JP2020173890A - Assembled battery and manufacturing method thereof - Google Patents

Assembled battery and manufacturing method thereof Download PDF

Info

Publication number
JP2020173890A
JP2020173890A JP2017132063A JP2017132063A JP2020173890A JP 2020173890 A JP2020173890 A JP 2020173890A JP 2017132063 A JP2017132063 A JP 2017132063A JP 2017132063 A JP2017132063 A JP 2017132063A JP 2020173890 A JP2020173890 A JP 2020173890A
Authority
JP
Japan
Prior art keywords
secondary battery
unit secondary
external terminal
tightening member
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017132063A
Other languages
Japanese (ja)
Inventor
井上 宏昭
Hiroaki Inoue
宏昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2017132063A priority Critical patent/JP2020173890A/en
Priority to PCT/JP2018/024856 priority patent/WO2019009207A1/en
Publication of JP2020173890A publication Critical patent/JP2020173890A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide an assembled battery capable of suitably suppressing variations in battery reaction.SOLUTION: An assembled battery according to an embodiment of the present invention includes a unit secondary battery laminate in which a plurality of unit secondary batteries are stacked, and a tightening member that tightens the unit secondary battery laminate, and in a plan view, the tightening member extends from one side of the unit secondary battery in which an external terminal is arranged to the other side facing the one side.SELECTED DRAWING: Figure 1

Description

本発明は、組電池および組電池の製造方法に関する。 The present invention relates to an assembled battery and a method for manufacturing the assembled battery.

従前より電動バイク、電動自転車、電気自動車等の駆動電源として、組電池400’が用いられている。当該組電池400’は、複数の充放電が繰り返し可能な単位二次電池100’を一方向に沿って複数積層することにより得られる単位二次電池積層体200’を備える(特許文献1参照)。単位二次電池100’は、少なくとも正極、負極、およびそれらの間のセパレータから構成されている。正極は正極材層および正極集電体を備え、負極は負極材層および負極集電体を備える。又、単位二次電池100’の積層体200’に対する振動および衝撃を緩和する観点から、当該積層体200’を取り囲む固定テープ300’が供される場合がある。当該固定テープ300’は、平面視で、当該積層体200’の構成要素である単位二次電池100’の外部端子20’が配置されていない両側部100C’、100D’を延在するように配置されている(図10および図11参照)。 The assembled battery 400'has been used as a drive power source for electric motorcycles, electric bicycles, electric vehicles, and the like. The assembled battery 400'includes a unit secondary battery laminate 200' obtained by stacking a plurality of unit secondary batteries 100'that can be repeatedly charged and discharged along one direction (see Patent Document 1). .. The unit secondary battery 100'consists of at least a positive electrode, a negative electrode, and a separator between them. The positive electrode includes a positive electrode material layer and a positive electrode current collector, and the negative electrode includes a negative electrode material layer and a negative electrode current collector. Further, from the viewpoint of alleviating vibration and impact of the unit secondary battery 100'on the laminated body 200', a fixing tape 300'surrounding the laminated body 200' may be provided. The fixing tape 300'extends both side portions 100C'and 100D' in which the external terminals 20'of the unit secondary battery 100', which is a component of the laminated body 200', are not arranged in a plan view. They are arranged (see FIGS. 10 and 11).

WO2014/002950号公報WO2014 / 00250

ここで、本願発明者らは、従前の組電池400’では、以下の問題が生じ得ることを見出した(図10および図11参照)。 Here, the inventors of the present application have found that the following problems can occur in the conventional assembled battery 400'(see FIGS. 10 and 11).

具体的には、組電池400’の構成要素である単位二次電池100’の反応は、平面視で、外部端子20’の設置部分に対して近位側の領域100X’にて相対的に生じ易く、その一方で外部端子20’の設置部分に対して遠位側の領域100Y’にて相対的に生じにくい傾向にある。そのため、これに起因して、全体として単位二次電池100’の反応にばらつきが生じ得る。単位二次電池100’の反応にばらつきが生じると、これに起因して、当該単位二次電池100’を複数積層することにより得られる単位二次電池積層体200’も全体として反応にばらつきが生じ得る。以上の事から、反応にばらつきが生じ得る単位二次電池積層体200’を備える組電池400’は、電池特性を好適に発揮することができない虞があり得る。 Specifically, the reaction of the unit secondary battery 100', which is a component of the assembled battery 400', is relative to the region 100X'proximal to the installation portion of the external terminal 20' in a plan view. On the other hand, it tends to occur relatively easily in the region 100Y'distal to the installation portion of the external terminal 20'. Therefore, due to this, the reaction of the unit secondary battery 100'may vary as a whole. When the reaction of the unit secondary battery 100'varies, the reaction of the unit secondary battery laminate 200' obtained by laminating a plurality of the unit secondary batteries 100' also varies as a whole due to this. Can occur. From the above, there is a possibility that the assembled battery 400'provided with the unit secondary battery laminate 200'in which the reaction may vary may not be able to suitably exhibit the battery characteristics.

本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、電池反応のばらつきを好適に抑止可能な組電池およびその製造方法を提供することである。 The present invention has been made in view of such circumstances. That is, a main object of the present invention is to provide an assembled battery capable of suitably suppressing variations in battery reaction and a method for producing the same.

上記目的を達成するために、本発明の一実施形態では、
複数の単位二次電池が積層された単位二次電池積層体を備える、組電池であって、
前記組電池は、前記単位二次電池積層体を締め付ける締付部材を更に備え、該締付部材が、平面視で、外部端子が配置されている前記単位二次電池の一方の側部から該一方の側部に対向する他方の側部まで延在している、組電池が提供される。
In order to achieve the above object, in one embodiment of the present invention,
An assembled battery including a unit secondary battery laminate in which a plurality of unit secondary batteries are stacked.
The assembled battery further includes a tightening member for tightening the unit secondary battery laminate, and the tightening member is viewed from one side of the unit secondary battery in which an external terminal is arranged. An assembled battery is provided that extends to one side and the other.

上記目的を達成するために、本発明の一実施形態では、
組電池の製造方法であって、
複数の単位二次電池を積層して単位二次電池積層体を形成する工程、および
締付部材を用いて前記単位二次電池積層体を締め付ける工程
を含み、
前記締付部材を、平面視で、外部端子が配置される前記単位二次電池の一方の側部から該一方の側部に対向する他方の側部まで延在させる、製造方法が提供される。
In order to achieve the above object, in one embodiment of the present invention,
It is a manufacturing method of assembled batteries.
Including a step of laminating a plurality of unit secondary batteries to form a unit secondary battery laminate and a step of tightening the unit secondary battery laminate using a tightening member.
Provided is a manufacturing method in which the tightening member extends from one side portion of the unit secondary battery in which an external terminal is arranged to the other side portion facing the one side portion in a plan view. ..

本発明の一実施形態によれば、組電池において電池反応のばらつきを好適に抑止することが可能である。 According to one embodiment of the present invention, it is possible to suitably suppress variations in battery reaction in an assembled battery.

図1は、本発明の一実施形態に係る組電池の模式図である。FIG. 1 is a schematic view of an assembled battery according to an embodiment of the present invention. 図2は、1.0よりも大きいアスペクト比(外部端子が配置された側部の長さ寸法/側部に略垂直な方向に延在する側部の長さ寸法)を有する単位二次電池を備えた組電池を模式的に示した斜視図である。FIG. 2 shows a unit secondary battery having an aspect ratio larger than 1.0 (the length dimension of the side portion where the external terminal is arranged / the length dimension of the side portion extending in a direction substantially perpendicular to the side portion). It is a perspective view which shows typically the assembled battery provided with. 図3は、アスペクト比が1.0である単位二次電池を備えた組電池を模式的に示した斜視図である。FIG. 3 is a perspective view schematically showing an assembled battery including a unit secondary battery having an aspect ratio of 1.0. 図4は、1.0よりも小さいアスペクト比を有する単位二次電池を備えた組電池を模式的に示した斜視図である。FIG. 4 is a perspective view schematically showing an assembled battery including a unit secondary battery having an aspect ratio smaller than 1.0. 図5は、一態様のバンド部材により締め付けられた単位二次電池積層体の模式図である。FIG. 5 is a schematic view of a unit secondary battery laminate fastened by a band member of one aspect. 図6は、別態様のバンド部材により締め付けられた単位二次電池積層体の模式図である。FIG. 6 is a schematic view of a unit secondary battery laminate tightened by a band member of another aspect. 図7は、挟込部材により締め付けられた単位二次電池積層体の模式図である。FIG. 7 is a schematic view of a unit secondary battery laminate tightened by a sandwiching member. 図8は、単位二次電池積層体(各単位二次電池)に対する締付部材の締付力と電池反応の維持率との関係を示したグラフ図である。FIG. 8 is a graph showing the relationship between the tightening force of the tightening member and the maintenance rate of the battery reaction with respect to the unit secondary battery laminate (each unit secondary battery). 図9は、電極構成層の基本的構成を模式的に示した断面図である。FIG. 9 is a cross-sectional view schematically showing the basic configuration of the electrode constituent layer. 図10は、従来の組電池を模式的に示した斜視図である。FIG. 10 is a perspective view schematically showing a conventional assembled battery. 図11は、従来の組電池の構成要素である単位二次電池を模式的に示した平面図である。FIG. 11 is a plan view schematically showing a unit secondary battery which is a component of a conventional assembled battery.

以下、本発明の一実施形態に係る組電池について図面を参照しながら説明する。 Hereinafter, the assembled battery according to the embodiment of the present invention will be described with reference to the drawings.

[組電池の基本的構成]
本発明の一実施形態に係る組電池400は、複数の単位二次電池100が一方向に沿って積層された単位二次電池積層体200を少なくとも備える(図1参照)。
[Basic configuration of assembled battery]
The assembled battery 400 according to the embodiment of the present invention includes at least a unit secondary battery laminate 200 in which a plurality of unit secondary batteries 100 are laminated in one direction (see FIG. 1).

なお、本明細書でいう「組電池」とは、広義には複数の単位電池を含むものを指し、狭義には複数の単位二次電池を組み合わせたものを含むものを指す。本明細書でいう「単位二次電池」とは、組電池に含まれる又は組電池の構成要素である単一の二次電池であって、充電・放電の繰り返しが可能な電池のことを指す。当該「単位二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。本明細書でいう「平面視」とは、単位二次電池を積層する方向に沿って対象物を上側または下側からみたときの状態のことである。又、本明細書でいう「断面視」又は「側面視」とは、単位二次電池を積層する方向に対して略垂直な方向からみたときの状態のことである。 The term "assembled battery" as used herein refers to a battery including a plurality of unit batteries in a broad sense, and refers to a battery including a combination of a plurality of unit secondary batteries in a narrow sense. The term "unit secondary battery" as used herein refers to a single secondary battery included in the assembled battery or a component of the assembled battery, which can be repeatedly charged and discharged. .. The "unit secondary battery" is not overly bound by its name, and may include, for example, a "storage device". The term "planar view" as used herein refers to a state in which an object is viewed from above or below along the direction in which unit secondary batteries are stacked. Further, the "cross-sectional view" or "side view" referred to in the present specification is a state when viewed from a direction substantially perpendicular to the direction in which the unit secondary batteries are stacked.

[単位二次電池の基本的構成]
以下、本発明の一実施形態に係る組電池400の特徴部分について説明する前に、上記の単位二次電池100についての基本的構成について具体的に説明する。
[Basic configuration of unit secondary battery]
Hereinafter, the basic configuration of the unit secondary battery 100 will be specifically described before the characteristic portion of the assembled battery 400 according to the embodiment of the present invention is described.

上述のように、「単位二次電池100」とは、充電・放電の繰り返しが可能な電池のことを指している。従って、当該単位二次電池100は、その名称に過度に拘泥されるものでなく、例えば“蓄電デバイス”なども本発明の対象に含まれ得る。単位二次電池は、外装体の内部に電極組立体と電解質とが収容および封入された構造を有して成る。電極組立体は、正極、負極およびセパレータを含む電極構成層が複数積層された平面積層構造又は当該電極構成層が巻き回しされた巻回構造であり得る。また、外装体は、導電性ハードケース(又はフレキシブルケース)の形態を採ってよい。外装体の形態がフレキシブルケースである場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。同様に、複数の負極の各々は、負極用集電リードを介して負極用外部端子に連結されている。負極用外部端子はシール部により外装体に固定され、シール部が電解質の液漏れを防止する。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードは正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。外装体の形態が導電性ハードケースの場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。 As described above, the "unit secondary battery 100" refers to a battery that can be repeatedly charged and discharged. Therefore, the unit secondary battery 100 is not overly bound by its name, and for example, a "storage device" and the like can be included in the subject of the present invention. The unit secondary battery has a structure in which an electrode assembly and an electrolyte are housed and sealed inside an exterior body. The electrode assembly may have a planar laminated structure in which a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated, or a wound structure in which the electrode constituent layers are wound. Further, the exterior body may take the form of a conductive hard case (or flexible case). When the form of the exterior body is a flexible case, each of the plurality of positive electrodes is connected to the external terminal for the positive electrode via the current collecting lead for the positive electrode. The external terminal for the positive electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking. Similarly, each of the plurality of negative electrodes is connected to the external terminal for the negative electrode via the current collecting lead for the negative electrode. The external terminal for the negative electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking. The current collector lead for the positive electrode connected to each of the plurality of positive electrodes may have the function of an external terminal for the positive electrode, and the current collector for the negative electrode connected to each of the plurality of negative electrodes may be provided. The lead may have the function of an external terminal for a negative electrode. When the form of the exterior body is a conductive hard case, each of the plurality of positive electrodes is connected to the external terminal for the positive electrode via the current collecting lead for the positive electrode. The external terminal for the positive electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking.

正極10Aは、少なくとも正極集電体11Aおよび正極材層12Aから構成されており(図9参照)、正極集電体11Aの少なくとも片面に正極材層12Aが設けられている。当該正極集電体11Aのうち正極材層12Aが設けられていない箇所、すなわち正極集電体11Aの端部には正極側引出しタブが位置付けられている。正極材層12Aには電極活物質として正極活物質が含まれている。負極10Bは少なくとも負極集電体11Bおよび負極材層12Bから構成されており(図9参照)、負極集電体11Bの少なくとも片面に負極材層12Bが設けられている。当該負極集電体11Bのうち負極材層12Bが設けられていない箇所、すなわち負極集電体11Bの端部には負極側引出しタブが位置付けられている。負極材層12Bには電極活物質として負極活物質が含まれている。 The positive electrode 10A is composed of at least a positive electrode current collector 11A and a positive electrode material layer 12A (see FIG. 9), and the positive electrode material layer 12A is provided on at least one surface of the positive electrode current collector 11A. A drawer tab on the positive electrode side is positioned at a portion of the positive electrode current collector 11A where the positive electrode material layer 12A is not provided, that is, at the end of the positive electrode current collector 11A. The positive electrode material layer 12A contains a positive electrode active material as an electrode active material. The negative electrode 10B is composed of at least a negative electrode current collector 11B and a negative electrode material layer 12B (see FIG. 9), and a negative electrode material layer 12B is provided on at least one surface of the negative electrode current collector 11B. The negative electrode side drawer tab is positioned at a portion of the negative electrode current collector 11B where the negative electrode material layer 12B is not provided, that is, at the end of the negative electrode current collector 11B. The negative electrode material layer 12B contains a negative electrode active material as an electrode active material.

正極材層12Aに含まれる正極活物質および負極材層12Bに含まれる負極活物質は、単位二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層12Aに含まれる正極活物質」および「負極材層12Bに含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極10Aと負極10Bとの間で移動して電子の受け渡しが行われて充放電がなされる。正極材層12Aおよび負極材層12Bは特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極10Aと負極10Bとの間で移動して電池の充放電が行われる単位二次電池が好ましい。充放電にリチウムイオンが関与する場合、単位二次電池は、いわゆる“リチウムイオン電池”に相当する。 The positive electrode active material contained in the positive electrode material layer 12A and the negative electrode active material contained in the negative electrode material layer 12B are substances directly involved in the transfer of electrons in the unit secondary battery, and are charge / discharge, that is, positive and negative electrodes responsible for the battery reaction. It is the main substance. More specifically, ions are brought to the electrolyte due to the "positive electrode active material contained in the positive electrode material layer 12A" and the "negative electrode active material contained in the negative electrode material layer 12B", and such ions are brought to the electrolyte with the positive electrode 10A and the negative electrode. It moves to and from 10B, and electrons are transferred to charge and discharge. The positive electrode material layer 12A and the negative electrode material layer 12B are particularly preferably layers capable of occluding and releasing lithium ions. That is, a unit secondary battery in which lithium ions move between the positive electrode 10A and the negative electrode 10B via an electrolyte to charge and discharge the battery is preferable. When lithium ions are involved in charging and discharging, the unit secondary battery corresponds to a so-called "lithium ion battery".

正極材層12Aの正極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダー(“結着材”とも称される)が正極材層12Aに含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層12Aに含まれていてよい。同様に、負極材層12Bの負極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層12Bに含まれていてよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層12Aおよび負極材層12Bはそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 The positive electrode active material of the positive electrode material layer 12A is made of, for example, granules, and a binder (also referred to as “binding material”) is contained in the positive electrode material layer 12A for sufficient contact between particles and shape retention. Is preferable. Further, a conductive auxiliary agent may be contained in the positive electrode material layer 12A in order to facilitate the transfer of electrons that promote the battery reaction. Similarly, when the negative electrode active material of the negative electrode material layer 12B is composed of particles, for example, it is preferable that the negative electrode active material contains a binder for sufficient contact between particles and shape retention, and facilitates the transfer of electrons that promote the battery reaction. The conductive auxiliary agent may be contained in the negative electrode material layer 12B. As described above, the positive electrode material layer 12A and the negative electrode material layer 12B can also be referred to as a "positive electrode mixture layer" and a "negative electrode mixture layer", respectively, because of the form in which a plurality of components are contained.

正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、単位二次電池の正極材層12Aにおいては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層12Aに含まれる正極活物質がコバルト酸リチウムとなっている。 The positive electrode active material is preferably a substance that contributes to the storage and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material layer 12A of the unit secondary battery, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material. For example, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal. Although such a positive electrode active material may be contained as a single species, two or more species may be contained in combination. In a more preferred embodiment, the positive electrode active material contained in the positive electrode material layer 12A is lithium cobalt oxide.

正極材層12Aに含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド−ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド−テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層12Aに含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。より好適な態様では正極材層12Aのバインダーはポリフッ化ビニリデンであり、また、別のより好適な態様では正極材層12Aの導電助剤はカーボンブラックである。さらに好適な態様では、正極材層12Aのバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっている。 The binder that can be contained in the positive electrode material layer 12A is not particularly limited, but is not particularly limited, but is a polyvinylidene fluoride, a bilinidene fluoride-hexafluoropropylene copolymer, and a bilinidene fluoride-tetrafluoroethylene copolymer. And at least one selected from the group consisting of polytetrafluoroethylene and the like. The conductive auxiliary agent that can be contained in the positive electrode material layer 12A is not particularly limited, but is carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase. At least one selected from carbon fibers such as grown carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. In a more preferred embodiment, the binder of the positive electrode material layer 12A is polyvinylidene fluoride, and in another more preferred embodiment, the conductive auxiliary agent of the positive electrode material layer 12A is carbon black. In a more preferred embodiment, the binder and conductive aid of the positive electrode material layer 12A are a combination of polyvinylidene fluoride and carbon black.

負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a substance that contributes to the storage and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, lithium alloys, and the like.

負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ソフトカーボン、ハードカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体11Bとの接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。より好適な態様では負極材層12Bの負極活物質が人造黒鉛となっている。 Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), soft carbon, hard carbon, and diamond-like carbon. In particular, graphite is preferable because it has high electron conductivity and excellent adhesiveness to the negative electrode current collector 11B. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. Such oxides are preferably amorphous as their structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur. In a more preferred embodiment, the negative electrode active material of the negative electrode material layer 12B is artificial graphite.

負極材層12Bに含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。より好適な実施態様では負極材層12Bに含まれるバインダーはスチレンブタジエンゴムとなっている。負極材層12Bに含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層12Bには、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be contained in the negative electrode material layer 12B is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Seeds can be mentioned. In a more preferred embodiment, the binder contained in the negative electrode material layer 12B is styrene-butadiene rubber. The conductive auxiliary agent that can be contained in the negative electrode material layer 12B is not particularly limited, but is carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase. At least one selected from carbon fibers such as grown carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. The negative electrode material layer 12B may contain a component derived from a thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.

さらに好適な態様では、負極材層12Bにおける負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっている。 In a more preferred embodiment, the negative electrode active material and the binder in the negative electrode material layer 12B are a combination of artificial graphite and styrene-butadiene rubber.

正極10Aおよび負極10Bに用いられる正極集電体11Aおよび負極集電体11Bは電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極10Aに用いられる正極集電体11Aは、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極10Bに用いられる負極集電体11Bは、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 The positive electrode current collector 11A and the negative electrode current collector 11B used for the positive electrode 10A and the negative electrode 10B are members that contribute to collecting and supplying electrons generated by the active material due to the battery reaction. Such a current collector may be a sheet-shaped metal member and may have a perforated or perforated form. For example, the current collector may be a metal foil, a punching metal, a net, an expanded metal, or the like. The positive electrode current collector 11A used for the positive electrode 10A is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector 11B used for the negative electrode 10B is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.

セパレータ50は、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータ50は、正極10Aと負極10Bとの間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータ50は多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータ50として用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータ50は、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。 The separator 50 is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte. In other words, the separator 50 can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode 10A and the negative electrode 10B. Preferably, the separator 50 is a porous or microporous insulating member and has a film morphology due to its small thickness. Although only an example, a microporous polyolefin membrane may be used as the separator. In this regard, the microporous membrane used as the separator 50 may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin. Furthermore, the separator 50 may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP". The surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like. The surface of the separator may have adhesiveness.

なお、電極の取扱いの更なる向上の観点から、セパレータ50と電極(正極10A/負極10B)は接着されていることが好ましい。セパレータ50と電極との接着は、セパレータ50として接着性セパレータを用いること、電極材層(正極材層12A/負極材層12B)の上に接着性バインダーを塗工および/または熱圧着すること等によって為され得る。セパレータ50または電極材層に接着性を供する接着剤としては、ポリフッ化ビニリデン、アクリル系接着剤等が挙げられる。 From the viewpoint of further improving the handling of the electrode, it is preferable that the separator 50 and the electrode (positive electrode 10A / negative electrode 10B) are adhered to each other. For adhesion between the separator 50 and the electrode, an adhesive separator is used as the separator 50, an adhesive binder is applied on the electrode material layer (positive electrode material layer 12A / negative electrode material layer 12B), and / or thermocompression bonding is performed. Can be done by Examples of the adhesive that provides adhesiveness to the separator 50 or the electrode material layer include polyvinylidene fluoride, an acrylic adhesive, and the like.

電解質は電極(正極10A・負極10B)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の溶媒と、溶質とを含む電解質であっても、または水を含む“水系”の電解質であってもよい。単位二次電池は、電解質として“非水系”の電解質が用いられた非水電解質二次電池が好ましい。電解質は液体状またはゲル状などの形態を有し得る(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。 The electrolyte assists the movement of metal ions released from the electrodes (positive electrode 10A, negative electrode 10B). The electrolyte may be an electrolyte containing a "non-aqueous" solvent such as an organic electrolyte and an organic solvent and a solute, or an "aqueous" electrolyte containing water. The unit secondary battery is preferably a non-aqueous electrolyte secondary battery in which a “non-aqueous” electrolyte is used as the electrolyte. The electrolyte may have a form such as liquid or gel (note that the "liquid" non-aqueous electrolyte is also referred to as "non-aqueous electrolyte solution" in the present specification).

具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。好適な態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPF、LiBF等のLi塩が用いられる。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPF、LiBF等のLi塩が用いられる。 As a specific solvent for the non-aqueous electrolyte, one containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC). In a preferred embodiment, a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example a mixture of ethylene carbonate and diethyl carbonate. Further, as a specific solute of the non-aqueous electrolyte, for example, Li salts such as LiPF 6 and LiBF 4 are used. Further, as a specific solute of the non-aqueous electrolyte, for example, Li salts such as LiPF 6 and LiBF 4 are used.

正極用集電リードおよび負極用集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用集電リードはアルミニウムから構成されることが好ましく、負極用集電リードはニッケルから構成されることが好ましい。正極用集電リードおよび負極用集電リードの形態は特に限定されず、例えば、線又はプレート状であってよい。 As the positive electrode current collector lead and the negative electrode current collector lead, any current collector lead used in the field of secondary batteries can be used. Such a current collecting lead may be composed of a material in which electron transfer can be achieved, and is composed of a conductive material such as aluminum, nickel, iron, copper, or stainless steel. The positive electrode current collecting lead is preferably made of aluminum, and the negative electrode current collecting lead is preferably made of nickel. The form of the positive electrode current collecting lead and the negative electrode current collecting lead is not particularly limited, and may be, for example, a wire or a plate.

外部端子としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードが正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。 As the external terminal, any external terminal used in the field of secondary batteries can be used. Such external terminals may be made of a material in which electron transfer can be achieved, and are usually made of a conductive material such as aluminum, nickel, iron, copper, stainless steel. The external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device. Not limited to this, the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of the positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes. The lead may have the function of an external terminal for a negative electrode.

外装体は、上述のように導電性ハードケース(又はフレキシブルケース)の形態を有していてよい。 The exterior body may have the form of a conductive hard case (or flexible case) as described above.

導電性ハードケースは、本体部および蓋部からなっている。本体部は当該外装体の底面を構成する底部および側面部から成る。本体部と蓋部とは、電極組立体、電解質、集電リードおよび外部端子の収容後に密封される。密封方法としては、特に限定されるものではなく、例えばレーザー照射法等が挙げられる。本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は電子の移動が達成され得る材料であればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料が挙げられる。本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動(ズレ)が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、電極組立体の破壊が防止され、単位二次電池の安全性が向上する。 The conductive hard case consists of a main body and a lid. The main body is composed of a bottom portion and a side surface portion constituting the bottom surface of the exterior body. The body and lid are sealed after accommodating the electrode assembly, electrolyte, current collector leads and external terminals. The sealing method is not particularly limited, and examples thereof include a laser irradiation method. As the material for forming the main body and the lid, any material that can form a hard case type exterior body can be used in the field of the secondary battery. Such a material may be any material from which electron transfer can be achieved, including conductive materials such as aluminum, nickel, iron, copper and stainless steel. The dimensions of the main body and the lid are mainly determined according to the dimensions of the electrode assembly. For example, when the electrode assembly is housed, the dimensions are such that the movement (misalignment) of the electrode assembly inside the exterior body is prevented. It is preferable to have. By preventing the electrode assembly from moving, the electrode assembly is prevented from being destroyed, and the safety of the unit secondary battery is improved.

フレキシブルケースは、軟質シートから構成される。軟質シートは、シール部の折り曲げを達成できる程度の軟質性を有していればよく、好ましくは可塑性シートである。可塑性シートは、外力を付与した後、除去したとき、外力による変形が維持される特性を有するシートのことであり、例えば、いわゆるラミネートフィルムが使用できる。ラミネートフィルムからなるフレキシブルパウチは例えば、2枚のラミネートフィルムを重ね合わせ、その周縁部をヒートシールすることにより製造できる。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。 The flexible case is composed of a soft sheet. The soft sheet may have sufficient softness to achieve bending of the seal portion, and is preferably a plastic sheet. The plastic sheet is a sheet having a property of maintaining deformation due to an external force when it is removed after applying an external force. For example, a so-called laminated film can be used. A flexible pouch made of a laminated film can be manufactured, for example, by laminating two laminated films and heat-sealing the peripheral portion thereof. As the laminated film, a film in which a metal foil and a polymer film are laminated is generally used, and specifically, a three-layer structure composed of an outer layer polymer film / metal foil / inner layer polymer film is exemplified. The outer layer polymer film is for preventing damage to the metal foil due to permeation of moisture and the like and contact, and polymers such as polyamide and polyester can be preferably used. The metal foil is for preventing the permeation of moisture and gas, and foils such as copper, aluminum, and stainless steel can be preferably used. The inner layer polymer film is for protecting the metal foil from the electrolyte stored inside and for melt-sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be preferably used.

[本発明の組電池の特徴部分]
上記にて単位二次電池100の基本的構成について説明した上で、以下にて本発明の特徴部分について具体的に説明する。
[Characteristic part of the assembled battery of the present invention]
After explaining the basic configuration of the unit secondary battery 100 above, the feature portions of the present invention will be specifically described below.

以下、本発明の特徴部分について具体的に説明するに先立って、本明細書で用いる用語の定義付けを行う。本明細書でいう「組電池」とは、既述のように、広義には複数の単位電池を含むものを指し、狭義には複数の単位二次電池を組み合わせたものを含むものを指す。本明細書でいう「単位二次電池」とは、既述のように、組電池に含まれる又は組電池の構成要素である単一の二次電池であって、充電・放電の繰り返しが可能な電池のことを指す。本明細書でいう「単位二次電池積層体」とは、複数の単位二次電池が一方向(積層方向)に沿って積層された構造体を指す。本明細書でいう「締付部材」とは、単位二次電池積層体に対して所定の力を供しながら締め付ける部材を指し、代替的には単位二次電池積層体に対する押圧部材、収縮部材、又は挟込部材の機能を担うものを指す。 Hereinafter, terms used in the present specification will be defined prior to the specific description of the characteristic portions of the present invention. As described above, the term "assembled battery" as used herein refers to a battery including a plurality of unit batteries in a broad sense, and a battery including a combination of a plurality of unit secondary batteries in a narrow sense. As described above, the "unit secondary battery" referred to in the present specification is a single secondary battery included in the assembled battery or a component of the assembled battery, and can be repeatedly charged and discharged. Refers to a battery. The "unit secondary battery laminate" as used herein refers to a structure in which a plurality of unit secondary batteries are laminated in one direction (stacking direction). The "tightening member" as used herein refers to a member that tightens the unit secondary battery laminate while applying a predetermined force, and instead, a pressing member, a shrinking member, or the like, which is applied to the unit secondary battery laminate. Or, it refers to a member that functions as a sandwiching member.

本明細書でいう「外部端子」とは、平面視で複数の単位二次電池の各々から外部へと突出するように配置され、かつ外部媒体と電気的に接続可能なものを指す。本明細書でいう「単位二次電池の側部」とは、広義には単位二次電池の外縁部分を指し、狭義には単位二次電池の構成要素である外装体の外縁部分を指す。本明細書でいう「外部端子の突出方向」とは、平面視での単位二次電池から外部端子が突出するように延在する方向を指す。本明細書でいう「締付部材が平面視にて外部端子の突出方向に対して略平行な方向に延在する」とは、平面視にて、締付部材が平面視にて外部端子の突出方向と実質的に同一方向に延在している状態を指す。本明細書でいう「単位二次電池積層体の一方の主面」とは、広義には単位二次電池の積層方向に対して略垂直な方向に延在する面を指し、狭義には単位二次電池積層体の構成要素である一方の最外層の単位二次電池の主面に相当するものを指す。 The term "external terminal" as used herein refers to a battery that is arranged so as to project outward from each of a plurality of unit secondary batteries in a plan view and that can be electrically connected to an external medium. The "side portion of the unit secondary battery" as used herein refers to the outer edge portion of the unit secondary battery in a broad sense, and refers to the outer edge portion of the exterior body which is a component of the unit secondary battery in a narrow sense. The "protruding direction of the external terminal" as used herein refers to a direction in which the external terminal extends so as to protrude from the unit secondary battery in a plan view. In the present specification, "the tightening member extends in a direction substantially parallel to the protruding direction of the external terminal in a plan view" means that the tightening member extends in a plan view of the external terminal. It refers to a state in which it extends in substantially the same direction as the projecting direction. The "one main surface of the unit secondary battery laminate" as used herein refers to a surface extending in a direction substantially perpendicular to the stacking direction of the unit secondary battery in a broad sense, and a unit in a narrow sense. The unit of the outermost layer, which is a component of the secondary battery laminate, corresponds to the main surface of the secondary battery.

本明細書でいう「輪状のバンド部材」とは、連続して円弧形態を成す帯状部材を指す。本明細書でいう「弾性部材」とは、単位二次電池積層体への設置時には伸張性を有する一方、単位二次電池積層体へ設置完了後には単位二次電池積層体に対する収縮性を有する部材を指す。本明細書でいう「単位二次電池積層体の外表面」とは、単位二次電池積層体の露出面(単位二次電池の積層方向に沿った面および当該面に対して略垂直な方向に延在する2つの対向面)を指す。本明細書でいう「矩形形状」とは、広義には、平面視にて正方形および長方形である形状を指し、狭義には、平面視にて一方の辺と当該一方の辺と連続する他方の辺とにより形成されるコーナー部(角部)の角度が90度である形状を指す。本明細書でいう「アスペクト比」とは、広義には矩形における長辺と短辺の比率を指し、狭義には平面視にて単位二次電池の外部端子が配置された一方の側部の、一方の側部に対して略垂直な方向に延在する側部に対する比率を指す。 The "ring-shaped band member" as used herein refers to a band-shaped member that continuously forms an arc shape. The "elastic member" referred to in the present specification has extensibility when installed in the unit secondary battery laminate, and has contractility with respect to the unit secondary battery laminate after the installation in the unit secondary battery laminate is completed. Refers to a member. The "outer surface of the unit secondary battery laminate" as used herein refers to an exposed surface of the unit secondary battery laminate (a surface along the stacking direction of the unit secondary battery and a direction substantially perpendicular to the surface). (Two facing surfaces extending to). In the broad sense, the "rectangular shape" as used herein refers to a shape that is square and rectangular in a plan view, and in a narrow sense, one side and the other that is continuous with the other side in a plan view. It refers to a shape in which the angle of a corner portion (corner portion) formed by a side is 90 degrees. The "aspect ratio" as used herein refers to the ratio of the long side to the short side in a rectangle in a broad sense, and in a narrow sense, the external terminal of the unit secondary battery is arranged on one side in a plan view. , Refers to the ratio to the side extending in a direction substantially perpendicular to one side.

本願発明者は、電池反応のばらつきを好適に抑止可能な組電池400を供するための対応策について鋭意検討した。具体的には、電池反応のばらつきが、平面視で、外部端子20’の設置部分に対して近位側の領域100X’にて相対的に生じ易く、その一方で外部端子20’の設置部分に対して遠位側の領域100Y’にて相対的に生じにくい傾向にあることに鑑み(図11参照)、かかる傾向を改善するための改善策について鋭意検討した。その結果、本発明を案出するに至った。 The inventor of the present application has diligently studied countermeasures for providing the assembled battery 400 capable of suitably suppressing variations in battery reaction. Specifically, variations in battery reaction are likely to occur relatively in the region 100X'proximal to the installation portion of the external terminal 20'in a plan view, while the installation portion of the external terminal 20' In view of the fact that the region 100Y'on the distal side tends to be relatively unlikely to occur (see FIG. 11), improvement measures for improving such a tendency were enthusiastically studied. As a result, the present invention has been devised.

かかる傾向を改善するために案出された本発明(組電池400)は、その構成要素である単位二次電池積層体200を締め付ける締付部材300を更に供し、当該締付部材300を、平面視で、外部端子20が配置されている単位二次電池100の一方の側部100Aから当該一方の側部100Aに対向する他方の側部100Bまで延在するように配置するという技術的思想を有する。 The present invention (assembled battery 400) devised to improve such a tendency further provides a tightening member 300 for tightening the unit secondary battery laminate 200, which is a component thereof, and the tightening member 300 is flattened. Visually, the technical idea of arranging the unit secondary battery 100 in which the external terminal 20 is arranged so as to extend from one side portion 100A to the other side portion 100B facing the one side portion 100A. Have.

かかる技術的思想によれば、本発明では、第1に、単位二次電池積層体200を締め付ける締付部材300は、平面視で外部端子20が配置される単位二次電池100の一方の側部100Aから他方の側部100Bまで延在するように供される必要がある。又、かかる技術的思想によれば、本発明では、第2に、当該締付部材300は、単位二次電池積層体200を締め付けるという機能を好適に発揮するために、「少なくとも」当該積層体200の対向する一方の外表面と、当該一方の外表面に対向する他方の外表面の両方に供される必要がある。より具体的に言えば、締付部材300は、単位二次電池積層体200を締め付けるという機能を好適に発揮するために、単位二次電池積層体200の一方の外表面側に位置する最外層の単位二次電池100と、他方の外表面側に位置する最外層の単位二次電池100とに供される必要がある。 According to such a technical idea, in the present invention, first, the tightening member 300 for tightening the unit secondary battery laminate 200 is one side of the unit secondary battery 100 in which the external terminal 20 is arranged in a plan view. It needs to be provided so as to extend from the portion 100A to the other side portion 100B. Further, according to such a technical idea, in the present invention, secondly, the tightening member 300 "at least" in order to preferably exert the function of tightening the unit secondary battery laminate 200. It needs to be provided to both the one facing outer surface of the 200 and the other outer surface facing the one outer surface. More specifically, the tightening member 300 is the outermost layer located on one outer surface side of the unit secondary battery laminate 200 in order to preferably exert the function of tightening the unit secondary battery laminate 200. It is necessary to be provided to the unit secondary battery 100 of the above and the unit secondary battery 100 of the outermost layer located on the outer surface side of the other.

以上の2つの点を総合すると、本発明では、締付部材300は、平面視で、『一方』の最外層の単位二次電池100のうちの外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在するように供される必要がある。更に、本発明では、締付部材300は、平面視で、『他方』の最外層の単位二次電池100のうちの外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在するように供される必要がある。 Summarizing the above two points, in the present invention, in the plan view, the tightening member 300 is a side portion 100A on which the external terminal 20 of the unit secondary battery 100 of the outermost layer of "one side" is arranged. It needs to be provided so as to extend from the to the other side 100B. Further, in the present invention, in the plan view, the tightening member 300 is from one side portion 100A to the other side portion 100B in which the external terminal 20 of the unit secondary battery 100 of the "other" outermost layer is arranged. It needs to be offered to be extended.

締付部材300がこのような配置形態を採ると、本発明では、第1の特徴として、締付部材300の締付力は、平面視で、『一方』の最外層の単位二次電池100のうちの外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在する領域に供されることとなる。又、締付部材300がこのような配置形態を採ると、本発明では、第2の特徴として、締付部材300の締付力は、平面視で、『他方』の最外層の単位二次電池100のうちの外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在する領域に供されることとなる。 When the tightening member 300 adopts such an arrangement form, the first feature of the present invention is that the tightening force of the tightening member 300 is the unit secondary battery 100 of the outermost layer of "one side" in a plan view. The external terminal 20 is provided in a region extending from one side portion 100A to the other side portion 100B. Further, when the tightening member 300 adopts such an arrangement form, in the present invention, as a second feature, the tightening force of the tightening member 300 is the unit secondary of the outermost layer of the "other" in a plan view. The battery 100 is provided in a region extending from one side portion 100A where the external terminal 20 is arranged to the other side portion 100B.

更に、締付部材300がこのような配置形態を採ると、本発明では、第3の特徴として、断面視又は側面視にて、『一方』の最外層の単位二次電池100側に供される締付部材300の締付力が作用する向きと、『他方』の最外層の単位二次電池100側に供される締付部材300の締付力が作用する向きとは互いに反対の関係となる。つまり、当該締付け力の作用方向が互いに反対関係であることは、単位二次電池積層体200の一方の主面200α(『一方』の最外層の単位二次電池100の設置側)と、一方の主面200αに対向する他方の主面200β(『他方』の最外層の単位二次電池100の設置側)とが、締付部材300により挟み込まれることを意味する(図1参照)。より具体的に言うと、当該締付力の作用方向が互いに反対関係であることは、締付部材300が締付力を供する部材であることに起因して、当該一方の主面200αと他方の主面200βとが締付部材300により押圧されることを意味する。以上の事から、当該締付け力の作用方向が互いに反対関係であることにより、締付部材300の締付力が、側面視又は断面視で、『一方』の最外層の単位二次電池100から『他方』の最外層の単位二次電池100に至る全ての単位二次電池100にそれぞれ供され得る。 Further, when the tightening member 300 adopts such an arrangement form, in the present invention, as a third feature, it is provided to the unit secondary battery 100 side of the outermost layer of "one side" in a cross-sectional view or a side view. The direction in which the tightening force of the tightening member 300 acts and the direction in which the tightening force of the tightening member 300 provided on the unit secondary battery 100 side of the "other" outermost layer acts are opposite to each other. It becomes. That is, the fact that the directions of action of the tightening forces are opposite to each other means that one main surface 200α of the unit secondary battery laminate 200 (the installation side of the unit secondary battery 100 in the outermost layer of “one”) and one side. It means that the other main surface 200β facing the main surface 200α (the installation side of the unit secondary battery 100 of the outermost layer of the “other”) is sandwiched by the tightening member 300 (see FIG. 1). More specifically, the fact that the directions of action of the tightening forces are opposite to each other is due to the fact that the tightening member 300 is a member that provides the tightening force, so that one main surface 200α and the other It means that the main surface 200β of the above is pressed by the tightening member 300. From the above, since the directions of action of the tightening forces are opposite to each other, the tightening force of the tightening member 300 is from the unit secondary battery 100 of the outermost layer of "one" in a side view or a cross-sectional view. It can be provided to all the unit secondary batteries 100 up to the unit secondary battery 100 of the outermost layer of the "other".

上記の第1の特徴および第2の特徴を鑑みると、締付部材300の締付力は、平面視で、「最外層」の単位二次電池100のうちの外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在する領域に供され得る。そのため、平面視で、「最外層」の単位二次電池100のうちの外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域全体にわたって、締付部材300の均一な締付力を供することが可能となる。つまり、「最外層」の単位二次電池100の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域内のいずれの部分にも、締付部材300の締付力を均一に供することが可能となる。 In view of the first feature and the second feature described above, the tightening force of the tightening member 300 is such that the external terminal 20 of the unit secondary battery 100 of the "outermost layer" is arranged. It can be provided in a region extending from one side 100A to the other 100B. Therefore, in a plan view, the tightening member 300 is uniform over the entire region from one side portion 100A to the other side portion 100B where the external terminal 20 of the unit secondary battery 100 of the "outermost layer" is arranged. It becomes possible to provide a tightening force. That is, the tightening force of the tightening member 300 is applied to any part in the region from one side portion 100A to the other side portion 100B where the external terminal 20 of the unit secondary battery 100 of the "outermost layer" is arranged. Can be uniformly provided.

更に、上記の第3の特徴を鑑みると、上述のように、締付部材300の締付力は、断面視又は側面視で、『一方』の最外層の単位二次電池100から『他方』の最外層の単位二次電池100に至る全ての単位二次電池100にそれぞれ供され得る。そのため、これに起因して、上記の第1および第2の特徴に従い奏される「最外層」の単位二次電池100における技術的効果が、最外層の単位二次電池100以外の他の全ての単位二次電池100においても奏され得る。 Further, in view of the above-mentioned third feature, as described above, the tightening force of the tightening member 300 is "one" from the unit secondary battery 100 of the outermost layer "the other" in cross-sectional view or side view. It can be provided to all the unit secondary batteries 100 up to the unit secondary battery 100 of the outermost layer of the above. Therefore, due to this, the technical effect in the "outermost layer" unit secondary battery 100 played according to the above first and second features is all other than the outermost layer unit secondary battery 100. It can also be played in the unit secondary battery 100 of.

以上の事から、上記の3つの特徴を総合すると、締付部材300の締付力は、平面視で、全ての単位二次電池100(単位二次電池積層体200に相当)の各々の外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在する領域に供され得る。そのため、平面視で、全ての単位二次電池100(単位二次電池積層体200に相当)の各々の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域全体にわたって、締付部材300の均一な締付力を供することが可能となる。つまり、平面視で、各単位二次電池100(単位二次電池積層体200に相当)の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域内のいずれの部分にも、締付部材300の締付力を均一に供することが可能となる。 From the above, when the above three features are combined, the tightening force of the tightening member 300 is the outside of each of all the unit secondary batteries 100 (corresponding to the unit secondary battery laminate 200) in a plan view. It may be provided in a region extending from one side 100A where the terminal 20 is arranged to the other 100B. Therefore, in a plan view, the entire region from one side portion 100A to the other side portion 100B where the external terminals 20 of all the unit secondary batteries 100 (corresponding to the unit secondary battery laminate 200) are arranged. , It becomes possible to provide a uniform tightening force of the tightening member 300. That is, in a plan view, any part in the region from one side portion 100A to the other side portion 100B where the external terminal 20 of each unit secondary battery 100 (corresponding to the unit secondary battery laminate 200) is arranged. In addition, the tightening force of the tightening member 300 can be uniformly applied.

これにより、平面視にて、各単位二次電池100内の電極組立体(例えば各正極および各負極)の一方の側部から他方の側部に至る領域内のいずれの部分にも、締付部材300の均一な締付力を伝えることができ得る。なお、各単位二次電池100内部へ当該締付力をより好適に伝え易さを向上させる観点から、各単位二次電池100の外装体(ハードケース型)の材質としては、アルミニウム、ニッケル、鉄、銅、ステンレス等が挙げられ、この中で特にアルミニウムが好ましい。従って、平面視にて、当該領域内に位置する各単位二次電池100内部における電池反応(化学反応)を略均一にすることが可能となる。これにより、全体として各単位二次電池100の電池反応を略均一にすることができる、すなわち、電池反応のばらつきが、平面視で、全ての単位二次電池100(単位二次電池積層体200に相当)の各々の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域内にて生じ得ることを好適に抑制することが可能となる。従って、全体として、平面視で単位二次電池積層体200の当該領域内における電池反応のばらつきの好適な発生抑制という技術的効果が奏され得る。 As a result, in a plan view, the electrode assembly (for example, each positive electrode and each negative electrode) in each unit secondary battery 100 is tightened to any part in the region from one side to the other. It is possible to transmit a uniform tightening force of the member 300. From the viewpoint of improving the ease with which the tightening force can be more preferably transmitted to the inside of each unit secondary battery 100, the material of the exterior body (hard case type) of each unit secondary battery 100 is aluminum, nickel, or the like. Examples thereof include iron, copper and stainless steel, and among these, aluminum is particularly preferable. Therefore, in a plan view, it is possible to make the battery reaction (chemical reaction) inside each unit secondary battery 100 located in the region substantially uniform. As a result, the battery reaction of each unit secondary battery 100 can be made substantially uniform as a whole, that is, the variation in the battery reaction can be seen in plan view from all the unit secondary batteries 100 (unit secondary battery laminate 200). It is possible to preferably suppress that each external terminal 20 (corresponding to) can occur in the region from one side portion 100A to the other side portion 100B where the external terminals 20 are arranged. Therefore, as a whole, the technical effect of suppressing the generation of variations in the battery reaction within the region of the unit secondary battery laminate 200 in a plan view can be achieved.

本発明の組電池400がこのような効果を奏する単位二次電池積層体200を備えていることで、当該技術的効果に起因して、組電池400の充放電時の電池反応(化学反応)の速度等を全体として略一定にすることができる。又、組電池400がこのような効果を奏する単位二次電池積層体200を備えていることで、当該技術的効果に起因して、組電池400の(低温条件下(例えば0度以下)での)充電時に局所的に充電反応が進み、それによってリチウムの析出し得る領域の局所的な発生を好適に抑制することができる。かかるリチウム析出領域の局所的な発生抑制により、リチウム析出に起因する各単位二次電池100内のセパレータの破損を好適に抑制することができる。以上の事から、本発明の組電池400は、電池特性を好適に発揮することが可能となる。 Since the assembled battery 400 of the present invention includes the unit secondary battery laminate 200 that exerts such an effect, the battery reaction (chemical reaction) during charging and discharging of the assembled battery 400 is caused by the technical effect. The speed and the like can be made substantially constant as a whole. Further, since the assembled battery 400 includes the unit secondary battery laminate 200 that exerts such an effect, due to the technical effect, the assembled battery 400 (for example, under low temperature conditions (for example, 0 degrees or less)). The charging reaction proceeds locally during charging, whereby the local generation of the region where lithium can be deposited can be suitably suppressed. By suppressing the local generation of the lithium precipitation region, damage to the separator in each unit secondary battery 100 due to lithium precipitation can be suitably suppressed. From the above, the assembled battery 400 of the present invention can preferably exhibit the battery characteristics.

(本発明の組電池の製造方法)
なお、上記特徴を有する本発明の組電池の製造方法について触れておく。
(Manufacturing method of assembled battery of the present invention)
It should be noted that the method for manufacturing the assembled battery of the present invention having the above characteristics will be mentioned.

1.単位二次電池積層体200の形成工程
まず、複数の単位二次電池100を一方向(すなわち積層方向)に沿って積層し、それによって単位二次電池積層体200を形成する(図1参照)。
1. 1. Step of Forming Unit Secondary Battery Laminated Body 200 First, a plurality of unit secondary battery 100s are laminated along one direction (that is, the stacking direction), thereby forming the unit secondary battery laminate 200 (see FIG. 1). ..

2.締付部材を供する工程
単位二次電池積層体200を形成した後、締付部材300を用いて単位二次電池積層体200を締め付ける。具体的には、この際、平面視にて、締付部材300を、外部端子20が配置される単位二次電池100の一方の側部100Aから一方の側部100Aに対向する他方の側部100Bまで延在するように配置する。又、具体的には、締付部材300を、単位二次電池積層体200の一方の主面200α(『一方』の最外層の単位二次電池100の設置側)と、一方の主面200αに対向する他方の主面200β(『他方』の最外層の単位二次電池100の設置側)とを挟み込むように配置する(図1参照)。
2. Step of providing the tightening member After forming the unit secondary battery laminate 200, the unit secondary battery laminate 200 is tightened using the tightening member 300. Specifically, at this time, in a plan view, the tightening member 300 is attached to the other side portion facing the one side portion 100A from the one side portion 100A of the unit secondary battery 100 in which the external terminal 20 is arranged. Arrange so as to extend to 100B. Specifically, the tightening member 300 is attached to one main surface 200α of the unit secondary battery laminate 200 (the installation side of the unit secondary battery 100 in the outermost layer of “one”) and one main surface 200α. It is arranged so as to sandwich the other main surface 200β (the installation side of the unit secondary battery 100 of the outermost layer of the “other”) facing the other (see FIG. 1).

3.組電池の完成
以上により、本発明の組電池を得ることができる。
3. 3. Completion of the assembled battery With the above, the assembled battery of the present invention can be obtained.

詳細な作用効果については、上記の本発明の組電池の構成部分にて述べているため簡略化するが、本発明の製造方法に従えば、平面視で、各単位二次電池100の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域全体にわたって、締付部材300の均一な締付力を供することが可能となる。これにより、平面視にて、平面視にて、各単位二次電池100内の電極組立体(例えば各正極および各負極)の一方の側部から他方の側部に至る領域内のいずれの部分にも、締付部材300の均一な締付力を伝えることができ得る。そのため、平面視にて、当該領域内に位置する各単位二次電池100内部における電池反応(化学反応)を略均一にすることが可能となる。これにより、全ての単位二次電池100(単位二次電池積層体200に相当)の各々の電池反応を略均一にすることができる。 The detailed operation and effect will be simplified because they are described in the above-described constituent parts of the assembled battery of the present invention, but according to the manufacturing method of the present invention, the external terminals of each unit secondary battery 100 in plan view. It is possible to provide a uniform tightening force of the tightening member 300 over the entire region from one side portion 100A to the other side portion 100B where 20 is arranged. Thereby, in plan view and in plan view, any part in the region from one side portion to the other side portion of the electrode assembly (for example, each positive electrode and each negative electrode) in each unit secondary battery 100. Also, a uniform tightening force of the tightening member 300 can be transmitted. Therefore, in a plan view, it is possible to make the battery reaction (chemical reaction) inside each unit secondary battery 100 located in the region substantially uniform. Thereby, each battery reaction of all the unit secondary batteries 100 (corresponding to the unit secondary battery laminate 200) can be made substantially uniform.

本発明の組電池は、下記態様を採ることが好ましい。 The assembled battery of the present invention preferably adopts the following aspects.

一態様では、締付部材300が、平面視で、単位二次電池100の外部端子20の突出方向に対して略平行な方向に延在していることが好ましい(図1参照)。 In one aspect, it is preferable that the tightening member 300 extends in a direction substantially parallel to the protruding direction of the external terminal 20 of the unit secondary battery 100 in a plan view (see FIG. 1).

上述のように、全ての単位二次電池100の各々の電池反応のばらつきの発生を抑制する観点から、本発明では、その構成要素である締付部材300が、平面視で、外部端子20が配置されている単位二次電池100の一方の側部100Aから他方の側部100Bまで延在するように配置される。本態様では、当該締付部材300の締付力をより好適に供する観点から、平面視での締付部材300の延在方向(すなわち配置箇所)を、単位二次電池100の外部端子20の突出方向に対して略平行な方向に限定している。 As described above, from the viewpoint of suppressing the occurrence of variation in the battery reaction of all the unit secondary batteries 100, in the present invention, the tightening member 300, which is a component thereof, has the external terminal 20 in a plan view. The unit secondary battery 100 is arranged so as to extend from one side portion 100A to the other side portion 100B. In this embodiment, from the viewpoint of more preferably applying the tightening force of the tightening member 300, the extending direction (that is, the arrangement location) of the tightening member 300 in a plan view is set to the external terminal 20 of the unit secondary battery 100. It is limited to a direction substantially parallel to the protruding direction.

これにつき、締付部材300の延在方向が単位二次電池100の外部端子20の突出方向に対して略平行な方向に限定される場合、平面視にて、外部端子20が配置される単位二次電池100の一方の側部100Aと、当該一方の側部100Aとは反対側の他方の側部100Bとは、完全対向の関係となり得る。かかる完全対向の関係により、外部端子20が配置される単位二次電池100の一方の側部100Aと他方の側部100Bとが平面視で部分的に対向する関係である場合と比べて、締付部材300が平面視で斜め方向に延在していないことに起因して、締付部材300の締付力の分散を抑制することが可能となる。つまり、かかる完全対向の関係により、当該締付部材300の締付力をより好適に供することが可能となる。以上の事からも、平面視で締付部材300の延在方向を、単位二次電池100の外部端子20の突出方向に対して略平行な方向に限定すると、当該締付部材300の締付力をより好適に供することが可能となる。以上の点において、本態様は好ましいと言える。 Regarding this, when the extending direction of the tightening member 300 is limited to a direction substantially parallel to the protruding direction of the external terminal 20 of the unit secondary battery 100, the unit in which the external terminal 20 is arranged in a plan view. One side portion 100A of the secondary battery 100 and the other side portion 100B on the opposite side of the one side portion 100A may be in a completely opposite relationship. Due to such a completely opposed relationship, one side portion 100A and the other side portion 100B of the unit secondary battery 100 in which the external terminal 20 is arranged are tightened as compared with the case where they are partially opposed to each other in a plan view. Since the attachment member 300 does not extend diagonally in a plan view, it is possible to suppress the dispersion of the tightening force of the tightening member 300. That is, due to the completely opposed relationship, the tightening force of the tightening member 300 can be more preferably applied. From the above, if the extending direction of the tightening member 300 is limited to a direction substantially parallel to the protruding direction of the external terminal 20 of the unit secondary battery 100 in a plan view, the tightening member 300 is tightened. It becomes possible to apply the force more favorably. In the above points, it can be said that this aspect is preferable.

一態様では、平面視で、単位二次電池100の一方の側部100Aに、正極側の外部端子20Aと負極側の外部端子20Bとが相互に離隔するように配置され、および締付部材300が、平面視で、正極側の外部端子20Aと負極側の外部端子20Bとの間に配置されることが好ましい(図1参照)。 In one aspect, in a plan view, the external terminal 20A on the positive electrode side and the external terminal 20B on the negative electrode side are arranged on one side 100A of the unit secondary battery 100 so as to be separated from each other, and the tightening member 300. However, in a plan view, it is preferable that the external terminal 20A on the positive electrode side and the external terminal 20B on the negative electrode side are arranged (see FIG. 1).

上述のように、各単位二次電池100’の電池反応のばらつきは、平面視で、外部端子20’の設置部分に対して近位側の領域100X’にて相対的に生じ易く、その一方で外部端子20’の設置部分に対して遠位側の領域100Y’にて相対的に生じにくい傾向にある(図11参照)。これにつき、より詳細には、平面視で、正極側の外部端子20A’の設置部分に対して近位側の領域100X’にて、単位二次電池100’の各正極の反応が相対的に生じ易く、その一方で正極側の外部端子20A’の設置部分に対して遠位側の領域100Y’にて、単位二次電池100’の各正極の反応が相対的に生じ易い。同様に、平面視で、負極側の外部端子20B’の設置部分に対して近位側の領域100X’にて、単位二次電池100’の各負極の反応が相対的に生じ易く、その一方で負極側の外部端子20B’の設置部分に対して遠位側の領域100Y’にて、単位二次電池100’の各負極の反応が相対的に生じ易い。以上の事から、好ましくは、単位二次電池の各正極および各負極の反応のばらつきの抑制が求められる。 As described above, the variation in the battery reaction of each unit secondary battery 100'is likely to occur relatively in the region 100X'proximal to the installation portion of the external terminal 20' in a plan view, while the variation is likely to occur. In the region 100Y'distal to the installation portion of the external terminal 20', it tends to be relatively difficult to occur (see FIG. 11). Regarding this, more specifically, in a plan view, the reaction of each positive electrode of the unit secondary battery 100'is relatively relative to the installation portion of the external terminal 20A'on the positive electrode side in the region 100X'on the proximal side. On the other hand, the reaction of each positive electrode of the unit secondary battery 100'is relatively likely to occur in the region 100Y'distal to the installation portion of the external terminal 20A'on the positive electrode side. Similarly, in a plan view, the reaction of each negative electrode of the unit secondary battery 100'is relatively likely to occur in the region 100X'proximal to the installation portion of the external terminal 20B'on the negative electrode side, while the reaction of each negative electrode is relatively likely to occur. In the region 100Y'distal to the installation portion of the external terminal 20B'on the negative electrode side, the reaction of each negative electrode of the unit secondary battery 100'is relatively likely to occur. From the above, it is preferably required to suppress the variation in the reaction of each positive electrode and each negative electrode of the unit secondary battery.

単位二次電池100の各正極のいずれの反応のばらつきも抑制するためには、締付部材300の締付力が、平面視で、単位二次電池100の正極側の外部端子20Aが配置される一方の側部100Aから他方の側部100Bに至る領域内のいずれの部分にも略均一に供される必要がある。同様に、単位二次電池100の各負極のいずれの反応のばらつきを抑制するためには、締付部材300の締付力が、平面視で、単位二次電池100の負極側の外部端子20Bが配置される一方の側部100Aから他方の側部100Bに至る領域内のいずれの部分にも略均一に供される必要がある。 In order to suppress variations in the reaction of each positive electrode of the unit secondary battery 100, the external terminal 20A on the positive electrode side of the unit secondary battery 100 is arranged so that the tightening force of the tightening member 300 is in plan view. It is necessary to be provided substantially uniformly to any portion in the region from one side portion 100A to the other side portion 100B. Similarly, in order to suppress variations in the reaction of each negative electrode of the unit secondary battery 100, the tightening force of the tightening member 300 is the external terminal 20B on the negative electrode side of the unit secondary battery 100 in a plan view. It is necessary to be provided substantially uniformly to any portion in the region from one side portion 100A to the other side portion 100B on which the is arranged.

上記点を鑑み、締付部材300は、平面視で、正極側の外部端子20Aと負極側の外部端子20Bとの間に配置されることが好ましい(図1参照)。かかる配置形態によれば、締付部材300が、平面視で外部端子20Aと外部端子20Bとの間に配置されていることに起因して、締付部材300の締付力を、平面視で、「単位二次電池100の正極側の外部端子20Aが配置される一方の側部100Aから他方の側部100Bに至る領域」と「単位二次電池100の負極側の外部端子20Bが配置される一方の側部100Aから他方の側部100Bに至る領域」の両領域に好適に供することが可能となる。以上の点において、本態様は好ましいと言える。 In view of the above points, the tightening member 300 is preferably arranged between the external terminal 20A on the positive electrode side and the external terminal 20B on the negative electrode side in a plan view (see FIG. 1). According to such an arrangement form, the tightening force of the tightening member 300 is measured in a plan view because the tightening member 300 is arranged between the external terminal 20A and the external terminal 20B in a plan view. , "A region from one side 100A where the external terminal 20A on the positive electrode side of the unit secondary battery 100 is arranged to the other side 100B" and "the external terminal 20B on the negative electrode side of the unit secondary battery 100 are arranged". It is possible to suitably provide both regions of "a region extending from one side portion 100A to the other side portion 100B". In the above points, it can be said that this aspect is preferable.

一態様では、単位二次電池100は、平面視で矩形形状を有していてよい(図1等参照)。 In one aspect, the unit secondary battery 100 may have a rectangular shape in a plan view (see FIG. 1 and the like).

本発明は、上述のように、締付部材300の締付力を、各単位二次電池100の一方の側部100Aから他方の側部100Bに至る領域の全体にわたり供することを主たる特徴とする。本発明では、かかる特徴が実現されるならば、単位二次電池100の平面視形状は、特に限定されない。しかしながら、電動バイク、電動自転車、電気自動車等の駆動電源の実際の形態(直方体)および当該駆動電源への設置し易さ等を考慮し、組電池400の構成要素である単位二次電池100は、平面視で矩形形状を有していることが好ましい。なお、これに限定されることなく、単位二次電池100は、平面視で円形、楕円形等の形状を採ってもよい。 As described above, the main feature of the present invention is that the tightening force of the tightening member 300 is applied over the entire region from one side portion 100A to the other side portion 100B of each unit secondary battery 100. .. In the present invention, the plan-view shape of the unit secondary battery 100 is not particularly limited as long as such a feature is realized. However, in consideration of the actual form (rectangular parallelepiped) of the drive power source for electric bikes, electric bicycles, electric vehicles, etc. and the ease of installation in the drive power source, the unit secondary battery 100, which is a component of the assembled battery 400, is , It is preferable to have a rectangular shape in a plan view. The unit secondary battery 100 is not limited to this, and may have a circular shape, an elliptical shape, or the like in a plan view.

一態様では、単位二次電池100が、外部端子20が配置された一方の側部100Aの、一方の側部100Aに対して略垂直な方向に延在する側部100Cに対するアスペクト比が1.0以上であることが好ましい(図2および図3参照)。 In one aspect, the unit secondary battery 100 has an aspect ratio of one side portion 100A in which the external terminal 20 is arranged with respect to the side portion 100C extending in a direction substantially perpendicular to the one side portion 100A. It is preferably 0 or more (see FIGS. 2 and 3).

本発明は、上述のように、締付部材300の締付力を、各単位二次電池100の一方の側部100Aから他方の側部100Bに至る領域の全体にわたり供することを主たる特徴とする。かかる特徴によれば、本発明の組電池400では、組電池400の充放電時の電池反応(化学反応)の速度および回数等の略一定性の確保と、組電池400の充電時におけるリチウムの析出し得る領域の局所的な発生抑制という技術的効果が奏され得る。 As described above, the main feature of the present invention is that the tightening force of the tightening member 300 is applied over the entire region from one side portion 100A to the other side portion 100B of each unit secondary battery 100. .. According to these characteristics, in the assembled battery 400 of the present invention, it is possible to ensure substantially constantness such as the speed and number of battery reactions (chemical reactions) during charging and discharging of the assembled battery 400, and to ensure that the lithium assembly battery 400 is charged. The technical effect of suppressing the local generation of the region where precipitation can occur can be achieved.

これにつき、かかる技術的効果をより好適に奏するためには、締付力により平面視で単位二次電池100の一方の側部100Aと他方の側部100Bとの間でより活発に行われ得る電池反応(化学反応)領域の長さ寸法が相対的に小さいことが良い。この事は、「組電池400の充電時において当該領域内での電池反応をより迅速に行い、およびリチウム析出領域の局所的な発生箇所を可能な限り減じる」という観点に基づく。 With respect to this, in order to more preferably exert such a technical effect, the tightening force may be more actively performed between one side portion 100A and the other side portion 100B of the unit secondary battery 100 in a plan view. It is preferable that the length dimension of the battery reaction (chemical reaction) region is relatively small. This is based on the viewpoint that "when the assembled battery 400 is charged, the battery reaction in the region is performed more quickly, and the local occurrence location of the lithium precipitation region is reduced as much as possible".

かかる観点を実現する態様としては、より好ましくは図2に示す態様が挙げられる。図2に示す態様は、単位二次電池100が、外部端子20が配置された一方の側部100Aの、一方の側部100Aに対して略垂直な方向に延在する側部100Cに対するアスペクト比(a/a)が1.0よりも大きいものである。すなわち、図2に示す態様では、平面視で単位二次電池100が矩形形状を有する場合において、外部端子20が配置された一方の側部100Aの長さが、一方の側部100Aに対して略垂直な方向に延在する側部100Cの長さよりも相対的に大きくなっている。換言すれば、平面視で単位二次電池100が矩形形状を有する場合において、外部端子20が配置された一方の側部100Aに対して略垂直な方向に延在する側部100Cの長さが、外部端子20が配置された一方の側部100Aの長さよりも相対的に小さくなっている。そのため、これに起因して、図2に示す態様によれば、「組電池400の充電時において当該領域内での電池反応をより迅速に行い、およびリチウム析出領域の局所的な発生箇所を可能な限り減じる」ことをより好適に実施することができる。 More preferably, the aspect shown in FIG. 2 can be mentioned as an aspect for realizing such a viewpoint. In the embodiment shown in FIG. 2, the unit secondary battery 100 has an aspect ratio of one side portion 100A in which the external terminal 20 is arranged with respect to the side portion 100C extending in a direction substantially perpendicular to the one side portion 100A. (A 1 / a 2 ) is larger than 1.0. That is, in the embodiment shown in FIG. 2, when the unit secondary battery 100 has a rectangular shape in a plan view, the length of one side portion 100A in which the external terminal 20 is arranged is different from that of the one side portion 100A. It is relatively larger than the length of the side portion 100C extending in a substantially vertical direction. In other words, when the unit secondary battery 100 has a rectangular shape in a plan view, the length of the side portion 100C extending in a direction substantially perpendicular to one side portion 100A on which the external terminal 20 is arranged is long. , It is relatively smaller than the length of one side portion 100A on which the external terminal 20 is arranged. Therefore, due to this, according to the embodiment shown in FIG. 2, "when the assembled battery 400 is charged, the battery reaction in the region can be performed more quickly, and the location where the lithium precipitation region is locally generated can be formed. It is possible to more preferably carry out "reduce as much as possible".

これに限定されることなく、好ましくは図3に示す態様が挙げられる。図3に示す態様は、単位二次電池100が、外部端子20が配置された一方の側部100Aの、一方の側部100Aに対して略垂直な方向に延在する側部100Cに対するアスペクト比(a/a)が1.0であるものである。すなわち、図3に示す態様では、平面視で単位二次電池100が矩形形状を有する場合において、外部端子20が配置された一方の側部100Aの長さと、一方の側部100Aに対して略垂直な方向に延在する側部100Cの長さとが略同一となっている。そのため、これに起因して、図3に示す態様によれば、「組電池400の充電時において当該領域内での電池反応をより迅速に行い、およびリチウム析出領域の局所的な発生箇所を可能な限り減じる」ことを好適に実施することができる。 Without being limited to this, the embodiment shown in FIG. 3 is preferable. In the embodiment shown in FIG. 3, the unit secondary battery 100 has an aspect ratio of one side portion 100A in which the external terminal 20 is arranged with respect to the side portion 100C extending in a direction substantially perpendicular to the one side portion 100A. (A 1 / a 2 ) is 1.0. That is, in the embodiment shown in FIG. 3, when the unit secondary battery 100 has a rectangular shape in a plan view, the length of one side portion 100A in which the external terminal 20 is arranged and the length of one side portion 100A are approximately the same. The length of the side portion 100C extending in the vertical direction is substantially the same. Therefore, due to this, according to the embodiment shown in FIG. 3, "when the assembled battery 400 is charged, the battery reaction in the region can be performed more quickly, and the location where the lithium precipitation region is locally generated can be formed. It is possible to preferably carry out "reduce as much as possible".

なお、本発明の単位二次電池積層体200を備える組電池400は、電動バイク、電動自転車、電気自動車等の駆動電源として用いられる場合、図2および図3に示すように各単位二次電池100の外部端子20が上方向に方向付けられるように配置される。つまり、単位二次電池100の側部100Cが単位二次電池100の高さに相当するように、各単位二次電池100が配置される。この事は、組電池400の高さが単位二次電池100の側部100Cの長さに相当することを意味する。従って、単位二次電池100の側部100Cの長さ寸法が相対的に大きいと、それに伴い組電池400の高さ寸法が大きくなり得る。組電池400の高さ寸法が大きいと、それに伴い電動バイク、電動自転車、電気自動車等への設置スペースを好適に確保できない虞があり得る。かかる点からも、単位二次電池100の側部100Cの長さ寸法が相対的に大きくならない図2および図3に示す態様が採られることが好ましい。 When the assembled battery 400 including the unit secondary battery laminate 200 of the present invention is used as a drive power source for an electric bike, an electric bicycle, an electric vehicle, or the like, each unit secondary battery is shown in FIGS. 2 and 3. The external terminals 20 of 100 are arranged so as to be oriented upward. That is, each unit secondary battery 100 is arranged so that the side portion 100C of the unit secondary battery 100 corresponds to the height of the unit secondary battery 100. This means that the height of the assembled battery 400 corresponds to the length of the side portion 100C of the unit secondary battery 100. Therefore, if the length dimension of the side portion 100C of the unit secondary battery 100 is relatively large, the height dimension of the assembled battery 400 can be increased accordingly. If the height dimension of the assembled battery 400 is large, there is a possibility that the installation space for an electric motorcycle, an electric bicycle, an electric vehicle, or the like cannot be suitably secured accordingly. From this point of view, it is preferable to adopt the embodiment shown in FIGS. 2 and 3 in which the length dimension of the side portion 100C of the unit secondary battery 100 does not become relatively large.

確認的に付言すると、本発明は、上述のように、締付部材300の締付力を、各単位二次電池100の一方の側部100Aから他方の側部100Bに至る領域の全体にわたり供することを主たる特徴とする。かかる主たる特徴に基づく技術的効果(組電池400の充放電時の電池反応(化学反応)の速度および回数等の略一定性の確保と、組電池400の充電時におけるリチウムの析出し得る領域の局所的な発生抑制)をより好適に奏する観点からは図2および図3に示す態様が好ましい。しかしながら、各単位二次電池100の一方の側部100Aから他方の側部100Bに至る領域の全体にわたって、締付部材300の締付力が供されるならば、図2および図3に示す態様に限定されることなく、図4に示す態様が採られてよい。図4に示す態様は、単位二次電池100が、外部端子20が配置された一方の側部100Aの、一方の側部100Aに対して略垂直な方向に延在する側部100Cに対するアスペクト比(a/a)が1.0よりも小さいものである。すなわち、平面視で単位二次電池100が矩形形状を有する場合において、外部端子20が配置された一方の側部100Aの長さが、一方の側部100Aに対して略垂直な方向に延在する側部100Cの長さよりも相対的に小さくなっていてよい。換言すれば、平面視で単位二次電池100が矩形形状を有する場合において、外部端子20が配置された一方の側部100Aに対して略垂直な方向に延在する側部100Cの長さが、外部端子20が配置された一方の側部100Aの長さよりも相対的に大きくなっていてよい。 As a confirmation addition, as described above, the present invention applies the tightening force of the tightening member 300 over the entire region from one side 100A to the other side 100B of each unit secondary battery 100. The main feature is that. Technical effects based on these main features (ensuring substantially constantness such as the speed and number of battery reactions (chemical reactions) during charging and discharging of the assembled battery 400, and the region where lithium can be deposited during charging of the assembled battery 400 From the viewpoint of more preferably performing local generation suppression), the embodiments shown in FIGS. 2 and 3 are preferable. However, if the tightening force of the tightening member 300 is applied over the entire region from one side 100A of each unit secondary battery 100 to the other side 100B, the embodiments shown in FIGS. 2 and 3. The embodiment shown in FIG. 4 may be adopted without being limited to. In the embodiment shown in FIG. 4, the unit secondary battery 100 has an aspect ratio of one side portion 100A in which the external terminal 20 is arranged with respect to the side portion 100C extending in a direction substantially perpendicular to the one side portion 100A. (A 1 / a 2 ) is smaller than 1.0. That is, when the unit secondary battery 100 has a rectangular shape in a plan view, the length of one side portion 100A on which the external terminal 20 is arranged extends in a direction substantially perpendicular to the one side portion 100A. It may be relatively smaller than the length of the side portion 100C. In other words, when the unit secondary battery 100 has a rectangular shape in a plan view, the length of the side portion 100C extending in a direction substantially perpendicular to one side portion 100A on which the external terminal 20 is arranged is long. , The length of the one side portion 100A on which the external terminal 20 is arranged may be relatively larger than the length.

以上の事から、上記のアスペクト比(a/a)は、好ましくは1.0以上であることが好ましい。しかしながら、これに限定されることなく、本発明の組電池400が電動バイク、電動自転車、電気自動車等の駆動電源として用いられることを鑑み、当該アスペクト比(a/a)は、0.5以上2.0以下、例えば0.8以上1.7以下であってよい。 From the above, the aspect ratio (a 1 / a 2 ) is preferably 1.0 or more. However, without being limited to this, in view of the fact that the assembled battery 400 of the present invention is used as a driving power source for an electric motorcycle, an electric bicycle, an electric vehicle, etc., the aspect ratio (a 1 / a 2 ) is 0. It may be 5 or more and 2.0 or less, for example, 0.8 or more and 1.7 or less.

なお、本発明は下記態様を採ってよい。 The present invention may take the following aspects.

一態様では、締付部材300は輪状のバンド部材301(図5:301A、図6:301B)であってよく、かつ当該バンド部材301が弾性部材であってよい(図5および図6参照)。 In one aspect, the tightening member 300 may be a ring-shaped band member 301 (FIGS. 5: 301A, FIG. 6: 301B), and the band member 301 may be an elastic member (see FIGS. 5 and 6). ..

本発明は、上述のように、締付部材300の締付力を、各単位二次電池100の一方の側部100Aから他方の側部100Bに至る領域の全体にわたり供することを主たる特徴とする。本発明では、かかる特徴が実現されるならば、締付部材300の構成は、特に限定されない。 As described above, the main feature of the present invention is that the tightening force of the tightening member 300 is applied over the entire region from one side portion 100A to the other side portion 100B of each unit secondary battery 100. .. In the present invention, the configuration of the tightening member 300 is not particularly limited as long as such a feature is realized.

そこで、一例として、図5に示すように、輪状のバンド部材301A(すなわち輪状の帯部材)が用いられてよい。輪状のバンド部材301Aを用いる場合、当該バンド部材301Aがリング形態を採ることに起因して、単位二次電池積層体200の外表面200γが当該バンド部材301Aにより取り囲まれる。当該バンド部材301Aが単位二次電池積層体200の外表面200γに対して取囲むと、これに起因してバンド部材301Aによって取り囲まれた単位二次電池積層体200の局所部分に対して当該積層体の内側領域へと作用する押圧力が生じ得る。かかる押圧力の発生は、単位二次電池積層体200の当該局所部分に対してバンド部材301Aの締付力が実質的に生じ得ることを意味する。これにより、締付部材300として輪状のバンド部材301Aを用いた場合であっても、バンド部材301Aの締付力が、平面視で、各単位二次電池100の外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在する領域に供され得る。そのため、平面視で、各単位二次電池100の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域全体にわたって、バンド部材301Aの均一な締付力を供することが可能となる。 Therefore, as an example, as shown in FIG. 5, a ring-shaped band member 301A (that is, a ring-shaped band member) may be used. When the ring-shaped band member 301A is used, the outer surface 200γ of the unit secondary battery laminate 200 is surrounded by the band member 301A due to the band member 301A taking the ring form. When the band member 301A surrounds the outer surface 200γ of the unit secondary battery laminate 200, the stacking is caused to the local portion of the unit secondary battery laminate 200 surrounded by the band member 301A. Pushing pressure can occur that acts on the inner region of the body. The generation of such a pressing force means that a tightening force of the band member 301A can be substantially generated with respect to the local portion of the unit secondary battery laminate 200. As a result, even when the ring-shaped band member 301A is used as the tightening member 300, the tightening force of the band member 301A is such that the external terminal 20 of each unit secondary battery 100 is arranged in a plan view. It can be provided in a region extending from one side 100A to the other 100B. Therefore, in a plan view, it is possible to provide a uniform tightening force of the band member 301A over the entire region from one side portion 100A where the external terminal 20 of each unit secondary battery 100 is arranged to the other side portion 100B. It will be possible.

なお、図5に示す態様と作用および効果が同様であるため重複する記載は行わないが、締付部材300の構成としては、図5の態様に限定されることなく、輪状のバンド部材301B(結束バンドタイプに相当)が用いられてもよい(図6参照)。 Since the operation and effect are the same as those shown in FIG. 5, no duplicate description will be made, but the configuration of the tightening member 300 is not limited to the aspect shown in FIG. 5, and the ring-shaped band member 301B ( (Corresponding to a cable tie type) may be used (see FIG. 6).

又、図5および図6に示す態様では、従前の図10および図11に示す態様(固定テープ300’が、平面視で単位二次電池100’の外部端子20’が配置されていない両側部100C’、100D’を延在するように配置される態様)と比べ、以下の効果が奏され得る。具体的には、本発明の組電池400が、電動バイク、電動自転車、電気自動車等の駆動電源として用いられる場合、各単位二次電池100の外部端子20が上方向に方向付けられるように配置されることが多い。かかる配置にて、締付部材300に重力が作用すると、それに起因して、締付部材300が重力方向(略下方方向)へと移動する力が作用しやすい。一方、単位二次電池100の外部端子20が上方向に方向付けられるように配置される場合に、外部端子20が配置される一方の側部100Aは、単位二次電池100、すなわち単位二次電池積層体200の上面を実質的に担うこととなる。この場合、単位二次電池積層体200の上面上にバンド部材301の一部が位置付けられる。そのため、単位二次電池積層体200の上面上にバンド部材301の一部が位置付けられることに起因して、当該単位二次電池積層体200の上面がバンド部材301の重力方向(略下方方向)への移動のストッパー壁と好適になり得る。これに対して、従前の図10および図11に示す態様では、固定テープ300’の重力方向(略下方方向)への移動のストッパー壁が存在しない。以上の事から、図5および図6に示す態様は、従前の図10および図11に示す態様と比べて、重力方向に沿ったバンド部材301(すなわち、締付部材)のずれを好適に抑制することが可能である。 Further, in the embodiment shown in FIGS. 5 and 6, both sides of the conventional embodiment shown in FIGS. 10 and 11 (the fixed tape 300'is not arranged with the external terminal 20'of the unit secondary battery 100'in a plan view. The following effects can be achieved as compared with (a mode in which 100C'and 100D' are arranged so as to extend). Specifically, when the assembled battery 400 of the present invention is used as a drive power source for an electric bike, an electric bicycle, an electric vehicle, etc., the external terminal 20 of each unit secondary battery 100 is arranged so as to be oriented upward. Often done. In such an arrangement, when gravity acts on the tightening member 300, a force that causes the tightening member 300 to move in the direction of gravity (substantially downward direction) tends to act due to this. On the other hand, when the external terminal 20 of the unit secondary battery 100 is arranged so as to be oriented upward, the one side portion 100A on which the external terminal 20 is arranged is the unit secondary battery 100, that is, the unit secondary. It substantially bears the upper surface of the battery laminate 200. In this case, a part of the band member 301 is positioned on the upper surface of the unit secondary battery laminate 200. Therefore, due to the fact that a part of the band member 301 is positioned on the upper surface of the unit secondary battery laminate 200, the upper surface of the unit secondary battery laminate 200 is in the direction of gravity (substantially downward direction) of the band member 301. Can be suitable as a stopper wall for movement to. On the other hand, in the conventional embodiments shown in FIGS. 10 and 11, there is no stopper wall for moving the fixing tape 300'in the gravity direction (substantially downward direction). From the above, the embodiment shown in FIGS. 5 and 6 preferably suppresses the displacement of the band member 301 (that is, the tightening member) along the direction of gravity as compared with the conventional embodiments shown in FIGS. 10 and 11. It is possible to do.

又、本発明の組電池400が、電動バイク、電動自転車、電気自動車等の駆動電源として用いられる際、その使用環境によっては、当該組電池400が傾く場合がある。当該組電池400の傾きは、単位二次電池100の外部端子20が必ずしも鉛直上方向に方向付けられないことを意味する。この場合において、図5および図6に示す態様では、従前の図10および図11に示す態様と比べ、以下の効果が奏され得る。具体的には、従前の図10および図11に示す態様では、単位二次電池100’の外部端子20’が上方向に方向付けられないと、それに起因して外部端子20’の設置部分に対して近位側の領域100X'上に位置し得る固定テープ300’と単位二次電池積層体200’との間に隙間が生じる場合がある。これに対して、図5および図6に示す態様では、単位二次電池100の外部端子20が上方向に方向付けられないとしても、それに起因して外部端子20の設置部分に対して近位側の領域100X上に位置し得るバンド部材301(すなわち、締付部材)と単位二次電池積層体200との間に隙間が生じることを好適に抑制することが可能である。 Further, when the assembled battery 400 of the present invention is used as a drive power source for an electric motorcycle, an electric bicycle, an electric vehicle, or the like, the assembled battery 400 may be tilted depending on the usage environment. The inclination of the assembled battery 400 means that the external terminal 20 of the unit secondary battery 100 is not necessarily oriented vertically upward. In this case, in the embodiments shown in FIGS. 5 and 6, the following effects can be achieved as compared with the conventional embodiments shown in FIGS. 10 and 11. Specifically, in the conventional embodiments shown in FIGS. 10 and 11, if the external terminal 20'of the unit secondary battery 100'is not oriented upward, the external terminal 20'is installed in the external terminal 20'. On the other hand, there may be a gap between the fixing tape 300'which can be located on the proximal region 100X'and the unit secondary battery laminate 200'. On the other hand, in the embodiment shown in FIGS. 5 and 6, even if the external terminal 20 of the unit secondary battery 100 is not oriented upward, it is proximal to the installation portion of the external terminal 20 due to this. It is possible to suitably suppress the formation of a gap between the band member 301 (that is, the tightening member) that can be located on the side region 100X and the unit secondary battery laminate 200.

以上の事からも、図5および図6に示す態様では、重力方向に沿ったバンド部材301(すなわち、締付部材)のずれの好適な抑制および/またはバンド部材301(すなわち、締付部材)と単位二次電池積層体200との間の隙間抑制が可能となる。そのため、これに起因して、平面視で、各単位二次電池100(単位二次電池積層体200に相当)の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域内のいずれの部分にも締付部材300の締付力を均一に供することを「継続かつ安定して」行うことが可能となる。 From the above, in the embodiment shown in FIGS. 5 and 6, suitable suppression of displacement of the band member 301 (that is, the tightening member) along the direction of gravity and / or the band member 301 (that is, the tightening member) It is possible to suppress the gap between the unit and the unit secondary battery laminate 200. Therefore, due to this, in a plan view, from one side portion 100A to the other side portion 100B where the external terminal 20 of each unit secondary battery 100 (corresponding to the unit secondary battery laminate 200) is arranged. It is possible to "continuously and stably" apply the tightening force of the tightening member 300 uniformly to any portion in the region.

一態様では、締付部材300は挟込部材302であってよい(図7参照)。 In one aspect, the tightening member 300 may be a sandwiching member 302 (see FIG. 7).

同様に、各単位二次電池100の一方の側部100Aから他方の側部100Bに至る領域の全体にわたり、締付部材300の締付力を供するという特徴が実現されるならば、締付部材300の構成は、図5および図6に示す態様に限定されない。 Similarly, if the feature of providing the tightening force of the tightening member 300 over the entire region from one side 100A to the other side 100B of each unit secondary battery 100 is realized, the tightening member The configuration of 300 is not limited to the embodiments shown in FIGS. 5 and 6.

一例として、図7に示すように、挟込部材302(平面視で帯状の挟込部材)が用いられてよい。本態様において、当該挟込部材302は、側面視又は断面視にて、単位二次電池積層体200の一方の主面200αと他方の主面200βとを相互に挟み込む機能を有し得る。そのため、挟込部材302を用いる場合、挟込部材302により単位二次電池積層体200が挟み込まれる。より具体的には、単位二次電池積層体200の一方の主面200αと、一方の主面200αに対向する他方の主面200βとが、挟込部材302により挟み込まれる。 As an example, as shown in FIG. 7, a sandwiching member 302 (a band-shaped sandwiching member in a plan view) may be used. In this embodiment, the sandwiching member 302 may have a function of sandwiching one main surface 200α and the other main surface 200β of the unit secondary battery laminate 200 from each other in a side view or a cross-sectional view. Therefore, when the sandwiching member 302 is used, the unit secondary battery laminate 200 is sandwiched by the sandwiching member 302. More specifically, one main surface 200α of the unit secondary battery laminate 200 and the other main surface 200β facing the one main surface 200α are sandwiched by the sandwiching member 302.

かかる挟込部材302による挟み込みは、それに起因して当該挟込部材302により挟み込まれた単位二次電池積層体200の局所部分に対して挟込力を生じさせ得る。より具体的に言うと、相互に対向する一方の挟込部材302Aが、一方向(図7内の右矢印方向に相当)に単位二次電池積層体200の一方の主面200αを押圧する押圧力を作用させる。その一方で、他方の挟込部材302Bが、一方向とは反対方向(図7内の左矢印方向に相当)に他方の主面200βを押圧する押圧力を作用させる。つまり、押圧力が作用する方向が互いに向かい合う関係にある。かかる関係を採ることで、当該挟込部材302により、単位二次電池積層体200の局所部分に対して当該積層体200の内側領域に押圧力を好適に生じさせ得る。 The sandwiching by the sandwiching member 302 may generate a sandwiching force with respect to the local portion of the unit secondary battery laminate 200 sandwiched by the sandwiching member 302. More specifically, one of the sandwiching members 302A facing each other presses one main surface 200α of the unit secondary battery laminate 200 in one direction (corresponding to the direction of the right arrow in FIG. 7). Apply pressure. On the other hand, the other sandwiching member 302B exerts a pressing force pressing the other main surface 200β in the direction opposite to one direction (corresponding to the direction of the left arrow in FIG. 7). That is, the directions in which the pressing force acts are opposite to each other. By adopting such a relationship, the sandwiching member 302 can suitably generate a pressing force in the inner region of the laminated body 200 with respect to the local portion of the unit secondary battery laminated body 200.

以上の事から、締付部材300として挟込部材302を用いた場合であっても、挟込部材302により生じ得る押圧力が、平面視で、各単位二次電池100に作用する。具体的には、当該押圧力が、各単位二次電池100の外部端子20が配置される一方の側部100Aから他方の側部100Bまで延在する領域に供され得る。つまり、平面視で、各単位二次電池100の外部端子20が配置される一方の側部100Aから他方の側部100Bに至る領域全体にわたって、挟込部材302による押圧力を均一に供することが可能となる。 From the above, even when the sandwiching member 302 is used as the tightening member 300, the pressing force that can be generated by the sandwiching member 302 acts on each unit secondary battery 100 in a plan view. Specifically, the pressing force may be applied to a region extending from one side portion 100A where the external terminal 20 of each unit secondary battery 100 is arranged to the other side portion 100B. That is, in a plan view, the pressing force by the sandwiching member 302 can be uniformly applied over the entire region from one side portion 100A where the external terminal 20 of each unit secondary battery 100 is arranged to the other side portion 100B. It will be possible.

一態様では、単位二次電池積層体200に対する締付部材の締付力が、50N以上100N以下であってよい(図1および図8参照)。 In one aspect, the tightening force of the tightening member with respect to the unit secondary battery laminate 200 may be 50 N or more and 100 N or less (see FIGS. 1 and 8).

本発明の単位二次電池積層体200を備える組電池400は、電動バイク、電動自転車、電気自動車等の駆動電源として用いられる。つまり、本発明の組電池400は相対的に電池容量の大きな電源であると言える。そのため、本発明の組電池400の構成要素である締付部材300の単位二次電池積層体200に対する締付力は相対的に大きいことが要求される。具体的には、図8に示すように、単位二次電池積層体200(すなわち各単位二次電池100)に対する締付部材の締付力が50N以上400N以下である場合、かかる締付力に起因して、各単位二次電池100の電池反応が安定的に維持され得る(すなわち、電池反応の維持率が約7〜8割となる)ことが数値解析の結果より明らかとなっている(下表1参照)。 The assembled battery 400 including the unit secondary battery laminate 200 of the present invention is used as a drive power source for an electric motorcycle, an electric bicycle, an electric vehicle, or the like. That is, it can be said that the assembled battery 400 of the present invention is a power source having a relatively large battery capacity. Therefore, the tightening force of the tightening member 300, which is a component of the assembled battery 400 of the present invention, with respect to the unit secondary battery laminate 200 is required to be relatively large. Specifically, as shown in FIG. 8, when the tightening force of the tightening member with respect to the unit secondary battery laminate 200 (that is, each unit secondary battery 100) is 50 N or more and 400 N or less, the tightening force is applied. Therefore, it is clear from the results of numerical analysis that the battery reaction of each unit secondary battery 100 can be stably maintained (that is, the maintenance rate of the battery reaction is about 70 to 80%) (that is, the maintenance rate of the battery reaction is about 70 to 80%). See Table 1 below).

[表1]

Figure 2020173890
[Table 1]
Figure 2020173890

なお、数値解析時にて用いた単位二次電池積層体200(又は単位二次電池100)の基礎データは以下のとおりである。
・外部端子設置側の側部の長さ:60mm
・外部端子設置側の側部に対して略垂直方向に延在する側部の長さ:100mm
・単位二次電池の積層方向に沿った長さ:10mm
・単位二次電池の外装体の材質:アルミラミネート
The basic data of the unit secondary battery laminate 200 (or the unit secondary battery 100) used in the numerical analysis is as follows.
-Length of the side part on the external terminal installation side: 60 mm
-The length of the side extending approximately perpendicular to the side where the external terminal is installed: 100 mm
・ Length along the stacking direction of the unit secondary battery: 10 mm
・ Unit Secondary battery exterior material: Aluminum laminate

本発明の一実施形態に係る組電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)に利用することができる。 The assembled battery according to the embodiment of the present invention can be used in various fields where storage is expected. It is just an example, but it is used for home / small industrial applications (for example, power tools, golf carts, household / nursing / industrial robots), and large industrial applications (for example, forklifts, elevators, and bay port cranes). , Transportation system field (for example, hybrid vehicle, electric vehicle, bus, train, electric assist bicycle, electric motorcycle, etc.), power system application (for example, various power generation, road conditioner, smart grid, general household installation type power storage system, etc. Fields), as well as space and deep sea applications (eg, fields such as space probes and submersible research vessels).

400 組電池
400’ 組電池(従来)
300 締付部材
300’ 固定テープ(従来態様)
301 輪状のバンド部材
301A 輪状のバンド部材
301B 略輪状のバンド部材(結束バンドタイプに相当)
302 挟込部材
302A 一方の挟込部材
302B 他方の挟込部材
200 単位二次電池積層体
200’ 単位二次電池積層体(従来)
200α 単位二次電池積層体200の一方の主面
200β 単位二次電池積層体200の他方の主面
200γ 単位二次電池積層体200の外表面
100 単位二次電池
100’ 単位二次電池(従来)
100A 単位二次電池の外部端子が配置されている側部
100B 単位二次電池の外部端子が配置されている側部に対向する側部
100C 単位二次電池の外部端子が配置されていない側部
100C’、100D’ 単位二次電池の外部端子が配置されていない側部(従来)
100X 外部端子の設置部分に対して近位側の領域
100X’ 外部端子の設置部分に対して近位側の領域(従来)
100Y 外部端子の設置部分に対して遠位側の領域
100Y’ 外部端子の設置部分に対して遠位側の領域(従来)
100α 単位二次電池積層体の一方の主面
100β 単位二次電池積層体の他方の主面
100γ 単位二次電池積層体の外表面
20 外部端子
20’ 外部端子(従来)
20A 正極側の外部端子
20A’ 正極側の外部端子(従来)
20B 負極側の外部端子
20B’ 負極側の外部端子(従来)
外部端子20が配置された一方の側部100Aの長さ
一方の側部100Aに対して略垂直な方向に延在する側部100Cの長さ
400-set battery 400'set battery (conventional)
300 Tightening member 300'Fixing tape (conventional aspect)
301 Ring-shaped band member 301A Ring-shaped band member 301B Approximately ring-shaped band member (corresponding to a binding band type)
302 Inserting member 302A One sandwiching member 302B The other sandwiching member 200 Unit secondary battery laminate 200'Unit secondary battery laminate (conventional)
One main surface of 200α unit secondary battery laminate 200 200β The other main surface of unit secondary battery laminate 200 200γ External surface of unit secondary battery laminate 200 100 unit secondary battery 100'unit secondary battery (conventional) )
100A Side part where the external terminal of the unit secondary battery is arranged 100B Side part facing the side where the external terminal of the unit secondary battery is arranged 100C Side part where the external terminal of the unit secondary battery is not arranged 100C', 100D' unit secondary battery side where the external terminal is not arranged (conventional)
Area proximal to the 100X external terminal installation area 100X'Proximal area to the external terminal installation area (conventional)
Area distal to the 100Y external terminal installation area 100Y'Distal area to the external terminal installation area (conventional)
One main surface of the 100α unit secondary battery laminate 100β The other main surface of the unit secondary battery laminate 100γ External surface of the unit secondary battery laminate 20 External terminal 20'External terminal (conventional)
20A External terminal on the positive electrode side 20A'External terminal on the positive electrode side (conventional)
20B External terminal on the negative electrode side 20B'External terminal on the negative electrode side (conventional)
a 1 Length of one side 100A where the external terminal 20 is arranged a 2 Length of side 100C extending in a direction substantially perpendicular to one side 100A

Claims (14)

複数の単位二次電池が積層された単位二次電池積層体を備える、組電池であって、
前記組電池は、前記単位二次電池積層体を締め付ける締付部材を更に備え、該締付部材が、平面視で、外部端子が配置されている前記単位二次電池の一方の側部から該一方の側部に対向する他方の側部まで延在している、組電池。
An assembled battery including a unit secondary battery laminate in which a plurality of unit secondary batteries are stacked.
The assembled battery further includes a tightening member for tightening the unit secondary battery laminate, and the tightening member is viewed from one side of the unit secondary battery in which an external terminal is arranged. An assembled battery that extends to the other side facing one side.
前記締付部材が、平面視で、前記外部端子の突出方向に対して略平行な方向に延在している、請求項1に記載の組電池。 The assembled battery according to claim 1, wherein the tightening member extends in a direction substantially parallel to the protruding direction of the external terminal in a plan view. 前記単位二次電池積層体の一方の主面と、該一方の主面に対向する他方の主面とが、前記締付部材により挟み込まれる、請求項1又は2に記載の組電池。 The assembled battery according to claim 1 or 2, wherein one main surface of the unit secondary battery laminate and the other main surface facing the one main surface are sandwiched by the tightening member. 前記単位二次電池積層体の一方の主面と、該一方の主面に対向する他方の主面とが、前記締付部材により押圧される、請求項1〜3のいずれかに記載の組電池。 The set according to any one of claims 1 to 3, wherein one main surface of the unit secondary battery laminate and the other main surface facing the one main surface are pressed by the tightening member. battery. 平面視で、前記単位二次電池の前記一方の前記側部に、正極側の前記外部端子と負極側の前記外部端子とが相互に離隔するように配置されており、および
前記締付部材が、平面視で、前記正極側の前記外部端子と前記負極側の前記外部端子との間に配置されている、請求項1〜4のいずれかに記載の組電池。
In a plan view, the external terminal on the positive electrode side and the external terminal on the negative electrode side are arranged on the one side of the unit secondary battery so as to be separated from each other, and the tightening member is provided. The assembled battery according to any one of claims 1 to 4, which is arranged between the external terminal on the positive electrode side and the external terminal on the negative electrode side in a plan view.
前記締付部材が、輪状のバンド部材である、請求項1〜5のいずれかに記載の組電池。 The assembled battery according to any one of claims 1 to 5, wherein the tightening member is a ring-shaped band member. 前記締付部材が、弾性部材である、請求項6に記載の組電池。 The assembled battery according to claim 6, wherein the tightening member is an elastic member. 前記締付部材が、前記単位二次電池積層体の外表面を取り囲む、請求項6又は7に記載の組電池。 The assembled battery according to claim 6 or 7, wherein the tightening member surrounds an outer surface of the unit secondary battery laminate. 前記締付部材が、前記単位二次電池積層体の前記一方の主面と、該一方の主面に対向する前記他方の主面とを挟み込む挟込部材である、請求項1〜5のいずれかに記載の組電池。 Any of claims 1 to 5, wherein the tightening member is a sandwiching member that sandwiches the one main surface of the unit secondary battery laminate and the other main surface facing the one main surface. The assembled battery described in Crab. 前記単位二次電池積層体に対する前記締付部材の締付力が、50N以上400N以下である、請求項1〜9のいずれかに記載の組電池。 The assembled battery according to any one of claims 1 to 9, wherein the tightening force of the tightening member with respect to the unit secondary battery laminate is 50 N or more and 400 N or less. 前記単位二次電池が、平面視で矩形形状を有する、請求項1〜10のいずれかに記載の組電池。 The assembled battery according to any one of claims 1 to 10, wherein the unit secondary battery has a rectangular shape in a plan view. 前記単位二次電池が、前記外部端子が配置された前記一方の側部の、該一方の側部に対して略垂直な方向に延在する側部に対するアスペクト比が1.0以上である、請求項1〜11のいずれかに記載の組電池。 The unit secondary battery has an aspect ratio of 1.0 or more with respect to the side portion of the one side portion on which the external terminal is arranged, which extends in a direction substantially perpendicular to the one side portion. The assembled battery according to any one of claims 1 to 11. 前記複数の前記単位二次電池の各々の正極および負極がリチウムイオンを吸蔵放出可能な層を有する、請求項1〜12のいずれかに記載の組電池。 The assembled battery according to any one of claims 1 to 12, wherein each of the positive electrode and the negative electrode of the plurality of unit secondary batteries has a layer capable of occluding and releasing lithium ions. 組電池の製造方法であって、
複数の単位二次電池を積層して単位二次電池積層体を形成する工程、および
締付部材を用いて前記単位二次電池積層体を締め付ける工程
を含み、
前記締付部材を、平面視で、外部端子が配置される前記単位二次電池の一方の側部から該一方の側部に対向する他方の側部まで延在させる、製造方法。
It is a manufacturing method of assembled batteries.
Including a step of laminating a plurality of unit secondary batteries to form a unit secondary battery laminate and a step of tightening the unit secondary battery laminate using a tightening member.
A manufacturing method in which the tightening member extends from one side of the unit secondary battery in which an external terminal is arranged to the other side facing the one side in a plan view.
JP2017132063A 2017-07-05 2017-07-05 Assembled battery and manufacturing method thereof Pending JP2020173890A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017132063A JP2020173890A (en) 2017-07-05 2017-07-05 Assembled battery and manufacturing method thereof
PCT/JP2018/024856 WO2019009207A1 (en) 2017-07-05 2018-06-29 Battery pack and method for producing battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132063A JP2020173890A (en) 2017-07-05 2017-07-05 Assembled battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020173890A true JP2020173890A (en) 2020-10-22

Family

ID=64950983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132063A Pending JP2020173890A (en) 2017-07-05 2017-07-05 Assembled battery and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2020173890A (en)
WO (1) WO2019009207A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7531691B2 (en) 2021-01-11 2024-08-09 エルジー エナジー ソリューション リミテッド Battery module, battery pack including same, and method of manufacturing same
JP7551214B2 (en) 2021-01-11 2024-09-17 エルジー エナジー ソリューション リミテッド Battery module and battery pack including same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696638B1 (en) * 2005-09-05 2007-03-19 삼성에스디아이 주식회사 Secondary battery module
JP5272629B2 (en) * 2008-10-03 2013-08-28 トヨタ自動車株式会社 Method for producing assembled battery structure
JP2015118822A (en) * 2013-12-19 2015-06-25 日産自動車株式会社 Battery device
JP6536679B2 (en) * 2015-09-03 2019-07-03 株式会社村田製作所 battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7531691B2 (en) 2021-01-11 2024-08-09 エルジー エナジー ソリューション リミテッド Battery module, battery pack including same, and method of manufacturing same
JP7551214B2 (en) 2021-01-11 2024-09-17 エルジー エナジー ソリューション リミテッド Battery module and battery pack including same

Also Published As

Publication number Publication date
WO2019009207A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017209052A1 (en) Secondary battery
WO2018154989A1 (en) Secondary battery and method for producing same
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US20190348647A1 (en) Secondary battery
US20210043886A1 (en) Secondary battery
US11417912B2 (en) Secondary battery and method of manufacturing the same
JP2020173890A (en) Assembled battery and manufacturing method thereof
US20190334210A1 (en) Secondary battery
US11411241B2 (en) Secondary battery
US11387493B2 (en) Secondary battery
US11417868B2 (en) Manufacturing method for secondary battery
US12034127B2 (en) Secondary battery
WO2017208534A1 (en) Secondary battery
WO2018163775A1 (en) Secondary battery production method
WO2017208531A1 (en) Secondary battery
US11929467B2 (en) Secondary battery
JP2018206490A (en) Secondary battery and manufacturing method thereof
WO2022044672A1 (en) Secondary battery and method for manufacturing same
JP6957952B2 (en) Secondary battery and its manufacturing method
WO2017208532A1 (en) Secondary battery
WO2018105277A1 (en) Secondary battery
WO2018100846A1 (en) Secondary battery and device