JP2020176092A - Production method of ferric citrate hydrate - Google Patents
Production method of ferric citrate hydrate Download PDFInfo
- Publication number
- JP2020176092A JP2020176092A JP2019080125A JP2019080125A JP2020176092A JP 2020176092 A JP2020176092 A JP 2020176092A JP 2019080125 A JP2019080125 A JP 2019080125A JP 2019080125 A JP2019080125 A JP 2019080125A JP 2020176092 A JP2020176092 A JP 2020176092A
- Authority
- JP
- Japan
- Prior art keywords
- ferric citrate
- water
- citrate hydrate
- mass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、新規なクエン酸第二鉄水和物の製造方法に関する。詳しくは、有機溶媒の含有量が低減されたクエン酸第二鉄を簡便に得る製造方法に関する。 The present invention relates to a novel method for producing ferric citrate hydrate. More specifically, the present invention relates to a production method for easily obtaining ferric citrate having a reduced content of an organic solvent.
クエン酸第二鉄水和物は、三価の鉄である第二鉄とクエン酸由来の分子構造とを含む化合物であり、腎不全患者における高リン酸血症の治療薬として好適に利用できることが知られている(特許文献1又は2参照)。 Ferric citrate hydrate is a compound containing ferric iron, which is trivalent iron, and a molecular structure derived from citric acid, and can be suitably used as a therapeutic agent for hyperphosphatemia in patients with renal failure. Is known (see Patent Document 1 or 2).
ここで、クエン酸第二鉄水和物は血中で溶解し、第二鉄イオンがリン酸塩と結合して生じるリン酸第二鉄化合物が消化管内で析出することによって、血中のリン酸塩が体内から除去されること、さらにクエン酸第二鉄由来のクエン酸は重炭酸塩へと変換されることによって腎不全患者の症状が改善することが知られている。 Here, ferric citrate hydrate dissolves in the blood, and the ferric phosphate compound formed by the binding of ferric ions to phosphate is precipitated in the digestive tract, resulting in phosphorus in the blood. It is known that the symptoms of patients with renal failure are improved by removing the phosphate from the body and converting ferric citrate-derived citric acid into bicarbonate.
このようなクエン酸第二鉄水和物の製造方法として、特許文献1及び2では、塩化第二鉄・六水和物を水酸化ナトリウム等のアルカリによって、水酸化第二鉄を生成し、次いで水溶液中でクエン酸と反応させることによってクエン酸第二鉄水和物を含む水溶液を得た後、該水溶液をアセトン等の水溶性有機溶媒に滴下し、クエン酸第二鉄水和物を固体として析出させて製造する方法が知られている。 As a method for producing such ferric citrate hydrate, in Patent Documents 1 and 2, ferric hydroxide is produced by using ferric chloride / hexahydrate with an alkali such as sodium hydroxide. Next, an aqueous solution containing ferric citrate hydrate was obtained by reacting with citric acid in the aqueous solution, and then the aqueous solution was added dropwise to a water-soluble organic solvent such as acetone to add ferric citrate hydrate. A method of producing by precipitating as a solid is known.
一方、高リン酸血症の治療としてクエン酸第二鉄水和物を使用する際には、血中にクエン酸第二鉄水和物を大量に溶解させる必要がある。そこで、特許文献1及び特許文献2では上記方法にて血中での溶解速度及び溶解度が高い非晶質のクエン酸第二鉄水和物を得る方法が開示されている。さらに特許文献2では、BET比表面積で20〜45m2/gのクエン酸第二鉄水和物が得られることが記載されている。 On the other hand, when ferric citrate hydrate is used as a treatment for hyperphosphatemia, it is necessary to dissolve a large amount of ferric citrate hydrate in the blood. Therefore, Patent Document 1 and Patent Document 2 disclose a method for obtaining an amorphous ferric citrate hydrate having a high dissolution rate and solubility in blood by the above method. Further, Patent Document 2 describes that a ferric citrate hydrate having a BET specific surface area of 20 to 45 m 2 / g can be obtained.
上記方法にて得られたクエン酸第二鉄水和物を、遠心分離等の方法により固液分離し、クエン酸第二鉄水和物の湿体を得た後、周囲温度による真空乾燥、流動層乾燥等の乾燥方法による乾燥と、すり鉢等を用いた粉砕や篩掛けを複数回繰り返すことにより乾燥体を得ている。また、特許文献2においても、クエン酸第二鉄水和物の湿体の乾燥方法として、単に乾燥する、或いは、真空乾燥することが開示されている。 The ferric citrate hydrate obtained by the above method is solid-liquid separated by a method such as centrifugation to obtain a wet body of ferric citrate hydrate, and then vacuum-dried at an ambient temperature. A dried product is obtained by repeating drying by a drying method such as fluidized layer drying, crushing and sieving using a mortar or the like a plurality of times. Further, Patent Document 2 also discloses that as a method for drying a wet body of ferric citrate hydrate, it is simply dried or vacuum dried.
上記特許文献記載の製造方法により、比表面積が大きなクエン酸第二鉄水和物を製造することができるが、特許文献1記載の方法による乾燥操作は、非常に煩雑である点でなお改善の余地があった。一方、本発明者らによって、真空乾燥等による簡便な乾燥方法を検討したところ、真空乾燥のみではクエン酸第二鉄水和物に含まれる水溶性有機溶媒が、低減し難いことが判明した。具体的には、乾燥温度や真空圧力に関わらず、真空乾燥後においても、0.3〜2.8質量%程度の水溶性有機溶媒がクエン酸第二鉄水和物に残存することが判明した。医薬品原薬の有機溶媒の含有量の限度値に関して、ICHガイドラインQ3Cにおいて、指針が示されており、例えば、アセトンはクラス3に分類され、その限度値は0.5質量%以下である。当然のことながら、当該範囲の中でも、より少ないことが望まれる。しかしながら、上記の通り、真空乾燥のみで上記ガイドラインの限度値を満たすことが困難な場合があることが判明した。また、クエン酸第二鉄水和物の比表面積が大きい場合、より水溶性有機溶媒が低減し難く、具体的には、比表面積が約20m2/gのクエン酸第二鉄の場合、真空乾燥後の水溶性有機溶媒の含有量が0.3〜1.3質量%であり、約40m2/gの場合、0.5〜1.9質量%、約60m2/gを超える場合、0.7〜2.8質量%であった。以上より、比表面積が大きなクエン酸第二鉄水和物を製造する場合に、水溶性有機溶媒の低減が課題であることが明らかとなった。 Ferric citrate hydrate having a large specific surface area can be produced by the production method described in Patent Document 1, but the drying operation by the method described in Patent Document 1 is still improved in that it is very complicated. There was room. On the other hand, when the present inventors examined a simple drying method such as vacuum drying, it was found that it is difficult to reduce the water-soluble organic solvent contained in ferric citrate hydrate only by vacuum drying. Specifically, it was found that about 0.3 to 2.8% by mass of a water-soluble organic solvent remains in ferric citrate hydrate even after vacuum drying regardless of the drying temperature and vacuum pressure. did. Regarding the limit value of the content of the organic solvent of the drug substance, the guideline is shown in the ICH guideline Q3C. For example, acetone is classified into Class 3, and the limit value is 0.5% by mass or less. As a matter of course, less is desired within the range. However, as described above, it has been found that it may be difficult to meet the limits of the above guidelines only by vacuum drying. Further, when the specific surface area of ferric citrate hydrate is large, it is more difficult to reduce the water-soluble organic solvent. Specifically, in the case of ferric citrate having a specific surface area of about 20 m 2 / g, vacuum is applied. When the content of the water-soluble organic solvent after drying is 0.3 to 1.3% by mass, about 40 m 2 / g, 0.5 to 1.9% by mass, and more than about 60 m 2 / g, It was 0.7 to 2.8% by mass. From the above, it has been clarified that reduction of the water-soluble organic solvent is an issue in producing ferric citrate hydrate having a large specific surface area.
一方、流動層乾燥は一般的に熱風や蒸気等の熱媒と乾燥対象物とを接触させることにより加熱乾燥を行うが、それによればクエン酸第二鉄水和物に含まれる水溶性有機溶媒をガイドラインの限度値以下とすることができる。しかしながら、本発明者らの検討により、クエン酸第二鉄水和物は熱に対して不安定であること、当該乾燥方法によってクエン酸第二鉄水和物の純度が大幅に低下するのみならず、さらに、比表面積も同様に大幅に低下してしまうことが判明した。 On the other hand, in fluidized bed drying, heat drying is generally performed by bringing a heat medium such as hot air or steam into contact with the object to be dried. According to this, a water-soluble organic solvent contained in ferric citrate hydrate Can be less than or equal to the guideline limit. However, according to the studies by the present inventors, if ferric citrate hydrate is unstable to heat, and the drying method only significantly reduces the purity of ferric citrate hydrate. Moreover, it was found that the specific surface area was also significantly reduced.
すなわち、本願発明の目的は、医薬品として好適に利用できる、高純度で、高比表面積を有する有機溶媒の含有量が低減されたクエン酸第二鉄水和物を簡便な乾燥操作により得る製造方法を提供することにある。 That is, an object of the present invention is a production method for obtaining ferric citrate hydrate, which can be suitably used as a pharmaceutical product and has a high purity and a reduced content of an organic solvent having a high specific surface area, by a simple drying operation. Is to provide.
上記課題に対し本発明者らは、クエン酸第二鉄水和物の乾燥方法について鋭意検討を行った。その結果、水溶性有機溶媒を多く含有するクエン酸第二鉄水和物の湿体を、該湿体中に水が多く存在した状態で、乾燥させることにより、クエン酸第二鉄水和物の比表面積の大小に寄らず、湿体中に含有する水溶性有機溶媒を大幅に低減させることができるという知見を得た。また、上記乾燥方法によって得られたクエン酸第二鉄水和物の純度及び比表面積は、乾燥前の水準を維持できることも見出し、本発明を完成させるに至った。 In response to the above problems, the present inventors have diligently studied a method for drying ferric citrate hydrate. As a result, a ferric citrate hydrate containing a large amount of a water-soluble organic solvent is dried in a state where a large amount of water is present in the wet body to obtain a ferric citrate hydrate. It was found that the water-soluble organic solvent contained in the wet body can be significantly reduced regardless of the size of the specific surface area. It was also found that the purity and specific surface area of the ferric citrate hydrate obtained by the above drying method could be maintained at the levels before drying, and the present invention was completed.
即ち、本発明は、水、及び水溶性有機溶媒を含有するクエン酸第二鉄水和物の湿体より、クエン酸第二鉄水和物を得る製造方法であって、クエン酸第二鉄無水物換算量100g(100質量部)当たり、水を40〜150g(40〜150質量部)含有するクエン酸第二鉄水和物の湿体を減圧乾燥することを特徴とするクエン酸第二鉄水和物の製造方法である。本発明の製造方法は以下の態様を好適に採り得る。
1)前記減圧乾燥を0.1〜20kPaの範囲で行うこと。
2)前記減圧乾燥の乾燥温度が5〜50℃の範囲で行うこと。
3)前記水溶性有機溶媒が、アセトン、メチルエチルケトン、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、2−ブタノール、t−ブタノール、アセトニトリル、プロピオニトリル、ジメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンから選択される少なくとも1種であること。
4)前記クエン酸第二鉄水和物の湿体100g(100質量部)当たり、前記水溶性有機溶媒を0.3g(0.3質量部)を超え70.0g(70.0質量部)以下の範囲で含有すること。
5)クエン酸第二鉄水和物を、水及び水溶性有機溶媒を含む溶媒と接触させて、クエン酸第二鉄無水物換算量100g(100質量部)当たり、水を40〜150g(40〜150質量部)含有するクエン酸第二鉄水和物の湿体を得、次いで該湿体を減圧乾燥させること。
That is, the present invention is a method for producing ferric citrate hydrate from a wet body of ferric citrate hydrate containing water and a water-soluble organic solvent. A wet body of ferric citrate hydrate containing 40 to 150 g (40 to 150 parts by mass) of water per 100 g (100 parts by mass) of anhydride is dried under reduced pressure. This is a method for producing iron hydrate. The production method of the present invention can preferably adopt the following aspects.
1) Perform the vacuum drying in the range of 0.1 to 20 kPa.
2) The drying temperature of the vacuum drying should be in the range of 5 to 50 ° C.
3) The water-soluble organic solvent is selected from acetone, methyl ethyl ketone, methanol, ethanol, 1-propanol, isopropyl alcohol, 2-butanol, t-butanol, acetonitrile, propionitrile, dimethyl ether, tetrahydrofuran, tetrahydropyran and dioxane. Must be at least one.
4) Per 100 g (100 parts by mass) of the ferric citrate hydrate wet body, the amount of the water-soluble organic solvent exceeds 0.3 g (0.3 parts by mass) and 70.0 g (70.0 parts by mass). It should be contained in the following range.
5) Ferric citrate hydrate is brought into contact with a solvent containing water and a water-soluble organic solvent, and 40 to 150 g (40 parts by mass) of water is added per 100 g (100 parts by mass) of ferric citrate anhydrous equivalent. To obtain a wet body of ferric citrate hydrate containing ~ 150 parts by mass), and then dry the wet body under reduced pressure.
本発明の製造方法によれば、水溶性有機溶媒の含有量、純度、及び、比表面積が、医薬品原薬として使用する上で好適な水準であるクエン酸第二鉄水和物を、簡便な乾燥操作によって製造することができる。また、製造間のばらつきが少なく、安定的に同等品質のクエン酸第二鉄水和物を製造することができる。 According to the production method of the present invention, ferric citrate hydrate having a water-soluble organic solvent content, purity, and specific surface area at suitable levels for use as a pharmaceutical drug substance can be easily prepared. It can be manufactured by a drying operation. In addition, there is little variation between productions, and ferric citrate hydrate of the same quality can be stably produced.
本発明は、水、及び水溶性有機溶媒を含有するクエン酸第二鉄水和物の湿体より、クエン酸第二鉄水和物を得る製造方法であって、クエン酸第二鉄無水物換算量100g(100質量部)当たり、水を40〜150g(40〜150質量部)含有するクエン酸第二鉄水和物の湿体(以下、「クエン酸第二鉄水和物の湿体」、又は単に「湿体」と称することがある)を減圧乾燥することが特徴である。ここで、湿体中のクエン酸第二鉄無水物換算量は、湿体の全重量、水分量、水溶性有機溶媒量を測定し、全重量から水分量と水溶性有機溶媒量を差し引くことにより算出できる。また、湿体中の水分量は、カールフィッシャー法により測定できる。また、湿体中の水溶性有機溶媒量は、ガスクロマトグラフィーにより測定できる。 The present invention is a method for producing ferric citrate hydrate from a wet body of ferric citrate hydrate containing water and a water-soluble organic solvent, wherein ferric citrate anhydride is obtained. Wet body of ferric citrate hydrate containing 40 to 150 g (40 to 150 parts by mass) of water per 100 g (100 parts by mass) of conversion amount (hereinafter, "wet body of ferric citrate hydrate" , Or simply referred to as "wet body"), is characterized by being dried under reduced pressure. Here, the ferric citrate anhydride equivalent amount in the wet body is obtained by measuring the total weight, water content, and water-soluble organic solvent amount of the wet body, and subtracting the water content and water-soluble organic solvent amount from the total weight. Can be calculated by The amount of water in the wet body can be measured by the Karl Fischer method. The amount of water-soluble organic solvent in the wet body can be measured by gas chromatography.
従って、クエン酸第二鉄水和物の湿体における、クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量は、以下の式にて算出することができる。
水の含有量=湿体中の水分量/{(湿体の質量)−(湿体中の水分量)−(水溶性有機溶媒量)}×100
Therefore, the content of water per 100 g (100 parts by mass) of ferric citrate anhydride in a wet body of ferric citrate hydrate can be calculated by the following formula.
Water content = water content in the wet body / {(mass of the wet body)-(water content in the wet body)-(water-soluble organic solvent amount)} x 100
本発明において「乾燥」とは、クエン酸第二鉄水和物の湿体中の水溶性有機溶媒の含有量を低減せしめることを言う。このような本発明の製造方法によって、クエン酸第二鉄水和物に含有する水溶性有機溶媒の含有量を大きく低減させることができる。本発明の製造方法によって、湿体中の水溶性有機溶媒の含有量を大きく低減させることができる理由について詳細は明らかではないが、本発明者らは以下のとおり推測している。すなわち、上記特許文献記載の製造方法にて得られるクエン酸第二鉄水和物は非晶質(アモルファス)形状をしている。このため、クエン酸第二鉄水和物の析出溶媒として用いられた水溶性有機溶媒がクエン酸第二鉄水和物中に取り込まれた場合、水溶性有機溶媒とクエン酸第二鉄水和物とが、物理的な作用が働いているか、或いは、化学的結合(例えば、第二鉄との配位結合やクエン酸との水素結合等)が形成されているものと推測される。さらに、クエン酸第二鉄水和物の比表面積が大きい場合には、クエン酸第二鉄水和物はより複雑な構造を有するため、水溶性有機溶媒がクエン酸第二鉄水和物中に取り込まれ易いと推測される。加えて、クエン酸第二鉄水和物は一次粒子が凝集しやすく凝集体の中に多数の粒子間空隙が存在すると見られるため、当該空隙にも水溶性有機溶媒が存在すると推測される。このため、単なる真空乾燥では水溶性有機溶媒が低減し難いものと推測され、かかる場合には粉砕と乾燥を繰り返す必要があるものと推測される。一方流動層乾燥においては、熱風や蒸気等の熱媒とクエン酸第二鉄水和物との接触によるクエン酸第二鉄水和物の解砕効果が発現されているため、効率的にクエン酸第二鉄水和物中の水溶性有機溶媒を低減させることができると推測される。しかしながら、熱媒によって純度及び比表面積の低下が生じるものと推測される。一方、本発明の方法では、クエン酸第二鉄水和物の湿体中に水を多く含んでいるため、クエン酸第二鉄水和物中に水が浸透しており、水溶性有機溶媒とクエン酸第二鉄との物理的な作用が消え或いは化学結合が解かれた状態となっていることから、減圧乾燥によって水溶性有機溶媒を低減させることができるものと推測される。尚、本明細書においては特に断らない限り、数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。以下、本発明について詳細に説明する。以下、本発明の製造方法について詳述する。 In the present invention, "drying" means reducing the content of the water-soluble organic solvent in the wet body of ferric citrate hydrate. By such a production method of the present invention, the content of the water-soluble organic solvent contained in the ferric citrate hydrate can be significantly reduced. The reason why the content of the water-soluble organic solvent in the wet body can be significantly reduced by the production method of the present invention is not clear in detail, but the present inventors speculate as follows. That is, the ferric citrate hydrate obtained by the production method described in the above patent document has an amorphous shape. Therefore, when the water-soluble organic solvent used as the precipitation solvent for the ferric citrate hydrate is incorporated into the ferric citrate hydrate, the water-soluble organic solvent and the ferric citrate hydrate It is presumed that the substance has a physical action or a chemical bond (for example, a coordination bond with ferric iron, a hydrogen bond with citric acid, etc.) is formed. Furthermore, when the specific surface area of ferric citrate hydrate is large, the ferric citrate hydrate has a more complicated structure, so that the water-soluble organic solvent is contained in the ferric citrate hydrate. It is presumed that it is easily incorporated into. In addition, since the primary particles of ferric citrate hydrate are likely to aggregate and a large number of interparticle voids are considered to exist in the aggregates, it is presumed that a water-soluble organic solvent is also present in the voids. Therefore, it is presumed that it is difficult to reduce the water-soluble organic solvent by simple vacuum drying, and in such a case, it is presumed that pulverization and drying must be repeated. On the other hand, in fluidized layer drying, the effect of crushing ferric citrate hydrate by contact between a heat medium such as hot air or steam and ferric citrate hydrate is exhibited, so that citrate is efficiently used. It is speculated that the water-soluble organic solvent in ferric acid hydrate can be reduced. However, it is presumed that the heat medium causes a decrease in purity and specific surface area. On the other hand, in the method of the present invention, since the wet body of ferric citrate hydrate contains a large amount of water, water permeates into the ferric citrate hydrate and is a water-soluble organic solvent. Since the physical action between ferric citrate and ferric citrate has disappeared or the chemical bond has been broken, it is presumed that the water-soluble organic solvent can be reduced by drying under reduced pressure. In the present specification, unless otherwise specified, the notation "A to B" for the numerical values A and B means "A or more and B or less". When a unit is attached only to the numerical value B in such a notation, the unit shall be applied to the numerical value A as well. Hereinafter, the present invention will be described in detail. Hereinafter, the production method of the present invention will be described in detail.
(クエン酸第二鉄水和物の湿体)
本発明の製造方法におけるクエン酸第二鉄水和物としては特に制限されることなく、試薬や食品添加物用途として市販されているもの、或いは、公知の方法により製造したものを使用することができる。公知の製造方法の一例としては、特許文献1及び2に記載された方法が挙げられる。具体的には、まず、塩化第二鉄・六水和物を水に溶解させ、次いで、水酸化ナトリウムにより加水分解することによりフェリハイドライト等の水酸化第二鉄を得る。得られた水酸化第二鉄とクエン酸とを水中で反応させ、クエン酸第二鉄水和物を生成する。当該クエン酸第二鉄を含む溶液を、有機溶媒を用いてクエン酸第二鉄水和物を析出させた後、固液分離及び必要に応じて水溶性有機溶媒による分離後の固体の洗浄することによりクエン酸第二鉄水和物の湿体を製造することができる。
(Wet body of ferric citrate hydrate)
The ferric citrate hydrate in the production method of the present invention is not particularly limited, and commercially available reagents and food additives, or those produced by a known method can be used. it can. Examples of known production methods include the methods described in Patent Documents 1 and 2. Specifically, first, ferric chloride / hexahydrate is dissolved in water, and then hydrolyzed with sodium hydroxide to obtain ferric hydroxide such as ferrihydrate. The obtained ferric hydroxide and citric acid are reacted in water to produce ferric citrate hydrate. The ferric citrate-containing solution is subjected to solid-liquid separation and, if necessary, washed with a water-soluble organic solvent after precipitating ferric citrate hydrate using an organic solvent. This makes it possible to produce a wet body of ferric citrate hydrate.
その他の製造方法として、例えば、上記製造方法等により製造されたクエン酸第二鉄水和物の湿体、それを乾燥させたクエン酸第二鉄水和物、或いは市販のクエン酸第二鉄等を、水或いはクエン酸水溶液に溶解させて、クエン酸第二鉄水和物を含む水溶液を調製し、当該水溶液を、水溶性有機溶媒に滴下することにより、クエン酸第二鉄水和物を含む懸濁液を調製しても良い。または、単にクエン酸第二鉄水和物と水溶性有機溶媒とを混合することにより、クエン酸第二鉄水和物を含む懸濁液を調製しても良い。各方法により調製された懸濁液を固液分離、及び、水溶性有機溶媒による分離後の固体の洗浄を行えば、クエン酸第二鉄水和物の湿体を製造できる。 As another production method, for example, a wet body of ferric citrate hydrate produced by the above production method or the like, ferric citrate hydrate obtained by drying the wet body, or commercially available ferric citrate. Etc. are dissolved in water or an aqueous solution of citric acid to prepare an aqueous solution containing ferric citrate hydrate, and the aqueous solution is added dropwise to a water-soluble organic solvent to obtain ferric citrate hydrate. You may prepare a suspension containing. Alternatively, a suspension containing ferric citrate hydrate may be prepared simply by mixing ferric citrate hydrate and a water-soluble organic solvent. A wet body of ferric citrate hydrate can be produced by solid-liquid separation of the suspension prepared by each method and washing of the solid after separation with a water-soluble organic solvent.
上記のようにして製造されるクエン酸第二鉄水和物の湿体は、実施例に記載の条件による液体クロマトグラフィー(HPLC)で分析した時の純度が、製造条件等により異なるが、通常、90.0〜99.9%である。また、実施例に記載の条件による窒素吸着法で分析した時のBET比表面積は、通常、20m2/gを超える。そのため、本発明の製造方法において、好適に使用することができる。 The purity of the ferric citrate hydrate produced as described above when analyzed by liquid chromatography (HPLC) under the conditions described in Examples varies depending on the production conditions and the like, but is usually , 90.0-99.9%. Further, the BET specific surface area when analyzed by the nitrogen adsorption method under the conditions described in the examples usually exceeds 20 m 2 / g. Therefore, it can be suitably used in the production method of the present invention.
(湿体中の水の含有量)
本発明の製造方法では、クエン酸第二鉄無水物換算量100g(100質量部)当たり、水を40〜150g(40〜150質量部)含有するクエン酸第二鉄水和物の湿体を減圧乾燥する。ここで、クエン酸第二鉄水和物の湿体中に含有する水は、湿体に含有する水分(所謂、自由水)の他に、クエン酸第二鉄に水和する水分(所謂、結合水)が含まれるが、上記水の含有量は、自由水と結合水を合わせた含有量を示す。前記のとおり、湿体中の水の含有量は、カールフィッシャー法により測定できる。また、湿体中のクエン酸第二鉄無水物換算量は、湿体の全重量、水分量、水溶性有機溶媒量を測定し、全重量から水分量と水溶性有機溶媒量を差し引くことにより算出した値を示す。
(Water content in wet body)
In the production method of the present invention, a wet body of ferric citrate hydrate containing 40 to 150 g (40 to 150 parts by mass) of water per 100 g (100 parts by mass) of ferric citrate anhydride equivalent amount is used. Dry under reduced pressure. Here, the water contained in the wet body of ferric citrate hydrate is not only the water contained in the wet body (so-called free water) but also the water hydrated in ferric citrate (so-called so-called free water). Bound water) is included, but the content of the above water indicates the total content of free water and bound water. As described above, the water content in the wet body can be measured by the Karl Fischer method. The ferric citrate anhydride equivalent amount in the wet body is obtained by measuring the total weight, water content, and water-soluble organic solvent amount of the wet body, and subtracting the water content and water-soluble organic solvent amount from the total weight. The calculated value is shown.
従って、クエン酸第二鉄水和物の湿体における、クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量は、以下の式にて算出することができる。
水の含有量=湿体中の水分量/{(湿体の質量)−(湿体中の水分量)−(水溶性有機溶媒量)}×100
Therefore, the content of water per 100 g (100 parts by mass) of ferric citrate anhydride in a wet body of ferric citrate hydrate can be calculated by the following formula.
Water content = water content in the wet body / {(mass of the wet body)-(water content in the wet body)-(water-soluble organic solvent amount)} x 100
クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量が40g(40質量部)未満である場合には、減圧乾燥による湿体に含有する水溶性有機溶媒の低減効果が不十分である。一方、クエン酸第二鉄無水物100g(100質量部)当たりの水の含有量が150g(150質量部)を超える場合、上記乾燥時にクエン酸第二鉄水和物の比表面積が大幅に低下する傾向があるため好ましくない。その理由は明らかではないが、クエン酸第二鉄水和物を乾燥させる時に吸湿し、一部のクエン酸第二鉄が一旦溶解した後に固化することで、比表面積が低下すると推定される。乾燥に要する時間がより短く、また、比表面積の低下をより抑制できる点、さらに、本発明の水溶性有機溶媒の低減効果がより顕著に得られる点で、クエン酸第二鉄無水物100g(100質量部)当たりの水の含有量は45〜125g(45〜125質量部)の範囲であることがより好ましく、50〜100g(50〜100質量部)の範囲であることがさらに好ましい。前記のとおり、クエン酸第二鉄水和物の湿体中の水の含有量は該湿体のガスクロマトグラフィーによる分析、水の含有量は該湿体のカールフィッシャー法による測定にて確認することができる。 When the water content per 100 g (100 parts by mass) of ferric citrate anhydride is less than 40 g (40 parts by mass), the effect of reducing the water-soluble organic solvent contained in the wet body by drying under reduced pressure Is inadequate. On the other hand, when the content of water per 100 g (100 parts by mass) of ferric citrate anhydride exceeds 150 g (150 parts by mass), the specific surface area of ferric citrate hydrate significantly decreases during the above drying. It is not preferable because it tends to be. The reason is not clear, but it is presumed that the specific surface area is reduced by absorbing moisture when the ferric citrate hydrate is dried and solidifying after some ferric citrate is once dissolved. 100 g of ferric citrate anhydride (ferric citrate anhydride) in that the time required for drying is shorter, the decrease in specific surface area can be further suppressed, and the effect of reducing the water-soluble organic solvent of the present invention can be obtained more remarkably. The content of water per 100 parts by mass) is more preferably in the range of 45 to 125 g (45 to 125 parts by mass), and further preferably in the range of 50 to 100 g (50 to 100 parts by mass). As described above, the water content of the ferric citrate hydrate in the wet body is confirmed by gas chromatography analysis of the wet body, and the water content is confirmed by the Karl Fisher method of the wet body. be able to.
クエン酸第二鉄水和物の湿体中に含有される水が上記範囲にある場合にはそのまま、本発明の製造方法に用いることが可能である。前記のクエン酸第二鉄水和物の製造方法にて製造する場合、水を含有する水溶性有機溶媒にてクエン酸第二鉄水和物を析出させているため、かかる方法にてクエン酸第二鉄水和物の湿体を得た場合には、必然的に湿体中に水を含有している。製造条件や製造スケール等により異なるが、通常、クエン酸第二鉄無水物100g(100質量部)当たり、15〜35g(15〜35質量部)であるため、本発明の製造方法の水の含有量となるように水の含有量を調整する必要がある。 When the water contained in the wet body of ferric citrate hydrate is in the above range, it can be used as it is in the production method of the present invention. In the case of producing by the above method for producing ferric citrate hydrate, since the ferric citrate hydrate is precipitated in a water-soluble organic solvent containing water, citric acid is produced by such a method. When a wet body of ferric hydrate is obtained, water is inevitably contained in the wet body. Although it varies depending on the production conditions, production scale, etc., it is usually 15 to 35 g (15 to 35 parts by mass) per 100 g (100 parts by mass) of ferric citrate anhydride, so that the water content of the production method of the present invention is contained. It is necessary to adjust the water content so that it becomes the amount.
クエン酸第二鉄水和物の湿体中の水の含有量の調整方法として、例えばクエン酸第二鉄水和物の湿体中の水の含有量が少なすぎる場合には、該湿体に水を添加し混合する方法、或いは、クエン酸第二鉄の湿体を、水及び水溶性有機溶媒を含有する溶媒に分散せしめた後、公知の固液分離手段によりクエン酸第二鉄の湿体を得る方法等が挙げられる。一方、クエン酸第二鉄水和物の湿体中の水の含有量が多すぎる場合には、常圧下での乾燥により水分を除去する方法、水及び水溶性有機溶媒を含有する溶媒に分散せしめた後、公知の固液分離手段によりクエン酸第二鉄の湿体を得る方法等が挙げられる。 As a method for adjusting the water content in the ferric citrate hydrate wet body, for example, when the water content in the ferric citrate hydrate wet body is too low, the wet body A method of adding water to the mixture, or a wet body of ferric citrate is dispersed in a solvent containing water and a water-soluble organic solvent, and then the ferric citrate is separated by a known solid-liquid separation means. Examples include a method of obtaining a wet body. On the other hand, when the content of water in the wet body of ferric citrate hydrate is too large, a method of removing water by drying under normal pressure, dispersion in a solvent containing water and a water-soluble organic solvent. Examples thereof include a method of obtaining a wet body of ferric citrate by a known solid-liquid separation means after squeezing.
(水溶性有機溶媒)
本発明において、湿体中に含まれる水溶性有機溶媒としては、水と任意に混和する有機溶媒であり、具体的には25℃において水100質量部に対する溶解度が20質量部以上の有機溶媒である。上記湿体の製造において、クエン酸第二鉄水和物を含む懸濁液を得る際に使用する水溶性有機溶媒、或いは、固液分離後の洗浄溶媒として水溶性有機溶媒を使用すれば、結果的に湿体中にそれらの溶媒が含有される。水溶性有機溶媒を具体的に例示すると、アセトン、メチルエチルケトン、アセチルアセトン、ジアセトンアルコール等のケトン類;メタノール、エタノール、1−プロパノール、イソプロピルアルコール、2−ブタノール、t−ブタノール、アリルアルコール、テトラヒドロフリルアルコール、フルフリルアルコール、プロパギルアルコール等のアルコール類;アセトニトリル、プロピオニトリル等のニトリル類;ジメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類;ギ酸メチル、酢酸メチル等のエステル類;ジメチルスルホキシド等の含硫黄化合物;N,N−ジメチルホルムアミド、N−メチルピロピドン、アセトアミド等の含窒素化合物等が挙げられる。何れの溶媒も、試薬や工業用等、特に制限されること無く使用できる。また、これらの溶媒は、単一であっても良く、複数であっても良い。中でも、高純度、高比表面積のクエン酸第二鉄水和物が得られる点、乾燥時の水溶性有機溶媒の低減効率の点から、アセトン、メチルエチルケトン、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、2−ブタノール、t−ブタノール、アセトニトリル、プロピオニトリル、ジメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンがより好ましく、アセトン、メチルエチルケトン、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、アセトニトリル、テトラヒドロフランがさらに好ましく、アセトン、メタノール、エタノール、イソプロピルアルコール、アセトニトリル、テトラヒドロフランが最も好ましい。なお、例えばトルエン等の炭化水素類やクロロホルム等のハロゲン化炭化水素類等の非水溶性有機溶媒は、クエン酸第二鉄水和物に含まれても構わないが、乾燥をより簡便とするためには含まれないことが好ましい。
(Water-soluble organic solvent)
In the present invention, the water-soluble organic solvent contained in the wet body is an organic solvent that is arbitrarily miscible with water, and specifically, an organic solvent having a solubility of 20 parts by mass or more in 100 parts by mass of water at 25 ° C. is there. In the production of the wet body, if a water-soluble organic solvent used for obtaining a suspension containing ferric citrate hydrate or a water-soluble organic solvent as a washing solvent after solid-liquid separation is used, As a result, those solvents are contained in the wet body. Specific examples of water-soluble organic solvents are ketones such as acetone, methyl ethyl ketone, acetyl acetone, and diacetone alcohol; methanol, ethanol, 1-propanol, isopropyl alcohol, 2-butanol, t-butanol, allyl alcohol, and tetrahydrofuryl alcohol. , Alcohols such as furfuryl alcohol and propagil alcohol; nitriles such as acetonitrile and propionitrile; ethers such as dimethyl ether, tetrahydrofuran, tetrahydropyran and dioxane; esters such as methyl formate and methyl acetate; dimethyl sulfoxide and the like Sulfur-containing compounds; nitrogen-containing compounds such as N, N-dimethylformamide, N-methylpyropidone, and acetamido can be mentioned. Any solvent can be used without particular limitation, such as for reagents and industrial use. Further, these solvents may be single or plural. Among them, acetone, methyl ethyl ketone, methanol, ethanol, 1-propanol, and isopropyl alcohol are obtained from the viewpoint of obtaining ferric citrate hydrate having high purity and high specific surface area and reducing efficiency of water-soluble organic solvent during drying. , 2-butanol, t-butanol, acetonitrile, propionitrile, dimethyl ether, tetrahydrofuran, tetrahydropyran, dioxane are more preferred, acetone, methyl ethyl ketone, methanol, ethanol, 1-propanol, isopropyl alcohol, acetonitrile, tetrahydrofuran are even more preferred, acetone. , Methanol, ethanol, isopropyl alcohol, acetonitrile and tetrahydrofuran are most preferred. In addition, for example, a water-insoluble organic solvent such as hydrocarbons such as toluene and halogenated hydrocarbons such as chloroform may be contained in the ferric citrate hydrate, but drying is made easier. It is preferable that it is not included.
上記(クエン酸第二鉄の湿体)の項に記載された湿体の製造方法にて湿体を製造する場合、水を含有する水溶性有機溶媒にてクエン酸第二鉄を析出させているため、かかる方法にて湿体を得た場合には、必然的に湿体中に水溶性有機溶媒を含有している。製造条件や製造スケール等により異なるが、通常、湿体100g(100質量部)中に0.3〜70g(0.3〜70質量部)の水溶性有機溶媒を含むが、本発明の製造方法において、好適に使用することができる。乾燥に要する時間がより短く、また、比表面積の低下をより抑制できる点、さらに、本発明の水溶性有機溶媒の低減効果がより顕著に得られる点で、湿体100g(100質量部)当たりの水溶性有機溶媒の含有量は0.5〜65g(0.5〜65質量部)の範囲であることがより好ましく、1.0〜60g(1.0〜60質量部)の範囲であることがさらに好ましい。 When a wet body is produced by the method for producing a wet body described in the above section (Ferric citrate wet body), ferric citrate is precipitated with a water-soluble organic solvent containing water. Therefore, when a wet body is obtained by such a method, a water-soluble organic solvent is inevitably contained in the wet body. Although it depends on the production conditions and the production scale, usually 0.3 to 70 g (0.3 to 70 parts by mass) of a water-soluble organic solvent is contained in 100 g (100 parts by mass) of the wet body, but the production method of the present invention Can be suitably used in. Per 100 g (100 parts by mass) of wet body, in that the time required for drying is shorter, the decrease in specific surface area can be further suppressed, and the effect of reducing the water-soluble organic solvent of the present invention can be obtained more remarkably. The content of the water-soluble organic solvent is more preferably in the range of 0.5 to 65 g (0.5 to 65 parts by mass), and more preferably in the range of 1.0 to 60 g (1.0 to 60 parts by mass). Is even more preferable.
(減圧乾燥)
本発明の製造方法では、上記クエン酸第二鉄水和物の湿体を減圧乾燥する。減圧乾燥における減圧度は、乾燥装置の能力等を勘案して適宜決定すればよいが、乾燥に要する時間また、クエン酸第二鉄水和物の乾燥時の比表面積の低下をより抑制できる点から、減圧度を0.1〜20kPaの範囲とすることが好ましく、1〜10kPaの範囲で行うことがより好ましく、1〜5kPaの範囲で行うことがさらに好ましい。
また、減圧乾燥させる際の乾燥温度としては、5〜50℃が好ましく、中でも水溶性有機溶媒の低減効率やクエン酸第二鉄の安定性を考慮すると、10〜40℃がより好ましく、15〜30℃が最も好ましい。この範囲であれば、乾燥の途中で乾燥状態によって乾燥温度を適宜変更しても良い。
(Drying under reduced pressure)
In the production method of the present invention, the wet body of the ferric citrate hydrate is dried under reduced pressure. The degree of decompression in vacuum drying may be appropriately determined in consideration of the capacity of the drying apparatus, etc., but the time required for drying and the decrease in the specific surface area of ferric citrate hydrate during drying can be further suppressed. Therefore, the degree of decompression is preferably in the range of 0.1 to 20 kPa, more preferably in the range of 1 to 10 kPa, and even more preferably in the range of 1 to 5 kPa.
The drying temperature for drying under reduced pressure is preferably 5 to 50 ° C, more preferably 10 to 40 ° C in consideration of the reduction efficiency of the water-soluble organic solvent and the stability of ferric citrate. 30 ° C is most preferable. Within this range, the drying temperature may be appropriately changed depending on the drying state during drying.
また、乾燥に使用する装置は、工業的に利用可能な装置であれば良く、棚式乾燥機やコニカルドライヤー等が挙げられる。水溶性有機溶媒の低減効率や均一性がより優れる理由から、コニカルドライヤーを用いて、回転下で減圧乾燥を行うことがより好ましい。乾燥に要する時間は、乾燥条件や製造スケール等により異なるため、一概に規定することは難しいが、実施例に記載の条件によるガスクロマトグラフィー(GC)等の手法により、水溶性有機溶媒の含有量が所望の量となったことを確認して適宜決定すれば良い。乾燥の条件、製造スケール、水溶性有機溶媒の種類等により異なるが、通常、1〜100時間で、乾燥後のクエン酸第二鉄水和物(以下「クエン酸第二鉄水和物の乾燥体」或いは単に「乾燥体」とも言う)100g(100質量部)当たり、水溶性有機溶媒の含有量を0.5g(0.5質量部)以下とできる。ただし、乾燥時間があまり長いと、クエン酸第二鉄水和物の品質や経済性が低下するため、乾燥体100g(100質量部)当たり、少なくとも0.5g(0.5質量部)以下の中で望む値となった時点で、乾燥を終了することが好ましい。 The device used for drying may be any device that can be used industrially, and examples thereof include a shelf-type dryer and a conical dryer. It is more preferable to perform vacuum drying under rotation using a conical dryer for the reason that the reduction efficiency and uniformity of the water-soluble organic solvent are more excellent. The time required for drying varies depending on the drying conditions, production scale, etc., so it is difficult to unconditionally specify it, but the content of the water-soluble organic solvent is determined by a method such as gas chromatography (GC) under the conditions described in the examples. May be appropriately determined after confirming that the desired amount has been reached. Although it depends on the drying conditions, production scale, type of water-soluble organic solvent, etc., it usually takes 1 to 100 hours to dry ferric citrate hydrate (hereinafter referred to as "drying of ferric citrate hydrate"). The content of the water-soluble organic solvent can be 0.5 g (0.5 parts by mass) or less per 100 g (100 parts by mass) of "body" or simply "dried product"). However, if the drying time is too long, the quality and economy of ferric citrate hydrate deteriorates. Therefore, at least 0.5 g (0.5 parts by mass) or less per 100 g (100 parts by mass) of the dried product. It is preferable to end the drying when the desired value is reached.
なお、乾燥前或いは途中のクエン酸第二鉄水和物に塊等が含まれる場合には、乾燥前或いは途中において、クエン酸第二鉄水和物をすり鉢、パワーミル、ピンミル等の公知の粉砕機により粉砕する、或いは、篩掛けを行う等しても良い。 If the ferric citrate hydrate before or during drying contains lumps or the like, the ferric citrate hydrate is pulverized in a mortar, power mill, pin mill or the like before or during drying. It may be crushed by a machine, or may be screened.
(クエン酸第二鉄水和物)
以上のようにして、水溶性有機溶媒が高度に低減されたクエン酸第二鉄水和物の乾燥体を得ることができる。当該クエン酸第二鉄水和物の乾燥体100g(100質量部)当たりに含まれる水溶性有機溶媒の量を0.5g(0.5質量部)以下に低減することができる。本発明は水溶性有機溶媒の低減効果が非常に高いため、水溶性有機溶媒の含有量がより好ましくは0.25g(0.25質量部)以下、さらに好ましくは0.1g(0.1質量部)以下、最も好ましくは0.05g(0.05質量部)以下のクエン酸第二鉄水和物を製造することができる。当該含有量の下限値は0g(0質量部)が望まれるが、実施例に記載の含有量の測定方法における検出限界は0.005g(0.005質量部)(50ppm)程度である。また、本発明のクエン酸第二鉄水和物は、従来の方法で得られる0.5g(0.5質量部)以下の水溶性有機溶媒を含むクエン酸第二鉄水和物と比較して、その純度及び比表面積が高く、好適に医薬品用途して利用できる。
(Ferric citrate hydrate)
As described above, a dried product of ferric citrate hydrate having a highly reduced water-soluble organic solvent can be obtained. The amount of the water-soluble organic solvent contained in 100 g (100 parts by mass) of the dried product of the ferric citrate hydrate can be reduced to 0.5 g (0.5 parts by mass) or less. Since the present invention has a very high effect of reducing the water-soluble organic solvent, the content of the water-soluble organic solvent is more preferably 0.25 g (0.25 parts by mass) or less, still more preferably 0.1 g (0.1 mass by mass). Parts) or less, most preferably 0.05 g (0.05 parts by mass) or less of ferric citrate hydrate can be produced. The lower limit of the content is preferably 0 g (0 parts by mass), but the detection limit in the content measuring method described in Examples is about 0.005 g (0.005 parts by mass) (50 ppm). Further, the ferric citrate hydrate of the present invention is compared with the ferric citrate hydrate containing 0.5 g (0.5 parts by mass) or less of a water-soluble organic solvent obtained by a conventional method. Therefore, its purity and specific surface area are high, and it can be suitably used for pharmaceutical purposes.
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって何等制限されることはない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
なお、実施例、比較例のクエン酸第二鉄水和物の水溶性有機溶媒の含有量は、ガスクロマトグラフィー(GC)により測定した。なお、GCへの試料導入は、ヘッドスペース(HS)を用いて行った。また、水分の含有量は、カールフィッシャー法により測定し、純度は、高速液体クロマトグラフィー(HPLC)により測定し、比表面積は、窒素吸着法により測定した。各測定に使用した装置、測定の条件は、下記のとおりである。 The content of the water-soluble organic solvent of ferric citrate hydrate in Examples and Comparative Examples was measured by gas chromatography (GC). The sample was introduced into the GC using the headspace (HS). The water content was measured by the Karl Fischer method, the purity was measured by high performance liquid chromatography (HPLC), and the specific surface area was measured by the nitrogen adsorption method. The equipment used for each measurement and the measurement conditions are as follows.
(水溶性有機溶媒の含有量)
クエン酸第二鉄水和物の水溶性有機溶媒の含有量は以下の条件にて測定した。
装置:ガスクロマトグラフ装置(Agilent Technologies, I
nc.製)
検出器:水素炎イオン化検出器(Agilent Technologies, I
nc.製)
カラム:内径0.53mm、長さ30mのフューズドシリカ管の内面にガスクロマト
グラフィー用ポリエチレングリコールを厚さ1μmで被覆されたもの。
カラム温度:注入後50℃6分、その後毎分40℃で220℃まで昇温し、220℃
で5分間維持する。
カラム圧力:3psi
注入温度:250℃
検出器温度:250℃
キャリヤーガス:ヘリウム
スプリット:1/10
ヘッドスペース加熱温度:90℃
ヘッドスペース加熱時間:30分間
クエン酸第二鉄水和物の水溶性有機溶媒の含有量は、上記条件で測定される水溶性有機溶媒のピーク面積値から、検量線法によりクエン酸第二鉄の質量に対する水溶性有機溶媒の質量の割合である。
(Content of water-soluble organic solvent)
The content of the water-soluble organic solvent of ferric citrate hydrate was measured under the following conditions.
Equipment: Gas chromatograph equipment (Agilent Technologies, I)
nc. Made)
Detector: Hydrogen Flame Ionization Detector (Agilent Technologies, I)
nc. Made)
Column: A fused silica tube having an inner diameter of 0.53 mm and a length of 30 m coated with polyethylene glycol for gas chromatography to a thickness of 1 μm.
Column temperature: 50 ° C. for 6 minutes after injection, then warm to 220 ° C. at 40 ° C. per minute to 220 ° C.
Hold for 5 minutes.
Column pressure: 3psi
Injection temperature: 250 ° C
Detector temperature: 250 ° C
Carrier gas: Helium split: 1/10
Headspace heating temperature: 90 ° C
Headspace heating time: 30 minutes The content of the water-soluble organic solvent of ferric citrate hydrate is determined by the calibration curve method from the peak area value of the water-soluble organic solvent measured under the above conditions. The ratio of the mass of the water-soluble organic solvent to the mass of.
(水分量)
クエン酸第二鉄水和物の水分量は、下記条件で測定した。
装置:水分測定装置(三菱化学製)
測定方法:カールフィッシャー滴定容量法
滴定剤:SS−Z(三菱化学製)
溶剤:無水メタノール
試料量:約15mg
水分量は、上記条件にて3回測定した平均値を採用した。
(amount of water)
The water content of ferric citrate hydrate was measured under the following conditions.
Equipment: Moisture measuring equipment (manufactured by Mitsubishi Chemical Corporation)
Measurement method: Karl Fischer titration volume method Titration agent: SS-Z (manufactured by Mitsubishi Chemical Corporation)
Solvent: Anhydrous methanol Sample amount: Approximately 15 mg
For the water content, the average value measured three times under the above conditions was adopted.
(純度)
クエン酸第二鉄水和物の純度は以下の条件にて測定した。
装置:液体クロマトグラフ装置(Waters Corporation製)
検出器:紫外吸光光度計(Waters Corporation製)
測定波長:210nm
カラム:内径4.6mm、長さ250mmのステンレス管に、5μmの液体クロマ
トグラフィー用オクタデシルシリル化シリカゲルが充填されたもの。
移動相:りん酸二水素ナトリウム12.0gを水2000mLに添加し溶解させた
後、りん酸を加えて、pH2.2に調整した混合液。
流量:毎分1.0mL
カラム温度:30℃付近の一定温度
測定時間:30分
クエン酸第二鉄水和物の純度は、上記条件で測定される全ピーク(鉄及び溶媒由来のピークを除く)の面積値の合計に対するクエン酸のピーク面積値の割合である。
(purity)
The purity of ferric citrate hydrate was measured under the following conditions.
Equipment: Liquid chromatograph equipment (manufactured by Waters Corporation)
Detector: Ultraviolet absorptiometer (manufactured by Waters Corporation)
Measurement wavelength: 210 nm
Column: A stainless steel tube having an inner diameter of 4.6 mm and a length of 250 mm filled with 5 μm of octadecylsilylated silica gel for liquid chromatography.
Mobile phase: A mixed solution prepared by adding 12.0 g of sodium dihydrogen phosphate to 2000 mL of water to dissolve it, and then adding phosphoric acid to adjust the pH to 2.2.
Flow rate: 1.0 mL / min
Column temperature: Constant temperature around 30 ° C Measurement time: 30 minutes The purity of ferric citrate hydrate is based on the total area value of all peaks (excluding peaks derived from iron and solvent) measured under the above conditions. It is the ratio of the peak area value of citric acid.
(比表面積)
クエン酸第二鉄水和物の比表面積は以下の条件にて測定した。
装置:比表面積測定装置(MicrotracBEL製)
測定方法:定容量式窒素吸着法
試料量:約100mg
前処理温度:40℃
前処理時間:1時間
クエン酸第二水和物の比表面積は、上記条件で窒素の分圧が0.1〜0.3の範囲で各分圧での窒素吸着量を測定し、分圧と窒素吸着量からBET法により解析し算出した。
(Specific surface area)
The specific surface area of ferric citrate hydrate was measured under the following conditions.
Device: Specific surface area measuring device (manufactured by MicrotracBEL)
Measurement method: Constant volume nitrogen adsorption method Sample amount: Approximately 100 mg
Pretreatment temperature: 40 ° C
Pretreatment time: 1 hour For the specific surface area of citrate secondary hydrate, measure the amount of nitrogen adsorption at each partial pressure in the range of 0.1 to 0.3 under the above conditions, and divide the pressure. Was analyzed and calculated by the BET method from the amount of nitrogen adsorbed.
製造例1(クエン酸第二鉄水和物の湿体の製造例)
攪拌翼、温度計を取り付けた5Lの四つ口フラスコに、塩化鉄六水和物400.0gと水1600mLを加え攪拌した。次いで、水酸化ナトリウム177.6gと水1600mLから調製した水溶液を0〜10℃で3時間かけて滴下した。次いで、0〜10℃で1時間撹拌した後、遠心分離により析出物を分離し、水100mLで分離後の析出物を2回洗浄した。次いで、得られた析出物に水2000mLを加え、0〜10℃で1時間攪拌した。遠心分離により析出を分離し、水100mLで分離後の析出物を2回洗浄した。さらに、得られた析出物に水2000mLを加え、0〜10℃で1時間攪拌した。遠心分離により析出物を分離し、水100mLで分離後の析出物を2回洗浄した。
Production Example 1 (Production example of a wet body of ferric citrate hydrate)
400.0 g of iron chloride hexahydrate and 1600 mL of water were added to a 5 L four-necked flask equipped with a stirring blade and a thermometer and stirred. Then, an aqueous solution prepared from 177.6 g of sodium hydroxide and 1600 mL of water was added dropwise at 0 to 10 ° C. over 3 hours. Then, after stirring at 0 to 10 ° C. for 1 hour, the precipitate was separated by centrifugation, and the separated precipitate was washed twice with 100 mL of water. Then, 2000 mL of water was added to the obtained precipitate, and the mixture was stirred at 0 to 10 ° C. for 1 hour. The precipitate was separated by centrifugation, and the separated precipitate was washed twice with 100 mL of water. Further, 2000 mL of water was added to the obtained precipitate, and the mixture was stirred at 0 to 10 ° C. for 1 hour. The precipitate was separated by centrifugation, and the separated precipitate was washed twice with 100 mL of water.
攪拌翼、温度計を取り付けた5Lの四つ口フラスコに、クエン酸無水物284.3gと水480mLを加え攪拌した。次いで、上記で得られた析出物を加え、20〜30℃で30分間撹拌した。さらに、80℃付近まで加温し、75〜85℃で2時間撹拌した。25℃付近まで冷却した後、ポアサイズ0.5μmのPTFEフィルターにより濾過して不溶物を除去し、濾液を得た。アセトン8000mLに、20〜30℃で30分間かけて得られた濾液を滴下した。20〜30℃で1時間撹拌した後、遠心分離により析出物を分離し、アセトン400mLで分離後の析出物を2回洗浄した。得られた析出物にアセトン4000mLを加え、20〜30℃で1時間撹拌した。遠心分離により析出物を分離し、アセトン400mLで分離後の析出物を2回洗浄した。以上のようにして、アセトンを含むクエン酸第二鉄800.2gを得た。得られたクエン酸第二鉄水和物の湿体中のアセトンの含有量は湿体100g(100質量部)当たり、44.8g(44.8質量部)、水分量は16.2g(16.2質量部)であった。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は下記式にて算出し、41.5g(41.5質量部)であった。
換算水分量=水分量/(100−アセトンの含有量−水分量)×100
284.3 g of citric acid anhydride and 480 mL of water were added to a 5 L four-necked flask equipped with a stirring blade and a thermometer, and the mixture was stirred. Then, the precipitate obtained above was added, and the mixture was stirred at 20 to 30 ° C. for 30 minutes. Further, the mixture was heated to around 80 ° C. and stirred at 75 to 85 ° C. for 2 hours. After cooling to around 25 ° C., the mixture was filtered through a PTFE filter having a pore size of 0.5 μm to remove insoluble matter, and a filtrate was obtained. The obtained filtrate was added dropwise to 8000 mL of acetone at 20 to 30 ° C. over 30 minutes. After stirring at 20 to 30 ° C. for 1 hour, the precipitate was separated by centrifugation, and the separated precipitate was washed twice with 400 mL of acetone. 4000 mL of acetone was added to the obtained precipitate, and the mixture was stirred at 20 to 30 ° C. for 1 hour. The precipitate was separated by centrifugation, and the separated precipitate was washed twice with 400 mL of acetone. As described above, 800.2 g of ferric citrate containing acetone was obtained. The content of acetone in the obtained ferric citrate hydrate wet body is 44.8 g (44.8 parts by mass) per 100 g (100 parts by mass) of the wet body, and the water content is 16.2 g (16). .2 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was calculated by the following formula and was 41.5 g (41.5 parts by mass).
Converted water content = water content / (100-acetone content-water content) x 100
実施例1
ガラスシャーレ皿に、上記クエン酸第二鉄水和物を入れ、棚式乾燥機で温度:30℃、減圧度:約2kPaにて5時間減圧乾燥した。減圧乾燥後、クエン酸第二鉄水和物(乾燥体)中のアセトンの含有量はクエン酸第二鉄水和物(乾燥体)100g(100質量部)当たり0.5g(0.5質量部)であった。また、クエン酸第二鉄水和物(乾燥体)の水分は20.8%(20.8質量部)であり、純度は98.47%であり、比表面積は52.2m2/gであった。
Example 1
The ferric citrate hydrate was placed in a glass Petri dish and dried under reduced pressure in a shelf-type dryer at a temperature of 30 ° C. and a degree of reduced pressure of about 2 kPa for 5 hours. After drying under reduced pressure, the content of acetone in the ferric citrate hydrate (dried product) is 0.5 g (0.5 mass by mass) per 100 g (100 parts by mass) of the ferric citrate hydrate (dried product). Department). The water content of ferric citrate hydrate (dried product) was 20.8% (20.8 parts by mass), the purity was 98.47%, and the specific surface area was 52.2 m 2 / g. there were.
以下の実施例、及び比較例では、製造例1で製造したクエン酸第二鉄水和物の湿体を、水及びアセトンを含有する溶媒に分散させた後、固液分離し、水の含有量及びアセトンの含有量を表1に示す含有量に調整したクエン酸第二鉄水和物の湿体を用いた。 In the following Examples and Comparative Examples, the wet body of ferric citrate hydrate produced in Production Example 1 was dispersed in a solvent containing water and acetone, then solid-liquid separated and contained in water. A wet body of ferric citrate hydrate having the amount and the content of acetone adjusted to the contents shown in Table 1 was used.
実施例2〜17、比較例1〜3
表1に示すクエン酸第二鉄水和物の湿体を使用し、表1に示す条件で減圧乾燥を行った以外は、実施例1と同様に実施した。得られたクエン酸第二鉄水和物の乾燥体の分析結果を表2に示した。
Examples 2 to 17, Comparative Examples 1 to 3
The wet body of ferric citrate hydrate shown in Table 1 was used, and the same procedure as in Example 1 was carried out except that the wet body was dried under reduced pressure under the conditions shown in Table 1. The analysis results of the obtained dried ferric citrate hydrate are shown in Table 2.
製造例2(クエン酸第二鉄水和物の湿体の製造例)
クエン酸無水物を184.8gを用いた以外は製造例1と同様の条件でクエン酸第二鉄水和物の湿体を製造した。得られたクエン酸第二鉄水和物の湿体中のアセトンの含有量は湿体100g(100質量部)当たり44.3g(44.3質量部)、水分量は15.9g(15.9質量部)であった。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は、39.9g(39.9質量部)であった。
Production Example 2 (Production example of a wet body of ferric citrate hydrate)
A wet body of ferric citrate hydrate was produced under the same conditions as in Production Example 1 except that 184.8 g of citrate anhydride was used. The content of acetone in the obtained ferric citrate hydrate wet body was 44.3 g (44.3 parts by mass) per 100 g (100 parts by mass) of the wet body, and the water content was 15.9 g (15. 9 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was 39.9 g (39.9 parts by mass).
実施例18
製造例2で製造したクエン酸第二鉄水和物の湿体を、水及びアセトンを含有する溶媒に分散させた後、固液分離し、湿体100g当たりのアセトンの含有量を48.9g(48.9質量部)、水分量を18.4g(18.4質量部)に調整した。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は、56.3g(56.3質量部)であった。
Example 18
The wet body of ferric citrate hydrate produced in Production Example 2 was dispersed in a solvent containing water and acetone, and then solid-liquid separated to obtain an acetone content of 48.9 g per 100 g of the wet body. (48.9 parts by mass), the water content was adjusted to 18.4 g (18.4 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was 56.3 g (56.3 parts by mass).
ガラスシャーレ皿に、上記クエン酸第二鉄水和物を入れ、棚式乾燥機で温度:30℃、減圧度:約2kPaにて3時間減圧乾燥した。減圧乾燥後、クエン酸第二鉄水和物(乾燥体)中のアセトンの含有量はクエン酸第二鉄水和物(乾燥体)100g(100質量部)当たり0.02g(0.02質量部)であった。また、クエン酸第二鉄水和物(乾燥体)の水分は20.4%(20.4質量部)であり、純度は98.69%であり、比表面積は89.2m2/gであった。 The ferric citrate hydrate was placed in a glass Petri dish and dried under reduced pressure in a shelf-type dryer at a temperature of 30 ° C. and a degree of reduced pressure of about 2 kPa for 3 hours. After drying under reduced pressure, the content of acetone in the ferric citrate hydrate (dried product) is 0.02 g (0.02 mass by mass) per 100 g (100 parts by mass) of the ferric citrate hydrate (dried product). Department). The water content of ferric citrate hydrate (dried product) was 20.4% (20.4 parts by mass), the purity was 98.69%, and the specific surface area was 89.2 m 2 / g. there were.
比較例4
製造例2で製造したクエン酸第二鉄水和物の湿体を、水及びアセトンを含有する溶媒に分散させた後、固液分離し、湿体100g当たりのアセトンの含有量を46.3g(46.3質量部)、水分量を12.5g(12.5質量部)に調整した。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は、30.3g(30.3質量部)であった。
Comparative Example 4
The wet body of ferric citrate hydrate produced in Production Example 2 was dispersed in a solvent containing water and acetone, then solid-liquid separated, and the content of acetone per 100 g of the wet body was 46.3 g. (46.3 parts by mass), the water content was adjusted to 12.5 g (12.5 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was 30.3 g (30.3 parts by mass).
ガラスシャーレ皿に、上記クエン酸第二鉄水和物を入れ、棚式乾燥機で温度:30℃、減圧度:約2kPaにて3時間減圧乾燥した。減圧乾燥後、クエン酸第二鉄水和物(乾燥体)中のアセトンの含有量はクエン酸第二鉄水和物(乾燥体)100g(100質量部)当たり2.7g(2.7質量部)であった。また、クエン酸第二鉄水和物(乾燥体)の水分は18.4%(18.4質量部)であり、純度は98.36%であり、比表面積は120.5m2/gであった。 The ferric citrate hydrate was placed in a glass Petri dish and dried under reduced pressure in a shelf-type dryer at a temperature of 30 ° C. and a degree of reduced pressure of about 2 kPa for 3 hours. After drying under reduced pressure, the content of acetone in the ferric citrate hydrate (dried product) is 2.7 g (2.7 mass) per 100 g (100 parts by mass) of the ferric citrate hydrate (dried product). Department). The water content of ferric citrate hydrate (dried product) was 18.4% (18.4 parts by mass), the purity was 98.36%, and the specific surface area was 120.5 m 2 / g. there were.
製造例3(クエン酸第二鉄水和物の湿体の製造例)
クエン酸無水物を369.6gを用いた以外は製造例1と同様の条件でクエン酸第二鉄水和物の湿体を製造した。得られたクエン酸第二鉄水和物の湿体中のアセトンの含有量は湿体100g(100質量部)当たり47.9g(47.9質量部)、水分量は16.0g(16.0質量部)であった。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は、44.3g(44.3質量部)であった。
Production Example 3 (Production example of a wet body of ferric citrate hydrate)
A wet body of ferric citrate hydrate was produced under the same conditions as in Production Example 1 except that 369.6 g of citrate anhydride was used. The content of acetone in the obtained ferric citrate hydrate wet body was 47.9 g (47.9 parts by mass) per 100 g (100 parts by mass) of the wet body, and the water content was 16.0 g (16. It was 0 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was 44.3 g (44.3 parts by mass).
実施例19
製造例3で製造したクエン酸第二鉄水和物の湿体を、水及びアセトンを含有する溶媒に分散させた後、固液分離し、湿体100g当たりのアセトンの含有量を47.5g(47.5質量部)、水分量を18.8g(18.8質量部)に調整した。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は、55.8g(55.8質量部)であった。
Example 19
The wet body of ferric citrate hydrate produced in Production Example 3 was dispersed in a solvent containing water and acetone, and then solid-liquid separated to increase the content of acetone per 100 g of the wet body to 47.5 g. (47.5 parts by mass), the water content was adjusted to 18.8 g (18.8 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was 55.8 g (55.8 parts by mass).
ガラスシャーレ皿に、上記クエン酸第二鉄水和物を入れ、棚式乾燥機で温度:30℃、減圧度:約2kPaにて3時間減圧乾燥した。減圧乾燥後、クエン酸第二鉄水和物(乾燥体)中のアセトンの含有量はクエン酸第二鉄水和物(乾燥体)100g(100質量部)当たり0.01g(0.01質量部)であった。また、クエン酸第二鉄水和物(乾燥体)の水分は20.1%(20.1質量部)であり、純度は98.45%であり、比表面積は13.8m2/gであった。 The ferric citrate hydrate was placed in a glass Petri dish and dried under reduced pressure in a shelf-type dryer at a temperature of 30 ° C. and a degree of reduced pressure of about 2 kPa for 3 hours. After drying under reduced pressure, the content of acetone in the ferric citrate hydrate (dried product) is 0.01 g (0.01 mass by mass) per 100 g (100 parts by mass) of the ferric citrate hydrate (dried product). Department). The water content of ferric citrate hydrate (dried product) was 20.1% (20.1 parts by mass), the purity was 98.45%, and the specific surface area was 13.8 m 2 / g. there were.
比較例5
製造例3で製造したクエン酸第二鉄水和物の湿体を、水及びアセトンを含有する溶媒に分散させた後、固液分離し、湿体100g当たりのアセトンの含有量を40.2g(40.2質量部)、水分量を13.0g(13.0質量部)に調整した。クエン酸第二鉄無水物換算量100g(100質量部)当たりの水の含有量(換算水分量)は、27.8g(27.8質量部)であった。
Comparative Example 5
The wet body of ferric citrate hydrate produced in Production Example 3 was dispersed in a solvent containing water and acetone, then solid-liquid separated, and the content of acetone per 100 g of the wet body was 40.2 g. (40.2 parts by mass), the water content was adjusted to 13.0 g (13.0 parts by mass). The water content (converted water content) per 100 g (100 parts by mass) of ferric citrate anhydride was 27.8 g (27.8 parts by mass).
ガラスシャーレ皿に、上記クエン酸第二鉄水和物を入れ、棚式乾燥機で温度:30℃、減圧度:約2kPaにて3時間減圧乾燥した。減圧乾燥後、クエン酸第二鉄水和物(乾燥体)中のアセトンの含有量はクエン酸第二鉄水和物(乾燥体)100g(100質量部)当たり1.0g(1.0質量部)であった。また、クエン酸第二鉄水和物(乾燥体)の水分は17.6%(17.6質量部)であり、純度は98.29%であり、比表面積は15.7m2/gであった。 The ferric citrate hydrate was placed in a glass Petri dish and dried under reduced pressure in a shelf-type dryer at a temperature of 30 ° C. and a degree of reduced pressure of about 2 kPa for 3 hours. After drying under reduced pressure, the content of acetone in the ferric citrate hydrate (dried product) is 1.0 g (1.0 mass by mass) per 100 g (100 parts by mass) of the ferric citrate hydrate (dried product). Department). The water content of ferric citrate hydrate (dried product) was 17.6% (17.6 parts by mass), the purity was 98.29%, and the specific surface area was 15.7 m 2 / g. there were.
Claims (6)
クエン酸第二鉄無水物換算量100g(100質量部)当たり、水を40〜150g(40〜150質量部)含有するクエン酸第二鉄水和物の湿体を減圧乾燥することを特徴とするクエン酸第二鉄水和物の製造方法。 A method for producing ferric citrate hydrate from a wet body of ferric citrate hydrate containing water and a water-soluble organic solvent.
A wet body of ferric citrate hydrate containing 40 to 150 g (40 to 150 parts by mass) of water per 100 g (100 parts by mass) of ferric citrate anhydride is dried under reduced pressure. A method for producing ferric citrate hydrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080125A JP7175235B2 (en) | 2019-04-19 | 2019-04-19 | Method for producing ferric citrate hydrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019080125A JP7175235B2 (en) | 2019-04-19 | 2019-04-19 | Method for producing ferric citrate hydrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020176092A true JP2020176092A (en) | 2020-10-29 |
JP7175235B2 JP7175235B2 (en) | 2022-11-18 |
Family
ID=72936551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019080125A Active JP7175235B2 (en) | 2019-04-19 | 2019-04-19 | Method for producing ferric citrate hydrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7175235B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006518391A (en) * | 2003-02-19 | 2006-08-10 | グロボアジア エルエルシー | Ferric organic compounds, their use, and methods for their production |
JP2009504777A (en) * | 2005-08-18 | 2009-02-05 | グロボアジア エルエルシー | Pharmaceutical grade ferric organic compounds, their use and process for their production |
JP2012162522A (en) * | 2011-01-18 | 2012-08-30 | Japan Tobacco Inc | FERRIC CITRATE NOT SUBSTANTIALLY CONTAINING β OXIDATION IRON HYDROXIDE |
JP2018500308A (en) * | 2014-12-17 | 2018-01-11 | バイオフォア インディア ファーマシューティカルズ プライベート リミテッド | Improved method for synthesizing organoiron compounds |
JP2018526349A (en) * | 2015-08-05 | 2018-09-13 | ルピン・リミテッド | Process for the preparation of pharmaceutical grade ferric citrate |
-
2019
- 2019-04-19 JP JP2019080125A patent/JP7175235B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006518391A (en) * | 2003-02-19 | 2006-08-10 | グロボアジア エルエルシー | Ferric organic compounds, their use, and methods for their production |
JP2009504777A (en) * | 2005-08-18 | 2009-02-05 | グロボアジア エルエルシー | Pharmaceutical grade ferric organic compounds, their use and process for their production |
JP2013177416A (en) * | 2005-08-18 | 2013-09-09 | Panion & Bf Biotech Inc | Pharmaceutical-grade ferric organic compound, use of the same, and method of producing the same |
JP2012162522A (en) * | 2011-01-18 | 2012-08-30 | Japan Tobacco Inc | FERRIC CITRATE NOT SUBSTANTIALLY CONTAINING β OXIDATION IRON HYDROXIDE |
JP2018500308A (en) * | 2014-12-17 | 2018-01-11 | バイオフォア インディア ファーマシューティカルズ プライベート リミテッド | Improved method for synthesizing organoiron compounds |
JP2018526349A (en) * | 2015-08-05 | 2018-09-13 | ルピン・リミテッド | Process for the preparation of pharmaceutical grade ferric citrate |
Also Published As
Publication number | Publication date |
---|---|
JP7175235B2 (en) | 2022-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raoov et al. | Removal of 2, 4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamics | |
JP5070596B2 (en) | Chitosan derivative and method for producing the same | |
JP2019520460A (en) | Method of manufacturing and purifying Sugamax | |
JP2018500308A (en) | Improved method for synthesizing organoiron compounds | |
JP6736297B2 (en) | Reversibly cross-linked cellulose ethers and a process for their preparation by selective oxidation of adjacent OH groups | |
KR101837104B1 (en) | Method for the synthesis of sucralfate and sucralfate synthesized by the same | |
JP2020176092A (en) | Production method of ferric citrate hydrate | |
JP4785287B2 (en) | Method of loading nicotine onto ion exchange resin in anhydrous | |
Wang et al. | A phenyl-functionalized nitrogen-rich magnetic hyper crosslinked polymer for magnetic solid-phase extraction of 5-nitroimidazoles residues in water and fish samples | |
JPWO2019093491A1 (en) | Method for producing ferric citrate hydrate | |
EP2736614B1 (en) | Method of removing alkylene halogenohydrin from cellulose ether | |
JPWO2019142941A1 (en) | Method for producing ferric citrate | |
JP7335268B2 (en) | Method for producing ferric citrate hydrate | |
MX2011006041A (en) | Process for the preparation of non-genotoxic diacetylrhein (diacerein) and formulations comprising non-genotoxic diacetylrhein. | |
Chen et al. | Preparation and application of sulfated lily polysaccharide bridged polyhedral oligomeric silsesquioxane hybrid organosilicas as stationary phase | |
CN103626675B (en) | Schiff base and preparation method thereof as well as application serving as cigarette free-radical scavenger | |
JPH0457801A (en) | Purified hydroxyalkylated cyclodextrin and its production | |
JP2019167305A (en) | Method for producing ferric citrate | |
JP5489484B2 (en) | Method for producing silane-modified cationized polymer compound powder | |
KR20120033301A (en) | Silane-modified cationized polymeric compound and process for production thereof | |
CN104926833A (en) | Novel industrial crystallizing technology for cefathiamidine | |
CN110684030A (en) | Synthesis method and application of hydroxyl-controlled hydroxyl-oxidized cucurbituril CB [6] - (OH) n | |
CN108299323A (en) | A kind of novel crystal forms of anti-heart failure cocrystalization compound | |
JPWO2020100912A1 (en) | Method for producing ferric citrate hydrate | |
KR20160084412A (en) | Powdered gyro-light-type calcium silicate having high oil absorbency and large particle diameter, and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7175235 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |