのため、球相当径は2mm以上であることがより好ましい。一方、球相当径が10mmを超える場合、担体の流動性が低下するおそれがある。そのため、球相当径は6mm以下であることがより好ましい。ここで球相当径とは粒子の体積と等しい体積を有する球の直径である。 The equivalent sphere diameter of the carrier is preferably 1 to 10 mm. When the equivalent diameter of the sphere is small, when a screen for preventing the outflow of the carrier is installed in the aeration tank, it is necessary to reduce the mesh size of the screen, which may cause clogging. Therefore, the equivalent diameter of the sphere is more preferably 2 mm or more. On the other hand, if the equivalent diameter of the sphere exceeds 10 mm, the fluidity of the carrier may decrease. Therefore, the equivalent diameter of the sphere is more preferably 6 mm or less. Here, the sphere equivalent diameter is the diameter of a sphere having a volume equal to the volume of the particles.

担体の比重は水よりわずかに大きく、曝気槽から流失しない程度に、当該曝気槽の中で揺動させることができる比重であることが好ましい。本発明の処理方法において、比重が水よりわずかに大きい担体を用いることにより、担体を流失させることなく、より安定的に排水を処理することができるため、担体の比重は1.001以上であることが好ましく、1.005以上であることがより好ましい。一方、比重は1.2以下であることが好ましく、1.1以下であることがより好ましく、1.05以下であることがさらに好ましい。 The specific gravity of the carrier is slightly larger than that of water, and it is preferable that the carrier has a specific gravity that can be swung in the aeration tank so as not to be washed away from the aeration tank. In the treatment method of the present invention, by using a carrier having a specific gravity slightly higher than that of water, wastewater can be treated more stably without causing the carrier to run off, so that the specific gravity of the carrier is 1.001 or more. It is preferably 1.005 or more, and more preferably 1.005 or more. On the other hand, the specific gravity is preferably 1.2 or less, more preferably 1.1 or less, and even more preferably 1.05 or less.

担体は、連通孔を有することが好ましく、該連通孔の孔径は、細菌のみが担体内部に棲息できる孔径であることが好ましい。担体表面付近の孔径が0.1〜100μmであることが好ましい。孔径が0.1μm未満の場合、細菌が担体内部に侵入できないことがある。表面付近の孔径は0.5μm以上であることがより好ましい。一方、表面付近の孔径が100μmを超える場合、細菌以外の大きな生物が浸入する恐れがある。孔径は50μm以下であることがより好ましい。なお、連通孔の孔径は、電子顕微鏡を用いた観察などの方法により測定することができる。 The carrier preferably has a communication hole, and the pore size of the communication hole is preferably a hole diameter at which only bacteria can live inside the carrier. The pore size near the surface of the carrier is preferably 0.1 to 100 μm. If the pore size is less than 0.1 μm, bacteria may not be able to invade the inside of the carrier. The pore diameter near the surface is more preferably 0.5 μm or more. On the other hand, if the pore size near the surface exceeds 100 μm, large organisms other than bacteria may invade. The pore diameter is more preferably 50 μm or less. The hole diameter of the communication hole can be measured by a method such as observation using an electron microscope.

担体が流動する曝気槽の処理水は後段の活性汚泥槽へ導入される。有機性排水に非溶解性BODが含まれる場合は、活性汚泥槽における全BOD源は主として非溶解性BODの割合が高くなる。活性汚泥槽では残存している溶解性BOD、非溶解性BODを酸化分解することで汚泥に曝気槽で発生した微細汚泥を巻き込ませて、沈降性が高められる。また、曝気槽で発生した微細汚泥を自己酸化して汚泥を減少させる。効率的に微細汚泥の巻き込み、沈降を起こさせるためには、上記の活性汚泥槽における溶解性BOD汚泥負荷が0.01kg−BOD/kg−MLSS/d以下である。また、全BOD汚泥負荷が0.02〜0.6kg−BOD/kg−MLSS/dである。より活性汚泥の沈降を安定的に起こさせる観点からは、上記の活性汚泥槽における全BOD汚泥負荷は0.1kg−BOD/kg−MLSS/d以下であることが好ましい。 The treated water in the aeration tank in which the carrier flows is introduced into the activated sludge tank in the subsequent stage. When the organic wastewater contains insoluble BOD, the total BOD source in the activated sludge tank has a high proportion of insoluble BOD. In the activated sludge tank, the remaining soluble BOD and insoluble BOD are oxidatively decomposed to entrain the fine sludge generated in the aeration tank in the sludge, and the sedimentation property is enhanced. In addition, the fine sludge generated in the aeration tank is self-oxidized to reduce the sludge. In order to efficiently entrain and settle fine sludge, the soluble BOD sludge load in the activated sludge tank is 0.01 kg-BOD / kg-MLSS / d or less. The total BOD sludge load is 0.02-0.6 kg-BOD / kg-MLSS / d. From the viewpoint of more stable sedimentation of activated sludge, the total BOD sludge load in the above activated sludge tank is preferably 0.1 kg-BOD / kg-MLSS / d or less.

活性汚泥槽における全BOD汚泥負荷の値は、曝気槽における全BOD除去後の残存全BOD量と、活性汚泥槽におけるMLSS量に応じて調節される。曝気槽での全BOD除去率が高く、活性汚泥槽に必要な全BODが不足する場合には、原水等の一部を活性汚泥槽に分配し、必要な全BODを確保する方法がある。 The value of the total BOD sludge load in the activated sludge tank is adjusted according to the total amount of BOD remaining after removal of all BOD in the aeration tank and the amount of MLSS in the activated sludge tank. When the total BOD removal rate in the aeration tank is high and the total BOD required for the activated sludge tank is insufficient, there is a method of distributing a part of raw water or the like to the activated sludge tank to secure the required total BOD.

活性汚泥槽のpHは生物反応の反応性の点から5〜9が好ましく、6〜8の範囲であることがより好ましい。活性汚泥槽の温度は生物反応の反応性の点から10〜35℃であることがより好ましく、20〜30℃であることがより好ましい。活性汚泥槽のDOは1mg/L以上であることが好ましい。また、該DOは9mg/L以下であることが好ましい。 The pH of the activated sludge tank is preferably 5 to 9 and more preferably 6 to 8 from the viewpoint of reactivity of biological reaction. The temperature of the activated sludge tank is more preferably 10 to 35 ° C., more preferably 20 to 30 ° C. from the viewpoint of the reactivity of the biological reaction. The DO of the activated sludge tank is preferably 1 mg / L or more. Further, the DO is preferably 9 mg / L or less.

活性汚泥槽のMLSS濃度は特に限定はされないが、3000〜10000mg/Lであることが好ましい。 The MLSS concentration in the activated sludge tank is not particularly limited, but is preferably 3000 to 10000 mg / L.

沈殿槽における水面積負荷の運転条件は従来の活性汚泥法と同じで良い。具体的には水面積負荷は15m3/m2/d以下であることが好ましい。 The operating conditions of the water area load in the settling tank may be the same as those of the conventional activated sludge method. Specifically, the water area load is preferably 15 m 3 / m 2 / d or less.

沈殿槽で汚泥の沈降性が悪い場合、活性汚泥槽と沈殿槽の間に凝集剤反応槽を設け、凝集剤を添加しても良い。凝集剤の添加量は活性汚泥槽の汚泥のSVIが200mL/g以下になるまで添加することが好ましい。 If the sludge sedimentation property is poor in the settling tank, a coagulant reaction tank may be provided between the activated sludge tank and the settling tank, and a coagulant may be added. The amount of the flocculant added is preferably until the SVI of the sludge in the activated sludge tank becomes 200 mL / g or less.

添加する凝集剤は特に限定されることはなく、通常の水処理に使用可能な凝集剤を使用することができる。例えば無機凝集剤として、硫酸アルミニウム( 硫酸ばん土)、ポリ塩化アルミニウム(PAC)、硫酸第一鉄、硫酸第二鉄、塩化第二鉄、塩化コッパラス、アルミン酸ナトリウム、アンモニウムみょうばん、カリみょうばん、消石灰、生石灰、ソーダ灰、炭酸ナトリウム、酸化マグネシウム、鉄− シリカ高分子などが挙げられる。有機( 高分子) 凝集剤としては、ポリアクリルアミド、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム塩、ポリアクリル酸ナトリウム、マレイン酸共重合物、水溶性アニリン、ポリチオ尿素、ポリエチレンイミン、第4級アンモニウム塩、ポリビニルピリジン類、ポリオキシエチレン、苛性化デンプンなどが挙げられる。2種類以上の凝集剤を併用することも可能である。 The coagulant to be added is not particularly limited, and a coagulant that can be used for ordinary water treatment can be used. For example, as inorganic flocculants, aluminum sulfate (aluminum sulfate), polyaluminum chloride (PAC), ferrous sulfate, ferric sulfate, ferric chloride, copper chloride, sodium aluminate, ammonium alum, potash alum, slaked lime. , Fresh lime, soda ash, sodium carbonate, magnesium oxide, iron-silica polymer and the like. Organic (polymer) flocculants include polyacrylamide, sodium alginate, sodium carboxymethyl cellulose salt, sodium polyacrylate, maleic acid copolymer, water-soluble aniline, polythiourea, polyethyleneimine, quaternary ammonium salt, and polyvinylpyridine. Kind, polyoxyethylene, caustic starch and the like. It is also possible to use two or more kinds of coagulants together.

これらの凝集剤の添加量は、少なすぎると凝集効果が得られないし、多すぎると固形分が余剰汚泥となり、汚泥引き抜き量が多くなってしまう。添加の方法としては汚泥の沈降性が改善されるまで添加し、その後は、沈降性が悪化するまで添加しないという間欠的な添加方法と、常に少量の凝集剤を添加する連続的な添加方法がある。 If the amount of these coagulants added is too small, the coagulation effect cannot be obtained, and if it is too large, the solid content becomes excess sludge and the amount of sludge drawn out increases. As a method of addition, there are an intermittent addition method in which sludge is added until the sedimentation property is improved and then not added until the sedimentation property is deteriorated, and a continuous addition method in which a small amount of coagulant is always added. is there.

凝集剤によっては、凝集に好適なpHや温度の範囲が指定されているものがあり、また添加することによりpHの変化を起こすものがあるため、必要に応じてpH調整などの凝集に適した水質管理を行うことが好ましい。 Some coagulants specify a pH and temperature range suitable for coagulation, and some coagulants cause a change in pH when added, so they are suitable for coagulation such as pH adjustment as necessary. It is preferable to manage the water quality.

沈殿槽で沈降した汚泥は全量もしくは一部が活性汚泥槽に返送される。本発明の実施のために排水処理設備を新設しても良いが、現有の排水処理設備の改造によっても実施できる。 All or part of the sludge settled in the settling tank is returned to the activated sludge tank. A wastewater treatment facility may be newly installed for carrying out the present invention, but it can also be carried out by modifying an existing wastewater treatment facility.

以下、実施例により、本発明を詳細に説明する。なお、実施例および比較例中に記載のある以下の物理量は下記の評価方法により測定されたものである。 Hereinafter, the present invention will be described in detail with reference to Examples. The following physical quantities described in Examples and Comparative Examples were measured by the following evaluation methods.

(全BOD除去率)
被処理水全BODおよび担体が流動する曝気槽の処理水全BODを測定し、下記式にて算出した。
BOD除去率(%)
=({被処理水全BOD}−{処理水全BOD})÷{被処理水全BOD}×100
(Total BOD removal rate)
The total BOD of the water to be treated and the total BOD of the treated water in the aeration tank in which the carrier flows were measured and calculated by the following formula.
BOD removal rate (%)
= ({All BOD of treated water}-{All BOD of treated water}) ÷ {All BOD of treated water} × 100

(溶解性BOD除去率)
被処理水溶解性BODおよび担体が流動する曝気槽の処理水溶解性BODを測定し、下記式にて算出した。
溶解性BOD除去率(%)
=({被処理水溶解性BOD}−{処理水溶解性BOD})÷{被処理水溶解性BOD}×100
(Soluble BOD removal rate)
The water-soluble BOD to be treated and the treated water-soluble BOD of the aeration tank in which the carrier flows were measured and calculated by the following formula.
Soluble BOD removal rate (%)
= ({Water-dissolved BOD to be treated}-{Water-dissolved BOD to be treated}) ÷ {Water-soluble BOD to be treated} × 100

(実施例1)
被処理水は食品系排水で全BOD1000mg/L、溶解性BOD400mg/L、SS濃度800mg/Lであり、流入量は1L/dである。処理装置は容量が1Lの担体が流動する曝気槽と容量が1Lの活性汚泥槽および5Lの沈殿槽からなる排水処理装置を用いた。上記の担体が流動する曝気槽にはポリビニルアルコール架橋ゲル担体(直径4mm、比重1.025、担体内の連通孔の孔径は0.5〜20μm)を0.1L投入した。担体が流動する曝気槽、活性汚泥槽底部には散気管が設置されており、散気管に接続されたブロワ―から送られてくる空気により、被処理水の曝気を行う。また、担体が流動する曝気槽出口には担体の流出を防ぐためのスクリーンが設置されている。沈殿槽に流入した活性汚泥は処理水と汚泥に分離され、オーバーフローで処理水が流出し、沈降した汚泥は活性汚泥槽に返される。担体が流動する曝気槽は温度25℃±2℃、pH6.0〜6.2、DO3〜6mg/Lで管理されている。活性汚泥槽は温度25℃±2℃、pH6〜7、DO1〜1.5mg/L、MLSS濃度5000〜6000mg/Lで管理されている。この実施例1におけるフローを図1に模式的に示す。この条件で運転した場合、担体が流動する曝気槽における全BOD容積負荷が1kg/m3/dである。担体が流動する曝気槽の処理水は全BOD240mg/L、溶解性BOD24mg/Lであり、全BOD除去率76%、溶解性BOD除去率は98%であった。そのため、活性汚泥槽における溶解性BOD汚泥負荷が0.002kg−BOD/kg−MLSS/d、全BOD汚泥負荷が0.04kg−BOD/kg−MLSS/dである。処理水のSSは20mg/Lであり、良好な結果を得た。13日間運転することで650mgの余剰汚泥が発生した。
(Example 1)
The water to be treated is food-based wastewater with a total BOD of 1000 mg / L, a soluble BOD of 400 mg / L, an SS concentration of 800 mg / L, and an inflow amount of 1 L / d. As the treatment device, a wastewater treatment device consisting of an aeration tank in which a carrier having a capacity of 1 L flows, an activated sludge tank having a capacity of 1 L, and a settling tank having a capacity of 5 L was used. 0.1 L of a polyvinyl alcohol crosslinked gel carrier (diameter 4 mm, specific gravity 1.025, pore diameter of communication holes in the carrier is 0.5 to 20 μm) was charged into the aeration tank in which the carrier flows. An aeration pipe is installed at the bottom of the aeration tank and activated sludge tank in which the carrier flows, and the water to be treated is aerated by the air sent from the blower connected to the air diffuser. In addition, a screen is installed at the outlet of the aeration tank through which the carrier flows to prevent the carrier from flowing out. The activated sludge that has flowed into the settling tank is separated into treated water and sludge, the treated water flows out due to the overflow, and the settled sludge is returned to the activated sludge tank. The aeration tank in which the carrier flows is controlled at a temperature of 25 ° C. ± 2 ° C., a pH of 6.0 to 6.2, and a DO of 3 to 6 mg / L. The activated sludge tank is controlled at a temperature of 25 ° C. ± 2 ° C., a pH of 6 to 7, a DO of 1 to 1.5 mg / L, and an MLSS concentration of 5000 to 6000 mg / L. The flow in Example 1 is schematically shown in FIG. When operated under these conditions, the total BOD volume load in the aeration tank in which the carrier flows is 1 kg / m 3 / d. The treated water in the aeration tank in which the carrier flows was 240 mg / L of total BOD and 24 mg / L of soluble BOD, and the total BOD removal rate was 76% and the soluble BOD removal rate was 98%. Therefore, the soluble BOD sludge load in the activated sludge tank is 0.002 kg-BOD / kg-MLSS / d, and the total BOD sludge load is 0.04 kg-BOD / kg-MLSS / d. The SS of the treated water was 20 mg / L, and good results were obtained. After operating for 13 days, 650 mg of excess sludge was generated.

(比較例1)
以下の被処理水及び実施例1と同様の処理設備を用いて生物処理を行った。被処理水は食品系排水を0.45μmフィルターを用いて濾過し、溶解性成分のみを用いた。濾過した食品系排水は全BOD400mg/L、溶解性BOD400mg/Lであり、SS濃度は0mg/L、流入量は1L/dである。この条件で運転した場合、担体が流動する曝気槽における全BOD容積負荷が0.4kg/m3/dである。担体が流動する曝気槽の処理水は全BOD40mg/L、溶解性BOD10mg/Lであり、全BOD除去率90%、溶解性BOD除去率は98%であった。そのため、活性汚泥槽における溶解性BOD汚泥負荷が0.002kg−BOD/kg−MLSS/d、全BOD汚泥負荷が0.007kg−BOD/kg−MLSS/dである。処理水のSSは128mg/Lであり、汚泥の凝集性が悪化した。
(Comparative Example 1)
Biological treatment was carried out using the following water to be treated and the same treatment equipment as in Example 1. As the water to be treated, food wastewater was filtered using a 0.45 μm filter, and only soluble components were used. The filtered food-based wastewater has a total BOD of 400 mg / L and a soluble BOD of 400 mg / L, an SS concentration of 0 mg / L, and an inflow amount of 1 L / d. When operated under these conditions, the total BOD volume load in the aeration tank in which the carrier flows is 0.4 kg / m 3 / d. The treated water in the aeration tank in which the carrier flows was 40 mg / L of total BOD and 10 mg / L of soluble BOD, and the total BOD removal rate was 90% and the soluble BOD removal rate was 98%. Therefore, the soluble BOD sludge load in the activated sludge tank is 0.002 kg-BOD / kg-MLSS / d, and the total BOD sludge load is 0.007 kg-BOD / kg-MLSS / d. The SS of the treated water was 128 mg / L, and the cohesiveness of sludge deteriorated.

(比較例2)
以下の被処理水及び実施例1と同様の処理設備を用いて生物処理を行った。被処理水は食品系排水のSSを前処理で沈降分離させたものを用いた。前処理した食品系排水は全BOD460mg/L、溶解性BOD400mg/Lであり、SS濃度は80mg/L、流入量は1L/dである。前処理で除去したSSを余剰汚泥として計算した。この条件で運転した場合、担体が流動する曝気槽における全BOD容積負荷が0.46kg/m3/dである。担体が流動する曝気槽の処理水は全BOD50mg/L、溶解性BOD10mg/Lであり、全BOD除去率89%、溶解性BOD除去率は98%であった。そのため、活性汚泥槽における溶解性BOD汚泥負荷が0.002kg−BOD/kg−MLSS/d、全BOD汚泥負荷が0.01kg−BOD/kg−MLSS/dである。13日間運転することで、7600mgの余剰汚泥が発生し、発生する余剰汚泥量が増加した。
(Comparative Example 2)
Biological treatment was carried out using the following water to be treated and the same treatment equipment as in Example 1. As the water to be treated, the SS of food wastewater was separated by sedimentation by pretreatment. The pretreated food wastewater has a total BOD of 460 mg / L and a soluble BOD of 400 mg / L, an SS concentration of 80 mg / L, and an inflow amount of 1 L / d. The SS removed by the pretreatment was calculated as excess sludge. When operated under these conditions, the total BOD volume load in the aeration tank in which the carrier flows is 0.46 kg / m 3 / d. The treated water in the aeration tank in which the carrier flows was 50 mg / L of total BOD and 10 mg / L of soluble BOD, and the total BOD removal rate was 89% and the soluble BOD removal rate was 98%. Therefore, the soluble BOD sludge load in the activated sludge tank is 0.002 kg-BOD / kg-MLSS / d, and the total BOD sludge load is 0.01 kg-BOD / kg-MLSS / d. By operating for 13 days, 7600 mg of excess sludge was generated, and the amount of excess sludge generated increased.

1 担体流動曝気槽
2 活性汚泥槽
3 沈殿槽
4 有機性排水
5 返送汚泥
6 余剰汚泥


1 Carrier fluid aeration tank 2 Activated sludge tank 3 Sedimentation tank 4 Organic wastewater 5 Return sludge 6 Excess sludge


Claims (5)

被処理水を、担体を備えた曝気槽で処理する工程、
該曝気槽で処理された被処理水を活性汚泥槽で処理する工程、
前記活性汚泥槽で処理された処理水と活性汚泥とを沈殿槽で分離する工程、
沈殿槽で沈降した汚泥の一部を活性汚泥槽に返送する工程を備え、
前記活性汚泥槽の溶解性BOD汚泥負荷が0.01kg−BOD/kg−MLSS/d以下、かつ、全BOD汚泥負荷が0.02〜0.6kg−BOD/kg−MLSS/dの範囲である、有機性排水の処理方法。
The process of treating water to be treated in an aeration tank equipped with a carrier,
The step of treating the water to be treated in the aeration tank in the activated sludge tank,
A step of separating the treated water treated in the activated sludge tank and the activated sludge in a settling tank,
It is equipped with a process to return a part of the sludge settled in the settling tank to the activated sludge tank.
The soluble BOD sludge load of the activated sludge tank is 0.01 kg-BOD / kg-MLSS / d or less, and the total BOD sludge load is in the range of 0.02 to 0.6 kg-BOD / kg-MLSS / d. , How to treat organic wastewater.
前記担体を備えた曝気槽で処理する工程において被処理水の溶解性BODを70%以上除去する請求項1に記載の有機性排水の処理方法 The method for treating organic wastewater according to claim 1, wherein 70% or more of the soluble BOD of the water to be treated is removed in the step of treating in the aeration tank provided with the carrier. 前記担体を備えた曝気槽で処理する工程の前に、沈殿工程を有さない、請求項1または2に記載の有機性排水の処理方法。 The method for treating organic wastewater according to claim 1 or 2, which does not include a precipitation step before the step of treating in an aeration tank provided with the carrier. 担体がゲル状担体、プラスチック担体および繊維状担体からなる群から選ばれた一種類以上の担体である請求項1〜3のいずれかに記載の有機性排水の処理方法。 The method for treating organic wastewater according to any one of claims 1 to 3, wherein the carrier is one or more types of carriers selected from the group consisting of a gel-like carrier, a plastic carrier and a fibrous carrier. 担体がゲル状担体であり、該ゲル状担体がポリビニルアルコール架橋ゲル担体である請求項4に記載の有機性排水の処理方法。
The method for treating organic wastewater according to claim 4, wherein the carrier is a gel-like carrier, and the gel-like carrier is a polyvinyl alcohol cross-linked gel carrier.
JP2019085123A 2019-04-26 2019-04-26 Treatment method of organic waste water Pending JP2020179362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085123A JP2020179362A (en) 2019-04-26 2019-04-26 Treatment method of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085123A JP2020179362A (en) 2019-04-26 2019-04-26 Treatment method of organic waste water

Publications (1)

Publication Number Publication Date
JP2020179362A true JP2020179362A (en) 2020-11-05

Family

ID=73022903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085123A Pending JP2020179362A (en) 2019-04-26 2019-04-26 Treatment method of organic waste water

Country Status (1)

Country Link
JP (1) JP2020179362A (en)

Similar Documents

Publication Publication Date Title
Ødegaard Advanced compact wastewater treatment based on coagulation and moving bed biofilm processes
JPH06343974A (en) Waste water treatment apparatus and method for treatment of waste water
CN103232137B (en) Paper-making waste water treatment system and treatment process
CN102795747A (en) Waste water treatment process
CN109311711B (en) Removal of heavy metals in ballasting processes
JP4958551B2 (en) Wastewater treatment method with little excess sludge extraction
US11753322B2 (en) Side stream treatment for overflow
CN104370418A (en) Treatment method of chemical sewage
KR20090064996A (en) Method of water treatment
CN116040862A (en) Municipal wastewater treatment system and method
CN105016569B (en) Processing system and method for cold rolling reverse osmosis strong brine
CN207062110U (en) Fill the processing system of municipal sludge press filtration tail water
JP2001286873A (en) Method and device for treating waste water
CN205442949U (en) Magnetism bioreactor
KR101728866B1 (en) Apparatus for disposing hyperbric waste water
CN106430846A (en) Efficient treatment integrated process for recalcitrant wastewater with low organic matter content
JP2020179362A (en) Treatment method of organic waste water
CN206476862U (en) Gasification ash water biological phosphate-eliminating denitrification process device
CN115072938A (en) Kitchen waste wastewater treatment system and treatment process thereof
CN105461163B (en) Wet spinning acrylic produces polymeric wastewater processing system and processing method
JP3700938B2 (en) Method and apparatus for treating combined sewage in rainy weather
CN207891216U (en) A kind of processing system of high-concentration hardly-degradable pharmacy waste water
CN110759584A (en) Emulsion wastewater treatment process
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2000107797A (en) Purification method and apparatus