JP2020173905A - Evaluation method of catalyst layer - Google Patents

Evaluation method of catalyst layer Download PDF

Info

Publication number
JP2020173905A
JP2020173905A JP2019073533A JP2019073533A JP2020173905A JP 2020173905 A JP2020173905 A JP 2020173905A JP 2019073533 A JP2019073533 A JP 2019073533A JP 2019073533 A JP2019073533 A JP 2019073533A JP 2020173905 A JP2020173905 A JP 2020173905A
Authority
JP
Japan
Prior art keywords
catalyst layer
quotient
value
base material
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019073533A
Other languages
Japanese (ja)
Inventor
裕之 菅田
Hiroyuki Sugata
裕之 菅田
大地 阿部
Daichi Abe
大地 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019073533A priority Critical patent/JP2020173905A/en
Publication of JP2020173905A publication Critical patent/JP2020173905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To restrain deterioration of yield due to transfer failure.SOLUTION: An evaluation method of catalytic layer for use in a fuel cell having polymer electrolyte includes a step of executing surface interfacial cutting test by SAICAS method for a catalytic layer formed on a backing material, in a state before being transferred to the polymer electrolyte, a step of identifying the quotient by dividing the value of perpendicular force obtained when a cutting blade for cutting the catalytic layer reaches the boundary surface of the catalytic layer and the backing material, by the value of horizontal force obtained after the cutting blade reaches the boundary surface, in the surface interfacial cutting test, and a step of determining that transfer failure does not occur when the quotient is equal to or more than a predetermined threshold level, and that transfer failure occurs when the quotient is less than the threshold level.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池に用いられる触媒層の評価方法に関する。 The present invention relates to a method for evaluating a catalyst layer used in a fuel cell.

従来から、燃料電池の膜電極接合体は、基材上に形成された触媒層を電解質膜に転写する工程を含んで製造されることがある。特許文献1では、触媒層転写後の基材に所定量以上の触媒層の残留が検出された場合に、転写不良が発生していると判定している。 Conventionally, a membrane electrode assembly of a fuel cell may be manufactured including a step of transferring a catalyst layer formed on a base material to an electrolyte membrane. In Patent Document 1, it is determined that a transfer defect has occurred when a residue of a predetermined amount or more of the catalyst layer is detected on the substrate after the catalyst layer is transferred.

特開2014−201053号公報Japanese Unexamined Patent Publication No. 2014-201053

特許文献1では、触媒層転写後の基材を用いて判定を行なうため、転写不良が発生した場合に触媒層や基材等の材料のロスが発生し、歩留まりが低下するおそれがある。このため、転写不良による歩留まりの低下を抑制できる技術が求められていた。 In Patent Document 1, since the determination is made using the base material after the catalyst layer has been transferred, material loss such as the catalyst layer and the base material may occur when a transfer failure occurs, and the yield may decrease. Therefore, there has been a demand for a technique capable of suppressing a decrease in yield due to poor transcription.

本発明は、以下の形態として実現することが可能である。 The present invention can be realized as the following forms.

本発明の一形態によれば、触媒層の評価方法が提供される。この触媒層の評価方法は、電解質膜を有する燃料電池に用いられる触媒層の評価方法であって、前記電解質膜へと転写される前の状態における、基材上に形成された前記触媒層に対してSAICAS法による表面界面切削試験を実施する工程と、前記表面界面切削試験において、前記触媒層を切削する切削刃が前記触媒層と前記基材との界面に到達した時の垂直力の値を、前記切削刃が前記界面に到達した後の水平力の値で除した商を特定する工程と、前記商が予め定められた閾値以上である場合に転写不良が発生しないと判定し、前記商が前記閾値未満である場合に前記転写不良が発生すると判定する工程と、備える。この形態の触媒層の評価方法によれば、SAICAS法による表面界面切削試験において触媒層を切削する切削刃が触媒層と基材との界面に到達した時の垂直力の値を切削刃が界面に到達した後の水平力の値で除した商に基づいて判定を行なうので、触媒層を電解質膜に転写する前の段階で転写性を判断することができる。このため、「転写不良が発生しない」と判定された触媒層を電解質膜へと転写させて膜電極接合体を形成できるので、転写不良の発生を抑制でき、触媒層や基材等の材料のロスが発生することを抑制できる。したがって、転写不良による歩留まりの低下を抑制できる。 According to one embodiment of the present invention, a method for evaluating a catalyst layer is provided. This method for evaluating the catalyst layer is a method for evaluating the catalyst layer used in a fuel cell having an electrolyte membrane, and is used on the catalyst layer formed on the substrate in a state before being transferred to the electrolyte membrane. On the other hand, in the step of performing the surface interface cutting test by the SAICAS method and the surface interface cutting test, the value of the vertical force when the cutting blade for cutting the catalyst layer reaches the interface between the catalyst layer and the base material. The step of specifying the quotient obtained by dividing the quotient by the value of the horizontal force after the cutting blade reaches the interface, and determining that transfer failure does not occur when the quotient is equal to or higher than a predetermined threshold, and the above-mentioned A step of determining that the transfer defect occurs when the quotient is less than the threshold value is provided. According to the evaluation method of the catalyst layer of this form, the cutting edge determines the value of the vertical force when the cutting blade for cutting the catalyst layer reaches the interface between the catalyst layer and the base material in the surface interface cutting test by the SAICAS method. Since the determination is made based on the quotient divided by the value of the horizontal force after reaching, the transferability can be determined at the stage before the catalyst layer is transferred to the electrolyte membrane. Therefore, since the catalyst layer determined to "do not cause transfer failure" can be transferred to the electrolyte membrane to form a membrane electrode assembly, the occurrence of transfer failure can be suppressed, and the material such as the catalyst layer and the base material can be used. It is possible to suppress the occurrence of loss. Therefore, it is possible to suppress a decrease in yield due to poor transcription.

本発明は、種々の形態で実現することも可能である。例えば、上記評価方法を工程の一部に含む膜電極接合体の製造方法や燃料電池の製造方法、これらの方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記憶した記憶媒体等の形態で実現することができる。 The present invention can also be realized in various forms. For example, a method for manufacturing a membrane electrode assembly and a method for manufacturing a fuel cell including the above evaluation method as a part of a process, a computer program for realizing these methods, a storage medium for storing the computer program, and the like. can do.

本発明の一実施形態としての触媒層の評価方法を示すフローチャートである。It is a flowchart which shows the evaluation method of the catalyst layer as one Embodiment of this invention. 基材上に形成された触媒層を模式的に示す断面図である。It is sectional drawing which shows typically the catalyst layer formed on the base material. SAICAS法による表面界面切削試験の概要を模式的に示す説明図である。It is explanatory drawing which shows typically the outline of the surface interface cutting test by the SAICAS method. SAICAS法による表面界面切削試験において測定された剥離強度と転写残り率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the peel strength and the transfer residue ratio measured in the surface interface cutting test by the SAICAS method. 転写成立のための推定要件を示す表である。It is a table which shows the estimation requirement for transcription establishment. 商と転写残り率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a quotient and a transcription residue ratio. 比較例における触媒層の評価方法の概要を模式的に示す説明図である。It is explanatory drawing which shows typically the outline of the evaluation method of the catalyst layer in the comparative example. テープ剥離強度と転写残り率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the tape peeling strength and the transfer residue ratio.

A.実施形態:
図1は、本発明の一実施形態としての触媒層の評価方法を示すフローチャートである。この評価方法は、固体高分子型燃料電池に用いられる膜電極接合体(MEA:Membrane Electrode Assembly)の触媒層を対象としている。
A. Embodiment:
FIG. 1 is a flowchart showing a method for evaluating a catalyst layer as an embodiment of the present invention. This evaluation method targets the catalyst layer of a membrane electrode assembly (MEA) used in polymer electrolyte fuel cells.

まず、膜電極接合体および膜電極接合体を備える燃料電池の構成および製造方法について、簡単に説明する。燃料電池は、複数の単セルが積層されたスタック構造を有し、各単セルは、膜電極接合体およびガス拡散層と、膜電極接合体およびガス拡散層を挟む一対のセパレータとで構成される。膜電極接合体は、湿潤状態で良好なプロトン伝導性を示す電解質樹脂を主成分とする電解質膜の両面に、触媒層が配置された構成を有する。触媒層のうちの一方はアノード電極として機能し、他方はカソード電極として機能する。 First, the configuration and manufacturing method of the membrane electrode assembly and the fuel cell including the membrane electrode assembly will be briefly described. The fuel cell has a stack structure in which a plurality of single cells are laminated, and each single cell is composed of a membrane electrode assembly and a gas diffusion layer, and a pair of separators sandwiching the membrane electrode assembly and the gas diffusion layer. To. The membrane electrode assembly has a structure in which catalyst layers are arranged on both sides of an electrolyte membrane containing an electrolyte resin as a main component, which exhibits good proton conductivity in a wet state. One of the catalyst layers functions as an anode electrode and the other functions as a cathode electrode.

各触媒層は、いずれも触媒粒子を担持した触媒担持カーボンと電解質樹脂とを主成分として形成されている。触媒粒子としては、例えば白金等が用いられてもよい。電解質樹脂としては、例えばナフィオン(登録商標)等のフッ素系樹脂が用いられてもよい。2つの触媒層のうちの少なくとも一方は、触媒担持カーボンと電解質樹脂と溶媒とを含む触媒インクを基材に塗布して乾燥させることにより形成され、かかる基材から電解質膜へと転写される。基材としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリテトラフルオロエチレン(PTFE)等のシートが用いられてもよい。 Each catalyst layer is formed mainly of catalyst-supported carbon supporting catalyst particles and an electrolyte resin. As the catalyst particles, for example, platinum or the like may be used. As the electrolyte resin, for example, a fluorine-based resin such as Nafion (registered trademark) may be used. At least one of the two catalyst layers is formed by applying a catalyst ink containing a catalyst-supporting carbon, an electrolyte resin, and a solvent to a base material and drying the base material, and is transferred from the base material to the electrolyte membrane. As the base material, for example, a sheet such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polytetrafluoroethylene (PTFE) may be used.

図2は、基材20上に形成された触媒層30を模式的に示す断面図である。基材20上に形成された触媒層30は、基材20との界面において剥離されることにより、図示しない電解質膜へと転写される。 FIG. 2 is a cross-sectional view schematically showing the catalyst layer 30 formed on the base material 20. The catalyst layer 30 formed on the base material 20 is transferred to an electrolyte membrane (not shown) by being peeled off at the interface with the base material 20.

図1に示す触媒層30の評価方法は、上述の方法により基材20上に触媒インクが塗布されて触媒層30が形成されて、触媒層30の連続生産に先立つ触媒層30の連続試作を行なう前に実行される。 In the evaluation method of the catalyst layer 30 shown in FIG. 1, the catalyst ink is applied onto the base material 20 to form the catalyst layer 30 by the above method, and a continuous trial production of the catalyst layer 30 prior to the continuous production of the catalyst layer 30 is performed. Executed before doing.

電解質膜へと転写される前の状態における、基材20上に形成された触媒層30に対してSAICAS法による表面界面切削試験を実施する(工程P110)。 A surface interface cutting test by the SAICAS method is performed on the catalyst layer 30 formed on the base material 20 in a state before being transferred to the electrolyte membrane (step P110).

図3は、SAICAS法による表面界面切削試験の概要を模式的に示す説明図である。図3では、白抜きの矢印で示す時系列TAに沿って切削刃90が移動する様子を示している。一般に、SAICAS(Surface And Interfacial Cutting Analysis System)法による表面界面切削試験(以下、単に「表面界面切削試験」と記載する)は、試験装置の切削刃90で試料を表面から界面にかけて切削することにより実施される。これにより、材料強度や界面における材料の密着性が解析される。表面界面切削試験では、切削深さ(垂直変位量d)と切削力(水平力FHおよび垂直力FV)とが記録される。水平力FHとは、切削刃90が水平方向に試料から受ける力を意味する。水平方向とは、試料の界面に沿った方向を意味し、試験装置の載置面に沿った方向に相当する。垂直力FVとは、切削刃90が垂直方向に試料から受ける力を意味する。垂直方向とは、水平方向に垂直な方向を意味し、鉛直方向に相当する。 FIG. 3 is an explanatory diagram schematically showing an outline of a surface interface cutting test by the SAICAS method. FIG. 3 shows how the cutting blade 90 moves along the time-series TA indicated by the white arrow. Generally, a surface interface cutting test by the SAICAS (Surface And Interfacial Cutting Analysis System) method (hereinafter, simply referred to as "surface interface cutting test") is performed by cutting a sample from the surface to the interface with a cutting blade 90 of a test device. Will be implemented. As a result, the material strength and the adhesion of the material at the interface are analyzed. In the surface interface cutting test, the cutting depth (vertical displacement amount d) and the cutting force (horizontal force FH and vertical force FV) are recorded. The horizontal force FH means the force that the cutting blade 90 receives from the sample in the horizontal direction. The horizontal direction means the direction along the interface of the sample, and corresponds to the direction along the mounting surface of the test apparatus. The normal force FV means the force that the cutting blade 90 receives from the sample in the vertical direction. The vertical direction means a direction perpendicular to the horizontal direction and corresponds to a vertical direction.

図3の(a)は、触媒層30が切削刃90により切削される前の状態を示している。図3の(b)は、触媒層30が切削刃90により切削されている状態を示している。この状態において記録される水平力FHおよび垂直力FVは、垂直変位量dが大きくなるにつれて、すなわち、切削深さが深くなるにつれて、増加する。図3の(c)は、切削刃90が触媒層30と基材20との界面に到達して、触媒層30が基材20から剥離され始める状態を示している。図3の(c)の状態において記録される水平力FHおよび垂直力FVは、表面界面切削試験の時間軸において最大となる。図3の(c)の状態の後、切削刃90が水平に移動することにより、触媒層30と基材20とが界面剥離する。界面剥離の際に記録される水平力FHは、略一定の或る値で推移し、界面剥離の際に記録される垂直力FVは、ほぼゼロの値で推移する。 FIG. 3A shows a state before the catalyst layer 30 is cut by the cutting blade 90. FIG. 3B shows a state in which the catalyst layer 30 is cut by the cutting blade 90. The horizontal force FH and the normal force FV recorded in this state increase as the vertical displacement amount d increases, that is, as the cutting depth increases. FIG. 3C shows a state in which the cutting blade 90 reaches the interface between the catalyst layer 30 and the base material 20 and the catalyst layer 30 begins to be peeled off from the base material 20. The horizontal force FH and the normal force FV recorded in the state (c) of FIG. 3 are maximum on the time axis of the surface interface cutting test. After the state (c) of FIG. 3, the cutting blade 90 moves horizontally, so that the catalyst layer 30 and the base material 20 are interfacially separated. The horizontal force FH recorded at the time of interfacial peeling changes at a substantially constant value, and the normal force FV recorded at the time of interfacial peeling changes at a value of almost zero.

表面界面切削試験は、例えばダイプラ・ウィンテス株式会社製DN−100S型SAICASを試験装置として用いて行なうことができる。本実施形態では、切削刃90として刃幅1mm、すくい角度20°、逃げ角度10°のボラゾン製切削刃を用いている。また、本実施形態では、定速度モードの測定モードにおいて、垂直速度0.1μm/sec、水平速度10μm/secの条件にて切削を行い、水平力FHおよび垂直力FVを記録している。 The surface interface cutting test can be performed using, for example, a DN-100S type SAICAS manufactured by Daipla Wintes Co., Ltd. as a test apparatus. In this embodiment, a Borazon cutting blade having a blade width of 1 mm, a rake angle of 20 °, and a clearance angle of 10 ° is used as the cutting blade 90. Further, in the present embodiment, in the measurement mode of the constant speed mode, cutting is performed under the conditions of a vertical speed of 0.1 μm / sec and a horizontal speed of 10 μm / sec, and the horizontal force FH and the normal force FV are recorded.

図1に示す評価方法では、表面界面切削試験において、触媒層30を切削する切削刃90が触媒層30と基材20との界面に到達した時の垂直力FVの値Aを、切削刃90が界面に到達した後の水平力FHの値Bで除した商Xを特定する(工程P120)。 In the evaluation method shown in FIG. 1, in the surface interface cutting test, the value A of the vertical force FV when the cutting blade 90 for cutting the catalyst layer 30 reaches the interface between the catalyst layer 30 and the base material 20 is set to the cutting blade 90. The quotient X divided by the value B of the horizontal force FH after reaching the interface is specified (step P120).

切削刃90が触媒層30と基材20との界面に到達した時の垂直力FVの値Aは、触媒層30の強度と相関している。より具体的には、触媒層30のせん断強度と相関している。切削刃90が触媒層30と基材20との界面に到達した時の垂直力FVの値Aは、図3の(c)の状態になったタイミングで記録される垂直力FV(kN)に相当し、時間軸に対する垂直力FVのピーク値に相当する。 The value A of the normal force FV when the cutting blade 90 reaches the interface between the catalyst layer 30 and the base material 20 correlates with the strength of the catalyst layer 30. More specifically, it correlates with the shear strength of the catalyst layer 30. The value A of the normal force FV when the cutting blade 90 reaches the interface between the catalyst layer 30 and the base material 20 is the normal force FV (kN) recorded at the timing of the state (c) in FIG. Corresponds to the peak value of the normal force FV with respect to the time axis.

切削刃90が界面に到達した後の水平力FHの値Bは、触媒層30と基材20との剥離強度Pと相関している。かかる剥離強度Pは、以下の式(1)を用いて算出される。式(1)において、wは、刃幅を意味している。触媒層30と基材20との剥離強度Pは、触媒層30と基材20との接着強度と換言することができる。
P[kN/m]=FV[kN]/w[m] …(1)
The value B of the horizontal force FH after the cutting blade 90 reaches the interface correlates with the peel strength P between the catalyst layer 30 and the base material 20. The peel strength P is calculated using the following formula (1). In the formula (1), w means the blade width. The peel strength P between the catalyst layer 30 and the base material 20 can be rephrased as the adhesive strength between the catalyst layer 30 and the base material 20.
P [kN / m] = FV [kN] / w [m] ... (1)

切削刃90が界面に到達した後の水平力FHの値Bは、図3の(c)の状態の後に切削刃90が水平に移動して触媒層30と基材20とが界面剥離される状態において記録される水平力FH(kN)に相当する。触媒層30と基材20とが界面剥離される状態における水平力FHは、時間軸に対して略一定となる。本実施形態では、予め定めた時間内における、かかる略一定の水平力FHの平均値を値Bとして用いるが、平均値に限らず、或るタイミングにおいて記録される水平力FHの値を値Bとして用いてもよい。 The value B of the horizontal force FH after the cutting blade 90 reaches the interface is such that the cutting blade 90 moves horizontally after the state of (c) in FIG. 3 and the catalyst layer 30 and the base material 20 are separated from each other at the interface. Corresponds to the horizontal force FH (kN) recorded in the state. The horizontal force FH in the state where the catalyst layer 30 and the base material 20 are interfacially separated is substantially constant with respect to the time axis. In the present embodiment, the average value of the substantially constant horizontal force FH within a predetermined time is used as the value B, but the value B is not limited to the average value and is recorded at a certain timing. May be used as.

図1に示すように、商Xが予め定められた閾値α以上であるか否かが特定される(工程P130)。商Xが閾値α以上であると特定された場合(工程P130:YES)、転写不良が発生しないと判定する(工程P140)。他方、商Xが閾値α以上でないと特定された場合、すなわち商Xが閾値α未満であると特定された場合(工程P130:NO)、転写不良が発生すると判定する(工程P150)。このように判定する理由を、以下に説明する。 As shown in FIG. 1, it is specified whether or not the quotient X is equal to or higher than a predetermined threshold value α (step P130). When it is specified that the quotient X is equal to or higher than the threshold value α (step P130: YES), it is determined that no transfer defect occurs (step P140). On the other hand, when it is specified that the quotient X is not equal to or more than the threshold value α, that is, when the quotient X is specified to be less than the threshold value α (step P130: NO), it is determined that a transfer defect occurs (step P150). The reason for making such a determination will be described below.

本願発明者は、基材20上に形成された触媒層30を電解質膜へと転写する際における転写性について、基材20と触媒層30との接着強度、すなわち剥離強度Pが低いほど良好な転写性が得られるのではないかと仮定した。本願発明者は、かかる仮定に基づいて、複数のサンプルに対してSAICAS法による表面界面切削試験を実施するとともに、基材20上に形成された触媒層30を電解質膜へと転写させて、剥離強度Pと転写残り率との関係を求めた。 The inventor of the present application has a better transferability when the catalyst layer 30 formed on the base material 20 is transferred to the electrolyte film, as the adhesive strength between the base material 20 and the catalyst layer 30, that is, the peel strength P is lower. It was assumed that transferability could be obtained. Based on this assumption, the inventor of the present application carries out a surface interface cutting test by the SAICAS method on a plurality of samples, and transfers the catalyst layer 30 formed on the base material 20 to an electrolyte membrane to peel it off. The relationship between the intensity P and the transfer residual rate was determined.

図4は、SAICAS法による表面界面切削試験において測定された剥離強度Pと転写残り率との関係の一例を示すグラフである。図4において、横軸は、上述の試験条件における基材20と触媒層30との剥離強度P(kN/m)を示しており、縦軸は、転写残り率(%)を示している。本実施形態において、「転写残り率」とは、触媒層30が電解質膜へと転写された後における基材20の平面上に、長さ0.5mm以上の触媒層30の残存が確認されたサンプル数を、全体のサンプル数で割った値を意味する。図4によれば、基材20と触媒層30との剥離強度Pと転写残り率とに相関が無いことがわかる。 FIG. 4 is a graph showing an example of the relationship between the peel strength P and the transfer residual ratio measured in the surface interface cutting test by the SAICAS method. In FIG. 4, the horizontal axis represents the peel strength P (kN / m) between the base material 20 and the catalyst layer 30 under the above test conditions, and the vertical axis represents the transfer residual ratio (%). In the present embodiment, the “transfer residue rate” means that the catalyst layer 30 having a length of 0.5 mm or more remains on the plane of the base material 20 after the catalyst layer 30 is transferred to the electrolyte membrane. It means the value obtained by dividing the number of samples by the total number of samples. According to FIG. 4, it can be seen that there is no correlation between the peel strength P between the base material 20 and the catalyst layer 30 and the transfer residue rate.

図5は、転写成立のための推定要件を示す表である。本願発明者は、図4の結果に基づいて、基材20と触媒層30との剥離強度Pが比較的低い場合であっても、触媒層30自体の強度が剥離強度Pよりも低い場合、転写の際に触媒層30が破壊されて転写残りが発生するのではないかと推定した。すなわち、触媒層30自体の強度が大きく、基材20と触媒層30との剥離強度Pが小さい場合に、転写の際に触媒層30の破壊が抑えられつつ基材20と触媒層30との界面の接着が破壊されるので、電解質膜への転写性が良好となるのではないかと推定した。かかる推定によれば、基材20と触媒層30との剥離強度Pと、触媒層30自体の強度との強度比のバランスが重要であると考えられる。 FIG. 5 is a table showing the estimation requirements for the establishment of transcription. Based on the results of FIG. 4, the inventor of the present application considers that the strength of the catalyst layer 30 itself is lower than the peel strength P even when the peel strength P between the base material 20 and the catalyst layer 30 is relatively low. It was presumed that the catalyst layer 30 was destroyed during the transfer and a transfer residue was generated. That is, when the strength of the catalyst layer 30 itself is high and the peel strength P between the base material 20 and the catalyst layer 30 is small, the base material 20 and the catalyst layer 30 are held together while the destruction of the catalyst layer 30 is suppressed during transfer. It was presumed that the transferability to the electrolyte film would be improved because the adhesion at the interface would be broken. According to this estimation, it is considered that the balance of the strength ratio between the peel strength P between the base material 20 and the catalyst layer 30 and the strength of the catalyst layer 30 itself is important.

本願発明者は、かかる推定に基づいて、上述の試験条件におけるSAICAS法を用いた表面界面切削試験を実施し、触媒層30自体の強度と相関のある値Aを、基材20と触媒層30との剥離強度と相関のある値Bで除した商Xを求めるとともに、基材20上に形成された触媒層30を電解質膜へと転写させて、商Xと転写残り率との関係を求めた。 Based on this estimation, the inventor of the present application carries out a surface interface cutting test using the SAICAS method under the above-mentioned test conditions, and sets a value A that correlates with the strength of the catalyst layer 30 itself between the base material 20 and the catalyst layer 30. The quotient X divided by the value B, which correlates with the peeling strength with, is obtained, and the catalyst layer 30 formed on the base material 20 is transferred to the electrolyte membrane to obtain the relationship between the quotient X and the transfer residual ratio. It was.

図6は、商Xと転写残り率との関係の一例を示すグラフである。図6において、横軸は、商Xを示しており、縦軸は、転写残り率(%)を示している。図6によれば、商Xと転写残り率とに相関が有ることがわかる。より具体的には、商Xの値が或る値よりも大きい場合には、転写残り率がゼロとなっており、或る値よりも小さい場合には、商Xの値が小さいほど転写残り率が上昇している。 FIG. 6 is a graph showing an example of the relationship between the quotient X and the transfer residual rate. In FIG. 6, the horizontal axis represents the quotient X, and the vertical axis represents the transcription residue rate (%). According to FIG. 6, it can be seen that there is a correlation between the quotient X and the transcription residual rate. More specifically, when the value of the quotient X is larger than a certain value, the transfer residue rate is zero, and when the value of the quotient X is smaller than a certain value, the smaller the value of the quotient X is, the more the transfer residue is. The rate is rising.

本実施形態では、或る値を閾値αとして定めることにより、図1に示す工程P130において、商Xが予め定められた閾値α以上であるか否かが特定される。本実施形態において、閾値αは、転写残り率がゼロとなる値として、例えば4.3に定められている。このように、閾値αは、予め実験により定められている。 In the present embodiment, by setting a certain value as the threshold value α, it is specified in the step P130 shown in FIG. 1 whether or not the quotient X is equal to or higher than the predetermined threshold value α. In the present embodiment, the threshold value α is set to, for example, 4.3 as a value at which the transcription residue ratio becomes zero. As described above, the threshold value α is predetermined by an experiment.

上述のように、商Xが閾値α以上であると特定された場合(工程P130:YES)には、転写不良が発生しないと判定される(工程P140)ので、工程P140の後、触媒層30の連続試作が実施されてもよい。 As described above, when it is specified that the quotient X is equal to or higher than the threshold value α (step P130: YES), it is determined that no transfer failure occurs (step P140). Therefore, after the step P140, the catalyst layer 30 A continuous trial production of the above may be carried out.

また、商Xが閾値α以上でないと特定された場合、すなわち商Xが閾値α未満であると特定された場合(工程P130:NO)には、転写不良が発生すると判定される(工程P150)ので、工程P150の後、触媒インクを再作成して基材20上に塗布することにより、触媒層30の再作成が実施されてもよい。 Further, when the quotient X is specified not to be equal to or higher than the threshold value α, that is, when the quotient X is specified to be less than the threshold value α (step P130: NO), it is determined that a transfer defect occurs (step P150). Therefore, after the step P150, the catalyst layer 30 may be recreated by recreating the catalyst ink and applying it on the base material 20.

上述の評価により、転写不良が発生しないと判定された触媒層30を電解質膜へと転写させた場合、転写不良の発生を抑制できる。他方、転写不良が発生すると判定された触媒層30を電解質膜へと転写させた場合、転写不良が発生する。したがって、上述のようにして「転写不良が発生しない」と判定された触媒層30を電解質膜へと転写させて膜電極接合体を形成することにより、触媒層30や基材20等の材料のロスが発生することを抑制できる。このため、転写不良による触媒層30や膜電極接合体の歩留まりの低下を抑制できる。 When the catalyst layer 30 determined not to cause transfer defects by the above evaluation is transferred to the electrolyte membrane, the occurrence of transfer defects can be suppressed. On the other hand, when the catalyst layer 30 determined to cause transfer failure is transferred to the electrolyte membrane, transfer failure occurs. Therefore, by transferring the catalyst layer 30 determined to "do not cause transfer failure" to the electrolyte membrane as described above to form a membrane electrode assembly, the material such as the catalyst layer 30 and the base material 20 can be formed. It is possible to suppress the occurrence of loss. Therefore, it is possible to suppress a decrease in the yield of the catalyst layer 30 and the membrane electrode assembly due to poor transfer.

以上説明した本実施形態における触媒層30の評価方法によれば、SAICAS法による表面界面切削試験において、触媒層30を切削する切削刃90が触媒層30と基材20との界面に到達した時の垂直力FVの値Aを、切削刃90が界面に到達した後の水平力FHの値Bで除した商Xを特定し、商Xが予め定められた閾値α以上である場合に転写不良が発生しないと判定し、商Xが閾値α未満である場合に転写不良が発生すると判定する。このため、触媒層30を電解質膜に転写する前の段階で、転写性を判断することができる。このため、「転写不良が発生しない」と判定された触媒層30を電解質膜へと転写させて膜電極接合体を形成できるので、転写不良の発生を抑制でき、触媒層30や基材20等の材料のロスが発生することを抑制できる。したがって、転写不良による触媒層30や膜電極接合体の歩留まりの低下を抑制できる。また、転写残り率と相関のある商Xの値を用いて判定を行なうので、判定精度の低下を抑制でき、転写不良の発生を抑制できる。また、転写不良の発生を抑制できるので、膜電極接合体および燃料電池における信頼性の低下を抑制できる。 According to the evaluation method of the catalyst layer 30 in the present embodiment described above, when the cutting blade 90 for cutting the catalyst layer 30 reaches the interface between the catalyst layer 30 and the base material 20 in the surface interface cutting test by the SAICAS method. The quotient X obtained by dividing the value A of the vertical force FV of the above by the value B of the horizontal force FH after the cutting blade 90 reaches the interface is specified, and when the quotient X is equal to or more than a predetermined threshold value α, transfer failure Is determined not to occur, and it is determined that transfer failure occurs when the quotient X is less than the threshold value α. Therefore, the transferability can be determined at the stage before the catalyst layer 30 is transferred to the electrolyte membrane. Therefore, the catalyst layer 30 determined to "do not cause transfer defects" can be transferred to the electrolyte membrane to form a membrane electrode assembly, so that the occurrence of transfer defects can be suppressed, and the catalyst layer 30, the base material 20, and the like can be suppressed. It is possible to suppress the occurrence of material loss. Therefore, it is possible to suppress a decrease in the yield of the catalyst layer 30 and the membrane electrode assembly due to poor transfer. Further, since the determination is performed using the value of the quotient X that correlates with the transfer residual rate, it is possible to suppress a decrease in determination accuracy and suppress the occurrence of transcription defects. Further, since the occurrence of transfer defects can be suppressed, the deterioration of reliability in the membrane electrode assembly and the fuel cell can be suppressed.

また、SAICAS法による表面界面切削試験において連続的に記録される垂直力FVの値Aと水平力FHの値Bとを用いて商Xを求めている。このため、商Xを迅速に求めることができ、触媒層30の評価に要する時間を短縮できる。 Further, the quotient X is obtained by using the value A of the normal force FV and the value B of the horizontal force FH continuously recorded in the surface interface cutting test by the SAICAS method. Therefore, the quotient X can be obtained quickly, and the time required for the evaluation of the catalyst layer 30 can be shortened.

また、閾値αとして転写残り率がゼロとなる値を定めているので、触媒層30が転写された後の状態における基材20に触媒層30が残存することを抑制でき、基材20を再利用できるので、省資源化につながる。 Further, since the value at which the transfer residual rate becomes zero is set as the threshold value α, it is possible to prevent the catalyst layer 30 from remaining on the base material 20 in the state after the catalyst layer 30 is transferred, and the base material 20 can be regenerated. Since it can be used, it leads to resource saving.

B.比較例:
図7は、比較例における触媒層30の評価方法の概要を模式的に示す説明図である。比較例における触媒層30の評価方法では、テープ剥離試験を用いてテープ剥離強度P1を測定するとともに、基材20上に形成された触媒層30を電解質膜へと転写させて、テープ剥離強度P1と転写残り率との関係を求めている。テープ剥離試験は、例えば、ニチバン株式会社製の10mm幅のテープ95を触媒層30の表面に貼り付けた後、引っ張り試験機を用いて30mm/min.の引っ張り速度にてテープ95を鉛直上方に引っ張ることにより実施できる。
B. Comparative example:
FIG. 7 is an explanatory diagram schematically showing an outline of the evaluation method of the catalyst layer 30 in the comparative example. In the evaluation method of the catalyst layer 30 in the comparative example, the tape peel strength P1 is measured by using the tape peeling test, and the catalyst layer 30 formed on the base material 20 is transferred to the electrolyte membrane to transfer the tape peel strength P1. And the transfer residual rate are being sought. In the tape peeling test, for example, a tape 95 having a width of 10 mm manufactured by Nichiban Co., Ltd. is attached to the surface of the catalyst layer 30, and then a tensile tester is used to perform a tape peeling test of 30 mm / min. It can be carried out by pulling the tape 95 vertically upward at the pulling speed of.

図8は、テープ剥離強度P1と転写残り率との関係の一例を示すグラフである。図8において、横軸は、上述の条件によるテープ剥離試験において測定された基材20と触媒層30とのテープ剥離強度P1(kN/m)を示しており、縦軸は、転写残り率(%)を示している。図8によれば、基材20と触媒層30とのテープ剥離強度P1と転写残り率とに相関が無いことがわかる。この理由としては、テープ剥離試験が、テープ95と触媒層30との接着強度と、触媒層30自体の強度と、基材20と触媒層30との接着強度との3つの強度を複合的に評価する手法であるためと考えられる。このため、比較例における触媒層30の評価方法によれば、テープ剥離強度P1と転写残り率とに相関が無いので、正確な評価を行なうことができない。 FIG. 8 is a graph showing an example of the relationship between the tape peeling strength P1 and the transfer residual ratio. In FIG. 8, the horizontal axis represents the tape peeling strength P1 (kN / m) between the base material 20 and the catalyst layer 30 measured in the tape peeling test under the above conditions, and the vertical axis represents the transfer residual ratio (transfer residue ratio). %) Is shown. According to FIG. 8, it can be seen that there is no correlation between the tape peeling strength P1 between the base material 20 and the catalyst layer 30 and the transfer residual ratio. The reason for this is that the tape peeling test combines three strengths: the adhesive strength between the tape 95 and the catalyst layer 30, the strength of the catalyst layer 30 itself, and the adhesive strength between the base material 20 and the catalyst layer 30. This is probably because it is an evaluation method. Therefore, according to the evaluation method of the catalyst layer 30 in the comparative example, since there is no correlation between the tape peeling strength P1 and the transfer residual ratio, accurate evaluation cannot be performed.

これに対し、本実施形態における触媒層30の評価方法によれば、転写残り率と相関のある商Xの値を用いて判定を行なうので、転写不良が発生するか否かについての判定精度が低下することを抑制でき、転写不良の発生を抑制できる。 On the other hand, according to the evaluation method of the catalyst layer 30 in the present embodiment, the determination is performed using the value of the quotient X that correlates with the transfer residual rate, so that the determination accuracy as to whether or not a transfer defect occurs is high. It is possible to suppress the decrease and suppress the occurrence of transcription defects.

C.他の実施形態:
(1)上記実施形態において、閾値αは、転写残り率がゼロとなる値として予め定められていたが、転写残り率がゼロとなる値に限らず、例えば転写残り率が1%未満となる値等、所望の小さな転写残り率を実現できる任意の値に予め定められていてもよい。かかる構成によっても、上記実施形態と同様な効果を奏する。
C. Other embodiments:
(1) In the above embodiment, the threshold value α is predetermined as a value at which the transcription residue rate becomes zero, but is not limited to a value at which the transcription residue rate becomes zero, for example, the transcription residue rate becomes less than 1%. It may be predetermined to an arbitrary value such as a value that can realize a desired small transfer residual ratio. Even with such a configuration, the same effect as that of the above-described embodiment can be obtained.

(2)上記実施形態において、触媒層30の評価は、触媒層30の連続生産に先立つ触媒層30の連続試作を行なう前に実行されていたが、例えば触媒層30の連続生産を行なう前に実行されてもよい。また、表面界面切削試験の試験条件は、任意に定められてもよい。このような構成によっても、上記実施形態と同様な効果を奏する。 (2) In the above embodiment, the evaluation of the catalyst layer 30 is performed before the continuous trial production of the catalyst layer 30 prior to the continuous production of the catalyst layer 30, but before the continuous production of the catalyst layer 30, for example. It may be executed. Further, the test conditions of the surface interface cutting test may be arbitrarily determined. Even with such a configuration, the same effect as that of the above-described embodiment can be obtained.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行なうことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments corresponding to the technical features in each form described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

20…基材、30…触媒層、90…切削刃、95…テープ、A…値、B…値、FH…水平力、FV…垂直力、P…剥離強度、P1…テープ剥離強度、TA…時系列、X…商、d…垂直変位量、α…閾値 20 ... base material, 30 ... catalyst layer, 90 ... cutting blade, 95 ... tape, A ... value, B ... value, FH ... horizontal force, FV ... vertical force, P ... peel strength, P1 ... tape peel strength, TA ... Time series, X ... quotient, d ... vertical displacement, α ... threshold

Claims (1)

電解質膜を有する燃料電池に用いられる触媒層の評価方法であって、
前記電解質膜へと転写される前の状態における、基材上に形成された前記触媒層に対してSAICAS法による表面界面切削試験を実施する工程と、
前記表面界面切削試験において、前記触媒層を切削する切削刃が前記触媒層と前記基材との界面に到達した時の垂直力の値を、前記切削刃が前記界面に到達した後の水平力の値で除した商を特定する工程と、
前記商が予め定められた閾値以上である場合に転写不良が発生しないと判定し、前記商が前記閾値未満である場合に前記転写不良が発生すると判定する工程と、
を備える、触媒層の評価方法。
A method for evaluating a catalyst layer used in a fuel cell having an electrolyte membrane.
A step of performing a surface interface cutting test by the SAICAS method on the catalyst layer formed on the base material in a state before being transferred to the electrolyte membrane, and
In the surface interface cutting test, the value of the vertical force when the cutting blade for cutting the catalyst layer reaches the interface between the catalyst layer and the base material is the horizontal force after the cutting blade reaches the interface. The process of identifying the quotient divided by the value of
A step of determining that a transfer defect does not occur when the quotient is equal to or more than a predetermined threshold value, and determining that a transfer defect occurs when the quotient is less than the threshold value.
A method for evaluating a catalyst layer.
JP2019073533A 2019-04-08 2019-04-08 Evaluation method of catalyst layer Pending JP2020173905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019073533A JP2020173905A (en) 2019-04-08 2019-04-08 Evaluation method of catalyst layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073533A JP2020173905A (en) 2019-04-08 2019-04-08 Evaluation method of catalyst layer

Publications (1)

Publication Number Publication Date
JP2020173905A true JP2020173905A (en) 2020-10-22

Family

ID=72831551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073533A Pending JP2020173905A (en) 2019-04-08 2019-04-08 Evaluation method of catalyst layer

Country Status (1)

Country Link
JP (1) JP2020173905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230073931A (en) * 2021-11-19 2023-05-26 울산과학기술원 Method of polymer material analysis on surface and interfacial cutting analysis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230073931A (en) * 2021-11-19 2023-05-26 울산과학기술원 Method of polymer material analysis on surface and interfacial cutting analysis system
KR102566606B1 (en) 2021-11-19 2023-08-16 울산과학기술원 Method of polymer material analysis on surface and interfacial cutting analysis system

Similar Documents

Publication Publication Date Title
US10534040B2 (en) Inspection apparatus and inspection method for membrane electrode assembly
Yuan et al. A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components
EP3121886A1 (en) Fuel cell, fuel cell manufacturing device
Ramani et al. Characterization of membrane degradation growth in fuel cells using X-ray computed tomography
US9846113B2 (en) Interfacial adhesion strength measuring apparatus and method of a gas diffusion layer for fuel cells
KR101345061B1 (en) / process for producing membrane/electrode assembly for polymer electrolyte fuel cells
Steinbach et al. Anode-design strategies for improved performance of polymer-electrolyte fuel cells with ultra-thin electrodes
US20140239962A1 (en) Fuel cell inspection method and inspection device
JP6215808B2 (en) Inspection method of electrolyte membrane for fuel cell
US20130059226A1 (en) Manufacturing method and manufacturing apparatus for gas diffusion layer of fuel cell, and fuel cell
US10547058B2 (en) Method of manufacturing membrane electrode assembly, and membrane electrode assembly
JP2020173905A (en) Evaluation method of catalyst layer
JP6911847B2 (en) Manufacturing method of gas diffusion electrode base material
JP6079745B2 (en) Inspection method and manufacturing method of fuel cell
Touhami et al. Anode defects’ propagation in polymer electrolyte membrane fuel cells
JP5439710B2 (en) Electrolyte membrane with catalyst layer and method for producing the same
Jang et al. Electromechanical diagnostic method for monitoring cracks in polymer electrolyte fuel cell electrodes
JP4889282B2 (en) Fuel cell separator
US10998555B2 (en) Electrode joining method and electrode joining apparatus
KR20160055068A (en) Method of manufacturing membrane electrode assembly
Park et al. Changes in the wettability of polymer electrolyte fuel cells components during cationic contamination and mitigation
JP2007273312A (en) Electrode for polymer electrolyte fuel cell, and its manufacturing method
Lee et al. Interfacial characterization of catalyst coating on electrolyte polymer through microscratch analysis in DMFC
US20210283892A1 (en) Manufacturing method of laminate for manufacturing fuel cell
JP6620727B2 (en) Manufacturing method of fuel cell