JP2020172633A - Red phosphor and method for producing the same - Google Patents

Red phosphor and method for producing the same Download PDF

Info

Publication number
JP2020172633A
JP2020172633A JP2020046788A JP2020046788A JP2020172633A JP 2020172633 A JP2020172633 A JP 2020172633A JP 2020046788 A JP2020046788 A JP 2020046788A JP 2020046788 A JP2020046788 A JP 2020046788A JP 2020172633 A JP2020172633 A JP 2020172633A
Authority
JP
Japan
Prior art keywords
bismuth
red phosphor
bio
mass
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020046788A
Other languages
Japanese (ja)
Other versions
JP6910085B2 (en
Inventor
浩明 鷹取
Hiroaki Takatori
浩明 鷹取
伸哉 熊澤
Shinya Kumazawa
伸哉 熊澤
徹哉 荒川
Tetsuya Arakawa
徹哉 荒川
西田 哲郎
Tetsuo Nishida
哲郎 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to US17/442,653 priority Critical patent/US11965123B2/en
Priority to CN202080011140.2A priority patent/CN113366085B/en
Priority to EP20787236.7A priority patent/EP3954748B1/en
Priority to PCT/JP2020/012443 priority patent/WO2020209032A1/en
Priority to KR1020217027034A priority patent/KR102338290B1/en
Priority to TW109110741A priority patent/TWI833001B/en
Publication of JP2020172633A publication Critical patent/JP2020172633A/en
Application granted granted Critical
Publication of JP6910085B2 publication Critical patent/JP6910085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

To provide: a red phosphor excellent in optical characteristics and durability in high-temperature, high-humidity environments; and a method for producing the same.SOLUTION: The red phosphor according to the present invention contains a Mn-activated complex fluoride represented by general formula (1) defined by A2MF6:Mn4+, and bismuth. (In the formula, A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents at least one tetravalent element selected from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium.)SELECTED DRAWING: None

Description

本発明は、紫外光及び青色光等の励起光により励起されて赤色光を発光する赤色蛍光体及びその製造方法に関する。より詳しくは、Mn(マンガン)賦活複フッ化物にビスマスを含有させることにより、光学特性、及び高温・高湿度環境下に於ける耐久性に優れた赤色蛍光体及びその製造方法に関する。 The present invention relates to a red phosphor that is excited by excitation light such as ultraviolet light and blue light to emit red light, and a method for producing the same. More specifically, the present invention relates to a red phosphor having excellent optical properties and durability in a high temperature / high humidity environment by containing bismuth in a Mn (manganese) activated compound fluoride, and a method for producing the same.

白色LED(Light Emitting Diode)は蛍光灯と比較してその寿命が長く、消費電力も低い。そのため、照明器具やディスプレイのバックライトとしての普及が急速に進んできた。市販の照明器具の白色LEDは、近紫外光から青色光までを発光する青色LEDと、それらの光で励起する黄色蛍光体とを組み合わせて構成されている。これにより、白色LEDは、青色LEDが発光する光と、黄色蛍光体が発光する光とを混色することで疑似白色光の照射を可能にしている。しかし、白色LEDが照射する擬似白色光には赤色光領域の発光成分が少なく、又は含まれていないため、擬似白色光は自然光(又は太陽光、黒体放射)と比較して演色性(前記自然光と比較して対象を視認したときに、その照明での色の見え方の特性を意味する。例えば、対象が照明に照らされたときに、自然光により照らされた場合と似た色の見え方であったとき、高い演色性を示す。)に劣るという問題がある。 White LEDs (Light Emitting Diodes) have a longer life and lower power consumption than fluorescent lamps. Therefore, it has rapidly become widespread as a backlight for lighting equipment and displays. A white LED of a commercially available lighting fixture is composed of a combination of a blue LED that emits near-ultraviolet light to blue light and a yellow phosphor that is excited by the light. As a result, the white LED makes it possible to irradiate pseudo-white light by mixing the light emitted by the blue LED and the light emitted by the yellow phosphor. However, since the pseudo white light emitted by the white LED contains little or no light emitting component in the red light region, the pseudo white light has a color rendering property (or sunlight, black body radiation) as compared with natural light (or sunlight, black body radiation). It means the characteristics of the appearance of color under the illumination when the object is visually recognized as compared with natural light. For example, when the object is illuminated by the illumination, the appearance of the color is similar to that when the object is illuminated by the natural light. When it is the one, it shows high color rendering properties.) There is a problem that it is inferior.

そのため、近紫外LEDが発する紫外光や、青色LEDが発する青色光により励起して、赤色光を発光する赤色蛍光体が必要とされている。その様な赤色蛍光体として、近年、遷移金属のMn4+イオンを発光中心として赤色光を発光するMn賦活複フッ化物(KSiF:Mn4+(KSF:Mn))からなる蛍光体組成物が開発され(例えば、特許文献1、2及び非特許文献1参照。)、その採用が急速に進んでいる。KSF:Mnは青色光の波長に励起帯を有し、600〜650nmの狭帯域に半値幅の狭い赤色の発光ピークを有している。 Therefore, there is a need for a red phosphor that emits red light by being excited by ultraviolet light emitted by a near-ultraviolet LED or blue light emitted by a blue LED. As such a red phosphor, in recent years, a phosphor composition composed of Mn-activated compound fluoride (K 2 SiF 6 : Mn 4+ (KSF: Mn)) that emits red light centered on the transition metal Mn 4+ ion. Has been developed (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1), and its adoption is rapidly advancing. KSF: Mn has an excitation band at the wavelength of blue light, and has a red emission peak with a narrow half-value width in a narrow band of 600 to 650 nm.

KSF:Mnは、KSiF結晶が蛍光体のフレームワークを担い、SiF 2−イオンが形成する六配位−八面体サイトのSi4+の位置に、Mn4+イオンが固溶することでMnF 2−八面体サイトを形成し、発光中心として作用している。 KSF: Mn is formed by the solid dissolution of Mn 4+ ions at the Si 4+ position of the hexacoordination-octahedral site formed by the K 2 SiF 6 crystals acting as the framework of the phosphor and the SiF 6 2- ions. It forms MnF 6 2- octahedral sites and acts as a light emitting center.

しかし、このKSF:Mnからなる赤色蛍光体は、高温・高湿度環境下で水や水蒸気等に接触することで粒子表面が黒ずむといった、実用上の問題が指摘されている。具体的には、赤色蛍光体の粒子表面に於いて、当該赤色蛍光体を構成する4価のマンガンイオンと水が反応することで二酸化マンガンが生成し、この二酸化マンガンが励起光の吸収及び蛍光の抑制を生じさせて、光学特性の劣化と、経時変化に於ける光学特性の低下(耐久性の低下)とを生じる。 However, it has been pointed out that this red phosphor composed of KSF: Mn has a practical problem that the particle surface is darkened when it comes into contact with water, water vapor or the like in a high temperature and high humidity environment. Specifically, manganese dioxide is generated by the reaction of water with the tetravalent manganese ions constituting the red phosphor on the particle surface of the red phosphor, and this manganese dioxide absorbs and fluoresces the excitation light. The suppression of the optical characteristics is caused, and the optical characteristics are deteriorated and the optical characteristics are deteriorated with time (decrease in durability).

特表2009−528429号公報Special Table 2009-528429 WO2015/093430号WO2015 / 093430

H.D.Nguyen, C.C.Lin, R.S.Liu、Angew. Chem. 54巻37号10862ページ(2015年)H. D. Nguyen, C.I. C. Lin, R.M. S. Liu, Angew. Chem. Vol. 54, No. 37, p. 10862 (2015)

本発明は前記問題点に鑑みなされたものであり、その目的は、光学特性及び高温・高湿度環境下での耐久性に優れた赤色蛍光体及びその製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a red phosphor having excellent optical characteristics and durability in a high temperature / high humidity environment and a method for producing the same.

本発明に係る赤色蛍光体は、前記の課題を解決するために、以下の一般式(1)で表されるMn賦活複フッ化物と、ビスマスとを含むことを特徴とする。 The red phosphor according to the present invention is characterized by containing Mn-activated compound fluoride represented by the following general formula (1) and bismuth in order to solve the above-mentioned problems.

MF:Mn4+ (1)
(式中、前記Aはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を表し、前記Mはケイ素、ゲルマニウム、錫、チタン、ジルコニウム及びハフニウムからなる群より選ばれる少なくとも1種の4価の元素を表す。)
A 2 MF 6 : Mn 4+ (1)
(In the formula, A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium. Represents at least one tetravalent element selected.)

前記の構成に於いて、前記Mn賦活複フッ化物は粒子状であり、当該粒子状のMn賦活複フッ化物の表面の少なくとも一部に、前記ビスマスが存在するものとすることができる。 In the above configuration, the Mn-activated compound fluoride is in the form of particles, and the bismuth can be present on at least a part of the surface of the particulate Mn-activated compound fluoride.

また、前記の構成に於いて、前記粒子状のMn賦活複フッ化物の表面には被覆層が設けられており、前記被覆層は前記ビスマスを含むものであってもよい。 Further, in the above configuration, a coating layer may be provided on the surface of the particulate Mn-activated difluoride, and the coating layer may contain the bismuth.

さらに前記の構成に於いては、前記被覆層がビスマス単体及び/又はビスマス化合物からなることが好ましい。 Further, in the above configuration, it is preferable that the coating layer is composed of a bismuth simple substance and / or a bismuth compound.

また、前記の構成に於いては、前記ビスマス化合物が、BiF、BiCl、BiBr、BiI、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、BiOCHCOO、4BiNO(OH)・BiO(OH)、CBi、CBiO、C21BiO、C1533BiO、C3057BiO、C1210BiK14、CBi、及びC(OH)COBiO・HOからなる群より選ばれる少なくとも1種であることが好ましい。 Further, in the above configuration, the bismuth compound is BiF 3 , BiCl 3 , BiBr 3 , BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2 Te 3 , Bi. (OH) 3 , (BiO) 2 CO 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , BiOCH 3 COO, 4 BiNO 3 (OH) 2. BiO (OH), C 3 F 9 O 9 S 3 Bi, C 7 H 7 BiO 7 , C 9 H 21 BiO 3 , C 15 H 33 BiO 3 , C 30 H 57 BiO 6 , C 12 H 10 BiK 3 O It is preferably at least one selected from the group consisting of 14 , C 3 F 9 O 9 S 3 Bi, and C 6 H 4 (OH) CO 2 BiO · H 2 O.

前記の構成に於いて、前記ビスマスの含有量は、赤色蛍光体の全質量に対し0.01質量%〜15質量%の範囲であることが好ましい。 In the above configuration, the content of the bismuth is preferably in the range of 0.01% by mass to 15% by mass with respect to the total mass of the red phosphor.

前記の構成に於いて、前記Mn賦活複フッ化物に於ける前記Mnのモル比は、前記MとMnの合計モル数に対して0.005〜0.15の範囲であることが好ましい。 In the above configuration, the molar ratio of Mn in the Mn-activated compound fluoride is preferably in the range of 0.005 to 0.15 with respect to the total number of moles of M and Mn.

本発明の赤色蛍光体の製造方法は、前記の課題を解決するために、以下の一般式(1)で表されるMn賦活複フッ化物に対し、ビスマスを含む処理液を接触させる工程を含むことを特徴とする。 The method for producing a red phosphor of the present invention includes a step of bringing a treatment liquid containing bismuth into contact with the Mn-activated difluoride represented by the following general formula (1) in order to solve the above-mentioned problems. It is characterized by that.

MF:Mn4+ (1)
(式中、前記Aはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を表し、前記Mはケイ素、ゲルマニウム、錫、チタン、ジルコニウム及びハフニウムからなる群より選ばれる少なくとも1種の4価の元素を表す。)
A 2 MF 6 : Mn 4+ (1)
(In the formula, A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium. Represents at least one tetravalent element selected.)

前記の構成に於いては、前記処理液中に於ける前記ビスマスの含有量が、当該処理液の全質量に対し0.01質量%〜15質量%の範囲であることが好ましい。 In the above configuration, the content of the bismuth in the treatment liquid is preferably in the range of 0.01% by mass to 15% by mass with respect to the total mass of the treatment liquid.

前記の構成に於いては、前記処理液の溶媒が、水、有機溶媒、それらの混合溶媒、又はそれらの酸性溶媒であることが好ましい。 In the above configuration, it is preferable that the solvent of the treatment liquid is water, an organic solvent, a mixed solvent thereof, or an acidic solvent thereof.

前記の構成に於いては、前記酸性溶媒がフッ化水素を含む酸性溶媒であり、前記フッ化水素を含む酸性溶媒と前記ビスマスとの混合比が、質量基準で30:1〜3500:1の範囲であることが好ましい。 In the above configuration, the acidic solvent is an acidic solvent containing hydrogen fluoride, and the mixing ratio of the acidic solvent containing hydrogen fluoride and the bismuth is 30: 1 to 3500: 1 on a mass basis. It is preferably in the range.

前記の構成に於いては、前記フッ化水素を含む酸性溶媒に於ける当該フッ化水素の濃度が、酸性溶媒の全質量に対し1質量%〜70質量%の範囲であることが好ましい。 In the above configuration, the concentration of the hydrogen fluoride in the acidic solvent containing hydrogen fluoride is preferably in the range of 1% by mass to 70% by mass with respect to the total mass of the acidic solvent.

前記の構成に於いては、前記ビスマスが、Bi単体、BiF、BiCl、BiBr、BiI、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、BiOCHCOO、4BiNO(OH)・BiO(OH)、CBi、CBiO、C21BiO、C1533BiO、C3057BiO、C1210BiK14、CBi、及びC(OH)COBiO・HOからなる群より選ばれる少なくとも1種として前記処理液に含まれることが好ましい。 In the above configuration, the bismuth is Bi alone, BiF 3 , BiCl 3 , BiBr 3 , BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2 Te 3 , Bi. (OH) 3 , (BiO) 2 CO 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , BiOCH 3 COO, 4 BiNO 3 (OH) 2. BiO (OH), C 3 F 9 O 9 S 3 Bi, C 7 H 7 BiO 7 , C 9 H 21 BiO 3 , C 15 H 33 BiO 3 , C 30 H 57 BiO 6 , C 12 H 10 BiK 3 O It is preferable that it is contained in the treatment liquid as at least one selected from the group consisting of 14 , C 3 F 9 O 9 S 3 Bi, and C 6 H 4 (OH) CO 2 BiO · H 2 O.

本発明は、前記に説明した手段により、以下に述べる様な効果を奏する。
即ち、本発明の赤色蛍光体によれば、Mn賦活複フッ化物の他にビスマスを含むことにより、Mn4+と水が反応して有色の二酸化マンガンが生成するのを低減し、又は防止する。その結果、二酸化マンガンによる励起光の吸収や蛍光の抑制を防止できるので、光学特性が良好で、高温・高湿度環境下での経時変化による光学特性の低下を低減し、耐久性に優れた赤色蛍光体を提供することができる。
The present invention achieves the effects described below by the means described above.
That is, according to the red phosphor of the present invention, the inclusion of bismuth in addition to the Mn-activated difluoride reduces or prevents the reaction of Mn 4+ with water to produce colored manganese dioxide. As a result, it is possible to prevent the absorption of excitation light and the suppression of fluorescence by manganese dioxide, so that the optical characteristics are good, the deterioration of the optical characteristics due to aging in a high temperature and high humidity environment is reduced, and the red color has excellent durability. A phosphor can be provided.

また、本発明の赤色蛍光体の製造方法によれば、Mn賦活複フッ化物に対し、ビスマスを含む処理液を接触させることで、ビスマスを含む赤色蛍光体を製造することが可能になる。その結果、光学特性が良好で、高温・高湿度環境下での経時変化による光学特性の低下を低減し、耐久性に優れた赤色蛍光体の製造を可能にする。 Further, according to the method for producing a red fluorescent substance of the present invention, a red fluorescent substance containing bismuth can be produced by bringing a treatment liquid containing bismuth into contact with the Mn-activated difluoride. As a result, it is possible to produce a red phosphor having good optical characteristics, reducing the deterioration of the optical characteristics due to aging in a high temperature and high humidity environment, and having excellent durability.

(赤色蛍光体)
本実施の形態に係る赤色蛍光体について、以下に説明する。
本実施の形態に係る赤色蛍光体は、以下の一般式(1)で表されるMn賦活複フッ化物(以下、「Mn賦活複フッ化物」という場合がある。)と、ビスマスとを含む。
(Red phosphor)
The red phosphor according to the present embodiment will be described below.
The red phosphor according to the present embodiment contains Mn-activated compound fluoride represented by the following general formula (1) (hereinafter, may be referred to as “Mn-activated compound fluoride”) and bismuth.

MF:Mn4+ (1)
(式中、前記Aはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を表し、前記Mはケイ素、ゲルマニウム、錫、チタン、ジルコニウム及びハフニウムからなる群より選ばれる少なくとも1種の4価の元素を表す。)
A 2 MF 6 : Mn 4+ (1)
(In the formula, A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium. Represents at least one tetravalent element selected.)

本実施の形態の赤色蛍光体は単一の赤色蛍光体であってもよく、2種以上の赤色蛍光体の混合物であってもよい。 The red phosphor of the present embodiment may be a single red phosphor or a mixture of two or more kinds of red phosphors.

前記Mn賦活複フッ化物を表す一般式AMF:Mn4+に於いて、「AMF」は赤色蛍光体の母体結晶の組成を表す。また、「Mn4+」は発光中心となる賦活イオンを表す。 In the general formula A 2 MF 6 : Mn 4+ representing the Mn-activated compound fluoride, “A 2 MF 6 ” represents the composition of the parent crystal of the red phosphor. Further, "Mn 4+ " represents an activated ion that is the center of light emission.

ここで、本明細書に於いて「賦活」とは、蛍光を発現させたりするために、母体結晶であるAMFに対して賦活剤であるMn4+を添加することを意味する。賦活された形態としては、Mn4+がAMFを構成する任意の原子と一部置換されている形態が挙げられる。本実施の形態の場合、Mn4+は母体結晶のMと置換していることが好ましい。 Here, "activation" as used herein means adding Mn 4+ , which is an activator, to A 2 MF 6 , which is a parent crystal, in order to express fluorescence. Examples of the activated form include a form in which Mn 4+ is partially replaced with an arbitrary atom constituting A 2 MF 6 . In the case of this embodiment, it is preferable that Mn 4+ is replaced with M of the mother crystal.

一般式AMF:Mn4+で表されるMn賦活複フッ化物としては、具体的には、例えば、LiSiF:Mn4+、NaSiF:Mn4+、KSiF:Mn4+、RbSiF:Mn4+、CsSiF:Mn4+、LiGeF:Mn4+、NaGeF:Mn4+、KGeF:Mn4+、RbGeF:Mn4+、CsGeF:Mn4+、LiSnF:Mn4+、NaSnF:Mn4+、KSnF:Mn4+、RbSnF:Mn4+、CsSnF:Mn4+、LiTiF:Mn4+、NaTiF:Mn4+、KTiF:Mn4+、RbTiF:Mn4+、CsTiF:Mn4+、LiZrF:Mn4+、NaZrF:Mn4+、KZrF:Mn4+、RbZrF:Mn4+、CsZrF:Mn4+、LiHfF:Mn4+、NaHfF:Mn4+、KHfF:Mn4+、RbHfF:Mn4+、CsHfF:Mn4+等が挙げられる。これらのMn賦活複フッ化物のうち、入手の容易さ及び合成の容易さの観点からは、KSiF:Mn4+、KTiF:Mn4+、KGeF:Mn4+、NaSiF:Mn4+、NaTiF:Mn4+、NaGeF:Mn4+が好ましく、KSiF:Mn4+、KTiF:Mn4+がより好ましい。尚、Mn賦活複フッ化物は、各種の用途で要求される光学特性に応じて選定することが可能である。従って、例示したMn賦活複フッ化物に特に限定されるものではない。 Specific examples of the Mn-activated compound fluoride represented by the general formula A 2 MF 6 : Mn 4+ include, for example, Li 2 SiF 6 : Mn 4+ , Na 2 SiF 6 : Mn 4+ , and K 2 SiF 6 : Mn. 4+, Rb 2 SiF 6: Mn 4+, Cs 2 SiF 6: Mn 4+, Li 2 GeF 6: Mn 4+, Na 2 GeF 6: Mn 4+, K 2 GeF 6: Mn 4+, Rb 2 GeF 6: Mn 4+, Cs 2 GeF 6: Mn 4+, Li 2 SnF 6: Mn 4+, Na 2 SnF 6: Mn 4+, K 2 SnF 6: Mn 4+, Rb 2 SnF 6: Mn 4+, Cs 2 SnF 6: Mn 4+, Li 2 TiF 6: Mn 4+, Na 2 TiF 6: Mn 4+, K 2 TiF 6: Mn 4+, Rb 2 TiF 6: Mn 4+, Cs 2 TiF 6: Mn 4+, Li 2 ZrF 6: Mn 4+, Na 2 ZrF 6 : Mn 4+, K 2 ZrF 6 : Mn 4+, Rb 2 ZrF 6: Mn 4+, Cs 2 ZrF 6: Mn 4+, Li 2 HfF 6: Mn 4+, Na 2 HfF 6: Mn 4+, K 2 HfF 6: Mn Examples thereof include 4+ , Rb 2 HfF 6 : Mn 4+ , and Cs 2 HfF 6 : Mn 4+ . Of these Mn-activated compound fluorides, K 2 SiF 6 : Mn 4+ , K 2 TiF 6 : Mn 4+ , K 2 GeF 6 : Mn 4+ , Na 2 from the viewpoint of availability and synthesis. SiF 6 : Mn 4+ , Na 2 TiF 6 : Mn 4+ , Na 2 GeF 6 : Mn 4+ are preferable, and K 2 SiF 6 : Mn 4+ , K 2 TiF 6 : Mn 4+ are more preferable. The Mn-activated difluoride can be selected according to the optical characteristics required for various applications. Therefore, it is not particularly limited to the exemplified Mn-activated difluoride.

ここで、本明細書に於いて「光学特性」とは、赤色蛍光体等の吸収率及び内部量子効率等を意味する。「吸収率」とは、赤色蛍光体が励起光を吸収する効率を意味する。例えば、青色LEDから照射される励起光(波長449nm)の分光放射輝度のピーク値をEx1とし、赤色蛍光体が未吸収の励起光のピーク値をEx2としたとき、吸収率αは以下の数式(1)で表される。
吸収率α(%)=(Ex1−Ex2)/Ex1×100 (1)
Here, in the present specification, the "optical property" means the absorption rate of a red phosphor or the like, the internal quantum efficiency, and the like. "Absorption rate" means the efficiency with which the red phosphor absorbs the excitation light. For example, when the peak value of the spectral radiance of the excitation light (wavelength 449 nm) emitted from the blue LED is Ex1 and the peak value of the excitation light not absorbed by the red phosphor is Ex2, the absorption rate α is calculated by the following formula. It is represented by (1).
Absorption rate α (%) = (Ex1-Ex2) / Ex1 × 100 (1)

また、「内部量子効率」とは、赤色蛍光体が吸収した励起光を蛍光に変換する効率を意味する。例えば、青色LEDからの励起光(波長449nm)の照射下に於いて、赤色蛍光体の蛍光の分光放射輝度のピーク値をEx2としたとき、内部量子効率ηは以下の数式(2)で表される。
内部量子効率η(%)=Em/(Ex1−Ex2)×100 (2)
Further, the "internal quantum efficiency" means the efficiency of converting the excitation light absorbed by the red phosphor into fluorescence. For example, when the peak value of the spectral radiance of the fluorescence of the red phosphor is Ex2 under irradiation with excitation light (wavelength 449 nm) from a blue LED, the internal quantum efficiency η is expressed by the following mathematical formula (2). Will be done.
Internal quantum efficiency η (%) = Em / (Ex1-Ex2) × 100 (2)

Mn賦活複フッ化物は固体であり、さらには粒子状であることが好ましい。Mn賦活複フッ化物が粒子状である場合、その平均粒径は、励起光に対して、吸収及び変換よりも散乱する割合が大きくなり過ぎず、またLED装置に装着するために樹脂と混合する際等に不都合が生じない範囲であれば特に限定されない。 The Mn-activated difluoride is preferably solid and more preferably particulate. When the Mn-activated double fluoride is in the form of particles, its average particle size does not scatter too much of the excitation light than it absorbs and converts, and it mixes with the resin for mounting on the LED device. It is not particularly limited as long as it does not cause any inconvenience.

前記Mnのモル比は、赤色蛍光体(又はMn賦活複フッ化物)中のMとMnの合計モル数に対して、0.005〜0.15の範囲であることが好ましく、0.01〜0.13の範囲であることがより好ましく、0.02〜0.12の範囲であることがさらに好ましく、0.03〜0.1の範囲であることが特に好ましい。前記モル比を0.005以上にすることにより、赤色蛍光体の良好な発光強度の維持が図れる。その一方、前記モル比を0.15以下にすることにより、赤色蛍光体の高温・高湿度環境下での耐久性が低下し過ぎるのを抑制することができる。 The molar ratio of Mn is preferably in the range of 0.005 to 0.15, preferably 0.01 to 0.15, with respect to the total number of moles of M and Mn in the red phosphor (or Mn-activated compound fluoride). It is more preferably in the range of 0.13, further preferably in the range of 0.02 to 0.12, and particularly preferably in the range of 0.03 to 0.1. By setting the molar ratio to 0.005 or more, good emission intensity of the red phosphor can be maintained. On the other hand, by setting the molar ratio to 0.15 or less, it is possible to prevent the durability of the red phosphor from being excessively lowered in a high temperature and high humidity environment.

尚、本明細書に於いて「耐久性」とは、高温・高湿度環境下に一定時間赤色蛍光体を保管した場合に、当該赤色蛍光体の初期の光学特性が維持される程度を意味する。光学特性の意味については前述の通りである。 In the present specification, "durability" means the degree to which the initial optical characteristics of the red phosphor are maintained when the red phosphor is stored in a high temperature and high humidity environment for a certain period of time. .. The meaning of the optical characteristics is as described above.

前記ビスマスは、Mn賦活複フッ化物の表面の少なくとも一部に存在していればよく、さらに、被覆層として表面の少なくとも一部を被覆しているのが好ましい。また、ビスマスはビスマス単体及び/又はビスマス化合物の形態で存在していてもよい。 The bismuth may be present on at least a part of the surface of the Mn-activated difluoride, and more preferably, it covers at least a part of the surface as a coating layer. Further, bismuth may exist in the form of bismuth alone and / or a bismuth compound.

Mn賦活複フッ化物の表面に於いては、これを構成する4価のマンガンイオンが水と反応することで有色の二酸化マンガンが生成し、Mn賦活複フッ化物の粒子表面に黒ずみを生じさせると考えられている。高温、高湿度下ではこの黒ずみの発生が加速し、赤色蛍光体の光学特性の劣化、及び耐久性の低下を招来すると推測される。しかし、本実施の形態の赤色蛍光体であると、Mn賦活複フッ化物の表面の少なくとも一部にビスマスを存在させることで、4価のマンガンイオンが水と接触して反応するのを低減し、又は防止することができる。特に、Mn賦活複フッ化物の表面に被覆層としてビスマスが存在する場合は、水分や水蒸気が赤色蛍光体内に侵入するのを抑制し、これにより、高温・高湿度環境下での耐久性の向上及び光学特性の向上が図れる。 On the surface of Mn-activated compound fluoride, colored manganese dioxide is produced by the reaction of the tetravalent manganese ions that compose it with water, causing darkening on the particle surface of Mn-activated compound fluoride. It is considered. It is presumed that the occurrence of this darkening accelerates under high temperature and high humidity, leading to deterioration of the optical characteristics of the red phosphor and deterioration of durability. However, in the case of the red phosphor of the present embodiment, the presence of bismuth on at least a part of the surface of the Mn-activated difluoride reduces the contact and reaction of tetravalent manganese ions with water. , Or can be prevented. In particular, when bismuth is present as a coating layer on the surface of Mn-activated compound fluoride, it suppresses the invasion of water and water vapor into the red phosphor, thereby improving durability in a high temperature and high humidity environment. And the optical characteristics can be improved.

二酸化マンガンの生成防止の観点からは、Mn賦活複フッ化物の全表面がビスマスを含む被覆層により被覆されていることが好ましい。しかし、Mn賦活複フッ化物の全表面を当該被覆層により被覆することは、製造コスト及び製造の容易性の観点から、工業的に適さない場合がある。Mn賦活複フッ化物の表面の一部にビスマスが存在する場合でも、高温・高湿度環境下での耐久性の改善と光学特性の向上が図れるため、必ずしもMn賦活複フッ化物の全表面を当該被覆層で被覆する必要はない。尚、被覆層による被覆の程度は、赤色蛍光体の用途及び当該用途に準じた要求性能に応じて適宜変更するのが好ましい。 From the viewpoint of preventing the formation of manganese dioxide, it is preferable that the entire surface of the Mn-activated difluoride is coated with a coating layer containing bismuth. However, coating the entire surface of the Mn-activated difluoride with the coating layer may not be industrially suitable from the viewpoint of production cost and ease of production. Even if bismuth is present on a part of the surface of Mn-activated difluoride, the entire surface of Mn-activated difluoride is not necessarily covered because the durability and optical characteristics can be improved in a high temperature and high humidity environment. It is not necessary to coat with a coating layer. It is preferable that the degree of coating with the coating layer is appropriately changed according to the application of the red phosphor and the required performance according to the application.

前記被覆層の膜厚としては、被覆層が被覆するMn賦活複フッ化物の領域に於いて、少なくとも、水との接触による光学特性及び高温・高湿度環境下での耐久性の向上が図れる程度であれば特に限定されない。 The film thickness of the coating layer is such that at least the optical characteristics due to contact with water and the durability in a high temperature / high humidity environment can be improved in the region of Mn-activated double fluoride coated by the coating layer. If so, it is not particularly limited.

前記ビスマス化合物としては、赤色蛍光体の光学特性に悪影響を及ぼさない限り特に限定されない。ビスマス化合物は、具体的には、例えば、BiF、BiCl、BiBr及びBiIからなるハロゲン化ビスマス(III)、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、BiOCHCOO、4BiNO(OH)・BiO(OH)、CBi、CBiO、C21BiO、C1533BiO、C3057BiO、C1210BiK14、CBi、並びにC(OH)COBiO・HOからなる群より選ばれる少なくとも1種が挙げられる。これらのビスマス化合物のうち、BiF、BiCl、BiBr及びBiIからなるハロゲン化ビスマス(III)、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、4BiNO(OH)・BiO(OH)、並びにCBi等の無機ビスマス塩が好ましく、より好ましくはBiF及びBi(NOである。さらに、ビスマス化合物は、赤色蛍光体の高温・高湿度環境下での耐久性や光学特性を良好にするとの観点から、BiFであることが特に好ましい。 The bismuth compound is not particularly limited as long as it does not adversely affect the optical properties of the red phosphor. Specifically, the bismuth compound is, for example, a halogenated bismuth (III) composed of BiF 3 , BiCl 3 , BiBr 3 and BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2. Te 3 , Bi (OH) 3 , (BiO) 2 CO 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , BiOCH 3 COO, 4 BiNO 3 ( OH) 2 · BiO (OH), C 3 F 9 O 9 S 3 Bi, C 7 H 7 BiO 7 , C 9 H 21 BiO 3 , C 15 H 33 BiO 3 , C 30 H 57 BiO 6 , C 12 H At least one selected from the group consisting of 10 BiK 3 O 14 , C 3 F 9 O 9 S 3 Bi, and C 6 H 4 (OH) CO 2 BiO · H 2 O can be mentioned. Among these bismuth compounds, halogenated bismuth (III) composed of BiF 3 , BiCl 3 , BiBr 3 and BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2 Te 3 , Bi. (OH) 3 , (BiO) 2 CO 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , 4 BiNO 3 (OH) 2 · BiO (OH) , And inorganic bismuth salts such as C 3 F 9 O 9 S 3 Bi are preferable, and BiF 3 and Bi (NO 3 ) 3 are more preferable. Further, the bismuth compound is particularly preferably BiF 3 from the viewpoint of improving the durability and optical characteristics of the red phosphor in a high temperature and high humidity environment.

前記ビスマスの含有量は、赤色蛍光体の全質量に対し、0.01質量%〜15質量%の範囲であることが好ましく、0.01質量%〜10質量%の範囲であることがより好ましく、0.05質量%〜10質量%の範囲であることがさらに好ましく、0.1質量%〜5質量%の範囲であることが特に好ましい。ビスマス化合物の含有量を0.01質量%以上にすることにより、赤色蛍光体の高温・高湿度環境下での耐久性を一層向上させることができる。その一方、ビスマス化合物の含有量を15質量%以下にすることにより、光学特性の低下を一層低減することができる。 The content of the bismuth is preferably in the range of 0.01% by mass to 15% by mass, more preferably in the range of 0.01% by mass to 10% by mass, based on the total mass of the red phosphor. , 0.05% by mass to 10% by mass, and particularly preferably 0.1% by mass to 5% by mass. By setting the content of the bismuth compound to 0.01% by mass or more, the durability of the red phosphor in a high temperature and high humidity environment can be further improved. On the other hand, by reducing the content of the bismuth compound to 15% by mass or less, the deterioration of the optical characteristics can be further reduced.

赤色蛍光体の(初期)吸収率は50%〜100%の範囲内が好ましく、55%〜100%の範囲内がより好ましく、60%〜100%の範囲内がさらに好ましい。吸収率を50%以上にすることにより、赤色蛍光体の光学特性を良好に維持することができる。特に本発明に於いては、高温・高湿度環境下で一定時間保管した後でも、赤色蛍光体による励起光の吸収の低下を抑制するため、良好な光学特性の維持が図れる。尚、前記吸収率の数値範囲は、赤色蛍光体の初期の吸収率の他、赤色蛍光体を高温・高湿度環境下で一定期間保管した後の吸収率についても当てはまる。吸収率の定義については、前述の通りである。 The (initial) absorption rate of the red phosphor is preferably in the range of 50% to 100%, more preferably in the range of 55% to 100%, and even more preferably in the range of 60% to 100%. By setting the absorptivity to 50% or more, the optical characteristics of the red phosphor can be maintained well. In particular, in the present invention, good optical characteristics can be maintained because the decrease in absorption of excitation light by the red phosphor is suppressed even after storage in a high temperature and high humidity environment for a certain period of time. The numerical range of the absorption rate applies not only to the initial absorption rate of the red phosphor but also to the absorption rate after the red phosphor is stored in a high temperature and high humidity environment for a certain period of time. The definition of absorption rate is as described above.

赤色蛍光体の(初期)内部量子効率は、70%〜100%の範囲内が好ましく、75%〜100%の範囲内がより好ましく、80%〜100%の範囲内がさらに好ましい。内部量子効率を70%以上にすることにより、赤色蛍光体の発光効率が良好に維持することができる。尚、前記内部量子効率の数値範囲は、赤色蛍光体の初期の内部量子効率の他、赤色蛍光体を高温・高湿度環境下で一定期間保管した後の内部量子効率についても当てはまる。内部量子効率の定義については、前述の通りである。 The (initial) internal quantum efficiency of the red phosphor is preferably in the range of 70% to 100%, more preferably in the range of 75% to 100%, and even more preferably in the range of 80% to 100%. By setting the internal quantum efficiency to 70% or more, the luminous efficiency of the red phosphor can be maintained well. The numerical range of the internal quantum efficiency applies not only to the initial internal quantum efficiency of the red phosphor, but also to the internal quantum efficiency after the red phosphor is stored in a high temperature and high humidity environment for a certain period of time. The definition of internal quantum efficiency is as described above.

本実施の形態の赤色蛍光体は、例えば、青色光を光源とする白色LED用の赤色蛍光体として適している。本実施の形態の赤色蛍光体は、照明器具及び画像表示装置等の発光装置に好適に使用することができる。 The red phosphor of the present embodiment is suitable as, for example, a red phosphor for a white LED using blue light as a light source. The red phosphor of the present embodiment can be suitably used for a light emitting device such as a lighting fixture and an image display device.

(赤色蛍光体の製造方法)
次に、本実施の形態に係る赤色蛍光体の製造方法について、以下に説明する。
本実施の形態の赤色蛍光体の製造方法は、前記一般式(1)で表されるMn賦活複フッ化物に対し、ビスマスを含む処理液を接触させる工程を少なくとも含む。この接触工程は、Mn賦活複フッ化物に、ビスマスを含む処理液を接触させることで、当該Mn賦活複フッ化物の表面改質(表面処理)を行うものであり、当該Mn賦活複フッ化物の表面の少なくとも一部にビスマスを存在させ、より好ましくはビスマスを含む被覆層の形成を可能にする。
(Manufacturing method of red phosphor)
Next, the method for producing the red phosphor according to the present embodiment will be described below.
The method for producing a red phosphor of the present embodiment includes at least a step of bringing a treatment liquid containing bismuth into contact with the Mn-activated difluoride represented by the general formula (1). In this contact step, the surface of the Mn-activated difluoride is modified (surface treatment) by contacting the Mn-activated difluoride with a treatment liquid containing bismuth. Bismuth is present on at least a portion of the surface, more preferably allowing the formation of a coating layer containing bismuth.

前記ビスマスを含む処理液は、ビスマス単体及び/又はビスマス化合物を含有する。ビスマスを含有する処理液に於いては、添加したビスマス単体及び/又はビスマス化合物の全てが完全に溶解している場合の他、一部が溶解せずに不溶分として存在していてもよい。 The treatment liquid containing bismuth contains bismuth alone and / or a bismuth compound. In the treatment liquid containing bismuth, the added bismuth alone and / or all of the bismuth compound may be completely dissolved, or a part of the added bismuth may not be dissolved and may exist as an insoluble component.

前記ビスマス化合物としては、BiF、BiCl、BiBr及びBiIからなるハロゲン化ビスマス(III)、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、BiOCHCOO、4BiNO(OH)・BiO(OH)、CBi、CBiO、C21BiO、C1533BiO、C3057BiO、C1210BiK14、CBi、並びにC(OH)COBiO・HOからなる群より選ばれる少なくとも1種が挙げられる。 Examples of the bismuth compound include halogenated bismuth (III) composed of BiF 3 , BiCl 3 , BiBr 3 and BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2 Te 3 , Bi ( OH) 3 , (BiO) 2 CO 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , BiOCH 3 COO, 4 BiNO 3 (OH) 2 · BiO (OH), C 3 F 9 O 9 S 3 Bi, C 7 H 7 BiO 7 , C 9 H 21 BiO 3 , C 15 H 33 BiO 3 , C 30 H 57 BiO 6 , C 12 H 10 BiK 3 O 14 , C 3 F 9 O 9 S 3 Bi, and at least one selected from the group consisting of C 6 H 4 (OH) CO 2 BiO · H 2 O.

前記ビスマスを含む処理液の溶媒としては、水、有機溶媒、それらの混合溶媒、又はそれらの酸性溶媒が挙げられる。 Examples of the solvent of the treatment liquid containing bismuth include water, an organic solvent, a mixed solvent thereof, and an acidic solvent thereof.

前記有機溶媒としては特に限定されず、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、イソブチルアルコール、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,2−ジメトキシエタン等が挙げられる。これらの有機溶媒のうち、入手の容易性や作業環境の簡便性の観点からは、メチルアルコール、エチルアルコール、イソプロピルアルコール及びイソブチルアルコールが好ましく、メチルアルコール及びエチルアルコールが特に好ましい。 The organic solvent is not particularly limited, and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl alcohol, methyl acetate, ethyl acetate, tetrahydrofuran, 1,2-dimethoxyethane and the like. Of these organic solvents, methyl alcohol, ethyl alcohol, isopropyl alcohol and isobutyl alcohol are preferable, and methyl alcohol and ethyl alcohol are particularly preferable, from the viewpoint of easy availability and convenience of working environment.

前記酸性溶媒はプロトンを有する酸を含んだ溶媒のことを意味する。プロトンを有する酸としては特に限定されず、例えば、フッ化水素、硝酸、硫酸、塩酸等が挙げられる。製造プロセスや赤色蛍光体の特性の観点からは、フッ化水素、硝酸が好ましく、フッ化水素が特に好ましい。 The acidic solvent means a solvent containing an acid having a proton. The acid having a proton is not particularly limited, and examples thereof include hydrogen fluoride, nitric acid, sulfuric acid, and hydrochloric acid. From the viewpoint of the production process and the characteristics of the red phosphor, hydrogen fluoride and nitric acid are preferable, and hydrogen fluoride is particularly preferable.

前記処理液中に於けるビスマスの含有量は、当該処理液の全質量に対し、0.01質量%〜15質量%の範囲が好ましく、0.05質量%〜10質量%の範囲がより好ましく、0.1質量%〜5質量%の範囲が特に好ましい。ビスマスの含有量を15質量%以下にすることにより、赤色蛍光体の光学特性を良好に維持することができる。その一方、ビスマスの含有量を0.01質量%以上にすることにより、高温・高湿度環境下での赤色蛍光体の光学特性、及び耐久性を一層向上させることができる。 The content of bismuth in the treatment liquid is preferably in the range of 0.01% by mass to 15% by mass, more preferably in the range of 0.05% by mass to 10% by mass, based on the total mass of the treatment liquid. , 0.1% by mass to 5% by mass is particularly preferable. By setting the content of bismuth to 15% by mass or less, the optical characteristics of the red phosphor can be maintained well. On the other hand, by setting the content of bismuth to 0.01% by mass or more, the optical characteristics and durability of the red phosphor in a high temperature and high humidity environment can be further improved.

ビスマスの含有量は、ビスマスを含む処理液を濾過したときの濾液を、原子吸光分光法又はICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)等の化学分析装置を用いることにより測定することができる。また、前記溶媒に添加したビスマスの質量と、ビスマスを含む処理液を濾過したときに濾紙上に残った溶解残(濾物)の質量との差分を、ビスマスを含む処理液中に溶解しているビスマスの含有量(濃度)として算定することもできる。 The content of bismuth is measured by using a chemical analyzer such as atomic absorption spectroscopy or ICP emission spectroscopic analysis (high frequency inductively coupled plasma emission spectroscopy) for the filtrate obtained by filtering the treatment liquid containing bismus. be able to. Further, the difference between the mass of bismuth added to the solvent and the mass of the dissolution residue (filter) remaining on the filter paper when the treatment solution containing bismuth is filtered is dissolved in the treatment solution containing bismuth. It can also be calculated as the content (concentration) of bismuth.

処理液の溶媒として、フッ化水素を含む酸性溶媒、即ちフッ化水素酸又は当該フッ化水素酸と有機溶媒の混合溶媒を用いる場合、当該フッ化水素を含む酸性溶媒とビスマスとの混合比は、質量基準で30:1〜3500:1の範囲であることが好ましく、100:1〜3500:1の範囲であることがより好ましく、500:1〜1500:1の範囲であることが特に好ましい。前記混合比を3500:1以下にすることにより、処理液が廃液として排出される量を削減することができ、環境負荷の低減が可能になる。その一方、前記混合比を30:1以上にすることにより、処理液中でのビスマス単体及び/又はビスマス化合物の分散性を向上させ、Mn賦活複フッ化物の表面改質後、当該Mn賦活複フッ化物表面上にビスマス等が不均一に存在するのを防止することができる。 When an acidic solvent containing hydrogen fluoride, that is, hydrofluoric acid or a mixed solvent of the hydrofluoric acid and an organic solvent is used as the solvent of the treatment liquid, the mixing ratio of the acidic solvent containing hydrogen fluoride and bismuth is , The range is preferably in the range of 30: 1-3500: 1, more preferably in the range of 100: 1-3500: 1, and particularly preferably in the range of 500: 1-1500: 1. .. By setting the mixing ratio to 3500: 1 or less, the amount of the treatment liquid discharged as waste liquid can be reduced, and the environmental load can be reduced. On the other hand, by setting the mixing ratio to 30: 1 or more, the dispersibility of the bismuth simple substance and / or the bismuth compound in the treatment liquid is improved, and after the surface modification of the Mn-activated compound fluoride, the Mn-activated compound is used. It is possible to prevent bismuth and the like from being unevenly present on the surface of the fluoride.

また、フッ化水素を含む酸性溶媒に於けるフッ化水素の濃度は、当該酸性溶媒の全質量に対し、1質量%〜70質量%の範囲であることが好ましく、10質量%〜50質量%の範囲であることがより好ましく、20質量%〜40質量%であることが特に好ましい。フッ化水素の濃度を70質量%以下にすることにより、フッ化水素を含む酸性溶媒に対するMn賦活複フッ化物の溶解性が低下するのを抑制することができる。その一方、フッ化水素の濃度を1質量%以上にすることにより、処理液の使用量の増大を抑制し、生産性の向上を図ることができる。 The concentration of hydrogen fluoride in the acidic solvent containing hydrogen fluoride is preferably in the range of 1% by mass to 70% by mass, and 10% by mass to 50% by mass, based on the total mass of the acidic solvent. It is more preferably in the range of 20% by mass to 40% by mass. By setting the concentration of hydrogen fluoride to 70% by mass or less, it is possible to suppress a decrease in the solubility of the Mn-activated difluoride in an acidic solvent containing hydrogen fluoride. On the other hand, by setting the concentration of hydrogen fluoride to 1% by mass or more, it is possible to suppress an increase in the amount of the treatment liquid used and improve the productivity.

前記Mn賦活複フッ化物に、ビスマスを含む処理液を接触させる方法としては特に限定されず、例えば、処理液中に被処理物であるMn賦活複フッ化物を投入(浸漬)する方法や、処理液を噴霧する方法等が挙げられる。赤色蛍光体を工業的に製造するとの観点からは、処理液中にMn賦活複フッ化物を投入(浸漬)する方法が好ましい。Mn賦活複フッ化物の投入により、処理液中でMn賦活複フッ化物が分散した懸濁液が得られる。投入回数は特に限定されず、一度にMn賦活複フッ化物を処理液中に投入する場合の他、複数回にわたって投入を行ってもよい。 The method of bringing the treatment liquid containing bismuth into contact with the Mn-activated compound fluoride is not particularly limited, and for example, a method of adding (immersing) the Mn-activated compound fluoride to be treated into the treatment liquid or a treatment. Examples thereof include a method of spraying a liquid. From the viewpoint of industrially producing a red phosphor, a method of adding (immersing) Mn-activated difluoride into the treatment liquid is preferable. By adding Mn-activated difluoride, a suspension in which Mn-activated difluoride is dispersed is obtained in the treatment liquid. The number of times of addition is not particularly limited, and Mn-activated difluoride may be added into the treatment liquid at one time, or may be added a plurality of times.

処理液中にMn賦活複フッ化物を投入する際の当該処理液とMn賦活複フッ化物の質量比は特に限定されず、その後に行う撹拌や濾過に影響を与えない範囲で適宜調整することができる(撹拌及び濾過の詳細については後述する。)。但し、作業効率の観点からは、処理液とMn賦活複フッ化物の質量比は、100:1〜2:1の範囲が好ましく、10:1〜3:1の範囲がより好ましい。前記質量比を100:1以上にすることにより、処理するMn賦活複フッ化物の量が少なくなり過ぎて、赤色蛍光体の生産性が低下するのを抑制することができる。その一方、前記質量比を2:1以下にすることにより、処理液に対するMn賦活複フッ化物分散性が良く、ビスマス化合物を均一に付与することができる。 The mass ratio of the Mn-activated difluoride to the treatment liquid when Mn-activated difluoride is added to the treatment liquid is not particularly limited, and may be appropriately adjusted within a range that does not affect the subsequent stirring and filtration. Yes (details of stirring and filtration will be described later). However, from the viewpoint of work efficiency, the mass ratio of the treatment liquid to the Mn-activated difluoride is preferably in the range of 100: 1 to 2: 1 and more preferably in the range of 10: 1-3: 1. By setting the mass ratio to 100: 1 or more, it is possible to prevent the amount of Mn-activated difluoride to be treated from becoming too small and the productivity of the red phosphor from decreasing. On the other hand, by setting the mass ratio to 2: 1 or less, the Mn-activated difluoride dispersibility in the treatment liquid is good, and the bismuth compound can be uniformly applied.

前記Mn賦活複フッ化物と処理液の接触工程後、得られた懸濁液の撹拌を行う撹拌工程、懸濁液の固液分離工程、固液分離された固体の洗浄工程、及び洗浄後の固体の乾燥工程を順次行うのが好ましい。 After the contact step between the Mn-activated compound fluoride and the treatment liquid, a stirring step of stirring the obtained suspension, a solid-liquid separation step of the suspension, a solid-liquid separated solid washing step, and after washing. It is preferable to carry out the solid drying step in sequence.

前記撹拌工程に於ける撹拌方法としては特に限定されず、公知の撹拌装置等を用いて行うことができる。懸濁液の攪拌時間は特に限定されず、製造設備の効率を踏まえて適宜調整することができる。撹拌速度についても特に限定されず、適宜必要に応じて設定することができる。 The stirring method in the stirring step is not particularly limited, and a known stirring device or the like can be used. The stirring time of the suspension is not particularly limited, and can be appropriately adjusted in consideration of the efficiency of the manufacturing equipment. The stirring speed is also not particularly limited, and can be appropriately set as needed.

前記固液分離工程は、撹拌工程後の懸濁液から、分散している固体粒子を分離する工程である。固液分離の方法としては特に限定されず、例えば、懸濁液を濾過する方法や、懸濁液を静置して分散している固体粒子を沈殿させ、その後デカンテーションを行う方法等が挙げられる。懸濁液の静置時間は特に限定されず、固体粒子が十分に沈殿できる程度であればよい。 The solid-liquid separation step is a step of separating dispersed solid particles from the suspension after the stirring step. The solid-liquid separation method is not particularly limited, and examples thereof include a method of filtering the suspension and a method of allowing the suspension to stand to precipitate dispersed solid particles and then decanting. Be done. The standing time of the suspension is not particularly limited as long as the solid particles can be sufficiently precipitated.

前記洗浄工程は、固液分離により得られるケーキを洗浄するために行われる。この洗浄工程では、水、有機溶媒、それらの混合溶媒、又はそれらの酸性溶媒を洗浄剤として用いることができる。洗浄時間や洗浄回数は特に限定されず、適宜必要に応じて設定され得る。 The washing step is performed to wash the cake obtained by solid-liquid separation. In this cleaning step, water, an organic solvent, a mixed solvent thereof, or an acidic solvent thereof can be used as a cleaning agent. The washing time and the number of washings are not particularly limited and can be set as needed.

洗浄工程で用いる前記有機溶媒としては特に限定されず、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、イソブチルアルコール、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,2−ジメトキシエタン、アセトン等が挙げられる。入手の容易性や作業環境の簡便性の観点からは、メチルアルコール、エチルアルコール、イソプロピルアルコール、イソブチルアルコール、アセトンが好ましく、エチルアルコール、イソプロピルアルコール及びアセトンが特に好ましい。 The organic solvent used in the washing step is not particularly limited, and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl alcohol, methyl acetate, ethyl acetate, tetrahydrofuran, 1,2-dimethoxyethane, and acetone. From the viewpoint of easy availability and convenience of working environment, methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl alcohol and acetone are preferable, and ethyl alcohol, isopropyl alcohol and acetone are particularly preferable.

また、洗浄工程で用いる前記酸性溶媒とは、プロトンを有する酸を含んだ溶液のことを意味する。プロトンを有する酸としては特に限定されず、例えば、フッ化水素、硝酸、硫酸、塩酸等が挙げられる。プロトンを有する酸の含有量は、酸性溶媒の全質量に対し、0.1質量%〜60質量%の範囲が好ましく、1質量%〜55質量%の範囲内がより好ましく、5質量%〜50質量%の範囲内が特に好ましい。 Further, the acidic solvent used in the washing step means a solution containing an acid having a proton. The acid having a proton is not particularly limited, and examples thereof include hydrogen fluoride, nitric acid, sulfuric acid, and hydrochloric acid. The content of the acid having a proton is preferably in the range of 0.1% by mass to 60% by mass, more preferably in the range of 1% by mass to 55% by mass, and 5% by mass to 50% by mass with respect to the total mass of the acidic solvent. The range of mass% is particularly preferable.

前記乾燥工程は、洗浄工程後のケーキに対して行われる。これにより、ケーキに残存している処理液の溶媒分や、洗浄工程で使用した洗浄剤を留去することができる。乾燥方法としては特に限定されず、例えば、加熱乾燥や熱風乾燥等が挙げられる。加熱乾燥の場合、窒素ガスの雰囲気下で行うのが好ましい。乾燥温度は60℃〜200℃の範囲が好ましく、70℃〜150℃の範囲がより好ましく、80℃〜110℃の範囲が特に好ましい。乾燥温度を60℃以上にすることにより、乾燥効率を良好に維持することができる。また、不純物の残存を防止し、当該不純物の残存に起因する赤色蛍光体の光学特性の低下を抑制することができる。その一方、乾燥温度を200℃以下にすることにより、得られる赤色蛍光体が熱により劣化するのを防止することができる。また、加熱乾燥の場合、乾燥時間は0.5時間〜20時間の範囲が好ましく、2時間〜15時間の範囲がより好ましい。乾燥時間を0.5時間以上にすることにより、不純物が残存するのを防止し、当該不純物の残存に起因する赤色蛍光体の光学特性の低下を抑制することができる。その一方、乾燥時間を20時間以下にすることにより、赤色蛍光体の生産効率の低下を防止することができる。 The drying step is performed on the cake after the washing step. As a result, the solvent content of the treatment liquid remaining on the cake and the cleaning agent used in the cleaning step can be distilled off. The drying method is not particularly limited, and examples thereof include heat drying and hot air drying. In the case of heat drying, it is preferable to carry out in an atmosphere of nitrogen gas. The drying temperature is preferably in the range of 60 ° C. to 200 ° C., more preferably in the range of 70 ° C. to 150 ° C., and particularly preferably in the range of 80 ° C. to 110 ° C. By setting the drying temperature to 60 ° C. or higher, the drying efficiency can be maintained well. In addition, it is possible to prevent the residual impurities and suppress the deterioration of the optical characteristics of the red phosphor due to the residual impurities. On the other hand, by setting the drying temperature to 200 ° C. or lower, it is possible to prevent the obtained red phosphor from being deteriorated by heat. Further, in the case of heat drying, the drying time is preferably in the range of 0.5 hour to 20 hours, more preferably in the range of 2 hours to 15 hours. By setting the drying time to 0.5 hours or more, it is possible to prevent impurities from remaining and to suppress deterioration of the optical characteristics of the red phosphor due to the residual impurities. On the other hand, by setting the drying time to 20 hours or less, it is possible to prevent a decrease in the production efficiency of the red phosphor.

以上により、Mn賦活複フッ化物の表面の少なくとも一部にビスマスが存在する赤色蛍光体を製造することができる。尚、ビスマス単体及び/又はビスマス化合物がMn賦活複フッ化物の表面に析出するのは、前記撹拌工程に於いて懸濁液を撹拌する過程であると推測される。あるいは、表面に処理液が付着しているMn賦活複フッ化物を、前記乾燥工程で乾燥する過程に於いて、処理液の溶媒分が留去されることで、ビスマス単体及び/又はビスマス化合物がMn賦活複フッ化物の表面に析出すると推測される。 From the above, it is possible to produce a red phosphor in which bismuth is present on at least a part of the surface of the Mn-activated compound fluoride. It is presumed that the elemental bismuth and / or the bismuth compound precipitates on the surface of the Mn-activated difluoride in the process of stirring the suspension in the stirring step. Alternatively, the solvent component of the treatment liquid is distilled off in the process of drying the Mn-activated compound fluoride having the treatment liquid attached to the surface in the drying step, so that the bismuth simple substance and / or the bismuth compound can be obtained. It is presumed that it precipitates on the surface of Mn-activated compound fluoride.

また、ビスマスを含む処理液が、当該ビスマスの一部だけを溶解し、ビスマスの不溶分を含むものである場合、当該不溶分のビスマスがMn賦活複フッ化物の表面に単体として残存することがある。しかし、本発明ではその様な場合でも、赤色蛍光体の光学特性に悪影響を与えない限り、ビスマスの不溶分がMn賦活複フッ化物の表面に残存していてもよい。但し、ビスマスの不溶分の残存が赤色蛍光体の光学特性を低下させる等、好ましくない場合は、ビスマスが完全に溶解している処理液を用いたり、ビスマスの含有量を調整して不溶分が発生しない様にするのが好ましい。 Further, when the treatment liquid containing bismuth dissolves only a part of the bismuth and contains an insoluble component of the bismuth, the insoluble bismuth may remain as a simple substance on the surface of the Mn-activated difluoride. However, in the present invention, even in such a case, the insoluble component of bismuth may remain on the surface of the Mn-activated difluoride as long as it does not adversely affect the optical properties of the red phosphor. However, if the residual bismuth insoluble content deteriorates the optical characteristics of the red phosphor, etc., use a treatment solution in which bismuth is completely dissolved, or adjust the bismuth content to remove the insoluble content. It is preferable not to occur.

(その他の事項)
以上の説明に於いては、本発明の好適な実施形態について説明した。しかし、本発明は当該実施形態に限定されるものではなく、その他の様々な形態で実施可能である。
(Other matters)
In the above description, a preferred embodiment of the present invention has been described. However, the present invention is not limited to this embodiment, and can be implemented in various other embodiments.

例えば、以上の説明に於いては、赤色蛍光体の製造方法に関し、Mn賦活複フッ化物に、ビスマスを含む処理液を接触させる方法として、処理液中にMn賦活複フッ化物を投入する方法を挙げた。しかし、本発明はこの方法に限定されるものではない。例えば、前記処理液を被処理物であるMn賦活複フッ化物に噴霧する方法であってもよい。処理液の噴霧量は特に限定されず、適宜設定することができる。また、処理液のMn賦活複フッ化物への噴霧後は、Mn賦活複フッ化物の表面に残存している処理液の溶媒分を留去するのが好ましい。留去の方法としては特に限定されず、例えば、前述の乾燥工程を行うことができる。 For example, in the above description, regarding the method for producing a red phosphor, as a method of bringing the treatment liquid containing bismuth into contact with the Mn-activated compound fluoride, a method of adding the Mn-activated compound fluoride into the treatment liquid is described. I mentioned it. However, the present invention is not limited to this method. For example, a method of spraying the treatment liquid onto the Mn-activated double fluoride which is the object to be treated may be used. The spray amount of the treatment liquid is not particularly limited and can be appropriately set. Further, after the treatment liquid is sprayed on the Mn-activated difluoride, it is preferable to distill off the solvent component of the treatment liquid remaining on the surface of the Mn-activated difluoride. The method of distillation is not particularly limited, and for example, the above-mentioned drying step can be performed.

また、赤色蛍光体の原料であるMn賦活複フッ化物の製造方法については特に限定されず、公知の方法を採用することができる。例えば、Mn賦活複フッ化物の構成元素を含む化合物をフッ化水素酸溶液に溶解させてそれらを混合し、反応晶析させる方法(H.D.Nguyen, C.C.Lin, R.S.Liu、Angew. Chem. 54巻37号10862ページ(2015年)参照。)、Mn賦活複フッ化物の構成元素を含む化合物をフッ化水素酸溶液に全て溶解又は分散させ、さらに蒸発濃縮させて析出させる方法(特表2009−528429号公報参照。)、フッ化水素酸溶液にMn賦活複フッ化物の構成元素を含む化合物を順次溶解させ、これに固体のMn賦活複フッ化物のマンガン非含有構成元素の一つを添加し、KSiF:Mn4+の結晶を析出させ、濾過・乾燥させる方法(WO2015/093430号参照。)等が挙げられる。 Further, the method for producing Mn-activated difluoride, which is a raw material for the red phosphor, is not particularly limited, and a known method can be adopted. For example, a method of dissolving a compound containing a constituent element of Mn-activated compound fluoride in a hydrofluoric acid solution, mixing them, and subjecting them to reaction crystallization (HD Nguyen, CC Lin, RS. Liu, Angew. Chem. Vol. 54, No. 37, p. 10862 (2015)), all compounds containing the constituent elements of Mn-activated difluoride are dissolved or dispersed in a hydrofluoric acid solution, and further evaporated and concentrated to precipitate. (Refer to Japanese Patent Application Laid-Open No. 2009-528429), a compound containing a constituent element of Mn-activated difluoride is sequentially dissolved in a hydrofluoric acid solution, and a manganese-free composition of solid Mn-activated difluoride is dissolved therein. It was added one element, K 2 SiF 6: to precipitate crystals of Mn 4+, (. see No. WO2015 / 093430) filtration and dried method for the like.

以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

(Mn賦活複フッ化物の生成)
H.D.Nguyen, C.C.Lin, R.S.Liu、Angew. Chem. 54巻37号10862ページ(2015年)に記載されている方法に準拠し、以下の方法でMn賦活複フッ化物を合成した。
(Mn activated compound fluoride formation)
H. D. Nguyen, C.I. C. Lin, R.M. S. Liu, Angew. Chem. Mn-activated difluoride was synthesized by the following method in accordance with the method described in Vol. 54, No. 37, p. 10862 (2015).

先ず、内容積が0.1LのPFA容器に、48質量%フッ化水素酸溶液35mlを投入した。次に、フッ化水素酸溶液を撹拌しながら、1.2gのSiOを添加して溶解させた。さらに、この溶液に0.3gのKMnFを添加して溶解させた。 First, 35 ml of a 48 mass% hydrofluoric acid solution was placed in a PFA container having an internal volume of 0.1 L. Next, while stirring the hydrofluoric acid solution, 1.2 g of SiO 2 was added and dissolved. Further, 0.3 g of K 2 MnF 6 was added to and dissolved in this solution.

続いて、3.5gのKFを前記溶液に15分間かけてゆっくり添加し、結晶物を得た。この結晶物を20質量%フッ化水素酸溶液とアセトンで洗浄した後、70℃で6時間乾燥させた。これにより、Mn賦活複フッ化物としてのKSiF:Mn4+を得た。 Subsequently, 3.5 g of KF was slowly added to the solution over 15 minutes to obtain crystals. The crystals were washed with a 20 mass% hydrofluoric acid solution and acetone, and then dried at 70 ° C. for 6 hours. As a result, K 2 SiF 6 : Mn 4+ as a Mn-activated difluoride was obtained.

(実施例1)
フッ化ビスマス(BiF)0.15gを、濃度43質量%フッ化水素酸16.6mlに添加し、5分間撹拌して懸濁液を調製した(フッ化水素酸:ビスマス=1408:1(質量基準の混合比))。次に、この懸濁液を撹拌しながら、前記KSiF:Mn4+を5.3g添加し、さらに10分間撹拌した。
(Example 1)
0.15 g of bismuth fluoride (BiF 3 ) was added to 16.6 ml of 43 mass% hydrofluoric acid, and the mixture was stirred for 5 minutes to prepare a suspension (hydrofluoric acid: bismuth = 1408: 1 (hydrofluoric acid: bismuth = 1408: 1). Mass-based mixing ratio)). Next, while stirring the suspension, the K 2 SiF 6: The Mn 4+ were added 5.3 g, was stirred for another 10 minutes.

撹拌終了後、懸濁液を10分間静置し、分散している固体を沈殿させた。その後、吸引濾過をして濾物を回収した。さらに、この濾物にエタノールを加えた後、再び吸引濾過をして上澄みを除去し、この操作を繰り返して濾物の洗浄を行った。洗浄した濾物を回収し、窒素雰囲気下、乾燥温度105℃で乾燥してエタノールを蒸発させた。これにより、実施例1に係る赤色蛍光体を作製した。 After the stirring was completed, the suspension was allowed to stand for 10 minutes to precipitate the dispersed solid. Then, suction filtration was performed to collect the filtrate. Further, after adding ethanol to the filter, suction filtration was performed again to remove the supernatant, and this operation was repeated to wash the filter. The washed filtrate was collected and dried in a nitrogen atmosphere at a drying temperature of 105 ° C. to evaporate ethanol. As a result, the red phosphor according to Example 1 was produced.

(実施例2)
本実施例では、フッ化ビスマスの添加量を0.15gから0.05gに変更した(フッ化水素酸:ビスマス=423:1(質量基準の混合比))。それ以外は実施例1と同様にして、実施例2に係る赤色蛍光体を作製した。
(Example 2)
In this example, the amount of bismuth fluoride added was changed from 0.15 g to 0.05 g (hydrofluoric acid: bismuth = 423: 1 (mixing ratio based on mass)). A red phosphor according to Example 2 was produced in the same manner as in Example 1 except for the above.

(実施例3)
本実施例では、フッ化ビスマスの添加量を0.15gから0.015gに変更した(フッ化水素酸:ビスマス=141:1(質量基準の混合比))。それ以外は実施例1と同様にして、実施例3に係る赤色蛍光体を作製した。
(Example 3)
In this example, the amount of bismuth fluoride added was changed from 0.15 g to 0.015 g (hydrofluoric acid: bismuth = 141: 1 (mixing ratio based on mass)). A red fluorescent substance according to Example 3 was prepared in the same manner as in Example 1 except for the above.

(実施例4)
本実施例では、フッ化ビスマスの添加量を0.15gから0.60gに変更した(フッ化水素酸:ビスマス=35:1(質量基準の混合比))。それ以外は実施例1と同様にして、実施例4に係る赤色蛍光体を作製した。
(Example 4)
In this example, the amount of bismuth fluoride added was changed from 0.15 g to 0.60 g (hydrofluoric acid: bismuth = 35: 1 (mixing ratio based on mass)). A red fluorescent substance according to Example 4 was prepared in the same manner as in Example 1 except for the above.

(実施例5)
本実施例では、フッ化ビスマスの添加量を0.15gから0.90gに変更し、濃度43質量%フッ化水素酸の量を16.6mlから21.5mlに変更した(フッ化水素酸:ビスマス=30:1(質量基準の混合比))。それ以外は実施例1と同様にして、実施例5に係る赤色蛍光体を作製した。
(Example 5)
In this example, the amount of bismuth fluoride added was changed from 0.15 g to 0.90 g, and the amount of hydrofluoric acid having a concentration of 43% by mass was changed from 16.6 ml to 21.5 ml (hydrofluoric acid: Bismuth = 30: 1 (mass-based mixing ratio)). A red phosphor according to Example 5 was prepared in the same manner as in Example 1 except for the above.

(実施例6)
本実施例では、フッ化ビスマスを濃度40質量%硝酸ビスマス水溶液に変更し、添加量を0.15gから0.56gに変更した(フッ化水素酸:ビスマス=140:1(質量基準の混合比))。それら以外は実施例1と同様にして、実施例6に係る赤色蛍光体を作製した。
(Example 6)
In this example, bismuth fluoride was changed to an aqueous solution of bismuth nitrate having a concentration of 40% by mass, and the amount added was changed from 0.15 g to 0.56 g (hydrofluoric acid: bismuth = 140: 1 (mass-based mixing ratio). )). A red fluorescent substance according to Example 6 was prepared in the same manner as in Example 1 except for these.

(実施例7)
本実施例では、フッ化水素酸の濃度を43質量%から35質量%に変更し、フッ化ビスマスの添加量を0.15gから0.015gに変更した(フッ化水素酸:ビスマス=1408:1(質量基準の混合比))。それら以外は実施例1と同様にして、実施例7に係る赤色蛍光体を作製した。
(Example 7)
In this example, the concentration of hydrofluoric acid was changed from 43% by mass to 35% by mass, and the amount of bismuth fluoride added was changed from 0.15 g to 0.015 g (hydrofluoric acid: bismuth = 1408: 1 (Mass-based mixing ratio)). A red fluorescent substance according to Example 7 was prepared in the same manner as in Example 1 except for these.

(比較例1)
本比較例では、前述のKSiF:Mn4+を赤色蛍光体として用いた。
(Comparative Example 1)
In this comparative example, the above-mentioned K 2 SiF 6 : Mn 4+ was used as the red phosphor.

(赤色蛍光体の評価)
実施例1〜7及び比較例1に係る赤色蛍光体について、以下に述べる方法で各評価を行った。
(Evaluation of red phosphor)
The red phosphors according to Examples 1 to 7 and Comparative Example 1 were evaluated by the methods described below.

<Mnのモル比、及びビスマスの含有量>
実施例1〜7及び比較例1の赤色蛍光体のマンガン濃度、及びビスマス含有量は、エネルギー分散型X線分析(Energy dispersive X−ray spectrometry:EDX)により測定した。EDX測定とは、X線をサンプルに照射した際に発生する蛍光X線を測定し、サンプルを構成する元素と濃度を分析する測定方法である。
<Mol ratio of Mn and content of bismuth>
The manganese concentration and bismuth content of the red phosphors of Examples 1 to 7 and Comparative Example 1 were measured by energy dispersive X-ray spectroscopy (EDX). The EDX measurement is a measurement method in which fluorescent X-rays generated when a sample is irradiated with X-rays are measured, and the elements and concentrations constituting the sample are analyzed.

実施例1〜7及び比較例1の各赤色蛍光体を、それぞれEDX測定装置の試料台に載せ、マンガン濃度とビスマス含有量を算出した。EDX測定装置としては、JSF−7800Fショットキー電界放出形走査電子顕微鏡(商品名、日本電子(株)製)を用いた。また、測定条件は、加速電圧:15kV、照射電流:1.0000nA、エネルギー範囲:0−20keVとした。 The red phosphors of Examples 1 to 7 and Comparative Example 1 were placed on the sample table of the EDX measuring device, respectively, and the manganese concentration and the bismuth content were calculated. As the EDX measuring device, a JSF-7800F shotkey field emission scanning electron microscope (trade name, manufactured by JEOL Ltd.) was used. The measurement conditions were an accelerating voltage: 15 kV, an irradiation current: 1.0000 nA, and an energy range: 0-20 keV.

測定の結果、赤色蛍光体中のSi及びMnの合計モル数に対するMnのモル比(Mn/(Si+Mn))は、実施例1〜7の赤色蛍光体の場合、それぞれ0.054、0.054、0.055、0.054、0.054、0.055、0.055であり、比較例1の赤色蛍光体の場合、0.055であった。 As a result of the measurement, the molar ratio of Mn (Mn / (Si + Mn)) to the total number of moles of Si and Mn in the red phosphor was 0.054 and 0.054, respectively, in the case of the red phosphors of Examples 1 to 7, respectively. , 0.055, 0.054, 0.054, 0.055, 0.055, and in the case of the red phosphor of Comparative Example 1, it was 0.055.

また、ビスマスの含有量は、実施例1〜7の赤色蛍光体の場合、それぞれ4.1wt%、1.3wt%、0.4wt%、10.7wt%、14.9wt%、4.0wt%、0.4wt%であり、比較例1の赤色蛍光体の場合、検出限界(0.01wt%)以下であった。 In the case of the red phosphors of Examples 1 to 7, the bismuth content was 4.1 wt%, 1.3 wt%, 0.4 wt%, 10.7 wt%, 14.9 wt% and 4.0 wt%, respectively. , 0.4 wt%, which was below the detection limit (0.01 wt%) in the case of the red phosphor of Comparative Example 1.

<赤色蛍光体の光学特性の評価>
実施例1〜7及び比較例1の各赤色蛍光体の光学特性を評価するため、それぞれの吸収率と内部量子効率を求めた。
<Evaluation of optical characteristics of red phosphor>
In order to evaluate the optical characteristics of each of the red phosphors of Examples 1 to 7 and Comparative Example 1, the absorption rate and the internal quantum efficiency of each were determined.

吸収率及び内部量子効率は、青色のLEDスポット照明(商品名:TSPA22X8−57B、アズワン社製)と、分光放射計(商品名:SR−UL2、トプコン社製)を用いて測定した。即ち、試料ステージに励起光をほぼ100%反射する白板(BaSO、日本分光(株)製)をセットして、励起光(波長:449nm)の分光放射輝度を測定し、そのピーク値(Ex1)を算出した。 Absorption rate and internal quantum efficiency were measured using a blue LED spot illumination (trade name: TSPA22X8-57B, manufactured by AS ONE Corporation) and a spectroradiometer (trade name: SR-UL2, manufactured by Topcon Corporation). That is, a white plate (BaSO 4 , manufactured by JASCO Corporation) that reflects almost 100% of the excitation light is set on the sample stage, the spectral radiance of the excitation light (wavelength: 449 nm) is measured, and the peak value (Ex1) is measured. ) Was calculated.

続いて試料ステージの凹部に、実施例1〜7又は比較例1の何れかの赤色蛍光体の試料を詰め込み、励起光照射下での蛍光の分光放射輝度ピーク値(Em)と、未吸収分の励起光ピーク値(Ex2)をそれぞれ測定した。 Subsequently, the red phosphor sample of any of Examples 1 to 7 or Comparative Example 1 is packed in the recess of the sample stage, and the spectral radiance peak value (Em) of fluorescence under excitation light irradiation and the unabsorbed component The excitation light peak value (Ex2) of was measured.

実施例1〜7及び比較例1の各赤色蛍光体による吸収率αは、以下の数式(1)を用いて算出した。結果を表1に示す。
吸収率α(%)=(Ex1−Ex2)/Ex1×100 (1)
The absorption rate α of each of the red phosphors of Examples 1 to 7 and Comparative Example 1 was calculated using the following mathematical formula (1). The results are shown in Table 1.
Absorption rate α (%) = (Ex1-Ex2) / Ex1 × 100 (1)

また、実施例1〜7及び比較例1の各赤色蛍光体の内部量子効率ηは、以下の数式(2)を用いて算出した。結果を表1に示す。
内部量子効率η(%)=Em/(Ex1−Ex2)×100 (2)
Further, the internal quantum efficiency η of each of the red phosphors of Examples 1 to 7 and Comparative Example 1 was calculated using the following mathematical formula (2). The results are shown in Table 1.
Internal quantum efficiency η (%) = Em / (Ex1-Ex2) × 100 (2)

<赤色蛍光体の耐久性の評価>
耐久性試験は、以下の様にして行った。先ず、実施例1〜7又は比較例1の赤色蛍光体0.3gをそれぞれPFAトレーに入れ、温度80℃、相対湿度80%に制御した恒温恒湿器の中にセットし、88時間保管した。その後、前述の方法により吸収率α及び内部量子効率ηをそれぞれ求めた。さらに、温度80℃、相対湿度80%の環境下で、各赤色蛍光体を168時間保管した後の吸収率α及び内部量子効率ηについても求めた。
<Evaluation of durability of red phosphor>
The durability test was carried out as follows. First, 0.3 g of the red phosphors of Examples 1 to 7 or Comparative Example 1 were placed in PFA trays, set in a constant temperature and humidity chamber controlled at a temperature of 80 ° C. and a relative humidity of 80%, and stored for 88 hours. .. Then, the absorption rate α and the internal quantum efficiency η were obtained by the above-mentioned methods, respectively. Further, the absorptance α and the internal quantum efficiency η after storing each red phosphor for 168 hours in an environment of a temperature of 80 ° C. and a relative humidity of 80% were also determined.

さらに、以下の数式(3)に基づき、各赤色蛍光体の耐久試験前後での内部量子効率の値から、赤色蛍光体の高温・高湿度環境下に於ける耐久性の指標を算出した。結果を表1に示す。
(耐久性の指標)=(耐久試験後の内部量子効率)/(耐久試験前の内部量子効率)×100 (3)
尚、数式(3)中の「耐久試験後」とは、温度80℃、相対湿度80%の環境下で88時間保管した後の場合と、168時間保管した後の場合とを意味する。
Furthermore, based on the following mathematical formula (3), an index of the durability of the red phosphor in a high temperature and high humidity environment was calculated from the values of the internal quantum efficiency before and after the durability test of each red phosphor. The results are shown in Table 1.
(Durability index) = (Internal quantum efficiency after endurance test) / (Internal quantum efficiency before endurance test) x 100 (3)
In addition, "after the durability test" in the formula (3) means the case after storing for 88 hours in the environment of the temperature 80 degreeC and the relative humidity 80%, and the case after storing for 168 hours.

(結果)
表1に示される様に、フッ化ビスマスを含む処理液で表面処理を行った実施例1〜7の赤色蛍光体では、ビスマスの含有が確認された。また、実施例1〜7の赤色蛍光体は、表面処理を行っていない比較例1の赤色蛍光体と比べて、高温・高湿度環境下での耐久性が改善されていることが認められた。
(result)
As shown in Table 1, the content of bismuth was confirmed in the red phosphors of Examples 1 to 7 which were surface-treated with the treatment liquid containing bismuth fluoride. Further, it was confirmed that the red phosphors of Examples 1 to 7 had improved durability in a high temperature and high humidity environment as compared with the red phosphors of Comparative Example 1 which had not been surface-treated. ..

Figure 2020172633
Figure 2020172633

Claims (13)

以下の一般式(1)で表されるMn賦活複フッ化物と、ビスマスとを含む赤色蛍光体。
MF:Mn4+ (1)
(式中、前記Aはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を表し、前記Mはケイ素、ゲルマニウム、錫、チタン、ジルコニウム及びハフニウムからなる群より選ばれる少なくとも1種の4価の元素を表す。)
A red phosphor containing Mn-activated compound fluoride represented by the following general formula (1) and bismuth.
A 2 MF 6 : Mn 4+ (1)
(In the formula, A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium. Represents at least one tetravalent element selected.)
前記Mn賦活複フッ化物は粒子状であり、当該粒子状のMn賦活複フッ化物の表面の少なくとも一部に、前記ビスマスが存在する請求項1に記載の赤色蛍光体。 The red fluorescent substance according to claim 1, wherein the Mn-activated compound fluoride is in the form of particles, and the bismuth is present on at least a part of the surface of the particulate Mn-activated compound fluoride. 前記粒子状のMn賦活複フッ化物の表面には被覆層が設けられており、
前記被覆層は前記ビスマスを含む請求項2に記載の赤色蛍光体。
A coating layer is provided on the surface of the particulate Mn-activated difluoride.
The red phosphor according to claim 2, wherein the coating layer contains the bismuth.
前記被覆層がビスマス単体及び/又はビスマス化合物からなる請求項3に記載の赤色蛍光体。 The red phosphor according to claim 3, wherein the coating layer is composed of a simple substance of bismuth and / or a compound of bismuth. 前記ビスマス化合物が、BiF、BiCl、BiBr、BiI、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、BiOCHCOO、4BiNO(OH)・BiO(OH)、CBi、CBiO、C21BiO、C1533BiO、C3057BiO、C1210BiK14、CBi、及びC(OH)COBiO・HOからなる群より選ばれる少なくとも1種である請求項4に記載の赤色蛍光体。 The bismuth compounds are BiF 3 , BiCl 3 , BiBr 3 , BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2 Te 3 , Bi (OH) 3 , (BiO) 2 CO. 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , BiOCH 3 COO, 4 BiNO 3 (OH) 2 , BiO (OH), C 3 F 9 O 9 S 3 Bi, C 7 H 7 BiO 7 , C 9 H 21 BiO 3 , C 15 H 33 BiO 3 , C 30 H 57 BiO 6 , C 12 H 10 BiK 3 O 14 , C 3 F 9 O 9 S 3 The red phosphor according to claim 4, which is at least one selected from the group consisting of Bi and C 6 H 4 (OH) CO 2 BiO · H 2 O. 前記ビスマスの含有量は、赤色蛍光体の全質量に対し0.01質量%〜15質量%の範囲である請求項1〜5の何れか1項に記載の赤色蛍光体。 The red phosphor according to any one of claims 1 to 5, wherein the content of the bismuth is in the range of 0.01% by mass to 15% by mass with respect to the total mass of the red phosphor. 前記Mn賦活複フッ化物に於ける前記Mnのモル比は、前記MとMnの合計モル数に対して0.005〜0.15の範囲である請求項1〜6の何れか1項に記載の赤色蛍光体。 The aspect of any one of claims 1 to 6, wherein the molar ratio of Mn in the Mn-activated compound fluoride is in the range of 0.005 to 0.15 with respect to the total number of moles of M and Mn. Red phosphor. 以下の一般式(1)で表されるMn賦活複フッ化物に対し、ビスマスを含む処理液を接触させる工程を含む赤色蛍光体の製造方法。
MF:Mn4+ (1)
(式中、前記Aはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を表し、前記Mはケイ素、ゲルマニウム、錫、チタン、ジルコニウム及びハフニウムからなる群より選ばれる少なくとも1種の4価の元素を表す。)
A method for producing a red phosphor, which comprises a step of bringing a treatment liquid containing bismuth into contact with the Mn-activated compound fluoride represented by the following general formula (1).
A 2 MF 6 : Mn 4+ (1)
(In the formula, A represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, and M represents from the group consisting of silicon, germanium, tin, titanium, zirconium and hafnium. Represents at least one tetravalent element selected.)
前記処理液中に於ける前記ビスマスの含有量が、当該処理液の全質量に対し0.01質量%〜15質量%の範囲である請求項8に記載の赤色蛍光体の製造方法。 The method for producing a red phosphor according to claim 8, wherein the content of the bismuth in the treatment liquid is in the range of 0.01% by mass to 15% by mass with respect to the total mass of the treatment liquid. 前記処理液の溶媒が、水、有機溶媒、それらの混合溶媒、又はそれらの酸性溶媒である請求項8又は9に記載の赤色蛍光体の製造方法。 The method for producing a red phosphor according to claim 8 or 9, wherein the solvent of the treatment liquid is water, an organic solvent, a mixed solvent thereof, or an acidic solvent thereof. 前記酸性溶媒がフッ化水素を含む酸性溶媒であり、
前記フッ化水素を含む酸性溶媒と前記ビスマスとの混合比が、質量基準で30:1〜3500:1の範囲である請求項10に記載の赤色蛍光体の製造方法。
The acidic solvent is an acidic solvent containing hydrogen fluoride,
The method for producing a red phosphor according to claim 10, wherein the mixing ratio of the acidic solvent containing hydrogen fluoride and the bismuth is in the range of 30: 1 to 3500: 1 on a mass basis.
前記フッ化水素を含む酸性溶媒に於ける当該フッ化水素の濃度が、酸性溶媒の全質量に対し1質量%〜70質量%の範囲である請求項11に記載の赤色蛍光体の製造方法。 The method for producing a red phosphor according to claim 11, wherein the concentration of the hydrogen fluoride in the acidic solvent containing hydrogen fluoride is in the range of 1% by mass to 70% by mass with respect to the total mass of the acidic solvent. 前記ビスマスが、Bi単体、BiF、BiCl、BiBr、BiI、Bi、Bi、BiSe、BiSb、BiTe、Bi(OH)、(BiO)CO、BiOCl、BiPO、BiTi、Bi(WO、Bi(SO、BiOCHCOO、4BiNO(OH)・BiO(OH)、CBi、CBiO、C21BiO、C1533BiO、C3057BiO、C1210BiK14、CBi、及びC(OH)COBiO・HOからなる群より選ばれる少なくとも1種として前記処理液に含まれる請求項8〜12の何れか1項に記載の赤色蛍光体の製造方法。 The bismuth is Bi alone, BiF 3 , BiCl 3 , BiBr 3 , BiI 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , BiSb, Bi 2 Te 3 , Bi (OH) 3 , (BiO). 2 CO 3 , BiOCl, BiPO 4 , Bi 2 Ti 2 O 7 , Bi (WO 4 ) 3 , Bi 2 (SO 4 ) 3 , BiOCH 3 COO, 4BiNO 3 (OH) 2 · BiO (OH), C 3 F 9 O 9 S 3 Bi, C 7 H 7 BiO 7 , C 9 H 21 BiO 3 , C 15 H 33 BiO 3 , C 30 H 57 BiO 6 , C 12 H 10 BiK 3 O 14 , C 3 F 9 O 9 The red fluorescence according to any one of claims 8 to 12, which is contained in the treatment liquid as at least one selected from the group consisting of S 3 Bi and C 6 H 4 (OH) CO 2 BiO · H 2 O. How to make a body.
JP2020046788A 2019-04-09 2020-03-17 Red phosphor and its manufacturing method Active JP6910085B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/442,653 US11965123B2 (en) 2019-04-09 2020-03-19 Red phosphor and method for producing same
CN202080011140.2A CN113366085B (en) 2019-04-09 2020-03-19 Red phosphor and method for producing same
EP20787236.7A EP3954748B1 (en) 2019-04-09 2020-03-19 Red phosphor and method for producing same
PCT/JP2020/012443 WO2020209032A1 (en) 2019-04-09 2020-03-19 Red phosphor and method for producing same
KR1020217027034A KR102338290B1 (en) 2019-04-09 2020-03-19 Red phosphor and manufacturing method thereof
TW109110741A TWI833001B (en) 2019-04-09 2020-03-30 Red phosphor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019073863 2019-04-09
JP2019073863 2019-04-09

Publications (2)

Publication Number Publication Date
JP2020172633A true JP2020172633A (en) 2020-10-22
JP6910085B2 JP6910085B2 (en) 2021-07-28

Family

ID=72830138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046788A Active JP6910085B2 (en) 2019-04-09 2020-03-17 Red phosphor and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6910085B2 (en)
CN (1) CN113366085B (en)
TW (1) TWI833001B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022200501A1 (en) * 2021-03-25 2022-09-29 Osram Opto Semiconductors Gmbh Luminous substance, method for the production of a luminous substance and radiation-emitting component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014392A1 (en) * 2014-07-22 2016-01-28 General Electric Company Red-emitting phosphors, associated processes and devices
JP2017186524A (en) * 2016-03-30 2017-10-12 日亜化学工業株式会社 Fluophor, light-emitting device and manufacturing method of fluophor
WO2018005448A1 (en) * 2016-06-27 2018-01-04 General Electric Company Coated manganese doped phosphors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9546318B2 (en) * 2014-05-01 2017-01-17 General Electric Company Process for preparing red-emitting phosphors
CN106459750A (en) * 2014-06-18 2017-02-22 松下知识产权经营株式会社 Method for manufacturing surface-treated phosphor, surface-treated phosphor, wavelength conversion member, and light emission device
JP6745787B2 (en) * 2015-02-18 2020-08-26 デンカ株式会社 Method for manufacturing phosphor
JP2017149862A (en) * 2016-02-25 2017-08-31 三菱ケミカル株式会社 MANUFACTURING METHOD OF Mn ACTIVATED FLUORIDE FLUOPHOR
US11114591B2 (en) * 2016-08-17 2021-09-07 Current Lighting Solutions, Llc Core-shell materials with red-emitting phosphors
JP6799682B2 (en) * 2016-11-17 2020-12-16 ゼネラル・エレクトリック・カンパニイ Coated red ray emitting phosphor
US20190048258A1 (en) * 2017-08-10 2019-02-14 General Electric Company Coated manganese doped phosphors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014392A1 (en) * 2014-07-22 2016-01-28 General Electric Company Red-emitting phosphors, associated processes and devices
JP2017524775A (en) * 2014-07-22 2017-08-31 ゼネラル・エレクトリック・カンパニイ Red light emitting phosphor, related method and apparatus
JP2017186524A (en) * 2016-03-30 2017-10-12 日亜化学工業株式会社 Fluophor, light-emitting device and manufacturing method of fluophor
WO2018005448A1 (en) * 2016-06-27 2018-01-04 General Electric Company Coated manganese doped phosphors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022200501A1 (en) * 2021-03-25 2022-09-29 Osram Opto Semiconductors Gmbh Luminous substance, method for the production of a luminous substance and radiation-emitting component

Also Published As

Publication number Publication date
CN113366085A (en) 2021-09-07
JP6910085B2 (en) 2021-07-28
CN113366085B (en) 2023-06-30
TW202104547A (en) 2021-02-01
TWI833001B (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP6155382B2 (en) Phosphor, light emitting element and light emitting device
JP6155383B2 (en) Phosphor, light emitting element and light emitting device
JP6603458B2 (en) Phosphor, method for producing the same, and light emitting device using the phosphor
JP6359066B2 (en) Potassium fluoride manganate for manganese-activated bifluoride phosphor raw material and method for producing manganese-activated bifluoride phosphor using the same
JP6826445B2 (en) Potassium hexafluoride and manganese-activated compound fluoride phosphor using it
JP6910085B2 (en) Red phosphor and its manufacturing method
WO2020209032A1 (en) Red phosphor and method for producing same
WO2020255881A1 (en) Phosphor and method of producing phosphor
JP2016155899A (en) Fluoride phosphor complex and method for producing the same, and light emitting device prepared with the complex
WO2023062927A1 (en) Red fluorescent substance and production method therefor
JP7242368B2 (en) Manufacturing method of fluoride phosphor
WO2021029289A1 (en) Potassium hexafluoromanganate, method for producing potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride phosphor
US20220356074A1 (en) Potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride fluorescent body
JP2018100332A (en) Method for producing fluoride phosphor
WO2015129742A1 (en) Phosphor, light emitting element, and light emitting device
US10611956B2 (en) Phosphor, light emitting device, and method for producing phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6910085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150