JP2020172863A - Actuator and tactile sensation application device - Google Patents

Actuator and tactile sensation application device Download PDF

Info

Publication number
JP2020172863A
JP2020172863A JP2019073599A JP2019073599A JP2020172863A JP 2020172863 A JP2020172863 A JP 2020172863A JP 2019073599 A JP2019073599 A JP 2019073599A JP 2019073599 A JP2019073599 A JP 2019073599A JP 2020172863 A JP2020172863 A JP 2020172863A
Authority
JP
Japan
Prior art keywords
groove
stator
actuator
telescopic member
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019073599A
Other languages
Japanese (ja)
Other versions
JP7235300B2 (en
Inventor
智 川上
Satoshi Kawakami
智 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2019073599A priority Critical patent/JP7235300B2/en
Publication of JP2020172863A publication Critical patent/JP2020172863A/en
Application granted granted Critical
Publication of JP7235300B2 publication Critical patent/JP7235300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide an actuator capable of obtaining excellent assemblability while attaining measures to cope with fluctuation in a position of an extensible/contractible member.SOLUTION: The present invention relates to an actuator comprising: a long stator 28; a movable element 30 which is disposed while facing the stator 28 in a direction orthogonal to a length direction of the stator 28 and is movable in the orthogonal direction defined as a movable direction; and an extensible/contractible member 32 constituted with a shape memory alloy which is extensible/contractible in accordance with a temperature change, as a material. In the stator 28 and the movable element 30, multiple projections 38 are provided in a staggered manner so as to be arranged side by side in a length direction. The extensible/contractible member 32 is spread over the projections 38 in the stator 28 and the projections in the movable element 30 so as to be alternately suspended therefrom. A groove 60 in which the extensible/contractible member 32 is disposed is formed in the projection 38, and the groove 60 is formed in such a manner that a groove width becomes narrower gradually toward the bottom side thereof.SELECTED DRAWING: Figure 6

Description

本発明は、形状記憶合金を用いたアクチュエータに関する。 The present invention relates to an actuator using a shape memory alloy.

従来、形状記憶合金(SMA:Shape memory Alloy)を用いたアクチュエータ(以下、SMAアクチュエータともいう)が知られる。これは、形状記憶合金製の伸縮部材を備え、その伸縮部材の温度変化による伸縮を利用して駆動対象を駆動できる。 Conventionally, an actuator using a shape memory alloy (SMA) (hereinafter, also referred to as an SMA actuator) is known. It is provided with an elastic member made of a shape memory alloy, and the driving object can be driven by utilizing the expansion and contraction due to the temperature change of the elastic member.

特許文献1のSMAアクチュエータは、長尺状の固定子と、固定子の長手方向と直交する方向にて固定子と対向して配置される可動子と、固定子と可動子のそれぞれに設けられる複数の凸部と、複数の凸部に交互に掛けるように張り渡される伸縮部材とを備える。複数の凸部には、伸縮部材が内側に配置される一定の溝幅の溝部が形成される。 The SMA actuator of Patent Document 1 is provided for each of a long stator, a mover arranged so as to face the stator in a direction orthogonal to the longitudinal direction of the stator, and the stator and the mover. It includes a plurality of convex portions and an elastic member stretched so as to be alternately hung on the plurality of convex portions. The plurality of convex portions are formed with groove portions having a constant groove width in which the elastic member is arranged inside.

特開2014−88811号公報Japanese Unexamined Patent Publication No. 2014-88811

本発明者は、SMAアクチュエータを検討したところ、次の課題があるとの認識を得た。SMAアクチュエータでは、種々の要因によって、固定子の幅方向での伸縮部材の位置が変動し得る。これが生じると、SMAアクチュエータの出力特性の変動を招いてしまう。この対策を講じつつ、組み立て性の面で工夫を講じたSMAアクチュエータは未だ提案されておらず、その改善が望まれる。 As a result of examining the SMA actuator, the present inventor has obtained the recognition that there are the following problems. In the SMA actuator, the position of the telescopic member in the width direction of the stator can fluctuate due to various factors. When this occurs, the output characteristics of the SMA actuator fluctuate. While taking this measure, an SMA actuator that has been devised in terms of assembleability has not yet been proposed, and its improvement is desired.

本発明のある態様は、このような課題に鑑みてなされ、その目的の1つは、伸縮部材の位置の変動対策を図りつつ、良好な組み立て性を得られるアクチュエータを提供する。 A certain aspect of the present invention has been made in view of such a problem, and one of the objects thereof is to provide an actuator capable of obtaining good assembling property while taking measures against fluctuations in the position of the telescopic member.

前述の課題を解決するための本発明のある態様はアクチュエータである。この態様のアクチュエータは、長尺状の固定子と、前記固定子の長手方向と直交する方向にて前記固定子と対向して配置され、その直交する方向を可動方向として移動可能な可動子と、温度変化により伸縮可能な形状記憶合金を素材として構成される伸縮部材と、を備え、前記固定子と前記可動子には、前記長手方向に互い違いに複数の凸部が設けられ、前記伸縮部材は、前記固定子の前記凸部と前記可動子の前記凸部に交互に掛けるように張り渡され、前記凸部には、前記伸縮部材が内側に配置される溝部が形成され、前記溝部は、その底側に向かうにつれて溝幅が狭くなるように形成される。 One aspect of the present invention for solving the above-mentioned problems is an actuator. The actuator of this embodiment includes a long stator and a mover that is arranged to face the stator in a direction orthogonal to the longitudinal direction of the stator and can move in the direction orthogonal to the stator. The stator and the mover are provided with a plurality of convex portions alternately in the longitudinal direction, and the elastic member is provided with an elastic member made of a shape memory alloy that can be expanded and contracted by a temperature change. Is stretched so as to be alternately hung on the convex portion of the stator and the convex portion of the mover, and the convex portion is formed with a groove portion in which the telescopic member is arranged inside, and the groove portion is formed. , It is formed so that the groove width becomes narrower toward the bottom side.

この態様によれば、伸縮部材の位置の変動対策を図りつつ、良好な組み立て性を得られるアクチュエータを提供できる。 According to this aspect, it is possible to provide an actuator capable of obtaining good assembling property while taking measures against fluctuations in the position of the telescopic member.

図1(A)は、伸縮部材が直線的に張り渡された状態を示す模式図であり、図1(B)は、伸縮部材の位置の変動が生じた状態を示す模式図である。FIG. 1A is a schematic view showing a state in which the telescopic member is linearly stretched, and FIG. 1B is a schematic view showing a state in which the position of the telescopic member is changed. 第1実施形態の駆動装置の構成図である。It is a block diagram of the drive device of 1st Embodiment. 第1実施形態のアクチュエータの側面図である。It is a side view of the actuator of 1st Embodiment. 第1実施形態のアクチュエータの側面断面図である。It is a side sectional view of the actuator of 1st Embodiment. 第1実施形態のアクチュエータの平面図である。It is a top view of the actuator of 1st Embodiment. 図4のB−B断面図である。It is a cross-sectional view of BB of FIG. 図7(A)は、図4の矢視Aから固定子を見た図であり、図7(B)は、図4の矢視Cから可動子を見た図である。FIG. 7A is a view of the stator viewed from the arrow A of FIG. 4, and FIG. 7B is a view of the mover viewed from the arrow C of FIG. 図8(A)は、図7(B)の一部の拡大図であり、図8(B)は、図8(A)の矢視Dから見た図である。8 (A) is an enlarged view of a part of FIG. 7 (B), and FIG. 8 (B) is a view seen from the arrow D of FIG. 8 (A). 第1実施形態の可動子の一部を示す斜視図である。It is a perspective view which shows a part of the mover of 1st Embodiment. 図10(A)は、第1変形例の可動子の一部を図8(A)と同じ視点から見た図であり、図10(B)は、第1実施形態の可動子の一部の図である。FIG. 10 (A) is a view of a part of the mover of the first modification from the same viewpoint as that of FIG. 8 (A), and FIG. 10 (B) is a part of the mover of the first embodiment. It is a figure of. 第2実施形態のアクチュエータの一部を図6と同じ視点から見た図である。It is a figure which saw a part of the actuator of 2nd Embodiment from the same viewpoint as FIG.

本実施形態のアクチュエータを想到するに至った背景を説明する。図1を参照する。図1は、後述する図4の矢視Aから固定子28や伸縮部材32を見た模式図でもある。本図では固定子28の凸部38や可動子30を省略する。 The background that led to the idea of the actuator of the present embodiment will be described. See FIG. FIG. 1 is also a schematic view of the stator 28 and the telescopic member 32 viewed from the arrow A in FIG. 4, which will be described later. In this figure, the convex portion 38 of the stator 28 and the mover 30 are omitted.

前述のように、固定子28の幅方向(Y方向)での伸縮部材32の位置は、種々の要因によって変動し得る。この要因とは、たとえば、アクチュエータを搭載している電気機器の落下に起因してアクチュエータに付与される衝撃荷重や、アクチュエータの組み立て時に生じる組立誤差等が挙げられる。図1(A)では、設計上、伸縮部材32を直線的に張り渡すことを想定した例を示す。図1(B)では、伸縮部材32の幅方向Yでの位置の変動により、伸縮部材32が大きく蛇行する例を示す。 As described above, the position of the telescopic member 32 in the width direction (Y direction) of the stator 28 may vary due to various factors. Examples of this factor include an impact load applied to the actuator due to a drop of an electric device on which the actuator is mounted, an assembly error that occurs when the actuator is assembled, and the like. FIG. 1A shows an example in which the expansion / contraction member 32 is assumed to be linearly stretched by design. FIG. 1B shows an example in which the telescopic member 32 meanders greatly due to a change in the position of the telescopic member 32 in the width direction Y.

このように伸縮部材32の位置が変動してしまうと、前述の通り、アクチュエータの出力特性の変動を招いてしまう。ここでの出力特性とは、たとえば、アクチュエータにより駆動される駆動対象の加速度をいう。この加速度は、たとえば、アクチュエータにより駆動対象を単振動させたときの駆動対象の加速度の最大値と最小値の差分値(ピークピーク値)をいう。 If the position of the telescopic member 32 fluctuates in this way, the output characteristics of the actuator will fluctuate as described above. The output characteristic here means, for example, the acceleration of the drive target driven by the actuator. This acceleration refers to, for example, the difference value (peak peak value) between the maximum value and the minimum value of the acceleration of the drive target when the drive target is simply vibrated by the actuator.

本実施形態では、駆動対象を振動させることで駆動対象に触れているユーザに触感を付与する触感付与装置に、アクチュエータを用いることを想定している。このような用途のもと、アクチュエータにより駆動される駆動対象の加速度が変動してしまうと、駆動対象に触れているユーザに付与される触感が変化してしまい、ユーザが不満を感じる恐れがある。 In the present embodiment, it is assumed that an actuator is used as a tactile sensation imparting device that gives a tactile sensation to a user who is touching the driving object by vibrating the driving object. Under such an application, if the acceleration of the drive target driven by the actuator fluctuates, the tactile sensation given to the user touching the drive target changes, and the user may feel dissatisfied. ..

この伸縮部材32の位置の変動対策として、固定子や可動子に形成される溝部の溝幅を深さ方向で一様に狭くする方策が考えられる。しかしながら、この方策では、固定子や可動子の溝部内に伸縮部材を入れ難くなり、アクチュエータの組み立て性の低下を招く。 As a countermeasure against fluctuations in the position of the telescopic member 32, it is conceivable to narrow the groove width of the groove formed in the stator or the mover uniformly in the depth direction. However, with this measure, it becomes difficult to insert the telescopic member into the groove of the stator or the mover, which leads to a decrease in the assembleability of the actuator.

これをふまえ、本実施形態では、溝部の底側に向かうにつれて溝幅が狭くなるように溝部を形成している。これにより、伸縮部材の位置の変動対策を図りつつ、固定子や可動子の溝部内に伸縮部材を入れ易くでき、良好な組み立て性を得られる。このように伸縮部材の位置の変動対策を図れることで、アクチュエータの出力特性の変動を抑えられる。本実施形態のように、触感付与装置にアクチュエータを用いる場合、アクチュエータの出力特性として駆動対象の加速度の変動を抑えることになり、これにより、ユーザの使用感の変化を抑えられる。 Based on this, in the present embodiment, the groove portion is formed so that the groove width becomes narrower toward the bottom side of the groove portion. As a result, it is possible to easily insert the telescopic member into the groove of the stator or the mover while taking measures against fluctuations in the position of the telescopic member, and good assembling property can be obtained. By taking measures against fluctuations in the position of the telescopic member in this way, fluctuations in the output characteristics of the actuator can be suppressed. When an actuator is used for the tactile sensation device as in the present embodiment, the fluctuation of the acceleration of the driving target is suppressed as the output characteristic of the actuator, and thus the change in the usability of the user can be suppressed.

以下、このような背景のもとでなされた本発明の実施形態の一例を説明する。同一の構成要素には同一の符号を付し、重複する説明を省略する。各図面では、説明の便宜のため、構成要素の一部を適宜省略したり、その寸法を適宜拡大、縮小する。図面は符号の向きに合わせて見るものとする。本明細書での「接触」、「固定」とは、特に明示がない限り、言及している条件を二者が直接的に満たす場合の他に、他の部材を介して満たす場合も含む。本明細書で言及する構造や形状には、言及している形状に厳密に一致するもののみでなく、寸法誤差や製造誤差等の誤差の分だけずれたものも含まれる。 Hereinafter, an example of an embodiment of the present invention made under such a background will be described. The same components are designated by the same reference numerals, and duplicate description will be omitted. In each drawing, for convenience of explanation, some of the components are appropriately omitted, and the dimensions thereof are appropriately enlarged or reduced. The drawings shall be viewed according to the orientation of the symbols. Unless otherwise specified, the terms "contact" and "fixed" in the present specification include not only the case where the two parties directly satisfy the conditions mentioned, but also the case where they are satisfied through other members. The structures and shapes referred to in the present specification include not only those that exactly match the referred shapes but also those that are deviated by an error such as a dimensional error or a manufacturing error.

(第1の実施の形態)
図2、図3を参照する。アクチュエータ10は、電気機器の機器本体(不図示)に搭載される駆動装置12に用いられる。アクチュエータ10は、機器本体に移動可能に支持される駆動対象14を駆動方向Paに駆動可能である。本実施形態の電気機器はタッチパネル装置であり、駆動対象14はタッチパネルである。駆動方向Paは、たとえば、タッチパネルの面内方向又は面外方向である。
(First Embodiment)
Refer to FIGS. 2 and 3. The actuator 10 is used in a drive device 12 mounted on a device main body (not shown) of an electric device. The actuator 10 can drive the drive target 14 movably supported by the device body in the drive direction Pa. The electric device of this embodiment is a touch panel device, and the drive target 14 is a touch panel. The drive direction Pa is, for example, an in-plane direction or an out-of-plane direction of the touch panel.

本実施形態の駆動装置12は触感付与装置である。触感付与装置は、ユーザUのタッチ操作に連動してアクチュエータ10により駆動対象14を振動させることで、駆動対象14に触れているユーザUに触感を付与可能である。駆動装置12は、アクチュエータ10の他に、主に、付勢部16と、タッチ検出部18と、制御部20と、を備える。 The drive device 12 of the present embodiment is a tactile sensation imparting device. The tactile sensation apparatus can give a tactile sensation to the user U who is touching the drive target 14 by vibrating the drive target 14 by the actuator 10 in conjunction with the touch operation of the user U. In addition to the actuator 10, the drive device 12 mainly includes an urging unit 16, a touch detection unit 18, and a control unit 20.

付勢部16は、駆動対象14を駆動方向Paとは反対側の反駆動方向Pbに付勢する。付勢部16は、コイルスプリング等の弾性体である。 The urging unit 16 urges the drive target 14 in the opposite drive direction Pb opposite to the drive direction Pa. The urging portion 16 is an elastic body such as a coil spring.

タッチ検出部18は、ユーザUによる駆動対象14に対するタッチ操作を検出可能である。タッチ検出部18は、たとえば、タッチパネルに組み込まれる静電容量式タッチセンサ等である。 The touch detection unit 18 can detect a touch operation on the drive target 14 by the user U. The touch detection unit 18 is, for example, a capacitive touch sensor incorporated in a touch panel or the like.

制御部20は、アクチュエータ10の伸縮部材32(後述する)やタッチ検出部18に電気的に接続される。制御部20は、コンピュータのCPU、ROM、RAM等の組み合わせにより構成される。制御部20には、タッチ検出部18の検出結果が入力される。制御部20は、伸縮部材32に対する通電を制御可能である。 The control unit 20 is electrically connected to the expansion / contraction member 32 (described later) of the actuator 10 and the touch detection unit 18. The control unit 20 is composed of a combination of a computer CPU, ROM, RAM, and the like. The detection result of the touch detection unit 18 is input to the control unit 20. The control unit 20 can control the energization of the telescopic member 32.

図3〜図5を参照する。本実施形態のアクチュエータ10は、主に、固定子28と、可動子30と、伸縮部材32と、押さえ部材34と、を備える。 See FIGS. 3-5. The actuator 10 of the present embodiment mainly includes a stator 28, a mover 30, an expansion / contraction member 32, and a pressing member 34.

固定子28は、電気機器の機器本体に固定され、機器本体に対する位置が固定される。固定子28は長尺状をなす。可動子30は、固定子28の長手方向(以下、X方向という)と直交するZ方向にて固定子28と対向して配置され、そのZ方向を可動方向として移動可能である。可動子30は、固定子28の長手方向(X方向)に沿って延びる長尺状をなす。本実施形態の固定子28や可動子30は直線的に延びる長尺状をなす。 The stator 28 is fixed to the device body of the electrical device, and the position with respect to the device body is fixed. The stator 28 has an elongated shape. The mover 30 is arranged to face the stator 28 in the Z direction orthogonal to the longitudinal direction of the stator 28 (hereinafter referred to as the X direction), and can move in the Z direction as the movable direction. The mover 30 has an elongated shape extending along the longitudinal direction (X direction) of the stator 28. The stator 28 and the mover 30 of the present embodiment form an elongated shape that extends linearly.

固定子28は、可動子30とのZ方向での対向箇所よりX方向にはみ出るはみ出し部36を有する。本実施形態の固定子28は、可動子30とのZ方向での対向箇所よりX方向の両側にはみ出る一対のはみ出し部36を有する。はみ出し部36は、不図示のねじ等の固定部材を用いて機器本体に固定される。 The stator 28 has a protruding portion 36 that protrudes in the X direction from a portion that faces the mover 30 in the Z direction. The stator 28 of the present embodiment has a pair of protruding portions 36 protruding from the positions facing the mover 30 in the Z direction on both sides in the X direction. The protruding portion 36 is fixed to the main body of the device by using a fixing member such as a screw (not shown).

可動子30は、Z方向の一方側(図3の上側)の外面が駆動対象14に接触する。これにより、可動子30は、Z方向の一方側を駆動方向Paとして、その駆動方向Paの動きを駆動対象14に伝達可能となる。この駆動方向Paは、固定子28から可動子30が離れる方向となり、反駆動方向Pb(Z方向の他方側)は、固定子28に可動子30が近づく方向となる。以下、X方向及びZ方向と直交する方向を幅方向(Y方向)ともいう。 The outer surface of the mover 30 on one side (upper side in FIG. 3) in the Z direction comes into contact with the drive target 14. As a result, the mover 30 can transmit the movement of the drive direction Pa to the drive target 14 with one side in the Z direction as the drive direction Pa. The drive direction Pa is the direction in which the mover 30 is separated from the stator 28, and the counter-drive direction Pb (the other side in the Z direction) is the direction in which the mover 30 approaches the stator 28. Hereinafter, the direction orthogonal to the X direction and the Z direction is also referred to as a width direction (Y direction).

固定子28と可動子30には、互いにZ方向で対向する箇所において、X方向に互い違いに複数の凸部38、40が設けられる。複数の凸部38、40の先端側部分は、本実施形態において、Y方向(図3、図4の視点)から見て、円弧状をなしている。 The stator 28 and the mover 30 are provided with a plurality of convex portions 38, 40 alternately in the X direction at locations facing each other in the Z direction. In the present embodiment, the tip-side portions of the plurality of convex portions 38 and 40 have an arc shape when viewed from the Y direction (viewpoints of FIGS. 3 and 4).

複数の凸部38、40には、固定子28に設けられる第1凸部38と、可動子30に設けられる第2凸部40が含まれる。第1凸部38は、固定子28に設けられる第1凹凸部42の一部を構成する。第1凹凸部42は、第1凸部38と第1凹部44がX方向に交互に並ぶように設けられる。第2凸部40は、可動子30に設けられる第2凹凸部46の一部を構成する。第2凹凸部46は、第2凸部40と第2凹部48がX方向に交互に並ぶように設けられる。第1凸部38は、第2凹凸部46の第2凹部48内に配置され、第2凸部40は、第1凹凸部42の第1凹部44内に配置される。 The plurality of convex portions 38 and 40 include a first convex portion 38 provided on the stator 28 and a second convex portion 40 provided on the mover 30. The first convex portion 38 constitutes a part of the first uneven portion 42 provided on the stator 28. The first uneven portion 42 is provided so that the first convex portion 38 and the first concave portion 44 are alternately arranged in the X direction. The second convex portion 40 constitutes a part of the second uneven portion 46 provided on the mover 30. The second uneven portion 46 is provided so that the second convex portion 40 and the second concave portion 48 are alternately arranged in the X direction. The first convex portion 38 is arranged in the second concave portion 48 of the second uneven portion 46, and the second convex portion 40 is arranged in the first concave portion 44 of the first uneven portion 42.

伸縮部材32は、線状のワイヤーを例示するが、帯状のベルト等でもよい。本実施形態の伸縮部材32の軸線方向に直交する断面形状は円形状をなす。伸縮部材32は、温度変化により伸縮可能な形状記憶合金を素材として構成される。本実施形態の形状記憶合金は、Ni−Ti系合金である。形状記憶合金製の伸縮部材32は、加熱による逆変態(オーステナイト変態)により縮み変形可能であるとともに、冷却によるマルテンサイト変態により伸び変形可能である。 The telescopic member 32 exemplifies a linear wire, but may be a band-shaped belt or the like. The cross-sectional shape of the telescopic member 32 of the present embodiment orthogonal to the axial direction is circular. The stretchable member 32 is made of a shape memory alloy that can be stretchable by changing the temperature. The shape memory alloy of this embodiment is a Ni—Ti alloy. The stretchable member 32 made of a shape memory alloy can be contracted and deformed by reverse transformation (austenite transformation) due to heating, and can be stretched and deformed by martensitic transformation due to cooling.

伸縮部材32の両端部は、ねじ部材等の第1固定部材50を用いて、固定子28のはみ出し部36に固定される。固定子28のはみ出し部36を挟んで可動子30とはZ方向の反対側には雌ねじ部材52が配置される。雌ねじ部材52には第1雌ねじ孔52aが形成される。第1固定部材50は、雌ねじ部材52の第1雌ねじ孔52aにねじ込まれており、自らの頭部と固定子28の間で伸縮部材32を挟み付けることで、伸縮部材32を固定子28に固定する。本実施形態では、第1固定部材50の頭部は座金部材53を介して固定子28側に伸縮部材32を押さえ付けている。このとき、伸縮部材32の端部は、第1固定部材50の軸部の回りに巻かれた状態で、第1固定部材50と固定子28の間に挟み付けられる。第1固定部材50の頭部と固定子28の間には導電性を持つ板状の電極部材54が挟み込まれる。伸縮部材32の両端部は、電極部材54や電気配線を介して制御部20に電気的に接続される。 Both ends of the telescopic member 32 are fixed to the protruding portion 36 of the stator 28 by using a first fixing member 50 such as a screw member. A female screw member 52 is arranged on the side opposite to the mover 30 in the Z direction with the protruding portion 36 of the stator 28 interposed therebetween. A first female screw hole 52a is formed in the female screw member 52. The first fixing member 50 is screwed into the first female screw hole 52a of the female screw member 52, and by sandwiching the elastic member 32 between its own head and the stator 28, the elastic member 32 is made into the stator 28. Fix it. In the present embodiment, the head of the first fixing member 50 presses the expansion / contraction member 32 toward the stator 28 via the washer member 53. At this time, the end portion of the telescopic member 32 is sandwiched between the first fixing member 50 and the stator 28 in a state of being wound around the shaft portion of the first fixing member 50. A plate-shaped electrode member 54 having conductivity is sandwiched between the head of the first fixing member 50 and the stator 28. Both ends of the telescopic member 32 are electrically connected to the control unit 20 via the electrode member 54 and electrical wiring.

伸縮部材32は、固定子28と可動子30の間に配置される。伸縮部材32は、固定子28の第1凸部38と可動子30の第2凸部40に交互に掛けるようにX方向に張り渡される。この伸縮部材32は、固定子28の第1凸部38で可動子30と対向する箇所と、可動子30の第2凸部40で固定子28と対向する箇所とに交互に掛けられる。これにより、伸縮部材32は、縮み変形によって、駆動対象14とともに可動子30を駆動方向Paに駆動可能となる。 The telescopic member 32 is arranged between the stator 28 and the mover 30. The telescopic member 32 is stretched in the X direction so as to alternately hang on the first convex portion 38 of the stator 28 and the second convex portion 40 of the mover 30. The telescopic member 32 is alternately hung on the first convex portion 38 of the stator 28 facing the mover 30 and the second convex portion 40 of the mover 30 facing the stator 28. As a result, the telescopic member 32 can drive the mover 30 together with the drive target 14 in the drive direction Pa by the contraction deformation.

押さえ部材34は、固定子28のX方向両側のそれぞれに対応して個別に設けられる。押さえ部材34は、Z方向において固定子28に近づく側(図4の下側)に可動子30を押さえることで、固定子28に対するZ方向での可動子30の離脱を規制している。本実施形態の押さえ部材34は板バネであり、自らがZ方向に弾性変形した状態で可動子30を押さえている。 The pressing member 34 is individually provided corresponding to both sides of the stator 28 in the X direction. The pressing member 34 controls the detachment of the mover 30 with respect to the stator 28 in the Z direction by pressing the mover 30 toward the side closer to the stator 28 (lower side in FIG. 4) in the Z direction. The pressing member 34 of the present embodiment is a leaf spring, and presses the mover 30 in a state of being elastically deformed in the Z direction.

押さえ部材34は、ねじ部材等の第2固定部材56を用いて、固定子28に固定される。第2固定部材56は、雌ねじ部材52の第2雌ねじ孔52bにねじ込まれることで固定子28に固定される。 The pressing member 34 is fixed to the stator 28 by using a second fixing member 56 such as a screw member. The second fixing member 56 is fixed to the stator 28 by being screwed into the second female screw hole 52b of the female screw member 52.

以上の駆動装置12の動作の一例を説明する。制御部20は、予め定められた駆動開始条件を満たすと、予め定められた通電条件のもとで伸縮部材32に通電する。本実施形態の駆動開始条件は駆動対象14に対するタッチ操作がタッチ検出部18により検出されることである。通電条件は、伸縮部材32が逆変態開始温度以上の温度域まで伸縮部材32を加熱することで、伸縮部材32を縮み変形させられる条件に設定される。このように制御部20は、タッチ検出部18によるタッチ操作が検出された場合に、伸縮部材32に通電することで伸縮部材32を縮み変形させることができる。 An example of the operation of the drive device 12 described above will be described. When the predetermined drive start condition is satisfied, the control unit 20 energizes the telescopic member 32 under the predetermined energization condition. The drive start condition of the present embodiment is that the touch operation on the drive target 14 is detected by the touch detection unit 18. The energization condition is set so that the telescopic member 32 can be contracted and deformed by heating the telescopic member 32 to a temperature range equal to or higher than the reverse transformation start temperature. In this way, when the touch operation by the touch detection unit 18 is detected, the control unit 20 can contract and deform the expansion / contraction member 32 by energizing the expansion / contraction member 32.

制御部20による通電に伴い伸縮部材32が縮み変形すると、可動子30が駆動方向Paに駆動され、その可動子30の動きが駆動対象14に伝達されることで、駆動対象14も駆動方向Paに駆動される。このとき、駆動対象14は付勢部16の付勢力に抗して駆動方向Paに駆動される。 When the telescopic member 32 contracts and deforms due to the energization by the control unit 20, the mover 30 is driven in the drive direction Pa, and the movement of the mover 30 is transmitted to the drive target 14, so that the drive target 14 is also driven in the drive direction Pa. Driven by. At this time, the drive target 14 is driven in the drive direction Pa against the urging force of the urging unit 16.

制御部20による伸縮部材32に対する通電が停止すると、伸縮部材32が放熱冷却により元の形状に復元するように伸び変形する。これに伴い、伸縮部材32から駆動対象14への力の伝達が解除され、駆動対象14が付勢部16の付勢力により反駆動方向Pbに押し戻される。駆動装置12は、この駆動方向Paと反駆動方向Pbの動きを瞬間的に行わせることで駆動対象14を振動させる。これにより、駆動対象14に触れているユーザに駆動対象14の振動が伝達され、ユーザに触感が付与される。 When the energization of the telescopic member 32 by the control unit 20 is stopped, the telescopic member 32 is stretched and deformed so as to be restored to its original shape by heat dissipation cooling. Along with this, the transmission of the force from the telescopic member 32 to the driving target 14 is released, and the driving target 14 is pushed back in the counter-driving direction Pb by the urging force of the urging portion 16. The drive device 12 vibrates the drive target 14 by momentarily moving the drive direction Pa and the counterdrive direction Pb. As a result, the vibration of the drive target 14 is transmitted to the user who is touching the drive target 14, and the user is given a tactile sensation.

図4、図6、図7を参照する。固定子28や可動子30の凸部38、40には、伸縮部材32が内側に配置される溝部60が形成される。溝部60は、固定子28や可動子30に対するY方向での伸縮部材32の離脱を規制している。本実施形態では、固定子28の複数の第1凸部38のそれぞれに溝部60が形成され、可動子30の複数の第2凸部40のそれぞれに溝部60が形成される。第1凸部38の溝部60は、可動子30とZ方向で対向する箇所にて固定子28に形成され、第2凸部40の溝部60は、固定子28とZ方向で対向する箇所で可動子30に形成される。溝部60は、Z方向を溝部60の深さ方向としてZ方向に窪むように形成される。溝部60は、凸部38、40の先端部から基端側に窪むように形成されるとも捉えられる。溝部60は、X方向を溝部60の長手方向として、X方向に延びるように形成される。 See FIGS. 4, 6 and 7. Grooves 60 in which the telescopic member 32 is arranged are formed in the convex portions 38 and 40 of the stator 28 and the mover 30. The groove portion 60 regulates the detachment of the telescopic member 32 in the Y direction with respect to the stator 28 and the mover 30. In the present embodiment, the groove 60 is formed in each of the plurality of first convex portions 38 of the stator 28, and the groove portion 60 is formed in each of the plurality of second convex portions 40 of the stator 30. The groove 60 of the first convex portion 38 is formed on the stator 28 at a position facing the stator 30 in the Z direction, and the groove 60 of the second convex portion 40 is formed at a position facing the stator 28 in the Z direction. It is formed on the mover 30. The groove portion 60 is formed so as to be recessed in the Z direction with the Z direction as the depth direction of the groove portion 60. It can also be considered that the groove portion 60 is formed so as to be recessed from the tip portions of the convex portions 38 and 40 toward the proximal end side. The groove portion 60 is formed so as to extend in the X direction with the X direction as the longitudinal direction of the groove portion 60.

本実施形態の溝部60の底部60aには、X方向に直交する断面において、Y方向に延びる平坦面64が設けられる。溝部60は、溝部60の幅方向(Y方向)に対向する一対の側面66を有する。一対の側面66は、溝部60の最深箇所68から溝部60の入口側に向けて延びている。ここでの最深箇所68とは、X方向に直交する断面において、溝部60の深さ方向(Z方向)で最も深い箇所をいう。本実施形態の最深箇所68は、溝部60の底部に設けられる平坦面64が構成しており、そのY方向の両端から溝部60の入口側に向けて側面66が延びている。 The bottom portion 60a of the groove portion 60 of the present embodiment is provided with a flat surface 64 extending in the Y direction in a cross section orthogonal to the X direction. The groove portion 60 has a pair of side surfaces 66 facing each other in the width direction (Y direction) of the groove portion 60. The pair of side surfaces 66 extend from the deepest portion 68 of the groove portion 60 toward the inlet side of the groove portion 60. The deepest portion 68 here means the deepest portion in the depth direction (Z direction) of the groove portion 60 in the cross section orthogonal to the X direction. The deepest portion 68 of the present embodiment is composed of flat surfaces 64 provided at the bottom of the groove portion 60, and side surfaces 66 extend from both ends in the Y direction toward the inlet side of the groove portion 60.

溝部60は、その底側に向かうにつれて溝幅が狭くなるように形成される。本実施形態の溝部60は、溝部60の入口部60bから底部60aまでの全範囲において、その底側に向かうにつれて連続的に溝幅が狭くなるように形成される。別の観点から見ると、溝部60の側面66には、その底側に向かうにつれて連続的に溝幅を狭くする溝幅変化面70が設けられる。溝幅変化面70は、溝部60の入口部60bから底部60aまでの全範囲において、溝部60の側面66に設けられる。溝幅変化面70は、X方向に直交する断面において、Y方向の方向軸線Ldに対して傾斜するように設けられる。 The groove portion 60 is formed so that the groove width becomes narrower toward the bottom side thereof. The groove portion 60 of the present embodiment is formed so that the groove width becomes continuously narrower toward the bottom side in the entire range from the inlet portion 60b to the bottom portion 60a of the groove portion 60. From another point of view, the side surface 66 of the groove portion 60 is provided with a groove width changing surface 70 that continuously narrows the groove width toward the bottom side thereof. The groove width changing surface 70 is provided on the side surface 66 of the groove portion 60 in the entire range from the inlet portion 60b to the bottom portion 60a of the groove portion 60. The groove width changing surface 70 is provided so as to be inclined with respect to the direction axis Ld in the Y direction in a cross section orthogonal to the X direction.

重力以外の外力に起因して伸縮部材32の形状が変化していない状態、つまり、重力以外の外力が伸縮部材32に付与されていない自然な状態を「未変形状態」という。本実施形態の溝部60は、このような未変形状態にある伸縮部材32が溝部60の最深箇所68に接触可能な形状に設定される。これを実現するため、本実施形態の溝部60は、未変形状態にある伸縮部材32が溝部60の最深箇所68(平坦面64)のみに接触可能な形状に設定される。この未変形状態にある伸縮部材32は、溝部60の平坦面64に接触するとき、溝部60の一対の側面66からは間を置いて配置され、それらの側面66には接触しないということである。 A state in which the shape of the telescopic member 32 has not changed due to an external force other than gravity, that is, a natural state in which an external force other than gravity is not applied to the telescopic member 32 is called an "undeformed state". The groove portion 60 of the present embodiment is set in a shape so that the telescopic member 32 in such an undeformed state can contact the deepest portion 68 of the groove portion 60. In order to realize this, the groove portion 60 of the present embodiment is set to a shape in which the stretchable member 32 in the undeformed state can contact only the deepest portion 68 (flat surface 64) of the groove portion 60. When the telescopic member 32 in the undeformed state comes into contact with the flat surface 64 of the groove 60, it is arranged at a distance from the pair of side surfaces 66 of the groove 60 and does not come into contact with those side surfaces 66. ..

これにより、伸縮部材32に溝部60の底側に向かう荷重Faが作用した場合に、溝部60への伸縮部材32の食い込みを避けられる。このような荷重Faは、伸縮部材32の縮み変形等に起因して、伸縮部材32に張力が付与された場合に伸縮部材32に作用する。別の観点からみると、溝部60は、このような荷重FaとしてZ方向に沿った荷重が作用した場合に、溝部60への伸縮部材32の食い込みを避けられる形状に設定されるともいえる。 As a result, when the load Fa toward the bottom side of the groove portion 60 acts on the expansion / contraction member 32, the expansion / contraction member 32 can be prevented from biting into the groove portion 60. Such a load Fa acts on the stretchable member 32 when tension is applied to the stretchable member 32 due to shrinkage deformation of the stretchable member 32 or the like. From another point of view, it can be said that the groove portion 60 is set in a shape that prevents the expansion / contraction member 32 from biting into the groove portion 60 when a load along the Z direction acts as such a load Fa.

本実施形態の伸縮部材32の断面形状は円形状であるが、これ以外の断面形状として、たとえば、楕円状に設定される場合を考える。この場合、伸縮部材32の軸線周りに伸縮部材32の断面形状を回転させたときに、いずれかの回転位置で前段落の条件を満たしていればよい。 The cross-sectional shape of the telescopic member 32 of the present embodiment is circular, but a case where the cross-sectional shape is set to, for example, an ellipse as another cross-sectional shape is considered. In this case, when the cross-sectional shape of the telescopic member 32 is rotated around the axis of the telescopic member 32, the conditions in the preceding paragraph may be satisfied at any of the rotation positions.

凸部38、40に形成される溝部60のなかで最も溝部60の入口部60bでの溝幅が大きい箇所を基準箇所という。本実施形態での基準箇所とは、凸部38、40の先端Tpを通る箇所となる。図6は、基準箇所を通る断面図でもある。この基準箇所において、溝部60の底部60aでの溝幅をwbとし、溝部60の入口部60bでの溝幅をweとする。このとき、本実施形態の溝部60は、次の式(1)の条件を満たすように形成される。
wb≦we×0.5 ・・・ (1)
Among the groove portions 60 formed in the convex portions 38 and 40, the portion having the largest groove width at the inlet portion 60b of the groove portion 60 is referred to as a reference portion. The reference portion in the present embodiment is a portion that passes through the tip Tp of the convex portions 38 and 40. FIG. 6 is also a cross-sectional view passing through the reference point. At this reference point, the groove width at the bottom 60a of the groove 60 is wb, and the groove width at the inlet 60b of the groove 60 is we. At this time, the groove portion 60 of the present embodiment is formed so as to satisfy the condition of the following formula (1).
wb ≤ we × 0.5 ・ ・ ・ (1)

以上のアクチュエータ10の効果を説明する。 The effect of the actuator 10 described above will be described.

本実施形態の凸部38、40の溝部60は、その底側に向かうにつれて溝幅が狭くなるように形成される。よって、X方向に直交する断面において、溝部60の入口部60bでの溝幅weを溝部60の底部60aでの溝幅wbと同じにする場合より、溝部60の内側に入口部60bから伸縮部材32を入れ易くなる。これに伴い、アクチュエータ10の組み立て時に良好な組み立て性を得られる。 The groove portions 60 of the convex portions 38 and 40 of the present embodiment are formed so that the groove width becomes narrower toward the bottom side thereof. Therefore, in the cross section orthogonal to the X direction, the groove width we at the inlet portion 60b of the groove portion 60 is the same as the groove width wb at the bottom portion 60a of the groove portion 60, and the expansion / contraction member is formed inside the groove portion 60 from the inlet portion 60b. It becomes easy to insert 32. Along with this, good assembleability can be obtained when assembling the actuator 10.

また、X方向に直交する断面において、溝部60の底部60aでの溝幅wbを入口部60bでの溝幅weと同じにする場合より、溝部60の底部に伸縮部材32が配置されるとき、固定子28の幅方向(Y方向)での伸縮部材32の位置の変動を抑えられる。 Further, in the cross section orthogonal to the X direction, when the expansion / contraction member 32 is arranged at the bottom of the groove 60, the groove width wb at the bottom 60a of the groove 60 is the same as the groove width we at the inlet 60b. Fluctuations in the position of the telescopic member 32 in the width direction (Y direction) of the stator 28 can be suppressed.

これらが相まって、Y方向での伸縮部材32の位置の変動対策を図りつつ、良好な組み立て性を得られる。 Combined with these, good assembleability can be obtained while taking measures against fluctuations in the position of the telescopic member 32 in the Y direction.

溝部60は、未変形状態にある伸縮部材32が溝部60の最深箇所68に接触可能な形状に設定される。よって、伸縮部材32に付与される張力によって、溝部60の底側に向けて伸縮部材32が動こうとしたとき、溝部60の一対の側面66間に伸縮部材32が食い込む事態を避けられる。つまり、溝部60の底部60aの内側に伸縮部材32が配置されるとき、溝部60に伸縮部材32が食い込む事態を避けられることになる。よって、溝部60の底部60aにより伸縮部材32の位置の変動を抑えつつ、伸縮部材32が伸び縮みするときの摺動抵抗の増大を避けられ、その伸縮動作のスムーズ化を図れる。 The groove portion 60 is set in a shape so that the stretchable member 32 in the undeformed state can contact the deepest portion 68 of the groove portion 60. Therefore, when the telescopic member 32 tries to move toward the bottom side of the groove 60 due to the tension applied to the telescopic member 32, it is possible to avoid a situation in which the telescopic member 32 bites between the pair of side surfaces 66 of the groove 60. That is, when the expansion / contraction member 32 is arranged inside the bottom portion 60a of the groove portion 60, the situation where the expansion / contraction member 32 bites into the groove portion 60 can be avoided. Therefore, while suppressing the fluctuation of the position of the telescopic member 32 by the bottom portion 60a of the groove portion 60, it is possible to avoid an increase in the sliding resistance when the telescopic member 32 expands and contracts, and the expansion and contraction operation can be smoothed.

次に、アクチュエータ10の他の特徴を説明する。伸縮部材32が接触する溝部60の側面66と伸縮部材32の間の静止摩擦係数をμ[−]とする。このとき、この静止摩擦係数μに基づき、下記の式(2)から、Y方向の方向軸線Ldに対する角度として摩擦角θ0[°]が求められる。この摩擦角θ0は、溝部60の側面66に静止した状態で接触する物体に対して、Z方向に沿って溝部60の底側に向けて荷重Faを付与した場合に、その物体が滑り始める最小の角度となる。
θ0=arctan(μ) ・・・ (2)
Next, other features of the actuator 10 will be described. Let μ [−] be the coefficient of static friction between the side surface 66 of the groove 60 with which the elastic member 32 comes into contact and the elastic member 32. At this time, based on this static friction coefficient μ, the friction angle θ0 [°] can be obtained as the angle with respect to the direction axis Ld in the Y direction from the following equation (2). This friction angle θ0 is the minimum at which an object that comes into contact with the side surface 66 of the groove 60 in a stationary state starts to slide when a load Fa is applied to the bottom side of the groove 60 along the Z direction. It becomes the angle of.
θ0 = arctan (μ) ・ ・ ・ (2)

このとき、X方向に直交する断面において、Y方向の方向軸線Ldに対する溝部60の側面66の傾斜角度θ1は、前述の静止摩擦係数μに基づき定まる摩擦角θ0より大きくなるように設定される。ここでの傾斜角度θ1とは、X方向に直交する断面において、Y方向の方向軸線Ldと溝部60の側面66を通る接線とがなす角度をいう。本実施形態では、溝部60の側面66の傾斜角度θ1は、溝部60の入口部60bから底部60aまでの全範囲において、摩擦角θ0より大きくなるように設定される。別の観点からいうと、溝部60の側面66の溝幅変化面70の傾斜角度θ1は、摩擦角θ0より大きくなるように設定されるともいえる。 At this time, in the cross section orthogonal to the X direction, the inclination angle θ1 of the side surface 66 of the groove 60 with respect to the direction axis Ld in the Y direction is set to be larger than the friction angle θ0 determined based on the above-mentioned static friction coefficient μ. The inclination angle θ1 here means an angle formed by a tangent line passing through the side surface 66 of the groove portion 60 and the direction axis Ld in the Y direction in a cross section orthogonal to the X direction. In the present embodiment, the inclination angle θ1 of the side surface 66 of the groove 60 is set to be larger than the friction angle θ0 in the entire range from the inlet 60b to the bottom 60a of the groove 60. From another point of view, it can be said that the inclination angle θ1 of the groove width changing surface 70 of the side surface 66 of the groove portion 60 is set to be larger than the friction angle θ0.

この利点を説明する。固定子28や可動子30の溝部60の側面66にZ方向の途中位置で伸縮部材32が引っ掛かった場合を考える。この場合、伸縮部材32に張力が付与されたとき、溝部60の側面66(溝幅変化面70)によってY方向の内側に伸縮部材32を誘導しつつ、その底側に向けて伸縮部材32を滑り動かし易くなる。これに伴い、Y方向での伸縮部材32の位置変動を抑えるのに適した箇所として、溝部60の底部60aに伸縮部材32を配置した状態を安定して実現し易くなる。 This advantage will be explained. Consider a case where the telescopic member 32 is caught in the side surface 66 of the groove 60 of the stator 28 and the mover 30 at an intermediate position in the Z direction. In this case, when tension is applied to the telescopic member 32, the telescopic member 32 is guided inward in the Y direction by the side surface 66 (groove width changing surface 70) of the groove portion 60, and the telescopic member 32 is moved toward the bottom side thereof. It becomes easy to slide. Along with this, it becomes easier to stably realize a state in which the telescopic member 32 is arranged on the bottom portion 60a of the groove portion 60 as a portion suitable for suppressing the position fluctuation of the telescopic member 32 in the Y direction.

図7を参照する。固定子28の複数の凸部38に形成される複数の溝部60の底部60aは、Z方向から見て、直線Ls上に並ぶように設けられる。固定子28に形成される複数の溝部60の底部60aを通る直線Lsは、Z方向から見て、固定子28の重心Cg1を通り、かつ、固定子28のY方向の中央部に位置するように設けられる。ここでの重心Cg1とは、Z方向から見て、固定子28の幾何学的な形状がなす重心をいう。ここでの中央部とは、本実施形態において、Z方向から見て、この重心Cg1を通りX方向に沿って延びる直線上にある部位をいう。本実施形態では、この固定子28の中央部上を通る直線が前述の直線Lsと一致するが、これらは一致しなくともよい。 See FIG. 7. The bottom portions 60a of the plurality of groove portions 60 formed in the plurality of convex portions 38 of the stator 28 are provided so as to line up on a straight line Ls when viewed from the Z direction. The straight line Ls passing through the bottom portions 60a of the plurality of groove portions 60 formed in the stator 28 passes through the center of gravity Cg1 of the stator 28 and is located at the center of the stator 28 in the Y direction when viewed from the Z direction. It is provided in. The center of gravity Cg1 here means the center of gravity formed by the geometric shape of the stator 28 when viewed from the Z direction. Here, the central portion refers to a portion on a straight line extending in the X direction through the center of gravity Cg1 when viewed from the Z direction in the present embodiment. In the present embodiment, the straight line passing over the central portion of the stator 28 coincides with the above-mentioned straight line Ls, but these do not have to coincide.

また、可動子30の複数の凸部40に形成される複数の溝部60の底部60aは、Z方向から見て、直線Ls上に並ぶように設けられる。可動子30に形成される複数の溝部60の底部60aを通る直線Lsは、Z方向から見て、可動子30の重心Cg2を通り、かつ、可動子30のY方向の中央部に位置するように設けられる。ここでの重心Cg2とは、Z方向から見て、可動子30の幾何学的な形状がなす重心をいう。ここでの中央部とは、本実施形態において、Z方向から見て、この重心Cg2を通りX方向に沿って延びる直線上にある部位をいう。本実施形態では、この可動子30の中央部上を通る直線が前述の直線Lsと一致するが、これらは一致しなくともよい。 Further, the bottom portions 60a of the plurality of groove portions 60 formed in the plurality of convex portions 40 of the mover 30 are provided so as to line up on a straight line Ls when viewed from the Z direction. The straight line Ls passing through the bottom portions 60a of the plurality of groove portions 60 formed in the mover 30 passes through the center of gravity Cg2 of the mover 30 and is located at the center of the mover 30 in the Y direction when viewed from the Z direction. It is provided in. The center of gravity Cg2 here means the center of gravity formed by the geometric shape of the mover 30 when viewed from the Z direction. Here, the central portion refers to a portion on a straight line extending in the X direction through the center of gravity Cg2 when viewed from the Z direction in the present embodiment. In the present embodiment, the straight line passing over the central portion of the mover 30 coincides with the above-mentioned straight line Ls, but these do not have to coincide.

ここでの溝部60の底部60aとは、X方向に直交する断面において、溝部60の最深箇所68のみを指すのではなく、溝部60の最深箇所68から溝部60の深さDp(図6参照)の0.1倍までの範囲にある箇所をいう。ここでの深さDpとは、X方向に直交する断面において、溝部60の入口部60bから最深箇所68までのZ方向に沿った寸法をいう。たとえば、溝部60の最深箇所68を含む箇所に凹曲面74(第2実施形態)を設けたり、溝部60がV字溝である場合に、その最深箇所68以外も溝部60の底部60aの一部になるということである。 The bottom portion 60a of the groove portion 60 here does not refer only to the deepest portion 68 of the groove portion 60 in the cross section orthogonal to the X direction, but the depth Dp of the groove portion 60 from the deepest portion 68 of the groove portion 60 (see FIG. 6). It means a part within the range of 0.1 times. The depth Dp here means a dimension along the Z direction from the inlet portion 60b of the groove portion 60 to the deepest portion 68 in a cross section orthogonal to the X direction. For example, when a concave curved surface 74 (second embodiment) is provided at a portion including the deepest portion 68 of the groove portion 60, or when the groove portion 60 is a V-shaped groove, a part of the bottom portion 60a of the groove portion 60 other than the deepest portion 68 is provided. Is to become.

これにより、溝部60の底部60aの内側を通るように伸縮部材32を配置することで、Z方向から見て、その直線Ls上に近い箇所を通るよう伸縮部材32を配置できる。つまり、Y方向での伸縮部材32の位置変動を抑えるのに適した箇所となる複数の溝部60の底部60aを通しつつ、Z方向から見て、伸縮部材32を直線的に配置し易くなる。このため、溝部60によってY方向での伸縮部材32の位置の変動を抑えることで、伸縮部材32が大きく蛇行するのを避けられ、その蛇行に起因するアクチュエータ10の出力特性の変動を抑えられる。 As a result, by arranging the expansion / contraction member 32 so as to pass through the inside of the bottom portion 60a of the groove portion 60, the expansion / contraction member 32 can be arranged so as to pass through a portion close to the straight line Ls when viewed from the Z direction. That is, the telescopic member 32 can be easily arranged linearly when viewed from the Z direction while passing through the bottom portions 60a of the plurality of groove portions 60 which are suitable for suppressing the position fluctuation of the telescopic member 32 in the Y direction. Therefore, by suppressing the fluctuation of the position of the expansion / contraction member 32 in the Y direction by the groove portion 60, it is possible to prevent the expansion / contraction member 32 from meandering greatly, and it is possible to suppress the fluctuation of the output characteristic of the actuator 10 due to the meandering.

また、本実施形態の構成によれば、次の利点がある。以下、可動子30のZ方向から見た位置関係を説明する。伸縮部材32から可動子30には、Z方向に可動子30を並進運動させる力の他に、X方向の軸線周りに可動子30を回転運動させるモーメントが作用する。このモーメントは、前述の線LsからY方向に平行に伸縮部材32がずれるとしたとき、そのずれ量に比例して大きくなる。このモーメントが増大してしまうと、可動子30の回転により可動子30が固定子28から分離等してしまい、その動作安定性に悪影響を及ぼし兼ねない。 Further, according to the configuration of the present embodiment, there are the following advantages. Hereinafter, the positional relationship of the mover 30 as viewed from the Z direction will be described. In addition to the force that translates the mover 30 in the Z direction, a moment that rotates the mover 30 around the axis in the X direction acts on the mover 30 from the telescopic member 32. When the telescopic member 32 deviates from the above-mentioned line Ls in the Y direction, this moment increases in proportion to the amount of the deviation. If this moment increases, the mover 30 will be separated from the stator 28 due to the rotation of the mover 30, which may adversely affect the operation stability.

ここで、本実施形態によれば、可動子30の複数の溝部60の底部60aを通る直線Lsは、可動子30の重心Cg2を通り、かつ、可動子30の幅方向Yの中央部に位置するように設けられる。よって、可動子30の溝部60の内側を通るように伸縮部材32を配置することで、可動子30の重心Cg2を通る前述の直線Lsとほぼ重なる位置を通るように伸縮部材32を配置できる。これに伴い、伸縮部材32から可動子30に付与されるモーメントを抑えられ、そのモーメントに起因する動作安定性への影響を抑え易くできる。 Here, according to the present embodiment, the straight line Ls passing through the bottoms 60a of the plurality of groove portions 60 of the mover 30 passes through the center of gravity Cg2 of the mover 30 and is located at the center of the mover 30 in the width direction Y. It is provided to do so. Therefore, by arranging the telescopic member 32 so as to pass through the inside of the groove portion 60 of the mover 30, the telescopic member 32 can be arranged so as to pass through a position substantially overlapping the above-mentioned straight line Ls passing through the center of gravity Cg2 of the mover 30. Along with this, the moment applied to the mover 30 from the telescopic member 32 can be suppressed, and the influence of the moment on the operation stability can be easily suppressed.

図8、図9を参照する。複数の凸部38、40に形成される複数の溝部60には、X方向の端側の凸部40に形成される端側溝部(以下、他の溝部60と区別するため端側溝部72という)が含まれる。本実施形態の端側溝部72は、可動子30のX方向の端側の第2凸部40に形成される。 Refer to FIGS. 8 and 9. The plurality of groove portions 60 formed in the plurality of convex portions 38 and 40 are referred to as end side groove portions (hereinafter, referred to as end side groove portions 72 to distinguish them from other groove portions 60) in the end side groove portions 40 formed in the end side convex portions 40 in the X direction. ) Is included. The end side groove portion 72 of the present embodiment is formed on the second convex portion 40 on the end side of the mover 30 in the X direction.

端側溝部72の側面66には、凸部40のX方向の外側部分(図8(A)の左側部分)に連続面72aが設けられる。連続面72aは、Z方向から見て、X方向の内側に近づくにつれて、端側溝部72の溝幅を連続的に狭めるように形成される。本実施形態の連続面72aは、Z方向から見て、Y方向の内側に凸となる曲面状をなすが、平面状をなしていてもよい。ここでのX方向の内側とは、端側溝部72に対して隣り合う他の溝部60に近づく側(図8(A)の右側)をいう。X方向の外側とは、端側溝部72に対して隣り合う他の溝部60とは反対側に遠ざかる側(図8(A)の左側)をいう。 On the side surface 66 of the end side groove portion 72, a continuous surface 72a is provided on the outer portion (left portion in FIG. 8A) of the convex portion 40 in the X direction. The continuous surface 72a is formed so as to continuously narrow the groove width of the end side groove portion 72 as it approaches the inside in the X direction when viewed from the Z direction. The continuous surface 72a of the present embodiment has a curved surface shape that is convex inward in the Y direction when viewed from the Z direction, but may be a flat surface shape. Here, the inside in the X direction means a side approaching another groove 60 adjacent to the end gutter 72 (right side in FIG. 8A). The outside in the X direction refers to a side (left side in FIG. 8A) that is away from the other groove 60 adjacent to the end gutter 72.

この利点を説明する。図10(A)は、第1変形例の可動子30の端側溝部72を示す図である。本例の端側溝部72の側面66は、Z方向から見て(図10(A)の視点から見て)、X方向に向かって一定の溝幅となるように形成される。可動子30の凸部40には、凸部40のX方向の外側面40aと端側溝部72の側面66とがなすエッジ部40bが形成される。 This advantage will be explained. FIG. 10A is a diagram showing an end side groove portion 72 of the mover 30 of the first modification. The side surface 66 of the end side groove portion 72 of this example is formed so as to have a constant groove width in the X direction when viewed from the Z direction (viewed from the viewpoint of FIG. 10A). The convex portion 40 of the mover 30 is formed with an edge portion 40b formed by the outer surface 40a of the convex portion 40 in the X direction and the side surface 66 of the end side groove portion 72.

端側溝部72よりX方向の外側では伸縮部材32のY方向での位置の変動が生じ得る。これは、たとえば、第1固定部材50の軸部に対する伸縮部材32の巻き位置が変化することで生じる。このような伸縮部材32の位置の変動が生じた場合、端側溝部72のX方向の端部にエッジ部40bがあり、そのエッジ部40bに伸縮部材32が接触すると、伸縮部材32に過大な負担が生じる(図10(A)参照)。 Outside the end side groove portion 72 in the X direction, the position of the telescopic member 32 may fluctuate in the Y direction. This is caused, for example, by changing the winding position of the telescopic member 32 with respect to the shaft portion of the first fixing member 50. When the position of the expansion / contraction member 32 fluctuates, there is an edge portion 40b at the end of the end side groove portion 72 in the X direction, and when the expansion / contraction member 32 comes into contact with the edge portion 40b, the expansion / contraction member 32 becomes excessive. There is a burden (see FIG. 10 (A)).

この点、本実施形態によれば、端側溝部72よりX方向の外側で伸縮部材32のY方向での位置の変動が生じた場合でも、端側溝部72に対する伸縮部材32の接触箇所を端側溝部72の連続面72aにし易くなる(図10(B)参照)。よって、伸縮部材32との接触箇所がエッジ部40bになる事態を避け易くなる。このため、前述の直線Ls上に伸縮部材32を配置するうえで、伸縮部材32とエッジ部40bの接触に伴い伸縮部材32に過大な負担が生じるのを避けられる。 In this regard, according to the present embodiment, even if the position of the telescopic member 32 fluctuates in the Y direction outside the end side groove portion 72 in the X direction, the contact point of the stretchable member 32 with respect to the end side groove portion 72 is set to the end. The continuous surface 72a of the gutter portion 72 can be easily formed (see FIG. 10B). Therefore, it becomes easy to avoid the situation where the contact point with the telescopic member 32 becomes the edge portion 40b. Therefore, in arranging the expansion / contraction member 32 on the straight line Ls described above, it is possible to avoid an excessive load on the expansion / contraction member 32 due to the contact between the expansion / contraction member 32 and the edge portion 40b.

(第2の実施の形態)
図11を参照する。本実施形態は、第1実施形態と比べて、固定子28や可動子30の溝部60の形状が相違する。本実施形態の溝部60の底部60aには凹曲面74が設けられる。本実施形態の溝部60の最深箇所68は、溝部60の深さ方向で最も深い箇所にある凹曲面74の一部が構成する。この凹曲面74の曲率半径は、伸縮部材32の断面形状がなす円形状の曲率半径より大きくなるように設定される。これによって、本実施形態の溝部60は、第1実施形態で説明したように、未変形状態にある伸縮部材32が溝部60の最深箇所68に接触可能な形状に設定される。
(Second Embodiment)
See FIG. In this embodiment, the shapes of the groove 60 of the stator 28 and the mover 30 are different from those in the first embodiment. A concave curved surface 74 is provided on the bottom portion 60a of the groove portion 60 of the present embodiment. The deepest portion 68 of the groove portion 60 of the present embodiment is formed by a part of a concave curved surface 74 located at the deepest portion in the depth direction of the groove portion 60. The radius of curvature of the concave curved surface 74 is set to be larger than the radius of curvature of the circular shape formed by the cross-sectional shape of the telescopic member 32. As a result, as described in the first embodiment, the groove portion 60 of the present embodiment is set to a shape in which the stretchable member 32 in the undeformed state can contact the deepest portion 68 of the groove portion 60.

なお、本図では固定子28の溝部60のみを図示したが、可動子30の溝部60も同様の形状である。 Although only the groove 60 of the stator 28 is shown in this figure, the groove 60 of the stator 30 has the same shape.

各構成要素の他の変形例を説明する。 Other modifications of each component will be described.

アクチュエータ10は触感付与装置に用いられる例を説明したが、その用途は特に限られない。アクチュエータ10は、たとえば、単なる駆動装置として用いられてもよい。 Although the example in which the actuator 10 is used for the tactile sensation imparting device has been described, its use is not particularly limited. The actuator 10 may be used, for example, as a simple driving device.

駆動対象14はタッチパネルである例を説明したが、これに限定されない。たとえば、オンオフスイッチ等のスイッチでもよい。 Although the example in which the drive target 14 is a touch panel has been described, the driving target 14 is not limited to this. For example, a switch such as an on / off switch may be used.

固定子28の形状は特に限定されない。固定子28は、たとえば、直線的に延びる場合の他に曲線的に延びる長尺状でもよい。可動子30も同様である。 The shape of the stator 28 is not particularly limited. The stator 28 may have a long shape extending in a curved line as well as in a case where the stator 28 extends linearly. The same applies to the mover 30.

伸縮部材32を構成する形状記憶合金の組成は特に限定されず、Ni−Ti−Cu系合金が用いられてもよい。 The composition of the shape memory alloy constituting the telescopic member 32 is not particularly limited, and a Ni—Ti—Cu based alloy may be used.

複数の第1凸部38のそれぞれや複数の第2凸部40のそれぞれに溝部60が形成される例を説明した。この他にも、複数の第1凸部38の一部や、複数の第2凸部40の一部にのみ溝部60が形成されてもよい。 An example in which the groove 60 is formed in each of the plurality of first convex portions 38 and each of the plurality of second convex portions 40 has been described. In addition to this, the groove portion 60 may be formed only in a part of the plurality of first convex portions 38 or a part of the plurality of second convex portions 40.

溝部60は、溝部60の入口部60bから底部60aまでの全範囲のうちの一部の範囲において、その底側に向かうにつれて連続的に溝幅が狭くなるように形成されてもよい。たとえば、前述の全範囲のうちの半分以上の範囲において、この条件を満たすように形成されてもよい。この範囲において、前述の溝幅変化面70が設けられてもよいということである。また、溝部60は、その底側に向かうにつれて段階的に溝幅が狭くなるように形成されてもよい。 The groove portion 60 may be formed so that the groove width becomes continuously narrower toward the bottom side in a part of the entire range from the inlet portion 60b to the bottom portion 60a of the groove portion 60. For example, a range of half or more of the above-mentioned total range may be formed so as to satisfy this condition. In this range, the groove width changing surface 70 described above may be provided. Further, the groove portion 60 may be formed so that the groove width gradually narrows toward the bottom side thereof.

溝部60の側面66の傾斜角度θ1は、溝部60の入口部60bから底部60aまでの全範囲のうちの一部の範囲において、摩擦角θ0より大きくなるように設定されてもよい。たとえば、前述の全範囲のうちの半分以上の範囲において、この条件を満たすように設定されてもよい。 The inclination angle θ1 of the side surface 66 of the groove portion 60 may be set to be larger than the friction angle θ0 in a part of the entire range from the inlet portion 60b to the bottom portion 60a of the groove portion 60. For example, a range of half or more of the above-mentioned total range may be set to satisfy this condition.

溝部60は、未変形状態にある伸縮部材32が溝部60の最深箇所68に接触不能な形状に設定されてもよい。溝部60の側面66の傾斜角度θ1は摩擦角θ0以下に設定されてもよい。 The groove portion 60 may be set in a shape in which the stretchable member 32 in the undeformed state cannot contact the deepest portion 68 of the groove portion 60. The inclination angle θ1 of the side surface 66 of the groove portion 60 may be set to the friction angle θ0 or less.

複数の凸部38、40に形成される複数の溝部60は、Z方向から見て、それらの底部60aが直線Ls上に並ぶように設けられていなくともよい。たとえば、複数の溝部60は、Z方向から見て、ジグザグに蛇行しながらX方向に延びていてもよい。 The plurality of groove portions 60 formed in the plurality of convex portions 38 and 40 may not be provided so that their bottom portions 60a are aligned on the straight line Ls when viewed from the Z direction. For example, the plurality of groove portions 60 may extend in the X direction while meandering in a zigzag manner when viewed from the Z direction.

端側溝部72は、可動子30の第2凸部40ではなく、固定子28の第1凸部38に形成されてもよい。 The end side groove portion 72 may be formed not in the second convex portion 40 of the mover 30 but in the first convex portion 38 of the stator 28.

以上、本発明の実施形態や変形例について詳細に説明した。前述した実施形態や変形例は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態や変形例の内容は、本発明の技術的範囲を限定するものではなく、発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態」との表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The embodiments and modifications of the present invention have been described in detail above. The above-described embodiments and modifications are merely specific examples for carrying out the present invention. The contents of the embodiments and modifications do not limit the technical scope of the present invention, and many design changes such as modification, addition, and deletion of components can be made without departing from the idea of the invention. In the above-described embodiment, the content that can be changed in design is emphasized by adding the notation "embodiment", but the design change is permitted even if the content does not have such a notation. Any combination of the above components is also valid as an aspect of the present invention. The hatching attached to the cross section of the drawing does not limit the material of the object to which the hatching is attached.

10…アクチュエータ、14…駆動対象、18…タッチ検出部、20…制御部、26…伸縮部材、28…固定子、30…可動子、32…伸縮部材、38…第1凸部、40…第2凸部、60…溝部、60a…底部、66…側面、68…最深箇所、72…端側溝部、72a…連続面。 10 ... Actuator, 14 ... Drive target, 18 ... Touch detection unit, 20 ... Control unit, 26 ... Telescopic member, 28 ... Stator, 30 ... Movable element, 32 ... Telescopic member, 38 ... First convex part, 40 ... No. 2 Convex part, 60 ... Groove part, 60a ... Bottom part, 66 ... Side surface, 68 ... Deepest part, 72 ... End side groove part, 72a ... Continuous surface.

Claims (7)

長尺状の固定子と、
前記固定子の長手方向と直交する方向にて前記固定子と対向して配置され、その直交する方向を可動方向として移動可能な可動子と、
温度変化により伸縮可能な形状記憶合金を素材として構成される伸縮部材と、を備え、
前記固定子と前記可動子には、前記長手方向に互い違いに複数の凸部が設けられ、
前記伸縮部材は、前記固定子の前記凸部と前記可動子の前記凸部に交互に掛けるように張り渡され、
前記凸部には、前記伸縮部材が内側に配置される溝部が形成され、
前記溝部は、その底側に向かうにつれて溝幅が狭くなるように形成されるアクチュエータ。
With a long stator and
A mover arranged so as to face the stator in a direction orthogonal to the longitudinal direction of the stator and movable in the direction orthogonal to the stator as a movable direction.
It is equipped with an elastic member made of a shape memory alloy that can expand and contract due to temperature changes.
The stator and the mover are provided with a plurality of convex portions alternately in the longitudinal direction.
The telescopic member is stretched so as to be alternately hung on the convex portion of the stator and the convex portion of the mover.
A groove in which the telescopic member is arranged is formed in the convex portion.
The groove portion is an actuator formed so that the groove width becomes narrower toward the bottom side thereof.
前記溝部は、未変形状態にある前記伸縮部材が前記溝部の最深箇所に接触可能な形状に設定される請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the groove portion is set in a shape so that the telescopic member in an undeformed state can contact the deepest portion of the groove portion. 前記長手方向及び前記可動方向と直交する方向を幅方向というとき、
前記長手方向に直交する断面において、前記幅方向の方向軸線に対する前記溝部の側面の傾斜角度θ1は、前記伸縮部材と前記側面の間の静止摩擦係数に基づき定まる摩擦角θ0より大きくなるように設定される請求項1または2に記載のアクチュエータ。
When the direction orthogonal to the longitudinal direction and the movable direction is referred to as the width direction,
In the cross section orthogonal to the longitudinal direction, the inclination angle θ1 of the side surface of the groove with respect to the direction axis in the width direction is set to be larger than the friction angle θ0 determined based on the static friction coefficient between the telescopic member and the side surface. The actuator according to claim 1 or 2.
前記複数の凸部に形成される複数の前記溝部は、前記可動方向から見て、それらの底部が直線上に並ぶように設けられる請求項1から3のいずれかに記載のアクチュエータ。 The actuator according to any one of claims 1 to 3, wherein the plurality of groove portions formed in the plurality of convex portions are provided so that their bottom portions are arranged in a straight line when viewed from the movable direction. 前記長手方向及び前記可動方向と直交する方向を幅方向というとき、
前記可動子に形成される前記複数の溝部の底部を通る前記直線は、前記可動方向から見て、前記可動子の重心を通り、かつ、前記可動子の前記幅方向の中央部に位置するように設けられる請求項4に記載のアクチュエータ。
When the direction orthogonal to the longitudinal direction and the movable direction is referred to as the width direction,
The straight line passing through the bottoms of the plurality of grooves formed in the actuator passes through the center of gravity of the actuator and is located at the center of the actuator in the width direction when viewed from the movable direction. The actuator according to claim 4.
前記複数の凸部に形成される複数の前記溝部には、前記長手方向の端側の前記凸部に形成される端側溝部が含まれ、
前記端側溝部の側面には、前記凸部の前記長手方向の外側部分に連続面が設けられ、
前記連続面は、前記可動方向から見て、前記長手方向の内側に近づくにつれて、前記端側溝部の溝幅を連続的に狭めるように形成される請求項4または5に記載のアクチュエータ。
The plurality of groove portions formed in the plurality of convex portions include an end-side groove portion formed in the convex portion on the end side in the longitudinal direction.
On the side surface of the end side groove portion, a continuous surface is provided on the outer portion of the convex portion in the longitudinal direction.
The actuator according to claim 4 or 5, wherein the continuous surface is formed so as to continuously narrow the groove width of the end side groove portion as it approaches the inside in the longitudinal direction when viewed from the movable direction.
請求項1から6のいずれかに記載のアクチュエータであって、前記伸縮部材の縮み変形により駆動対象を駆動可能なアクチュエータと、
ユーザによる前記駆動対象に対するタッチ操作を検出可能なタッチ検出部と、
前記タッチ検出部によりタッチ操作が検出された場合に、前記伸縮部材に通電することで前記伸縮部材を縮み変形させることができる制御部と、を備える触感付与装置。
The actuator according to any one of claims 1 to 6, wherein the drive target can be driven by the contraction deformation of the telescopic member.
A touch detection unit that can detect a touch operation on the drive target by the user,
A tactile sensation imparting device including a control unit capable of contracting and deforming the telescopic member by energizing the telescopic member when a touch operation is detected by the touch detection unit.
JP2019073599A 2019-04-08 2019-04-08 Actuator and tactile sensation imparting device Active JP7235300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019073599A JP7235300B2 (en) 2019-04-08 2019-04-08 Actuator and tactile sensation imparting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073599A JP7235300B2 (en) 2019-04-08 2019-04-08 Actuator and tactile sensation imparting device

Publications (2)

Publication Number Publication Date
JP2020172863A true JP2020172863A (en) 2020-10-22
JP7235300B2 JP7235300B2 (en) 2023-03-08

Family

ID=72830397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073599A Active JP7235300B2 (en) 2019-04-08 2019-04-08 Actuator and tactile sensation imparting device

Country Status (1)

Country Link
JP (1) JP7235300B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023605A1 (en) * 2010-08-20 2012-02-23 株式会社青電舎 Shock-driven actuator
JP2014088811A (en) * 2012-10-30 2014-05-15 Minebea Co Ltd Actuator
JP2019007471A (en) * 2017-06-28 2019-01-17 株式会社テージーケー Actuator
JP2019094778A (en) * 2017-11-17 2019-06-20 株式会社丸和製作所 Actuator and actuator manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023605A1 (en) * 2010-08-20 2012-02-23 株式会社青電舎 Shock-driven actuator
JP2014088811A (en) * 2012-10-30 2014-05-15 Minebea Co Ltd Actuator
JP2019007471A (en) * 2017-06-28 2019-01-17 株式会社テージーケー Actuator
JP2019094778A (en) * 2017-11-17 2019-06-20 株式会社丸和製作所 Actuator and actuator manufacturing method

Also Published As

Publication number Publication date
JP7235300B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US7888846B2 (en) Actuator
JP6966554B2 (en) Devices and electronic devices for generating haptic feedback
JP5121058B2 (en) Linear drive type ultrasonic motor
JP4209465B2 (en) Drive device
US20060220496A1 (en) Vibration wave driving apparatus
CN109139401B (en) Actuator device
JP5810303B2 (en) Drive device
CN109314474B (en) Ultrasonic motor
JP2020172863A (en) Actuator and tactile sensation application device
WO2009084305A1 (en) Actuator array and method for driving actuator array
JP5909624B2 (en) Drive device
JP7055766B2 (en) Flexible member
JP5533699B2 (en) Corrugated tube
JP2019143555A (en) Shape memory alloy actuator
US20190198749A1 (en) Scalable piezoelectric linear actuator
JP6849381B2 (en) Vibration type motors, electronic devices and imaging devices
JP7199090B2 (en) actuator
JP6972696B2 (en) Coiled wave spring
GB2590518A (en) SMA haptic assembly
JP6900032B2 (en) Actuator
JP6883326B2 (en) Control device and tactile sensation device
JP7235293B2 (en) Control device and tactile sensation imparting device
JP6731026B2 (en) Piezoelectric drive device, optical member drive device, camera device, and electronic device
JP6907743B2 (en) Coiled wave spring
JP2019180175A (en) Linear type actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7235300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150