JP2020173230A - Permeability measuring device - Google Patents

Permeability measuring device Download PDF

Info

Publication number
JP2020173230A
JP2020173230A JP2019076718A JP2019076718A JP2020173230A JP 2020173230 A JP2020173230 A JP 2020173230A JP 2019076718 A JP2019076718 A JP 2019076718A JP 2019076718 A JP2019076718 A JP 2019076718A JP 2020173230 A JP2020173230 A JP 2020173230A
Authority
JP
Japan
Prior art keywords
circuit
magnetic permeability
magnetic
detector
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019076718A
Other languages
Japanese (ja)
Other versions
JP6606654B1 (en
Inventor
本蔵 義信
Yoshinobu Motokura
義信 本蔵
晋平 本蔵
Shimpei Motokura
晋平 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnedesign Co Ltd
Original Assignee
Magnedesign Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnedesign Co Ltd filed Critical Magnedesign Co Ltd
Priority to JP2019076718A priority Critical patent/JP6606654B1/en
Application granted granted Critical
Publication of JP6606654B1 publication Critical patent/JP6606654B1/en
Publication of JP2020173230A publication Critical patent/JP2020173230A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

To solve the problem in which: there is an increasing demand for non-magnetic guarantees for non-magnetic steel materials such as the construction of the Linear Shinkansen, and along with it, there is a need to develop a pencil-type permeability measuring instrument capable of an easy non-magnetic inspection; since miniaturization, low power consumption, and high sensitivity are contradictory characteristics, it has been difficult to solve them by conventional techniques.SOLUTION: The present invention develops a differential micro-coil driven by a high frequency current of 100 kHz to 10 MHz, uses the micro-coil to combine a high frequency, a large number of coil turns per unit length, and high effective magnetic permeability of an elongated magnetic core rod (magnetic wire), enables ultra-miniaturization of current detectors, significant reduction in power consumption, and miniaturization of batteries, and produces a pencil-type wearable permeability measuring device while maintaining the excellent magnetic permeability detection performance of current high-sensitivity permeability meters.SELECTED DRAWING: Figure 4

Description

本発明は、ステンレス鋼やマンガン鋼などの非磁性金属材料の透磁率を計測する装置に関するものである。 The present invention relates to an apparatus for measuring the magnetic permeability of a non-magnetic metal material such as stainless steel or manganese steel.

リニア新幹線の建設に伴い、超電導磁石や車両本体の構造部材(台座、柱、梁、カバー、ロッド、シャフト、ボルト、ナット、ワシャー、フランジ、パイプ、ベアリング、モータ、ポンプモールド、ベアリングなど)およびレール周辺の構造物の鉄骨と器材に非磁性鋼が使用され、その非磁性の確実な保証が求められている。そのためには、非磁性鋼を精錬する段階から、圧延、精整、二次加工、部品加工までの各段階での出荷検査と受入検査および超電導磁石、車両本体および建築構造体の各部位の検査が必要となっている。膨大な検査業務を円滑に処理するためには、関係者が身近に身に着けて検査できるウェアラブル型の透磁率測定装置、つまりペンシル型の透磁率測定装置の開発が必要である。 With the construction of the linear Shinkansen, superconducting magnets, structural members of the vehicle body (pedestals, columns, beams, covers, rods, shafts, bolts, nuts, washer, flanges, pipes, bearings, motors, pump molds, bearings, etc.) and rails Non-magnetic steel is used for the steel frame and equipment of the surrounding structures, and a reliable guarantee of its non-magnetism is required. For that purpose, shipping inspection and acceptance inspection and inspection of each part of superconducting magnets, vehicle body and building structure at each stage from refining non-magnetic steel to rolling, refining, secondary processing, and parts processing. Is needed. In order to smoothly process a huge amount of inspection work, it is necessary to develop a wearable magnetic permeability measuring device, that is, a pencil-type magnetic permeability measuring device, which can be worn and inspected by the persons concerned.

非磁性鋼は、電力損失発熱を防止する必要がある発電機、モータ、トランスなどの構造材料として開発され使用されている。またエレクトロニクス産業に拡大に伴って発明されたVTR,複写機、電子顕微鏡、テレビなどのエレクトロニクス機器、および磁気センサを内蔵するスマホ、ロボット、ドローンなどモバイル情報機器など、磁場の乱れが情報機器の乱れにつながってしまう用途で使用が拡大している。さらに、強力な超電導磁石を使用するMRI,リニアモータおよび超電導原理の微小磁界検出型の磁気センサなどの本格的な普及によって、特殊な部品の非磁性保証から周辺部材を含めて全部品の非磁性保証が強く求められる時代になってきている。 Non-magnetic steel has been developed and used as a structural material for generators, motors, transformers, etc. that need to prevent power loss and heat generation. In addition, the disturbance of the magnetic field causes the disturbance of information equipment such as electronic devices such as VTRs, copiers, electron microscopes, and televisions, which were invented with the expansion of the electronics industry, and mobile information devices such as smartphones, robots, and drones with built-in magnetic sensors. Its use is expanding for applications that lead to. Furthermore, with the full-scale spread of MRIs that use strong superconducting magnets, linear motors, and magnetic sensors that detect micromagnetic fields based on the principle of superconductivity, the non-magnetic guarantee of special parts and the non-magnetism of all parts including peripheral members We are in an era where guarantees are strongly required.

磁性性鋼材に関する規格としては、透磁率1.2以下の規格を定めた米国の連邦規格やMIL規格がる。エレクトロニクス機器やモバイル情報機器および超電動磁石など先端産業分野では透磁率1.02以下の規格が使用されている。透磁率測定装置としては、透磁率1.2以下の規格に対応して磁石式が開発され、次に透磁率1.02以下の規格に対応するために渦流探傷原理を応用した装置が開発され、主に非磁性鋼材の透磁率検査に使用されている。 Standards for magnetic steel include the US federal standard and the MIL standard, which stipulate standards with a magnetic permeability of 1.2 or less. Standards with a magnetic permeability of 1.02 or less are used in advanced industrial fields such as electronic devices, mobile information devices, and super electric magnets. As a magnetic permeability measuring device, a magnet type was developed corresponding to a standard with a magnetic permeability of 1.2 or less, and then a device applying the eddy current flaw detection principle was developed to comply with a standard with a magnetic permeability of 1.02 or less. , Mainly used for magnetic permeability inspection of non-magnetic steel materials.

1991年、各種形状の小型部品や溶接材の透磁率を透磁率1.002の微小値から測定することができて、透磁率1.02以下の規格品の検査装置として十分な機能を有するポータブルタイプの装置が、本発明者により開示(特許文献1、非特許文献1)されている。
本装置(以下、現行品という。)は、1本の磁性ワイヤに巻かれた1つの励磁コイルとそれを挟むように差動式に配置された2つの検出コイルからなる差動変圧器構成のプローブ型検出器と励磁コイルを励磁する交流信号を発信する発信回路と、検出器の一端を被測定試料に接触させることにより被測定資料の透磁率と導電性の影響を電気信号として検出する差動式信号処理回路とその出力信号を位相解析して、被測定試料の透磁率に基づく電気信号をのみを取り出して直流変換する位相検波回路と、基準信号発生回路からなるものである。基準信号発生回路は上記検出器の励磁コイルを励磁する単一の励磁交流信号と其の交流信号の位相を調整して基準信号を位相検波回路に供給する位相回路とからなるものである。差動式検出コイルからの出力電圧Eは、非磁性試料の渦電流の影響による出力電圧Ecと試料の磁性成分の影響による電圧Emの二つの成分からなっている。両者の位相の違いに注目して、位相検波回路の基準電圧を渦電流の影響による電圧Ecに直角になるように付与して、その電圧成分を取り除くことによって、被測定試料の透磁率の比例する電気信号を出力することができる。
この中で、励磁コイルの巻き数N1と検出コイルの巻き数N2と励磁電流の強さI(A)をN1
×N2×Iの値を1000以上とすると検出力は透磁率1.002を検出することができることを明らかにしている。しかも、2つの検出コイルの間隔を3.5mm程度と小さくすることで、直径2mm以下の小さな試料の透磁率1.002を測定できることが明らかになっている。
In 1991, it was possible to measure the magnetic permeability of small parts and welded materials of various shapes from a minute value of magnetic permeability of 1.002, and it was a portable device with sufficient functions as an inspection device for standard products with magnetic permeability of 1.02 or less. A type of device is disclosed by the present inventor (Patent Document 1, Non-Patent Document 1).
This device (hereinafter referred to as the current product) has a differential transformer configuration consisting of one exciting coil wound around one magnetic wire and two detection coils arranged differentially so as to sandwich the exciting coil. Difference between a transmitter circuit that transmits an AC signal that excites a probe-type detector and an exciting coil, and an electrical signal that detects the effects of magnetic permeability and conductivity of the material to be measured by bringing one end of the detector into contact with the sample to be measured. It consists of a phase detection circuit that analyzes the phase of a dynamic signal processing circuit and its output signal, extracts only an electric signal based on the magnetic permeability of the sample to be measured, and converts it into DC, and a reference signal generation circuit. The reference signal generation circuit includes a single exciting AC signal that excites the exciting coil of the detector, and a phase circuit that adjusts the phase of the AC signal and supplies the reference signal to the phase detection circuit. The output voltage E from the differential detection coil is composed of two components, an output voltage Ec due to the influence of the eddy current of the non-magnetic sample and a voltage Em due to the influence of the magnetic component of the sample. Focusing on the difference in phase between the two, the reference voltage of the phase detection circuit is applied so as to be perpendicular to the voltage Ec due to the influence of the eddy current, and the voltage component is removed, so that the magnetic permeability of the sample to be measured is proportional. It is possible to output an electric signal.
Among these, the number of turns N1 of the exciting coil, the number of turns N2 of the detection coil, and the strength I (A) of the exciting current are N1.
It is clarified that when the value of × N2 × I is 1000 or more, the detecting force can detect the magnetic permeability of 1.002. Moreover, it has been clarified that the magnetic permeability of a small sample having a diameter of 2 mm or less can be measured by reducing the distance between the two detection coils to about 3.5 mm.

本発明は透磁率1.002を測定できて、かつ鋼材から各種形状の小型部品や溶接材の透磁率を測定できるペンシル型の透磁率測定装置の開発を目指すものである。 The present invention aims to develop a pencil-type magnetic permeability measuring device capable of measuring the magnetic permeability of 1.002 and measuring the magnetic permeability of small parts of various shapes and welded materials from steel materials.

特開平3−255380号公報Japanese Unexamined Patent Publication No. 3-255380

本蔵他;日本応用磁気学会誌15、469−474(1991)Honzo et al .; Journal of the Japan Society of Applied Magnetics 15, 469-474 (1991)

ポータブル型をペンシル型に改良するためには、検出器の大きさを現行品の直径5mmから1mm以下、長さ8mmを6mm以下、つまり30倍から100倍の小型化を図ること、そのために磁性芯棒の直径を1mmから0.2mm以下にすること、および電子回路の基板サイズを巾50mm×長さ50mmを巾10mm以下×長さ40mm以下とし、さらに電源を100Vまたはアルカリ乾電池2個使用からから直径5mm以下の小型電池に変更して、装置の大幅な小型化を実現することが必要である。 In order to improve the portable type to the pencil type, the size of the detector should be reduced from 5 mm to 1 mm or less in diameter and 8 mm in length to 6 mm or less, that is, 30 to 100 times smaller, and magnetic for that purpose. The diameter of the core rod should be 1 mm to 0.2 mm or less, the board size of the electronic circuit should be 50 mm wide x 50 mm long, 10 mm wide or 40 mm long, and the power supply should be 100 V or two alkaline batteries. It is necessary to change from to a small battery with a diameter of 5 mm or less to realize a significant miniaturization of the device.

透磁率測定装置の検出感度は、励磁コイルの巻き数N1と検出コイルの巻き数N2と励磁電流の強さIに比例することが特許文献1に開示されている。また検出器の断面積に比例すると予想されるので、小型化するだけでは大幅な検出感度の低下になってしまうと予想される。さらに低消費電力化のために励磁電流を小さくすると、大幅な検出感度の低下になってしまうと予想される。つまり透磁率測定装置の検出感度や消費電力などの性能と小型化とは背反傾向を持っており、小型で高い検出感度と優れた消費電力特性を持つ透磁率測定装置の開発は困難な課題である。 Patent Document 1 discloses that the detection sensitivity of the magnetic permeability measuring device is proportional to the number of turns N1 of the exciting coil, the number of turns N2 of the detection coil, and the strength I of the exciting current. Moreover, since it is expected to be proportional to the cross-sectional area of the detector, it is expected that the detection sensitivity will be significantly reduced just by reducing the size. Further, if the exciting current is reduced to reduce the power consumption, it is expected that the detection sensitivity will be significantly reduced. In other words, performance such as detection sensitivity and power consumption of magnetic permeability measuring device and miniaturization tend to be contradictory, and it is a difficult task to develop a small magnetic permeability measuring device with high detection sensitivity and excellent power consumption characteristics. is there.

発明者らは、上記背反問題を解決するために、励磁電流を現行品の1kHzから100kHz〜10MHzへと高周波化することを思い至り、検出器の小型化と低消費電流化に取り組んだ。高周波に伴う渦電流を抑制するために磁性心棒に直径が5μm〜100μmのCo系アモルファスワイヤを採用することにし、検出器の小型化に伴う励磁コイルと検出コイルの巻き数の減少は、コイルピッチ10μm以下で内径10μm〜120μmのマイクロコイルを採用することで補うことにして、励磁コイル巻き数N1、検出コイル巻き数N2、励磁電流強度I、磁性芯棒の断面積S,励磁電流の周波数f、磁性芯棒の長さ、磁性芯棒の有効透磁率μ、磁性芯棒の抵抗率ρなどの感度の及ぼす影響を鋭意研究した。 In order to solve the above-mentioned contradictory problem, the inventors came up with the idea of increasing the exciting current from the current product of 1 kHz to 100 kHz to 10 MHz, and worked on miniaturization of the detector and reduction of current consumption. In order to suppress the eddy current associated with high frequency, we decided to use a Co-based amorphous wire with a diameter of 5 μm to 100 μm for the magnetic mandrel, and the reduction in the number of turns of the exciting coil and the detection coil due to the miniaturization of the detector is due to the coil pitch. By adopting a microcoil with an inner diameter of 10 μm to 120 μm of 10 μm or less, the number of exciting coil turns N1, the number of detected coil turns N2, the exciting current strength I, the cross-sectional area S of the magnetic core rod, and the frequency f of the exciting current , The effect of sensitivity such as the length of the magnetic core rod, the effective magnetic permeability μ of the magnetic core rod, and the resistance ρ of the magnetic core rod was studied diligently.

その結果、検出感度は、励磁コイル巻き数N1(回),検出コイル巻き数N2(回)、励磁電流強度I(mA)に比例するだけではなく、磁性芯棒の有効透磁率μとその直径d(mm)の比例d1.5に比例,励磁電流の周波数f(kHz)のf1.5にもほぼ比例することを見出した。すなわち、検出感度KはK=N1×N2×I×μ×d1.5×f1.5 で現わされること、および透磁率1.002を検出するためにはK≧3×10を確保する必要があることが分かった。 As a result, the detection sensitivity is not only proportional to the number of excitation coil turns N1 (times), the number of detection coil turns N2 (times), and the exciting current strength I (mA), but also the effective magnetic permeability μ of the magnetic core rod and its diameter. It was found that it is proportional to d 1.5, which is proportional to d (mm), and is almost proportional to f 1.5, which is the frequency f (kHz) of the exciting current. That is, the detection sensitivity K is necessary to secure a K ≧ 3 × 10 7 in order to detect that it is manifested by K = N1 × N2 × I × μ × d 1.5 × f 1.5, and permeability 1.002 It turned out that there is.

検出器のコイル巻き数N1、N2は、マイクロコイルを活用して、現行品に比較してほぼ同じとして、磁性芯棒の直径を1mmから0.01mmとすると、感度の大幅な低下になるが、その低下は磁性芯棒の有効透磁率を現行品の800から10,000へと増加すること、および励磁電流の周波数を1kHzから1MHzと1,000倍に増加させることによって、励磁電流の強さを現行品の33mAから3mAへと10分の1以下に小さくしても、透磁率1.002の検出感度を得ることを確認した。これらの新知見によって小型で高い検出感度と優れた消費電力特性を持つ透磁率測定装置を発明できることが分かった。 Assuming that the coil turns N1 and N2 of the detector are almost the same as those of the current product by utilizing the microcoil, if the diameter of the magnetic core rod is changed from 1 mm to 0.01 mm, the sensitivity will be significantly reduced. The decrease is due to the increase in the effective magnetic permeability of the magnetic core rod from 800 to 10,000 of the current product, and the increase in the exciting current frequency from 1 kHz to 1 MHz, which is 1,000 times stronger. It was confirmed that the detection sensitivity of magnetic permeability of 1.002 can be obtained even if the current product is reduced from 33 mA to 3 mA to 1/10 or less. Based on these new findings, it was found that a small magnetic permeability measuring device having high detection sensitivity and excellent power consumption characteristics can be invented.

本発明は、現行品の透磁率測定装置に比べて、大幅な小型化と低消費電力化を可能にして、ペンシル型の透磁率測定装置を実現し、リニア新幹線を契機に増大する非磁性検査ニーズに応えるものである。 The present invention enables a pencil-type magnetic permeability measuring device, which enables a significant reduction in size and power consumption as compared with the current magnetic permeability measuring device, and is a non-magnetic inspection that increases with the linear Shinkansen. It meets the needs.

検出原理を示す図である。It is a figure which shows the detection principle. 基本回路を示す図である。It is a figure which shows the basic circuit. 位相検波機能を示す図である。It is a figure which shows the phase detection function. 実施例1のペンシル型超小型透磁率測定装置の外観を示す図である。It is a figure which shows the appearance of the pencil type ultra-compact magnetic permeability measuring apparatus of Example 1. FIG. 被測定試料の透磁率と出力電圧との関係を示す図である。It is a figure which shows the relationship between the magnetic permeability of the sample to be measured, and the output voltage. 透磁率1.002の検出力と磁性心棒の直径と励磁周波数との関係を示す図である。It is a figure which shows the relationship between the detection force of magnetic permeability 1.002, the diameter of a magnetic mandrel, and the excitation frequency. 実施例2の測定モードとスリープモードを示す図である。It is a figure which shows the measurement mode and sleep mode of Example 2.

<第1実施形態>
第1実施形態の超小型透磁率測定装置(以下、測定装置という。)は、検出器と電子回路と表示器からなっている。
検出器は、1本の磁性ワイヤに巻かれた1つの励磁コイルとそれを挟むように差動式に配置された2つの検出コイルとを備える直径1mm以下の大きさの差動変圧器構成のプローブ型検出器であって、検出器の一端を被測定試料に接触させることにより被測定試料の透磁率と導電性の影響を電気信号として検出する機能を有する。
磁性ワイヤの直径は5μm〜100μmであり、励磁コイルおよび検出コイルはコイルピッチ10μm以下で内径10μm〜120μmのマイクロコイルからなり、その巻き数は100回〜1000回であり、2つの検出コイルの間隔は3.5mm以下である。
<First Embodiment>
The ultra-compact magnetic permeability measuring device (hereinafter referred to as a measuring device) of the first embodiment includes a detector, an electronic circuit, and a display.
The detector has a differential transformer configuration having a diameter of 1 mm or less, which includes one exciting coil wound around one magnetic wire and two detection coils arranged differentially so as to sandwich the exciting coil. It is a probe type detector and has a function of detecting the influence of magnetic permeability and conductivity of the sample to be measured as an electric signal by bringing one end of the detector into contact with the sample to be measured.
The diameter of the magnetic wire is 5 μm to 100 μm, the exciting coil and the detection coil consist of microcoils with a coil pitch of 10 μm or less and an inner diameter of 10 μm to 120 μm, the number of turns of which is 100 to 1000 times, and the distance between the two detection coils. Is 3.5 mm or less.

電子回路は、発信回路、信号処理回路および基準信号発生回路からなる。
発信回路は、励磁コイルを励磁する100kHz〜10MHzの周波数で電流強さ10mA以下からなる交流信号を発信する。
信号処理回路は、検出器の一端を被測定試料に接触させていない状態において、その出力信号を0Vに調整するゼロ点補正機能を有する差動増幅回路と、補正後の差動増幅回路の出力信号を位相解析して被測定試料の透磁率に基づく電気信号のみを取り出して直流変換することができる位相角度調整機能を有する位相検波回路および位相検波回路による検波後の被測定試料の透磁率に比例する電圧を出力する出力回路からなる。
基準発生信号回路は、検出器の励磁コイルを励磁する正弦波を発生する正弦波発生回路およびその正弦波の位相を調整した基準ベクトル信号を発生する位相回路とからなる。
表示器は、被測定資料の透磁率に基づく直流信号を表示する。
The electronic circuit includes a transmission circuit, a signal processing circuit, and a reference signal generation circuit.
The transmission circuit transmits an AC signal having a current strength of 10 mA or less at a frequency of 100 kHz to 10 MHz that excites the exciting coil.
The signal processing circuit is a differential amplification circuit having a zero point correction function that adjusts the output signal to 0V when one end of the detector is not in contact with the sample to be measured, and the output of the corrected differential amplification circuit. For the magnetic permeability of the sample to be measured after detection by a phase detection circuit and a phase detection circuit that have a phase angle adjustment function that can perform phase analysis of the signal and extract only the electrical signal based on the magnetic permeability of the sample to be measured and convert it to DC. It consists of an output circuit that outputs a proportional voltage.
The reference generation signal circuit includes a sine wave generation circuit that generates a sine wave that excites the exciting coil of the detector, and a phase circuit that generates a reference vector signal whose phase of the sine wave is adjusted.
The display displays a DC signal based on the magnetic permeability of the material to be measured.

以下、各構成について図1〜図3を用いて説明する。
検出器の構成と検出原理について、図1の検出原理を用いて説明する。
検出器1の構成は、1本の磁性芯棒である磁性ワイヤ11に巻かれている1つの励磁コイル12と、それを挟むように差動式に配置されている2つの検出コイル13(13aおよび13b)からなる差動変圧器構成のプローブ型検出器である。
Hereinafter, each configuration will be described with reference to FIGS. 1 to 3.
The configuration of the detector and the detection principle will be described with reference to the detection principle of FIG.
The detector 1 is composed of one exciting coil 12 wound around a magnetic wire 11 which is one magnetic core rod, and two detection coils 13 (13a) differentially arranged so as to sandwich the exciting coil 12. It is a probe type detector having a differential transformer configuration consisting of and 13b).

次に、検出器1の検出原理は、励磁コイル12に交流電流を流して磁性ワイヤ11の一端を被測定試料20に接触させ、被測定試料20に交番磁化と渦電流(図1に示す。)を発生せしめることにより被測定試料20の透磁率と導電性の影響を電気信号として検出する。 Next, the detection principle of the detector 1 is that an alternating current is passed through the exciting coil 12 to bring one end of the magnetic wire 11 into contact with the sample 20 to be measured, and the sample 20 is subjected to alternating magnetization and eddy current (shown in FIG. 1). ) Is generated to detect the influence of the magnetic permeability and the conductivity of the sample 20 to be measured as an electric signal.

このプローブ型検出器1の大きさは、直径1mm以下にて長さは6mm以下の小型サイズとする。これによりペンシルサイズの超小型透磁率測定装置が可能となる。
小型サイズの検出器1を構成する部品は、Co系アモルファスの磁性ワイヤ11からなりその直径(d)は5μm〜100μmと微細化する一方で、その比透磁率(μ)は5,000〜50,000と大きくし、比抵抗率は50μΩcm〜150μΩcmとする。
The size of the probe type detector 1 is a small size having a diameter of 1 mm or less and a length of 6 mm or less. This enables a pencil-sized ultra-compact magnetic permeability measuring device.
The parts constituting the small-sized detector 1 are made of Co-based amorphous magnetic wire 11 and its diameter (d) is miniaturized to 5 μm to 100 μm, while its specific magnetic permeability (μ) is 5,000 to 50. Increase it to 000 and set the resistivity to 50 μΩcm to 150 μΩcm.

励磁コイル12は、直径10μm〜20μmのマイクロコイルとし、長さ1mm〜3mmにて磁性ワイヤ11の中央部に配置する。次に検出コイル13は、直径10μm〜120μmのマイクロコイルとし、長さ1mm〜3mmにて励磁コイル12の両側に差動式に配置する(13aおよび13b)。
励磁コイル12および検出コイル13の単位長さ当たりのコイル巻き数は、両者のコイルをマイクロ化することにより50回/mm〜500回/mmと大きくすることができる。また、励磁コイル12のコイル巻き数(N1)および検出コイル13のコイル巻き数(N2)は、100回〜1000回と大きくする。さらに二つの検出コイル12の間隔を3.5mm以下と小さくして、直径2mm以下の小さな試料の透磁率の測定を可能にする。
The exciting coil 12 is a microcoil having a diameter of 10 μm to 20 μm, and is arranged at the center of the magnetic wire 11 with a length of 1 mm to 3 mm. Next, the detection coil 13 is a microcoil having a diameter of 10 μm to 120 μm, and is arranged differentially on both sides of the exciting coil 12 with a length of 1 mm to 3 mm (13a and 13b).
The number of coil turns per unit length of the exciting coil 12 and the detection coil 13 can be increased to 50 times / mm to 500 times / mm by micronizing both coils. Further, the number of coil turns (N1) of the exciting coil 12 and the number of coil turns (N2) of the detection coil 13 are increased to 100 to 1000 times. Further, the distance between the two detection coils 12 is reduced to 3.5 mm or less to enable measurement of the magnetic permeability of a small sample having a diameter of 2 mm or less.

電子回路は、図2の基本回路を用いて説明する。
電子回路は、発信回路(図示せず)、信号処理回路30および基準信号発生回路40からなり、出力結果を表示する表示器50を備えている。
発信回路は、励磁コイル12を励磁する交流信号、つまりその周波数(f)を100kHz〜10MHzと大きくし、電流強さ(I)は2mA〜10mAである交流信号を発信する。
The electronic circuit will be described with reference to the basic circuit of FIG.
The electronic circuit includes a transmission circuit (not shown), a signal processing circuit 30, and a reference signal generation circuit 40, and includes a display 50 that displays an output result.
The transmission circuit transmits an AC signal that excites the exciting coil 12, that is, an AC signal whose frequency (f) is increased to 100 kHz to 10 MHz and whose current strength (I) is 2 mA to 10 mA.

信号処理回路30は、差動増幅回路31、位相検波回路32および出力回路33からなる。
差動増幅回路31は、検出器の一端を被測定試料に接触させることにより被測定資料2の透磁率と導電性の影響を電気信号として検出すると同時に、検出器の一端を被測定試料に接触させない状態において、その出力信号を0Vに調整するゼロ点補正機能を有する。
位相検波回路32は、差動増幅回路31による補正後の出力信号を位相解析して被測定試料の透磁率に基づく電気信号をのみを取り出して直流変換すると同時に位相角度調整機能を有する。
図3に位相検波回路32の機能を示す。図3のIは励磁電流の強度を示し、以下、Eは出力電圧、Ecは非磁性試料の渦電流によって生じる電圧、Emは磁性試料の磁性によって生じる電圧、Eyは基準信号、φは基準信号の位相角をそれぞれ示す。位相検波回路は出力信号Eの基準信号Eyへの射影成分EmcosΦを電圧として出力し、その出力電圧は資料の磁性の強さ、つまり透磁率に比例する。
出力回路33は、位相検波回路32および検波回路による検波後の被測定試料2の透磁率に比例する電圧を出力する。
The signal processing circuit 30 includes a differential amplifier circuit 31, a phase detection circuit 32, and an output circuit 33.
The differential amplifier circuit 31 detects the influence of the magnetic permeability and conductivity of the material to be measured 2 as an electric signal by contacting one end of the detector with the sample to be measured, and at the same time, contacts one end of the detector with the sample to be measured. It has a zero point correction function that adjusts the output signal to 0V when it is not allowed to move.
The phase detection circuit 32 has a phase angle adjustment function at the same time as performing phase analysis of the output signal corrected by the differential amplification circuit 31 and extracting only an electric signal based on the magnetic permeability of the sample to be measured and converting it into DC.
FIG. 3 shows the function of the phase detection circuit 32. In FIG. 3, I indicates the intensity of the exciting current. Hereinafter, E is the output voltage, Ec is the voltage generated by the eddy current of the non-magnetic sample, Em is the voltage generated by the magnetism of the magnetic sample, E is the reference signal, and φ is the reference signal. The phase angles of are shown respectively. The phase detection circuit outputs the projection component EmcosΦ of the output signal E to the reference signal Ey as a voltage, and the output voltage is proportional to the magnetic strength of the material, that is, the magnetic permeability.
The output circuit 33 outputs a voltage proportional to the magnetic permeability of the sample 2 to be measured after being detected by the phase detection circuit 32 and the detection circuit.

基準発生信号回路40は、検出器1の励磁コイル11を励磁する正弦波発生回路41および位相検波回路の基準信号を発生する移相回路42となる。
なお、上記の基本回路と検出原理は先に本発明者が開示した特許文献1(特開平3−255380号公報)および非特許文献1に詳細は記載しているとおりである。
The reference generation signal circuit 40 is a sine wave generation circuit 41 that excites the excitation coil 11 of the detector 1 and a phase shift circuit 42 that generates a reference signal of the phase detection circuit.
The above-mentioned basic circuit and detection principle are as described in detail in Patent Document 1 (Japanese Patent Laid-Open No. 3-255380) and Non-Patent Document 1 previously disclosed by the present inventor.

電源回路(図示せず)は、検出器10の励磁コイル12に電流強さ10mA以下の電力および測定回路の動作に必要な電力を供給する。 The power supply circuit (not shown) supplies the exciting coil 12 of the detector 10 with electric power having a current strength of 10 mA or less and electric power necessary for operating the measurement circuit.

電源は、ペンシル型の測定装置を構成することができる場合にはサイズ、重さ、出力電圧および容量については問わない。一例として直径4.7mm、長さ25mm、重さ1g、出力電圧3.8V、容量32mAhの小型リチウム電池を1個とする。 The power supply may be of any size, weight, output voltage and capacity as long as a pencil-type measuring device can be configured. As an example, one small lithium battery having a diameter of 4.7 mm, a length of 25 mm, a weight of 1 g, an output voltage of 3.8 V, and a capacity of 32 mAh is used.

測定装置の調整は、2つの検出コイル(12a、12b)からの出力電圧差は検出器を被測定試料に接触していない状態では、フルスケールを±1000mVとした時は100μV以下、つまり0.01%以下の誤差となるよう二つの検出コイル(12a、12b)の対称性を確保する。この誤差は、ゼロ点補正回路を取り付けて取り除くことが可能である。次に検出器1を非磁性の被測定試料2に接触した状態では、位相検波後の信号電圧が0Vになるように、位相検波回路3の基準ベクトル信号の位相角度を位相角度調整回路で調整する。 The adjustment of the measuring device is that the output voltage difference from the two detection coils (12a, 12b) is 100 μV or less when the full scale is ± 1000 mV when the detector is not in contact with the sample to be measured, that is, 0. The symmetry of the two detection coils (12a, 12b) is ensured so that the error is 01% or less. This error can be removed by installing a zero point correction circuit. Next, when the detector 1 is in contact with the non-magnetic sample 2 to be measured, the phase angle of the reference vector signal of the phase detection circuit 3 is adjusted by the phase angle adjustment circuit so that the signal voltage after the phase detection becomes 0V. To do.

検出感度Kは、K=N1×N2×I×μ×d1.5×f1.5で現わされる。透磁率1.002を検出するためにはK≧3×10となるように、N1,N2,I,μ、d、fを上記範囲内で調整する。また、被測定試料のサイズに影響を避けるために、2つの検出コイル(12a、12b)の間隔は、3.5mm以下とする。 The detection sensitivity K is expressed by K = N1 × N2 × I × μ × d 1.5 × f 1.5 . As the K ≧ 3 × 10 7 in order to detect the magnetic permeability 1.002, adjusted N1, N2, I, mu, d, and f in the above range. Further, in order to avoid affecting the size of the sample to be measured, the distance between the two detection coils (12a, 12b) is 3.5 mm or less.

測定は、検出器10を微磁性被測定試料20に接触して行うが、出力電圧は透磁率と直線的関係にある。また出力回路は、アナログ出力、デジタル出力、さらにはパソコン画面にリアルタイムで表示するなどどのような対応も可能である。デジタル出力の場合、測定間隔は20m秒、すなわち50Hzとする。測定装置の性能は、透磁率1.00から2.00の広い範囲の測定が可能で、微小な透磁率1.002も検出できる。 The measurement is performed by bringing the detector 10 into contact with the micromagnetic sample 20 to be measured, and the output voltage has a linear relationship with the magnetic permeability. In addition, the output circuit can be used for analog output, digital output, and even display on a personal computer screen in real time. In the case of digital output, the measurement interval is 20 ms, that is, 50 Hz. The performance of the measuring device can measure a wide range of magnetic permeability from 1.00 to 2.00, and even a minute magnetic permeability of 1.002 can be detected.

<第2実施形態>
第2実施形態は、第1実施形態のデジタル出力タイプにおいて、計測データの出力間隔時間を測定モード時間とスリープモード時間に二分し、測定時間を測定間隔の1/10以下として、信号電圧をデジタル出力するもので、測定に要する消費電力を少なくとも1/10以下に低減することを図る好ましい実施形態である。
<Second Embodiment>
In the second embodiment, in the digital output type of the first embodiment, the output interval time of the measurement data is divided into the measurement mode time and the sleep mode time, the measurement time is set to 1/10 or less of the measurement interval, and the signal voltage is digitally set. It is an output, and is a preferred embodiment in which the power consumption required for measurement is reduced to at least 1/10 or less.

測定モード時間とスリープモード時間に二分するために、電子回路にON−OFFする制御回路(図示せず)を取り付け、それと同期して位相検波後の出力をホールドするホールド回路(図示せず)を設けて、ON状態で測定し、その信号電圧をホールドして出力し、OFF状態になっても、同じ信号電圧を出力することになるので、その結果50Hzの測定間隔の間は同じ信号電圧を出力する。 In order to divide into the measurement mode time and the sleep mode time, a control circuit (not shown) that turns ON and OFF is attached to the electronic circuit, and a hold circuit (not shown) that holds the output after phase detection in synchronization with it is installed. It is provided, measured in the ON state, the signal voltage is held and output, and the same signal voltage is output even in the OFF state. As a result, the same signal voltage is output during the measurement interval of 50 Hz. Output.

<第3実施形態>
第3実施形態は、第1実施形態および第2実施形態の測定装置をペンシル型のケースに内蔵するものである。図4を用いて説明する。
先端部に検出器61を取り付け、電子回路65と電池66を内蔵し、外装部に表示器67、測定器の電源スイッチ62、ゼロ点調整つまみ63、位相角調整つまみ64を取り付ける。先端部のサイズは、直径0.5mm〜1mmで長さは4mm〜6mmの末広がりの紡錘形状とする。測定装置6の本体の長さは全体で10cm〜16cm、直径は8mm〜14mmとする。
<Third Embodiment>
In the third embodiment, the measuring devices of the first embodiment and the second embodiment are built in a pencil-shaped case. This will be described with reference to FIG.
A detector 61 is attached to the tip, an electronic circuit 65 and a battery 66 are built in, and a display 67, a power switch 62 of the measuring instrument, a zero point adjustment knob 63, and a phase angle adjustment knob 64 are attached to the exterior. The size of the tip portion is a spindle shape with a diameter of 0.5 mm to 1 mm and a length of 4 mm to 6 mm. The total length of the main body of the measuring device 6 is 10 cm to 16 cm, and the diameter is 8 mm to 14 mm.

[実施例1]
本発明の実施例1は、実施形態1と実施形態3を組み合わせたもので、図4に示すように、検出器10と電子回路と電源およびそれらすべてをペンシル型のケースに内蔵する超小型透磁率測定装置60である。測定装置60の先端部に検出器61を取り付け、電子回路65と電池66を内蔵し、外装部に表示器67、電源スイッチ62ゼロ点調整つまみ63、位相角調整つまみ64を取り付けた。先端部のサイズは直径1mmで長さ6mmの紡錘形状とする。測定装置60の本体の長さは全体で14cm、直径は10mmとする。
[Example 1]
The first embodiment of the present invention is a combination of the first embodiment and the third embodiment, and as shown in FIG. 4, the detector 10, the electronic circuit, the power supply, and all of them are built in a pencil-shaped case. The magnetic coefficient measuring device 60. A detector 61 was attached to the tip of the measuring device 60, an electronic circuit 65 and a battery 66 were built in, and a display 67, a power switch 62 zero point adjustment knob 63, and a phase angle adjustment knob 64 were attached to the exterior part. The size of the tip is a spindle shape with a diameter of 1 mm and a length of 6 mm. The main body of the measuring device 60 has a total length of 14 cm and a diameter of 10 mm.

検出器61(1)は1本の磁性ワイヤ11に巻かれた1つの励磁コイル12とそれを挟むように差動式に配置された2つの検出コイル(13a、13b)からなる差動変圧器構成のプローブ型である。
その検出器61については、まず大きさは、直径0.5mm、長さ6mmとする。これによってペンシルサイズの超小型透磁率測定装置が可能になる。検出器61(1)の構成部品は、まず磁性ワイヤ10の直径は10μmで、その比透磁率は8,000および比抵抗率は130μΩcmとする。励磁コイル11は直径18μm、長さ2mmのマイクロコイルで、直径10μmの磁性ワイヤ10の中央部に配置する。検出コイル12は内径18μm、コイルピッチ5μm、長さ2mmのマイクロコイルで、励磁コイル11の両側に差動式に配置する。単位長さ当たりのコイル巻き数は200回/mmとする。励磁コイル11(N1)および検出コイル12(N2)のコイル巻き数は300回とする。さらに2つの検出コイル(12aおよび12b)の間隔Lを3.5mm(図2)と小さくして、直径2mm以下の小さな試料の透磁率の測定を可能にする。
The detector 61 (1) is a differential transformer composed of one exciting coil 12 wound around one magnetic wire 11 and two detection coils (13a, 13b) arranged differentially so as to sandwich the exciting coil 12. It is a probe type of configuration.
First, the size of the detector 61 is 0.5 mm in diameter and 6 mm in length. This enables a pencil-sized ultra-compact magnetic permeability measuring device. First, the components of the detector 61 (1) have a magnetic wire 10 having a diameter of 10 μm, a relative magnetic permeability of 8,000, and a resistivity of 130 μΩcm. The exciting coil 11 is a microcoil having a diameter of 18 μm and a length of 2 mm, and is arranged at the center of the magnetic wire 10 having a diameter of 10 μm. The detection coil 12 is a microcoil having an inner diameter of 18 μm, a coil pitch of 5 μm, and a length of 2 mm, and is arranged differentially on both sides of the exciting coil 11. The number of coil turns per unit length is 200 times / mm. The number of coil turns of the exciting coil 11 (N1) and the detection coil 12 (N2) is 300. Further, the distance L between the two detection coils (12a and 12b) is reduced to 3.5 mm (FIG. 2) to enable measurement of the magnetic permeability of a small sample having a diameter of 2 mm or less.

電子回路は、励磁コイル12を励磁する交流信号、つまりその周波数(f)を1MHzで電流強さ(I)は3mAである交流信号を発信する発信回路と、検出器61の一端を被測定試料に接触させることにより被測定資料の透磁率と導電性の影響を電気信号として検出する差動増幅回路31と検出器61の一端を被測定試料に接触させない状態で、その出力信号を0Vに調整するゼロ点補正回路、補正済みのその出力信号を位相解析して、被測定試料の透磁率に基づく電気信号をのみを取り出して直流変換する位相検波回路32(位相角度調整回路を含む)と、検波後の被測定試料の透磁率の比例する電圧を出力する出力回路32および上記検出器の励磁コイルを励磁する単一の励磁信号と位相検波器の基準ベクトル信号とを発生する基準信号発生回路4と測定装置に電力を供給する電源回路からなっている。 The electronic circuit is an AC signal that excites the exciting coil 12, that is, a transmission circuit that transmits an AC signal whose frequency (f) is 1 MHz and whose current strength (I) is 3 mA, and one end of the detector 61 is a sample to be measured. The output signal is adjusted to 0V without contacting one end of the differential amplification circuit 31 and the detector 61, which detects the influence of the magnetic permeability and conductivity of the material to be measured as an electric signal by contacting the sample to be measured. The zero point correction circuit, the phase detection circuit 32 (including the phase angle adjustment circuit) that performs phase analysis of the corrected output signal and extracts only the electrical signal based on the magnetic permeability of the sample to be measured and converts it to DC. An output circuit 32 that outputs a voltage proportional to the magnetic permeability of the sample to be detected after detection, and a reference signal generation circuit that generates a single excitation signal that excites the excitation coil of the detector and a reference vector signal of the phase detector. It consists of 4 and a power supply circuit that supplies power to the measuring device.

電源は、直径4.7mm、長さ25mm、重さ1g、出力電圧3.8V,容量32mAhの小型リチウム電池を1個とする。 The power source is a small lithium battery having a diameter of 4.7 mm, a length of 25 mm, a weight of 1 g, an output voltage of 3.8 V, and a capacity of 32 mAh.

測定装置の調整は、2つの検出コイル(13aおよび13b)からの出力電圧差は、検出器61(1)を被測定試料2に接触していない状態では、フルスケールを±1000mVとした時は100μV以下、つまり0.01%以下の誤差となるよう2つの検出コイル(12aおよび12b)の対称性を確保する。この誤差はゼロ点補正回路を取り付けて取り除くことを可能にしている。次に検出器を非磁性の被測定試料に接触した状態では、位相検波後の信号電圧が0Vになるように、位相検波回路32の基準信号の位相角度を位相角度調整回路で調整する。 The adjustment of the measuring device is that the output voltage difference from the two detection coils (13a and 13b) is ± 1000 mV when the full scale is ± 1000 mV when the detector 61 (1) is not in contact with the sample 2 to be measured. The symmetry of the two detection coils (12a and 12b) is ensured so that the error is 100 μV or less, that is, 0.01% or less. This error can be removed by installing a zero point correction circuit. Next, when the detector is in contact with the non-magnetic sample to be measured, the phase angle of the reference signal of the phase detection circuit 32 is adjusted by the phase angle adjustment circuit so that the signal voltage after the phase detection becomes 0V.

検出感度Kは、K=N1×N2×I×μ×d1.5×f1.5で現わされる。透磁率1.002を検出するためには、K≧3×10となるように、N1,N2,I,μ、d、fを上記範囲内で調整する。具体的には、N1、N2=300回、I=3mA、μ=8000、d=10μm、f=1MHzとした。この時K=8.5×10となって、感度確保のための条件、K≧3×10を満足している。
また被測定試料2のサイズに影響を避けるために、2つの検出コイル(13aおよび13b)の間隔は、3.5mm以下とする。
The detection sensitivity K is expressed by K = N1 × N2 × I × μ × d 1.5 × f 1.5 . To detect magnetic permeability 1.002, like a K ≧ 3 × 10 7, adjusted N1, N2, I, mu, d, and f in the above range. Specifically, N1, N2 = 300 times, I = 3mA, μ = 8000, d = 10μm, f = 1MHz. At this time it becomes K = 8.5 × 10 7, the conditions for the sensitivity secure, which satisfies the K ≧ 3 × 10 7.
Further, in order to avoid affecting the size of the sample 2 to be measured, the distance between the two detection coils (13a and 13b) is 3.5 mm or less.

この測定装置60を用いて測定した結果について、図5に被測定試料の透磁率と出力電圧との関係を示し、図6には検出感度に及ぼす磁性芯棒の直径(d)と励磁周波数(f)の影響を示す。測定は、検出器61を直径2mmの被測定試料20に接触して行っている。出力回路は、デジタル出力でパソコン画面にリアルタイムで表示している。そのデジタル出力の場合、測定間隔は20m秒、すなわち50Hzとしている。 Regarding the results of measurement using this measuring device 60, FIG. 5 shows the relationship between the magnetic permeability of the sample to be measured and the output voltage, and FIG. 6 shows the diameter (d) of the magnetic core rod and the excitation frequency (which affect the detection sensitivity). The influence of f) is shown. The measurement is performed by bringing the detector 61 into contact with the sample 20 to be measured having a diameter of 2 mm. The output circuit is digitally output and displayed on the personal computer screen in real time. In the case of the digital output, the measurement interval is 20 ms, that is, 50 Hz.

先ず、図5からは被測定試料20の透磁率(μ)を変えた場合に出力電圧とは直線的関係にあることが得られている。これより、測定装置の性能は、透磁率1.000から2.000の広い範囲の測定が可能で、微小透磁率1.002も検出できる。
次に、図6では透磁率1.005の被測定試料2の透磁率を測定した結果を示し、「測定可」とは、測定装置60の表示器67に現われた透磁率の値が測定できた場合をいい、「測定不可」とは測定誤差が1.005と同程度あった場合をいう。図6は、K≧3×10を満足するときは、測定装置6が被測定試料の透磁率を正確に測定することが可能であることを示している。
First, from FIG. 5, it is obtained that there is a linear relationship with the output voltage when the magnetic permeability (μ) of the sample 20 to be measured is changed. From this, the performance of the measuring device can measure a wide range of magnetic permeability from 1.000 to 2.000, and can also detect a minute magnetic permeability of 1.002.
Next, FIG. 6 shows the result of measuring the magnetic permeability of the sample 2 to be measured having a magnetic permeability of 1.005, and "measurable" means that the value of the magnetic permeability appearing on the display 67 of the measuring device 60 can be measured. The case where "measurement is impossible" means that the measurement error is about the same as 1.005. 6, when satisfying K ≧ 3 × 10 7 show that measuring device 6 is capable to accurately measure the permeability of the sample to be measured.

[実施例2]
実施例2は、実施例1をベースにして、図7に示すように、計測データの測定間隔時間20m秒を、測定モード時間0.2m秒とスリープモード時間19.8m秒に二分し、測定時間を測定間隔の1/100として、測定に要する消費電力を1/100程度に低減することを図ったものである。そのために、電子回路をON−OFFする制御回路と取り付け、それと同期して位相検波後の出力をホールドするホールド回路を設けて、ON状態で測定し、その信号電圧をホールドして出力し、OFF状態になっても、同じ信号電圧を出力することになるので、その結果50Hzの測定間隔の間は同じ信号電圧を出力するようにしている。
[Example 2]
In Example 2, based on Example 1, as shown in FIG. 7, the measurement interval time of 20 msec of the measurement data is divided into a measurement mode time of 0.2 msec and a sleep mode time of 19.8 msec for measurement. The time is set to 1/100 of the measurement interval, and the power consumption required for the measurement is reduced to about 1/100. For that purpose, a control circuit that turns on and off the electronic circuit is attached, and a hold circuit that holds the output after phase detection in synchronization with it is provided, and the measurement is performed in the ON state, the signal voltage is held and output, and the signal voltage is turned off. Even in the state, the same signal voltage is output. As a result, the same signal voltage is output during the measurement interval of 50 Hz.

本発明は、現行品の透磁率測定装置に比べて、大幅な小型化と低消費電力化を可能にして、ペンシル型の透磁率測定装置を実現したものである。リニア新幹線を契機に、超電導磁石や車両本体の構造部材およびレール周辺の構造物の鉄骨と器材に非磁性鋼が使用され、その非磁性の確実な保証が非磁性鋼を精錬する段階から、圧延、精整、二次加工、部品加工および組立構造品までの各段階での増大する非磁性保証ニーズに応えるものである。 The present invention has realized a pencil-type magnetic permeability measuring device, which enables a significant reduction in size and power consumption as compared with the current product magnetic permeability measuring device. Taking the opportunity of the Linear Shinkansen, non-magnetic steel is used for the steel frames and equipment of superconducting magnets, structural members of the vehicle body, and structures around rails, and rolling from the stage of refining non-magnetic steel with a reliable guarantee of non-magnetism. It meets the increasing non-magnetic guarantee needs at each stage from precision, secondary processing, parts processing and assembled structures.

10:検出器
11:磁性芯棒(磁性ワイヤ)、12:励磁コイル、13a:検出コイル:13b:検出コイル、13:検出器の先端
20:被測定試料
30:信号処理回路
31:差動増幅回路(ゼロ点調整器付き)、32:位相検波回路(位相角調整器付き)、33:出力回路(デジタル変換他)
40:基準信号発生回路
41:正弦波発生回路、42:位相回路
50:表示器
60:超小型透磁率測定装置(測定装置)
61:検出器、62:電源スイッチ、63:ゼロ点補正用つまみ、64:位相角補正つまみ、
65:電子回路(内蔵)、66:電池(内蔵)、67:表示器












10: Detector 11: Magnetic core rod (magnetic wire), 12: Excitation coil, 13a: Detection coil: 13b: Detection coil, 13: Detector tip 20: Sample to be measured 30: Signal processing circuit 31: Differential amplification Circuit (with zero point adjuster), 32: Phase detection circuit (with phase angle adjuster), 33: Output circuit (digital conversion, etc.)
40: Reference signal generation circuit 41: Sine wave generation circuit, 42: Phase circuit 50: Display 60: Ultra-compact magnetic permeability measuring device (measuring device)
61: Detector, 62: Power switch, 63: Zero point correction knob, 64: Phase angle correction knob,
65: Electronic circuit (built-in), 66: Battery (built-in), 67: Display












本発明は、ステンレス鋼やマンガン鋼などの非磁性金属材料の透磁率を計測する装置に関するものである。 The present invention relates to an apparatus for measuring the magnetic permeability of a non-magnetic metal material such as stainless steel or manganese steel.

リニア新幹線の建設に伴い、超電導磁石や車両本体の構造部材(台座、柱、梁、カバー、ロッド、シャフト、ボルト、ナット、ワシャー、フランジ、パイプ、ベアリング、モータ、ポンプモールド、ベアリングなど)およびレール周辺の構造物の鉄骨と器材に非磁性鋼が使用され、その非磁性の確実な保証が求められている。そのためには、非磁性鋼を精錬する段階から、圧延、精整、二次加工、部品加工までの各段階での出荷検査と受入検査および超電導磁石、車両本体および建築構造体の各部位の検査が必要となっている。膨大な検査業務を円滑に処理するためには、関係者が身近に身に着けて検査できるウェアラブル型の透磁率測定装置、つまりペンシル型の透磁率測定装置の開発が必要である。 With the construction of the linear Shinkansen, superconducting magnets, structural members of the vehicle body (pedestals, columns, beams, covers, rods, shafts, bolts, nuts, washer, flanges, pipes, bearings, motors, pump molds, bearings, etc.) and rails Non-magnetic steel is used for the steel frame and equipment of the surrounding structures, and a reliable guarantee of its non-magnetism is required. For that purpose, shipping inspection and acceptance inspection and inspection of each part of superconducting magnets, vehicle body and building structure at each stage from refining non-magnetic steel to rolling, refining, secondary processing, and parts processing. Is needed. In order to smoothly process a huge amount of inspection work, it is necessary to develop a wearable magnetic permeability measuring device, that is, a pencil-type magnetic permeability measuring device, which can be worn and inspected by the persons concerned.

非磁性鋼は、電力損失発熱を防止する必要がある発電機、モータ、トランスなどの構造材料として開発され使用されている。またエレクトロニクス産業に拡大に伴って発明されたVTR,複写機、電子顕微鏡、テレビなどのエレクトロニクス機器、および磁気センサを内蔵するスマホ、ロボット、ドローンなどモバイル情報機器など、磁場の乱れが情報機器の乱れにつながってしまう用途で使用が拡大している。さらに、強力な超電導磁石を使用するMRI,リニアモータおよび超電導原理の微小磁界検出型の磁気センサなどの本格的な普及によって、特殊な部品の非磁性保証から周辺部材を含めて全部品の非磁性保証が強く求められる時代になってきている。 Non-magnetic steel has been developed and used as a structural material for generators, motors, transformers, etc. that need to prevent power loss and heat generation. In addition, the disturbance of the magnetic field causes the disturbance of information equipment such as electronic devices such as VTRs, copiers, electron microscopes, and televisions, which were invented with the expansion of the electronics industry, and mobile information devices such as smartphones, robots, and drones with built-in magnetic sensors. Its use is expanding for applications that lead to. Furthermore, with the full-scale spread of MRIs that use strong superconducting magnets, linear motors, and magnetic sensors that detect micromagnetic fields based on the principle of superconductivity, the non-magnetic guarantee of special parts and the non-magnetism of all parts including peripheral members We are in an era where guarantees are strongly required.

磁性性鋼材に関する規格としては、透磁率1.2以下の規格を定めた米国の連邦規格やMIL規格がる。エレクトロニクス機器やモバイル情報機器および超電動磁石など先端産業分野では透磁率1.02以下の規格が使用されている。透磁率測定装置としては、透磁率1.2以下の規格に対応して磁石式が開発され、次に透磁率1.02以下の規格に対応するために渦流探傷原理を応用した装置が開発され、主に非磁性鋼材の透磁率検査に使用されている。 Standards for magnetic steel include the US federal standard and the MIL standard, which stipulate standards with a magnetic permeability of 1.2 or less. Standards with a magnetic permeability of 1.02 or less are used in advanced industrial fields such as electronic devices, mobile information devices, and super electric magnets. As a magnetic permeability measuring device, a magnet type was developed corresponding to a standard with a magnetic permeability of 1.2 or less, and then a device applying the eddy current flaw detection principle was developed to comply with a standard with a magnetic permeability of 1.02 or less. , Mainly used for magnetic permeability inspection of non-magnetic steel materials.

1991年、各種形状の小型部品や溶接材の透磁率を透磁率1.002の微小値から測定することができて、透磁率1.02以下の規格品の検査装置として十分な機能を有するポータブルタイプの装置が、本発明者により開示(特許文献1、非特許文献1)されている。
本装置(以下、現行品という。)は、1本の磁性ワイヤに巻かれた1つの励磁コイルとそれを挟むように差動式に配置された2つの検出コイルからなる差動変圧器構成のプローブ型検出器と励磁コイルを励磁する交流信号を発信する発信回路と、検出器の一端を被測定試料に接触させることにより被測定試料の透磁率と導電性の影響を出力信号として検出する差動式信号処理回路とその出力信号を位相解析して、被測定試料の透磁率に基づく出力信号をのみを取り出して直流変換する位相検波回路と、基準信号発生回路からなるものである。基準信号発生回路は上記検出器の励磁コイルを励磁する単一の励磁交流信号と其の交流信号の位相を調整して基準信号を位相検波回路に供給する位相回路とからなるものである。差動式検出コイルからの出力電圧Eは、非磁性試料の渦電流の影響による出力電圧Ecと試料の磁性成分の影響による電圧Emの二つの成分からなっている。両者の位相の違いに注目して、位相検波回路の基準電圧を渦電流の影響による電圧Ecに直角になるように付与して、その電圧成分を取り除くことによって、被測定試料の透磁率の比例する出力信号を出力することができる。
この中で、励磁コイルの巻き数N1と検出コイルの巻き数N2と励磁電流の強さI(A)を
N1×N2×Iの値を1000以上とすると検出力は透磁率1.002を検出することができることを明らかにしている。しかも、2つの検出コイルの間隔を3.5mm程度と小さくすることで、直径2mm以下の小さな試料の透磁率1.002を測定できることが明らかになっている。
In 1991, it was possible to measure the magnetic permeability of small parts and welded materials of various shapes from a minute value of magnetic permeability of 1.002, and it was a portable device with sufficient functions as an inspection device for standard products with magnetic permeability of 1.02 or less. A type of device is disclosed by the present inventor (Patent Document 1, Non-Patent Document 1).
This device (hereinafter referred to as the current product) has a differential transformer configuration consisting of one exciting coil wound around one magnetic wire and two detection coils arranged differentially so as to sandwich the exciting coil. Difference between a transmitter circuit that transmits an AC signal that excites a probe-type detector and an exciting coil, and an output signal that detects the effects of magnetic permeability and conductivity of the sample under test by bringing one end of the detector into contact with the sample under test. It consists of a phase detection circuit that analyzes the phase of a dynamic signal processing circuit and its output signal, extracts only the output signal based on the magnetic permeability of the sample to be measured, and converts it into DC, and a reference signal generation circuit. The reference signal generation circuit includes a single exciting AC signal that excites the exciting coil of the detector, and a phase circuit that adjusts the phase of the AC signal and supplies the reference signal to the phase detection circuit. The output voltage E from the differential detection coil is composed of two components, an output voltage Ec due to the influence of the eddy current of the non-magnetic sample and a voltage Em due to the influence of the magnetic component of the sample. Paying attention to the difference in phase between the two, the reference voltage of the phase detection circuit is applied so as to be perpendicular to the voltage Ec due to the influence of the eddy current, and the voltage component is removed, so that the magnetic permeability of the sample to be measured is proportional. Output signal can be output.
Among these, when the number of turns N1 of the exciting coil, the number of turns N2 of the detection coil, and the strength I (A) of the exciting current are set to 1000 or more, the detection force detects magnetic permeability 1.002. It is clear that it can be done. Moreover, it has been clarified that the magnetic permeability of a small sample having a diameter of 2 mm or less can be measured by reducing the distance between the two detection coils to about 3.5 mm.

本発明は透磁率1.002を測定できて、かつ鋼材から各種形状の小型部品や溶接材の透磁率を測定できるペンシル型の透磁率測定装置の開発を目指すものである。 The present invention aims to develop a pencil-type magnetic permeability measuring device capable of measuring the magnetic permeability of 1.002 and measuring the magnetic permeability of small parts of various shapes and welded materials from steel materials.

特開平3−255380号公報Japanese Unexamined Patent Publication No. 3-255380

本蔵他;日本応用磁気学会誌15、469−474(1991)Honzo et al .; Journal of the Japan Society of Applied Magnetics 15, 469-474 (1991)

ポータブル型をペンシル型に改良するためには、検出器の大きさを現行品の直径5mmから1mm以下、長さ8mmを6mm以下、つまり30倍から100倍の小型化を図ること、そのために磁性芯棒の直径を1mmから0.2mm以下にすること、および電子回路の基板サイズを巾50mm×長さ50mmを巾10mm以下×長さ40mm以下とし、さらに電源を100Vまたはアルカリ乾電池2個使用からから直径5mm以下の小型電池に変更して、装置の大幅な小型化を実現することが必要である。 In order to improve the portable type to the pencil type, the size of the detector should be reduced from 5 mm to 1 mm or less in diameter and 8 mm in length to 6 mm or less, that is, 30 to 100 times smaller, and magnetic for that purpose. The diameter of the core rod should be 1 mm to 0.2 mm or less, the board size of the electronic circuit should be 50 mm wide x 50 mm long, 10 mm wide or 40 mm long, and the power supply should be 100 V or two alkaline batteries. It is necessary to change from to a small battery with a diameter of 5 mm or less to realize a significant miniaturization of the device.

透磁率測定装置の検出感度は、励磁コイルの巻き数N1と検出コイルの巻き数N2と励磁電流の強さIに比例することが特許文献1に開示されている。また検出器の断面積に比例すると予想されるので、小型化するだけでは大幅な検出感度の低下になってしまうと予想される。さらに低消費電力化のために励磁電流を小さくすると、大幅な検出感度の低下になってしまうと予想される。つまり透磁率測定装置の検出感度や消費電力などの性能と小型化とは背反傾向を持っており、小型で高い検出感度と優れた消費電力特性を持つ透磁率測定装置の開発は困難な課題である。 Patent Document 1 discloses that the detection sensitivity of the magnetic permeability measuring device is proportional to the number of turns N1 of the exciting coil, the number of turns N2 of the detection coil, and the strength I of the exciting current. Moreover, since it is expected to be proportional to the cross-sectional area of the detector, it is expected that the detection sensitivity will be significantly reduced just by reducing the size. Further, if the exciting current is reduced to reduce the power consumption, it is expected that the detection sensitivity will be significantly reduced. In other words, performance such as detection sensitivity and power consumption of magnetic permeability measuring device and miniaturization tend to be contradictory, and it is a difficult task to develop a small magnetic permeability measuring device with high detection sensitivity and excellent power consumption characteristics. is there.

発明者らは、上記背反問題を解決するために、励磁電流を現行品の1kHzから100kHz〜10MHzへと高周波化することを思い至り、検出器の小型化と低消費電流化に取り組んだ。高周波に伴う渦電流を抑制するために磁性心棒に直径が5μm〜100μmのCo系アモルファスワイヤを採用することにし、検出器の小型化に伴う励磁コイルと検出コイルの巻き数の減少は、コイルピッチ10μm以下で内径10μm〜120μmのマイクロコイルを採用することで補うことにして、励磁コイル巻き数N1、検出コイル巻き数N2、励磁電流強度I、磁性芯棒の断面積S,励磁電流の周波数f、磁性芯棒の長さ、磁性芯棒の有効透磁率μ、磁性芯棒の抵抗率ρなどの感度の及ぼす影響を鋭意研究した。 In order to solve the above-mentioned contradictory problem, the inventors came up with the idea of increasing the exciting current from the current product of 1 kHz to 100 kHz to 10 MHz, and worked on miniaturization of the detector and reduction of current consumption. In order to suppress the eddy current associated with high frequency, we decided to use a Co-based amorphous wire with a diameter of 5 μm to 100 μm for the magnetic mandrel, and the reduction in the number of turns of the exciting coil and the detection coil due to the miniaturization of the detector is due to the coil pitch. By adopting a microcoil with an inner diameter of 10 μm to 120 μm of 10 μm or less, the number of exciting coil turns N1, the number of detected coil turns N2, the exciting current strength I, the cross-sectional area S of the magnetic core rod, and the frequency f of the exciting current , The effect of sensitivity such as the length of the magnetic core rod, the effective magnetic permeability μ of the magnetic core rod, and the resistance ρ of the magnetic core rod was studied diligently.

その結果、検出感度は、励磁コイル巻き数N1(回),検出コイル巻き数N2(回)、励磁電流強度I(mA)に比例するだけではなく、磁性芯棒の有効透磁率μとその直径d(mm)の比例d1.5に比例,励磁電流の周波数f(kHz)のf1.5にもほぼ比例することを見出した。すなわち、検出感度KはK=N1×N2×I×μ×d1.5×f1.5 で現わされること、および透磁率1.002を検出するためにはK≧3×10を確保する必要があることが分かった。 As a result, the detection sensitivity is not only proportional to the number of excitation coil turns N1 (times), the number of detection coil turns N2 (times), and the exciting current strength I (mA), but also the effective magnetic permeability μ of the magnetic core rod and its diameter. It was found that it is proportional to d 1.5, which is proportional to d (mm), and is almost proportional to f 1.5, which is the frequency f (kHz) of the exciting current. That is, the detection sensitivity K is necessary to secure a K ≧ 3 × 10 7 in order to detect that it is manifested by K = N1 × N2 × I × μ × d 1.5 × f 1.5, and permeability 1.002 It turned out that there is.

検出器のコイル巻き数N1、N2は、マイクロコイルを活用して、現行品に比較してほぼ同じとして、磁性芯棒の直径を1mmから0.01mmとすると、感度の大幅な低下になるが、その低下は磁性芯棒の有効透磁率を現行品の800から10,000へと増加すること、および励磁電流の周波数を1kHzから1MHzと1,000倍に増加させることによって、励磁電流の強さを現行品の33mAから3mAへと10分の1以下に小さくしても、透磁率1.002の検出感度を得ることを確認した。これらの新知見によって小型で高い検出感度と優れた消費電力特性を持つ透磁率測定装置を発明できることが分かった。 Assuming that the coil turns N1 and N2 of the detector are almost the same as those of the current product by utilizing the microcoil, if the diameter of the magnetic core rod is changed from 1 mm to 0.01 mm, the sensitivity will be significantly reduced. The decrease is due to the increase in the effective magnetic permeability of the magnetic core rod from 800 to 10,000 of the current product, and the increase in the exciting current frequency from 1 kHz to 1 MHz, which is 1,000 times stronger. It was confirmed that the detection sensitivity of magnetic permeability of 1.002 can be obtained even if the current product is reduced from 33 mA to 3 mA to 1/10 or less. Based on these new findings, it was found that a small magnetic permeability measuring device having high detection sensitivity and excellent power consumption characteristics can be invented.

本発明は、現行品の透磁率測定装置に比べて、大幅な小型化と低消費電力化を可能にして、ペンシル型の透磁率測定装置を実現し、リニア新幹線を契機に増大する非磁性検査ニーズに応えるものである。 The present invention enables a pencil-type magnetic permeability measuring device, which enables a significant reduction in size and power consumption as compared with the current magnetic permeability measuring device, and is a non-magnetic inspection that increases with the linear Shinkansen. It meets the needs.

検出原理を示す図である。It is a figure which shows the detection principle. 基本回路を示す図である。It is a figure which shows the basic circuit. 位相検波機能を示す図である。It is a figure which shows the phase detection function. 実施例1のペンシル型超小型透磁率測定装置の外観を示す図である。It is a figure which shows the appearance of the pencil type ultra-compact magnetic permeability measuring apparatus of Example 1. FIG. 被測定試料の透磁率と出力電圧との関係を示す図である。It is a figure which shows the relationship between the magnetic permeability of the sample to be measured, and the output voltage. 透磁率1.002の検出力と磁性心棒の直径と励磁周波数との関係を示す図である。It is a figure which shows the relationship between the detection force of magnetic permeability 1.002, the diameter of a magnetic mandrel, and the excitation frequency. 実施例2の測定モードとスリープモードを示す図である。It is a figure which shows the measurement mode and sleep mode of Example 2.

<第1実施形態>
第1実施形態の透磁率測定装置(以下、測定装置という。)は、検出器と電子回路と表示器からなっている。
検出器は、1本の磁性ワイヤに巻かれた1つの励磁コイルとそれを挟むように差動式に配置された2つの検出コイルとを備える直径1mm以下の大きさの差動変圧器構成のプローブ型検出器であって、検出器の一端を被測定試料に接触させることにより被測定試料の透磁率と導電性の影響を出力信号として検出する機能を有する。
磁性ワイヤの直径は5μm〜100μmであり、励磁コイルおよび検出コイルはコイルピッチ10μm以下で内径10μm〜120μmのマイクロコイルからなり、その巻き数は100回〜1000回であり、2つの検出コイルの間隔は3.5mm以下である。
<First Embodiment>
The magnetic permeability measuring device (hereinafter, referred to as a measuring device) of the first embodiment includes a detector, an electronic circuit, and a display.
The detector has a differential transformer configuration having a diameter of 1 mm or less, which includes one exciting coil wound around one magnetic wire and two detection coils arranged differentially so as to sandwich the exciting coil. It is a probe type detector, and has a function of detecting the influence of magnetic permeability and conductivity of the sample to be measured as an output signal by bringing one end of the detector into contact with the sample to be measured.
The diameter of the magnetic wire is 5 μm to 100 μm, the exciting coil and the detection coil consist of microcoils with a coil pitch of 10 μm or less and an inner diameter of 10 μm to 120 μm, the number of turns of which is 100 to 1000 times, and the distance between the two detection coils. Is 3.5 mm or less.

電子回路は、発信回路、信号処理回路および基準信号発生回路からなる。
発信回路は、励磁コイルを励磁する100kHz〜10MHzの周波数で電流強さ10mA以下からなる交流信号を発信する。
信号処理回路は、検出器の一端を被測定試料に接触させていない状態において、その出力信号を0Vに調整するゼロ点補正機能を有する差動増幅回路と、補正後の差動増幅回路の出力信号を位相解析して被測定試料の透磁率に基づく出力信号のみを取り出して直流変換することができる位相角度調整機能を有する位相検波回路および位相検波回路による検波後の被測定試料の透磁率に比例する電圧を出力する出力回路からなる。
基準信号発生回路は、検出器の励磁コイルを励磁する正弦波を発生する正弦波発生回路およびその正弦波の位相を調整した基準ベクトル信号を発生する位相回路とからなる。
表示器は、被測定資料の透磁率に基づく直流信号を表示する。
The electronic circuit includes a transmission circuit, a signal processing circuit, and a reference signal generation circuit.
The transmission circuit transmits an AC signal having a current strength of 10 mA or less at a frequency of 100 kHz to 10 MHz that excites the exciting coil.
The signal processing circuit is a differential amplifier circuit having a zero point correction function that adjusts the output signal to 0V when one end of the detector is not in contact with the sample to be measured, and the output of the corrected differential amplifier circuit. For the magnetic permeability of the sample to be measured after detection by a phase detection circuit and a phase detection circuit that has a phase angle adjustment function that can perform phase analysis of the signal and extract only the output signal based on the magnetic permeability of the sample to be measured and convert it to DC. It consists of an output circuit that outputs a proportional voltage.
The reference signal generation circuit includes a sine wave generation circuit that generates a sine wave that excites the exciting coil of the detector, and a phase circuit that generates a reference vector signal whose phase of the sine wave is adjusted.
The display displays a DC signal based on the magnetic permeability of the material to be measured.

以下、各構成について図1〜図3を用いて説明する。
検出器の構成と検出原理について、図1の検出原理を用いて説明する。
検出器1の構成は、1本の磁性芯棒である磁性ワイヤ11に巻かれている1つの励磁コイル12と、それを挟むように差動式に配置されている2つの検出コイル13(13aおよび13b)からなる差動変圧器構成のプローブ型検出器である。
Hereinafter, each configuration will be described with reference to FIGS. 1 to 3.
The configuration of the detector and the detection principle will be described with reference to the detection principle of FIG.
The detector 1 is composed of one exciting coil 12 wound around a magnetic wire 11 which is one magnetic core rod, and two detection coils 13 (13a) differentially arranged so as to sandwich the exciting coil 12. It is a probe type detector having a differential transformer configuration consisting of and 13b).

次に、検出器1の検出原理は、励磁コイル12に交流電流を流して磁性ワイヤ11の一端を被測定試料20に接触させ、被測定試料20に交番磁化と渦電流(図1に示す。)を発生せしめることにより被測定試料20の透磁率と導電性の影響を出力信号として検出する。 Next, the detection principle of the detector 1 is that an alternating current is passed through the exciting coil 12 to bring one end of the magnetic wire 11 into contact with the sample 20 to be measured, and the sample 20 is subjected to alternating magnetization and eddy current (shown in FIG. 1). ) Is generated to detect the influence of the magnetic permeability and conductivity of the sample 20 to be measured as an output signal .

このプローブ型検出器1の大きさは、直径1mm以下にて長さは6mm以下の小型サイズとする。これによりペンシルサイズの超小型透磁率測定装置が可能となる。
小型サイズの検出器1を構成する部品は、Co系アモルファスの磁性ワイヤ11からなりその直径(d)は5μm〜100μmと微細化する一方で、その比透磁率(μ)は5,000〜50,000と大きくし、比抵抗率は50μΩcm〜150μΩcmとする。
The size of the probe type detector 1 is a small size having a diameter of 1 mm or less and a length of 6 mm or less. This enables a pencil-sized ultra-compact magnetic permeability measuring device.
The parts constituting the small-sized detector 1 are made of Co-based amorphous magnetic wire 11 and its diameter (d) is miniaturized to 5 μm to 100 μm, while its specific magnetic permeability (μ) is 5,000 to 50. Increase it to 000 and set the resistivity to 50 μΩcm to 150 μΩcm.

励磁コイル12は、直径10μm〜20μmのマイクロコイルとし、長さ1mm〜3mmにて磁性ワイヤ11の中央部に配置する。次に検出コイル13は、直径10μm〜120μmのマイクロコイルとし、長さ1mm〜3mmにて励磁コイル12の両側に差動式に配置する(13aおよび13b)。
励磁コイル12および検出コイル13の単位長さ当たりのコイル巻き数は、両者のコイルをマイクロ化することにより50回/mm〜500回/mmと大きくすることができる。また、励磁コイル12のコイル巻き数(N1)および検出コイル13のコイル巻き数(N2)は、100回〜1000回と大きくする。さらに二つの検出コイル12の間隔を3.5mm以下と小さくして、直径2mm以下の小さな試料の透磁率の測定を可能にする。
The exciting coil 12 is a microcoil having a diameter of 10 μm to 20 μm, and is arranged at the center of the magnetic wire 11 with a length of 1 mm to 3 mm. Next, the detection coil 13 is a microcoil having a diameter of 10 μm to 120 μm, and is arranged differentially on both sides of the exciting coil 12 with a length of 1 mm to 3 mm (13a and 13b).
The number of coil turns per unit length of the exciting coil 12 and the detection coil 13 can be increased to 50 times / mm to 500 times / mm by micronizing both coils. Further, the number of coil turns (N1) of the exciting coil 12 and the number of coil turns (N2) of the detection coil 13 are increased to 100 to 1000 times. Further, the distance between the two detection coils 12 is reduced to 3.5 mm or less to enable measurement of the magnetic permeability of a small sample having a diameter of 2 mm or less.

電子回路は、図2の基本回路を用いて説明する。
電子回路は、発信回路(図示せず)、信号処理回路30および基準信号発生回路40からなり、出力結果を表示する表示器50を備えている。
発信回路は、励磁コイル12を励磁する交流信号、つまりその周波数(f)を100kHz〜10MHzと大きくし、電流強さ(I)は2mA〜10mAである交流信号を発信する。
The electronic circuit will be described with reference to the basic circuit of FIG.
The electronic circuit includes a transmission circuit (not shown), a signal processing circuit 30, and a reference signal generation circuit 40, and includes a display 50 that displays an output result.
The transmission circuit transmits an AC signal that excites the exciting coil 12, that is, an AC signal whose frequency (f) is increased to 100 kHz to 10 MHz and whose current strength (I) is 2 mA to 10 mA.

信号処理回路30は、差動増幅回路31、位相検波回路32および出力回路33からなる。
差動増幅回路31は、検出器の一端を被測定試料20に接触させることにより被測定試料20の透磁率と導電性の影響を出力信号として検出すると同時に、検出器の一端を被測定試料に接触させない状態において出力する出力信号を0Vに調整するゼロ点補正機能を有する。
位相検波回路32は、差動増幅回路31による補正後の出力信号を位相解析して被測定試料の透磁率に基づく出力信号をのみを取り出して直流変換すると同時に位相角度調整機能を有する。
図3に位相検波回路32の機能を示す。図3のIは励磁電流の強度を示し、以下、Eは出力電圧、Ecは非磁性試料の渦電流によって生じる電圧、Emは磁性試料の磁性によって生じる電圧、Eyは基準信号、φは基準信号の位相角をそれぞれ示す。位相検波回路は出力信号Eの基準信号Eyへの射影成分EmcosΦを電圧として出力し、その出力電圧は資料の磁性の強さ、つまり透磁率に比例する。
出力回路33は、位相検波回路32および検波回路による検波後の被測定試料2の透磁率に比例する電圧を出力する。
The signal processing circuit 30 includes a differential amplifier circuit 31, a phase detection circuit 32, and an output circuit 33.
The differential amplifier circuit 31 detects the influence of the magnetic permeability and conductivity of the sample to be measured 20 as an output signal by contacting one end of the detector with the sample to be measured 20 , and at the same time, makes one end of the detector to be the sample to be measured. It has a zero point correction function that adjusts the output signal to be output to 0V when they are not in contact with each other.
The phase detection circuit 32 has a phase angle adjusting function at the same time as performing phase analysis of the output signal corrected by the differential amplification circuit 31 and extracting only the output signal based on the magnetic permeability of the sample to be measured and converting it into DC.
FIG. 3 shows the function of the phase detection circuit 32. In FIG. 3, I indicates the intensity of the exciting current. Hereinafter, E is the output voltage, Ec is the voltage generated by the eddy current of the non-magnetic sample, Em is the voltage generated by the magnetism of the magnetic sample, E is the reference signal, and φ is the reference signal. The phase angles of are shown respectively. The phase detection circuit outputs the projection component EmcosΦ of the output signal E to the reference signal Ey as a voltage, and the output voltage is proportional to the magnetic strength of the material, that is, the magnetic permeability.
The output circuit 33 outputs a voltage proportional to the magnetic permeability of the sample 2 to be measured after being detected by the phase detection circuit 32 and the detection circuit.

基準信号発生回路40は、検出器1の励磁コイル11を励磁する正弦波発生回路41および位相検波回路の基準信号を発生する位相回路42となる。
なお、上記の基本回路と検出原理は先に本発明者が開示した特許文献1(特開平3−255380号公報)および非特許文献1に詳細は記載しているとおりである。
The reference signal generation circuit 40 is a sine wave generation circuit 41 that excites the excitation coil 11 of the detector 1 and a phase circuit 42 that generates a reference signal of the phase detection circuit.
The above-mentioned basic circuit and detection principle are as described in detail in Patent Document 1 (Japanese Patent Laid-Open No. 3-255380) and Non-Patent Document 1 previously disclosed by the present inventor.

電源回路(図示せず)は、検出器10の励磁コイル12に電流強さ10mA以下の電力および測定回路の動作に必要な電力を供給する。 The power supply circuit (not shown) supplies the exciting coil 12 of the detector 10 with electric power having a current strength of 10 mA or less and electric power necessary for operating the measurement circuit.

電源は、ペンシル型の測定装置を構成することができる場合にはサイズ、重さ、出力電圧および容量については問わない。一例として直径4.7mm、長さ25mm、重さ1g、出力電圧3.8V、容量32mAhの小型リチウム電池を1個とする。 The power supply may be of any size, weight, output voltage and capacity as long as a pencil-type measuring device can be configured. As an example, one small lithium battery having a diameter of 4.7 mm, a length of 25 mm, a weight of 1 g, an output voltage of 3.8 V, and a capacity of 32 mAh is used.

測定装置の調整は、2つの検出コイル(12a、12b)からの出力電圧差は検出器を被測定試料に接触していない状態では、フルスケールを±1000mVとした時は100μV以下、つまり0.01%以下の誤差となるよう二つの検出コイル(12a、12b)の対称性を確保する。この誤差は、ゼロ点補正回路を取り付けて取り除くことが可能である。次に検出器1を非磁性の被測定試料2に接触した状態では、位相検波後の信号電圧が0Vになるように、位相検波回路3の基準ベクトル信号の位相角度を位相角度調整回路で調整する。 The adjustment of the measuring device is that the output voltage difference from the two detection coils (12a, 12b) is 100 μV or less when the full scale is ± 1000 mV when the detector is not in contact with the sample to be measured, that is, 0. The symmetry of the two detection coils (12a, 12b) is ensured so that the error is 01% or less. This error can be removed by installing a zero point correction circuit. Next, when the detector 1 is in contact with the non-magnetic sample 2 to be measured, the phase angle of the reference vector signal of the phase detection circuit 3 is adjusted by the phase angle adjustment circuit so that the signal voltage after the phase detection becomes 0V. To do.

検出感度Kは、K=N1×N2×I×μ×d1.5×f1.5で現わされる。透磁率1.002を検出するためにはK≧3×10となるように、N1,N2,I,μ、d、fを上記範囲内で調整する。また、被測定試料のサイズに影響を避けるために、2つの検出コイル(12a、12b)の間隔は、3.5mm以下とする。 The detection sensitivity K is expressed by K = N1 × N2 × I × μ × d 1.5 × f 1.5 . As the K ≧ 3 × 10 7 in order to detect the magnetic permeability 1.002, adjusted N1, N2, I, mu, d, and f in the above range. Further, in order to avoid affecting the size of the sample to be measured, the distance between the two detection coils (12a, 12b) is 3.5 mm or less.

測定は、検出器10を微磁性被測定試料20に接触して行うが、出力電圧は透磁率と直線的関係にある。また出力回路は、アナログ出力、デジタル出力、さらにはパソコン画面にリアルタイムで表示するなどどのような対応も可能である。デジタル出力の場合、測定間隔は20m秒、すなわち50Hzとする。測定装置の性能は、透磁率1.00から2.00の広い範囲の測定が可能で、微小な透磁率1.002も検出できる。 The measurement is performed by bringing the detector 10 into contact with the micromagnetic sample 20 to be measured, and the output voltage has a linear relationship with the magnetic permeability. In addition, the output circuit can be used for analog output, digital output, and even display on a personal computer screen in real time. In the case of digital output, the measurement interval is 20 ms, that is, 50 Hz. The performance of the measuring device can measure a wide range of magnetic permeability from 1.00 to 2.00, and even a minute magnetic permeability of 1.002 can be detected.

<第2実施形態>
第2実施形態は、第1実施形態のデジタル出力タイプにおいて、計測データの出力間隔時間を測定モード時間とスリープモード時間に二分し、測定時間を測定間隔の1/10以下として、信号電圧をデジタル出力するもので、測定に要する消費電力を少なくとも1/10以下に低減することを図る好ましい実施形態である。
<Second Embodiment>
In the second embodiment, in the digital output type of the first embodiment, the output interval time of the measurement data is divided into the measurement mode time and the sleep mode time, the measurement time is set to 1/10 or less of the measurement interval, and the signal voltage is digitally set. It is an output, and is a preferred embodiment in which the power consumption required for measurement is reduced to at least 1/10 or less.

測定モード時間とスリープモード時間に二分するために、電子回路にON−OFFする制御回路(図示せず)を取り付け、それと同期して位相検波後の出力をホールドするホールド回路(図示せず)を設けて、ON状態で測定し、その信号電圧をホールドして出力し、OFF状態になっても、同じ信号電圧を出力することになるので、その結果50Hzの測定間隔の間は同じ信号電圧を出力する。 In order to divide into the measurement mode time and the sleep mode time, a control circuit (not shown) that turns ON and OFF is attached to the electronic circuit, and a hold circuit (not shown) that holds the output after phase detection in synchronization with it is installed. It is provided, measured in the ON state, the signal voltage is held and output, and the same signal voltage is output even in the OFF state. As a result, the same signal voltage is output during the measurement interval of 50 Hz. Output.

<第3実施形態>
第3実施形態は、第1実施形態および第2実施形態の測定装置をペンシル型のケースに内蔵するものである。図4を用いて説明する。
先端部に検出器61を取り付け、電子回路65と電池66を内蔵し、外装部に表示器67、測定器の電源スイッチ62、ゼロ点調整つまみ63、位相角調整つまみ64を取り付ける。先端部のサイズは、直径0.5mm〜1mmで長さは4mm〜6mmの末広がりの紡錘形状とする。測定装置6の本体の長さは全体で10cm〜16cm、直径は8mm〜14mmとする。
<Third Embodiment>
In the third embodiment, the measuring devices of the first embodiment and the second embodiment are built in a pencil-shaped case. This will be described with reference to FIG.
A detector 61 is attached to the tip, an electronic circuit 65 and a battery 66 are built in, and a display 67, a power switch 62 of the measuring instrument, a zero point adjustment knob 63, and a phase angle adjustment knob 64 are attached to the exterior. The size of the tip portion is a spindle shape with a diameter of 0.5 mm to 1 mm and a length of 4 mm to 6 mm. The total length of the main body of the measuring device 6 is 10 cm to 16 cm, and the diameter is 8 mm to 14 mm.

[実施例1]
本発明の実施例1は、実施形態1と実施形態3を組み合わせたもので、図4に示すように、検出器10と電子回路と電源およびそれらすべてをペンシル型のケースに内蔵する超小型透磁率測定装置60である。測定装置60の先端部に検出器61を取り付け、電子回路65と電池66を内蔵し、外装部に表示器67、電源スイッチ62ゼロ点調整つまみ63、位相角調整つまみ64を取り付けた。先端部のサイズは直径1mmで長さ6mmの紡錘形状とする。測定装置60の本体の長さは全体で14cm、直径は10mmとする。
[Example 1]
The first embodiment of the present invention is a combination of the first embodiment and the third embodiment, and as shown in FIG. 4, the detector 10, the electronic circuit, the power supply, and all of them are built in a pencil-shaped case. The magnetic coefficient measuring device 60. A detector 61 was attached to the tip of the measuring device 60, an electronic circuit 65 and a battery 66 were built in, and a display 67, a power switch 62 zero point adjustment knob 63, and a phase angle adjustment knob 64 were attached to the exterior part. The size of the tip is a spindle shape with a diameter of 1 mm and a length of 6 mm. The main body of the measuring device 60 has a total length of 14 cm and a diameter of 10 mm.

検出器61(1)は1本の磁性ワイヤ11に巻かれた1つの励磁コイル12とそれを挟むように差動式に配置された2つの検出コイル(13a、13b)からなる差動変圧器構成のプローブ型である。
その検出器61については、まず大きさは、直径0.5mm、長さ6mmとする。これによってペンシルサイズの超小型透磁率測定装置が可能になる。検出器61(1)の構成部品は、まず磁性ワイヤ10の直径は10μmで、その比透磁率は8,000および比抵抗率は130μΩcmとする。励磁コイル11は直径18μm、長さ2mmのマイクロコイルで、直径10μmの磁性ワイヤ10の中央部に配置する。検出コイル12は内径18μm、コイルピッチ5μm、長さ2mmのマイクロコイルで、励磁コイル11の両側に差動式に配置する。単位長さ当たりのコイル巻き数は200回/mmとする。励磁コイル11(N1)および検出コイル12(N2)のコイル巻き数は300回とする。さらに2つの検出コイル(12aおよび12b)の間隔Lを3.5mm(図2)と小さくして、直径2mm以下の小さな試料の透磁率の測定を可能にする。
The detector 61 (1) is a differential transformer composed of one exciting coil 12 wound around one magnetic wire 11 and two detection coils (13a, 13b) arranged differentially so as to sandwich the exciting coil 12. It is a probe type of configuration.
First, the size of the detector 61 is 0.5 mm in diameter and 6 mm in length. This enables a pencil-sized ultra-compact magnetic permeability measuring device. First, the components of the detector 61 (1) have a magnetic wire 10 having a diameter of 10 μm, a relative magnetic permeability of 8,000, and a resistivity of 130 μΩcm. The exciting coil 11 is a microcoil having a diameter of 18 μm and a length of 2 mm, and is arranged at the center of the magnetic wire 10 having a diameter of 10 μm. The detection coil 12 is a microcoil having an inner diameter of 18 μm, a coil pitch of 5 μm, and a length of 2 mm, and is arranged differentially on both sides of the exciting coil 11. The number of coil turns per unit length is 200 times / mm. The number of coil turns of the exciting coil 11 (N1) and the detection coil 12 (N2) is 300. Further, the distance L between the two detection coils (12a and 12b) is reduced to 3.5 mm (FIG. 2) to enable measurement of the magnetic permeability of a small sample having a diameter of 2 mm or less.

電子回路は、励磁コイル12を励磁する交流信号、つまりその周波数(f)を1MHzで電流強さ(I)は3mAである交流信号を発信する発信回路と、検出器61の一端を被測定試料に接触させることにより被測定試料の透磁率と導電性の影響を出力信号として検出する差動増幅回路31と検出器61の一端を被測定試料に接触させない状態で、その出力信号を0Vに調整するゼロ点補正回路、補正済みのその出力信号を位相解析して、被測定試料の透磁率に基づく出力信号をのみを取り出して直流変換する位相検波回路32(位相角度調整回路を含む)と、検波後の被測定試料の透磁率の比例する電圧を出力する出力回路32および上記検出器の励磁コイルを励磁する単一の励磁信号と位相検波器の基準ベクトル信号とを発生する基準信号発生回路4と測定装置に電力を供給する電源回路からなっている。 The electronic circuit is an AC signal that excites the exciting coil 12, that is, a transmission circuit that transmits an AC signal whose frequency (f) is 1 MHz and whose current strength (I) is 3 mA, and one end of the detector 61 is a sample to be measured. in a state not contacted with the differential amplifier circuit 31 is detected as an output signal the influence of the magnetic permeability and conductivity of the sample at one end of the detector 61 to the measurement sample by contacting, adjust its output signal to 0V The zero point correction circuit, the phase detection circuit 32 (including the phase angle adjustment circuit) that performs phase analysis of the corrected output signal and extracts only the output signal based on the magnetic permeability of the sample to be measured and converts it to DC. An output circuit 32 that outputs a voltage proportional to the magnetic permeability of the sample to be detected after detection, and a reference signal generation circuit that generates a single excitation signal that excites the excitation coil of the detector and a reference vector signal of the phase detector. It consists of 4 and a power supply circuit that supplies power to the measuring device.

電源は、直径4.7mm、長さ25mm、重さ1g、出力電圧3.8V,容量32mAhの小型リチウム電池を1個とする。 The power source is a small lithium battery having a diameter of 4.7 mm, a length of 25 mm, a weight of 1 g, an output voltage of 3.8 V, and a capacity of 32 mAh.

測定装置の調整は、2つの検出コイル(13aおよび13b)からの出力電圧差は、検出器61(1)を被測定試料2に接触していない状態では、フルスケールを±1000mVとした時は100μV以下、つまり0.01%以下の誤差となるよう2つの検出コイル(12aおよび12b)の対称性を確保する。この誤差はゼロ点補正回路を取り付けて取り除くことを可能にしている。次に検出器を非磁性の被測定試料に接触した状態では、位相検波後の信号電圧が0Vになるように、位相検波回路32の基準信号の位相角度を位相角度調整回路で調整する。 The adjustment of the measuring device is that the output voltage difference from the two detection coils (13a and 13b) is ± 1000 mV when the full scale is ± 1000 mV when the detector 61 (1) is not in contact with the sample 2 to be measured. The symmetry of the two detection coils (12a and 12b) is ensured so that the error is 100 μV or less, that is, 0.01% or less. This error can be removed by installing a zero point correction circuit. Next, when the detector is in contact with the non-magnetic sample to be measured, the phase angle of the reference signal of the phase detection circuit 32 is adjusted by the phase angle adjustment circuit so that the signal voltage after the phase detection becomes 0V.

検出感度Kは、K=N1×N2×I×μ×d1.5×f1.5で現わされる。透磁率1.002を検出するためには、K≧3×10となるように、N1,N2,I,μ、d、fを上記範囲内で調整する。具体的には、N1、N2=300回、I=3mA、μ=8000、d=10μm、f=1MHzとした。この時K=8.5×10となって、感度確保のための条件、K≧3×10を満足している。
また被測定試料2のサイズに影響を避けるために、2つの検出コイル(13aおよび13b)の間隔は、3.5mm以下とする。
The detection sensitivity K is expressed by K = N1 × N2 × I × μ × d 1.5 × f 1.5 . To detect magnetic permeability 1.002, like a K ≧ 3 × 10 7, adjusted N1, N2, I, mu, d, and f in the above range. Specifically, N1, N2 = 300 times, I = 3mA, μ = 8000, d = 10μm, f = 1MHz. At this time it becomes K = 8.5 × 10 7, the conditions for the sensitivity secure, which satisfies the K ≧ 3 × 10 7.
Further, in order to avoid affecting the size of the sample 2 to be measured, the distance between the two detection coils (13a and 13b) is 3.5 mm or less.

この測定装置60を用いて測定した結果について、図5に被測定試料の透磁率と出力電圧との関係を示し、図6には検出感度に及ぼす磁性芯棒の直径(d)と励磁周波数(f)の影響を示す。測定は、検出器61を直径2mmの被測定試料20に接触して行っている。出力回路は、デジタル出力でパソコン画面にリアルタイムで表示している。そのデジタル出力の場合、測定間隔は20m秒、すなわち50Hzとしている。 Regarding the results of measurement using this measuring device 60, FIG. 5 shows the relationship between the magnetic permeability of the sample to be measured and the output voltage, and FIG. 6 shows the diameter (d) of the magnetic core rod and the excitation frequency (which affect the detection sensitivity). The influence of f) is shown. The measurement is performed by bringing the detector 61 into contact with the sample 20 to be measured having a diameter of 2 mm. The output circuit is digitally output and displayed on the personal computer screen in real time. In the case of the digital output, the measurement interval is 20 ms, that is, 50 Hz.

先ず、図5からは被測定試料20の透磁率(μ)を変えた場合に出力電圧とは直線的関係にあることが得られている。これより、測定装置の性能は、透磁率1.000から2.000の広い範囲の測定が可能で、微小透磁率1.002も検出できる。
次に、図6では透磁率1.005の被測定試料2の透磁率を測定した結果を示し、「測定可」とは、測定装置60の表示器67に現われた透磁率の値が測定できた場合をいい、「測定不可」とは測定誤差が1.005と同程度あった場合をいう。図6は、K≧3×10を満足するときは、測定装置6が被測定試料の透磁率を正確に測定することが可能であることを示している。
First, from FIG. 5, it is obtained that there is a linear relationship with the output voltage when the magnetic permeability (μ) of the sample 20 to be measured is changed. From this, the performance of the measuring device can measure a wide range of magnetic permeability from 1.000 to 2.000, and can also detect a minute magnetic permeability of 1.002.
Next, FIG. 6 shows the result of measuring the magnetic permeability of the sample 2 to be measured having a magnetic permeability of 1.005, and "measurable" means that the value of the magnetic permeability appearing on the display 67 of the measuring device 60 can be measured. The case where "measurement is impossible" means that the measurement error is about the same as 1.005. 6, when satisfying K ≧ 3 × 10 7 show that measuring device 6 is capable to accurately measure the permeability of the sample to be measured.

[実施例2]
実施例2は、実施例1をベースにして、図7に示すように、計測データの測定間隔時間20m秒を、測定モード時間0.2m秒とスリープモード時間19.8m秒に二分し、測定時間を測定間隔の1/100として、測定に要する消費電力を1/100程度に低減することを図ったものである。そのために、電子回路をON−OFFする制御回路と取り付け、それと同期して位相検波後の出力をホールドするホールド回路を設けて、ON状態で測定し、その信号電圧をホールドして出力し、OFF状態になっても、同じ信号電圧を出力することになるので、その結果50Hzの測定間隔の間は同じ信号電圧を出力するようにしている。
[Example 2]
In Example 2, based on Example 1, as shown in FIG. 7, the measurement interval time of 20 msec of the measurement data is divided into a measurement mode time of 0.2 msec and a sleep mode time of 19.8 msec for measurement. The time is set to 1/100 of the measurement interval, and the power consumption required for the measurement is reduced to about 1/100. For that purpose, a control circuit that turns on and off the electronic circuit is attached, and a hold circuit that holds the output after phase detection in synchronization with it is provided, and the measurement is performed in the ON state, the signal voltage is held and output, and then turned off. Even in the state, the same signal voltage is output. As a result, the same signal voltage is output during the measurement interval of 50 Hz.

本発明は、現行品の透磁率測定装置に比べて、大幅な小型化と低消費電力化を可能にして、ペンシル型の透磁率測定装置を実現したものである。リニア新幹線を契機に、超電導磁石や車両本体の構造部材およびレール周辺の構造物の鉄骨と器材に非磁性鋼が使用され、その非磁性の確実な保証が非磁性鋼を精錬する段階から、圧延、精整、二次加工、部品加工および組立構造品までの各段階での増大する非磁性保証ニーズに応えるものである。 The present invention has realized a pencil-type magnetic permeability measuring device, which enables a significant reduction in size and power consumption as compared with the current product magnetic permeability measuring device. Taking the opportunity of the Linear Shinkansen, non-magnetic steel is used for the steel frames and equipment of superconducting magnets, structural members of the vehicle body, and structures around rails, and rolling from the stage of refining non-magnetic steel with a reliable guarantee of non-magnetism. It meets the increasing non-magnetic guarantee needs at each stage from precision, secondary processing, parts processing and assembled structures.

10:検出器
11:磁性芯棒(磁性ワイヤ)、12:励磁コイル、13a:検出コイル:13b:検出コイル、14:検出器の先端
20:被測定試料
30:信号処理回路
31:差動増幅回路(ゼロ点調整器付き)、32:位相検波回路(位相角調整器付き)、33:出力回路(デジタル変換他)
40:基準信号発生回路
41:正弦波発生回路、42:位相回路
50:表示器
60:超小型透磁率測定装置(測定装置)
61:検出器、62:電源スイッチ、63:ゼロ点補正用つまみ、64:位相角補正つまみ、
65:電子回路(内蔵)、66:電池(内蔵)、67:表示器


10: Detector 11: Magnetic core rod (magnetic wire), 12: Excitation coil, 13a: Detection coil: 13b: Detection coil, 14: Detector tip 20: Sample to be measured 30: Signal processing circuit 31: Differential amplification Circuit (with zero point adjuster), 32: Phase detection circuit (with phase angle adjuster), 33: Output circuit (digital conversion, etc.)
40: Reference signal generation circuit 41: Sine wave generation circuit, 42: Phase circuit 50: Display 60: Ultra-compact magnetic permeability measuring device (measuring device)
61: Detector, 62: Power switch, 63: Zero point correction knob, 64: Phase angle correction knob,
65: Electronic circuit (built-in), 66: Battery (built-in), 67: Display


Claims (3)

検出器は、1本の磁性ワイヤに巻かれた1つの励磁コイルとそれを挟むように差動式に配置された2つの検出コイルとを備える直径1mm以下の大きさの差動変圧器構成のプローブ型検出器であって、検出器の一端を被測定試料に接触させることにより前記被測定資料の透磁率と導電性の影響を電気信号として検出する機能を有し、
前記磁性ワイヤの直径は5μm〜100μmであり、
前記励磁コイルおよび前記検出コイルは内径10μm〜120μmのマイクロコイルからなり、その巻き数は100回〜1000回であり、
前記2つの検出コイルの間隔は3.5mm以下であり、
電子回路は、発信回路、信号処理回路および基準信号発生回路を備えてなり、
前記発信回路は、前記励磁コイルを励磁する100kHz〜10MHzの周波数で電流強さ10mA以下からなる交流信号を発信し、
前記信号処理回路は、前記検出器を前記被測定試料に接触させていない状態において、その出力信号を0Vに調整するゼロ点補正機能を有する差動増幅回路と、補正後の前記差動増幅回路の出力信号を位相解析して前記被測定試料の透磁率に基づく電気信号のみを取り出して直流変換することができる位相角度調整機能を有する位相検波回路および前記位相検波回路による検波後の前記被測定試料の透磁率に比例する電圧を出力する出力回路からなり、
前記基準発生信号回路は、前記検出器の前記励磁コイルを励磁する正弦波を発生する正弦波発生回路およびその正弦波の位相を調整した基準ベクトル信号を発生する位相回路とからなり、
表示器は、前記被測定資料の透磁率に基づく直流信号を表示することを特徴とする超小型透磁率測定装置。
The detector has a differential transformer configuration having a diameter of 1 mm or less, which includes one exciting coil wound around one magnetic wire and two detection coils arranged differentially so as to sandwich the exciting coil. It is a probe type detector and has a function of detecting the influence of magnetic permeability and conductivity of the material to be measured as an electric signal by bringing one end of the detector into contact with the sample to be measured.
The diameter of the magnetic wire is 5 μm to 100 μm.
The exciting coil and the detection coil are composed of microcoils having an inner diameter of 10 μm to 120 μm, and the number of turns thereof is 100 to 1000 times.
The distance between the two detection coils is 3.5 mm or less.
The electronic circuit comprises a transmission circuit, a signal processing circuit and a reference signal generation circuit.
The transmission circuit transmits an AC signal having a current strength of 10 mA or less at a frequency of 100 kHz to 10 MHz that excites the exciting coil.
The signal processing circuit includes a differential amplification circuit having a zero point correction function for adjusting the output signal to 0V when the detector is not in contact with the sample to be measured, and the corrected differential amplification circuit. A phase detection circuit having a phase angle adjustment function capable of phase-analyzing the output signal of the above to extract only an electric signal based on the magnetic permeability of the sample to be measured and converting it to DC, and the measurement to be performed after detection by the phase detection circuit. It consists of an output circuit that outputs a voltage proportional to the magnetic permeability of the sample.
The reference generation signal circuit includes a sine wave generation circuit that generates a sine wave that excites the excitation coil of the detector, and a phase circuit that generates a reference vector signal whose phase of the sine wave is adjusted.
The display is an ultra-compact magnetic permeability measuring device characterized by displaying a DC signal based on the magnetic permeability of the material to be measured.
請求項1において、
計測データの測定間隔時間を測定モード時間とスリープモード時間に二分し、測定モード時間を測定間隔の1/10以下として信号電圧をデジタル出力とすることを特徴とする超小型透磁率測定装置。
In claim 1,
An ultra-compact magnetic permeability measuring device characterized in that the measurement interval time of measurement data is divided into a measurement mode time and a sleep mode time, the measurement mode time is set to 1/10 or less of the measurement interval, and the signal voltage is digitally output.
請求項1または2において、
前記検出器の大きさは直径1mm以下で長さ6mm以下とし、前記電子回路のサイズは巾10mm以下とし、測定装置の形状はペンシル型であることを特徴とする超小型透磁率測定装置。





In claim 1 or 2,
An ultra-compact magnetic permeability measuring device characterized in that the size of the detector is 1 mm or less in diameter and 6 mm or less in length, the size of the electronic circuit is 10 mm or less in width, and the shape of the measuring device is a pencil type.





JP2019076718A 2019-04-14 2019-04-14 Permeability measuring device Active JP6606654B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076718A JP6606654B1 (en) 2019-04-14 2019-04-14 Permeability measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076718A JP6606654B1 (en) 2019-04-14 2019-04-14 Permeability measuring device

Publications (2)

Publication Number Publication Date
JP6606654B1 JP6606654B1 (en) 2019-11-20
JP2020173230A true JP2020173230A (en) 2020-10-22

Family

ID=68611013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076718A Active JP6606654B1 (en) 2019-04-14 2019-04-14 Permeability measuring device

Country Status (1)

Country Link
JP (1) JP6606654B1 (en)

Also Published As

Publication number Publication date
JP6606654B1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
US10012705B2 (en) Magnetism measurement device
US20080007258A1 (en) Sensor for Measuring Magnetic Flux
EP2998748B1 (en) Current measurement device and current calculation method
JPH07128373A (en) Dc current sensor
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP4209114B2 (en) Magnetic field sensor
Stupakov Stabilization of Barkhausen noise readings by controlling a surface field waveform
JP2022029714A (en) Current measurement device
US5103173A (en) Permeameter having a differential transformer probe with a reduced distance between the detecting coils
Nara et al. Non-destructive inspection of ferromagnetic pipes based on the discrete Fourier coefficients of magnetic flux leakage
JP4353465B2 (en) Railway vehicle magnetic field measuring method and magnetic field measuring apparatus
Abdallh et al. A Rogowski–Chattock coil for local magnetic field measurements: Sources of error
JP2020173230A (en) Permeability measuring device
Hartmann et al. A system for measurement of AC Barkhausen noise in electrical steels
EP0360574B1 (en) Current sensor having an element made of amorphous magnetic metal
Fiorucci et al. A low-cost contactless transducer for the measurement of DC currents up to 13 kA for the industry of anodized aluminum
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
Charubin et al. Mobile ferrograph system for ultrahigh permeability alloys
EP1171338B1 (en) Current sensor
Katiyar et al. Development and validation of a low magnetic permeability measurement setup
Jahidin et al. Magnetic properties of grain-oriented and non-oriented silicon iron core arrangements
JP4215244B2 (en) Coil loss state monitoring system and coil loss measurement method
JPS63210781A (en) Current detector
JP2002116242A (en) Magnetic detecting device
Zhou et al. Magnetic Properties Measurement of Ultra-thin Silicon Steel Based on an Improved BH Sensor

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190427

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R150 Certificate of patent or registration of utility model

Ref document number: 6606654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350