JP2020172600A - Curing method, and curing system - Google Patents

Curing method, and curing system Download PDF

Info

Publication number
JP2020172600A
JP2020172600A JP2019076090A JP2019076090A JP2020172600A JP 2020172600 A JP2020172600 A JP 2020172600A JP 2019076090 A JP2019076090 A JP 2019076090A JP 2019076090 A JP2019076090 A JP 2019076090A JP 2020172600 A JP2020172600 A JP 2020172600A
Authority
JP
Japan
Prior art keywords
photocurable resin
irradiation
work
temperature
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019076090A
Other languages
Japanese (ja)
Inventor
雷太 堀口
Raita Horiguchi
雷太 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2019076090A priority Critical patent/JP2020172600A/en
Publication of JP2020172600A publication Critical patent/JP2020172600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

To alleviate a condition of oxygen concentration.SOLUTION: A curing system, provided with an ultraviolet irradiation device 14 that irradiates a photocurable resin 4 coated onto a surface 2A of a workpiece 2 with ultraviolet light in the atmosphere where oxygen concentration is controlled and cures the photocurable resin, includes heating means for heating the photocurable resin 4 of the workpiece 2 to a predetermined temperature just before irradiation or higher, in which the ultraviolet irradiation device 14 irradiates the photocurable resin 4 with ultraviolet light in a state where the photocurable resin 4 is heated to the predetermined temperature just before irradiation or higher.SELECTED DRAWING: Figure 1

Description

本発明は、硬化方法、及び硬化システムに関する。 The present invention relates to a curing method and a curing system.

光硬化性樹脂に紫外線を照射して硬化する光硬化技術が広く知られており、印刷やコーティングなどの各種の分野に広く用いられている。一般に、光硬化性樹脂には、紫外線照射によって重合反応を生じさせるための光重合開始剤(フォトイニシエータとも呼ばれる)を含有した樹脂組成物が用いられている。 A photocuring technique for curing a photocurable resin by irradiating it with ultraviolet rays is widely known, and is widely used in various fields such as printing and coating. Generally, as the photocurable resin, a resin composition containing a photopolymerization initiator (also called a photoinitiator) for causing a polymerization reaction by irradiation with ultraviolet rays is used.

光重合開始剤には過酸化物が用いられるため、光重合開始剤が硬化後の光硬化性樹脂に残留することは好ましくなく、また光硬化性樹脂に光重合開始剤を含有させること自体がコスト増加の要因にもなる。そこで、従来、光重合開始剤を含有させずに光硬化性樹脂を紫外線で硬化する技術が提案されている(例えば特許文献1、及び特許文献2参照)。 Since a peroxide is used as the photopolymerization initiator, it is not preferable that the photopolymerization initiator remains in the photocurable resin after curing, and the photopolymerization initiator itself may be contained in the photocurable resin. It also causes an increase in cost. Therefore, conventionally, a technique of curing a photocurable resin with ultraviolet rays without containing a photopolymerization initiator has been proposed (see, for example, Patent Documents 1 and 2).

特許文献1には、インクジェット印刷に適当な粘度及び表面張力を有する光硬化性樹脂に、200ppm以下の低酸素濃度の雰囲気下でUVCに富んだ紫外線を照射することで、光重合開始剤を含まない光硬化性樹脂を硬化させる技術が示されている。
特許文献2には、500ppm以下の低酸素濃度の雰囲気下で紫外線を光硬化性樹脂に照射した後、さらに電子線を照射することで、光重合開始剤を含まない光硬化性樹脂を硬化させる技術が示されている。
Patent Document 1 includes a photopolymerization initiator by irradiating a photocurable resin having a viscosity and surface tension suitable for inkjet printing with UVC-rich ultraviolet rays in an atmosphere having a low oxygen concentration of 200 ppm or less. Techniques for curing non-photocurable resins have been demonstrated.
According to Patent Document 2, the photocurable resin is irradiated with ultraviolet rays in an atmosphere having a low oxygen concentration of 500 ppm or less, and then further irradiated with an electron beam to cure the photocurable resin containing no photopolymerization initiator. The technology is shown.

特表2005−509719号公報Special Table 2005-509719 特開2017−132895号公報JP-A-2017-132895

しかしながら、数百ppmの低酸素濃度の雰囲気を作るためには、比較的大掛かりな設備が必要となり、設備コストが増大する、という問題がある。 However, in order to create an atmosphere having a low oxygen concentration of several hundred ppm, a relatively large-scale facility is required, and there is a problem that the facility cost increases.

本発明は、光硬化性樹脂の硬化において酸素濃度の条件を緩和できる硬化方法、及び硬化システムを提供することを目的とする。 An object of the present invention is to provide a curing method and a curing system capable of relaxing the condition of oxygen concentration in the curing of a photocurable resin.

本発明は、酸素濃度を制御した雰囲気下で、ワークの表面に塗られた光硬化性樹脂に紫外線を照射して硬化させる硬化方法において、前記ワークの前記光硬化性樹脂を所定の照射直前温度以上に加熱した状態で紫外線を照射することを特徴とする。 According to the present invention, in a curing method in which a photocurable resin coated on the surface of a work is irradiated with ultraviolet rays to be cured in an atmosphere in which the oxygen concentration is controlled, the photocurable resin of the work is subjected to a predetermined temperature immediately before irradiation. It is characterized by irradiating ultraviolet rays in the state of being heated above.

本発明は、上記硬化方法において、前記照射直前温度は、前記ワークの前記光硬化性樹脂における前記紫外線の照射時の照射時温度が所定温度を越えない温度であることを特徴とする。 The present invention is characterized in that, in the curing method, the temperature immediately before irradiation is a temperature at which the temperature at the time of irradiation of the photocurable resin of the work at the time of irradiation with the ultraviolet rays does not exceed a predetermined temperature.

本発明は、上記硬化方法において、前記光硬化性樹脂は、前記紫外線が前記ワークの表面にまで達する厚みに制限されている、ことを特徴とする。 The present invention is characterized in that, in the curing method, the photocurable resin is limited to a thickness at which the ultraviolet rays reach the surface of the work.

本発明は、上記硬化方法において、前記光硬化性樹脂の厚みは、50μm以下である、ことを特徴とする。 The present invention is characterized in that, in the above curing method, the thickness of the photocurable resin is 50 μm or less.

本発明は、酸素濃度を制御した雰囲気下で、ワークの表面に塗られた光硬化性樹脂に紫外線を照射して硬化させる紫外線照射装置を備えた硬化システムにおいて、前記ワークの前記光硬化性樹脂を所定の照射直前温度以上に加熱する加熱手段を備え、前記紫外線照射装置は、前記光硬化性樹脂が所定の照射直前温度以上に加熱された状態で紫外線を照射することを特徴とする。 The present invention relates to a curing system provided with an ultraviolet irradiation device that irradiates a photocurable resin coated on the surface of a work with ultraviolet rays to cure the photocurable resin coated on the surface of the work in an atmosphere in which the oxygen concentration is controlled. The ultraviolet irradiation device is provided with a heating means for heating the photocurable resin to a temperature immediately before a predetermined irradiation or higher, and is characterized in that the photocurable resin is irradiated with ultraviolet rays in a state of being heated to a temperature immediately before the predetermined irradiation.

本発明は、酸素濃度を制御した雰囲気下で、ワークの表面に塗られた光硬化性樹脂に紫外線を照射して硬化させる紫外線照射装置を備えた硬化システムにおいて、前記紫外線照射装置は、前記紫外線の照射に伴って前記ワークの光硬化性樹脂が所定の照射時温度以上に達するように紫外線を照射することを特徴とする。 The present invention is a curing system including an ultraviolet irradiation device that irradiates a photocurable resin coated on the surface of a work with ultraviolet rays to cure the photocurable resin in an atmosphere in which the oxygen concentration is controlled. The ultraviolet irradiation device is the ultraviolet rays. It is characterized in that the photocurable resin of the work is irradiated with ultraviolet rays so as to reach a predetermined temperature at the time of irradiation or higher.

本発明によれば、光硬化性樹脂の硬化において酸素濃度の条件を緩和できる。 According to the present invention, the condition of oxygen concentration can be relaxed in the curing of the photocurable resin.

本発明の実施形態に係るコーティングシステムの構成を示す図である。It is a figure which shows the structure of the coating system which concerns on embodiment of this invention. 光硬化性樹脂の試料の硬化に必要な照射直前温度と酸素濃度との実験結果を、照射時温度とともに示す図である。It is a figure which shows the experimental result of the temperature just before irradiation and oxygen concentration necessary for curing a sample of a photocurable resin together with the temperature at the time of irradiation. 図2における照射直前温度と酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between the temperature just before irradiation and oxygen concentration in FIG. 図2における照射時温度と酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between the irradiation temperature and oxygen concentration in FIG. 試料C1、C2、C3、C4の名称、構造式、官能基数、粘度、及び分子量を示す図である。It is a figure which shows the name, structural formula, the number of functional groups, viscosity, and molecular weight of samples C1, C2, C3, C4. 試料A1、A2、A3の名称、構造式、官能基数、粘度、及び分子量を示す図である。It is a figure which shows the name, structural formula, the number of functional groups, viscosity, and the molecular weight of samples A1, A2, A3. 単官能アクリレートモノマーの試料の硬化に必要な照射直前温度と酸素濃度との実験結果を、照射時温度とともに示す図である。It is a figure which shows the experimental result of the temperature just before irradiation and oxygen concentration required for curing a sample of a monofunctional acrylate monomer together with the temperature at the time of irradiation.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係るコーティングシステム1の構成を示す図である。
コーティングシステム1は、光硬化技術を用いて、ワーク2の平らな表面2Aを光硬化性樹脂4でコーティング(いわゆるハードコート)するシステムであり、図1に示すように、ワーク2を搬送面6に沿って搬送方向Aに搬送する搬送機構(図示せず)と、ワーク2の表面2Aに光硬化性樹脂4を塗工するコーターとも呼ばれる塗工装置10と、塗工後のワーク2を加熱する加熱装置12と、加熱後のワーク2に紫外線を照射する紫外線照射装置14と、を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a coating system 1 according to the present embodiment.
The coating system 1 is a system in which the flat surface 2A of the work 2 is coated with a photocurable resin 4 (so-called hard coating) by using a photocuring technique, and as shown in FIG. 1, the work 2 is conveyed to the transport surface 6. A transport mechanism (not shown) that transports the work 2 in the transport direction A along the above, a coating device 10 that is also called a coater that coats the surface 2A of the work 2 with the photocurable resin 4, and the work 2 after coating are heated. A heating device 12 for irradiating the work 2 after heating and an ultraviolet irradiation device 14 for irradiating the work 2 with ultraviolet rays are provided.

ワーク2は、光硬化性樹脂4が塗布される基材であり、その材質は任意である。また搬送機構には、ワーク2の形状(枚葉紙状又はロール紙状)、及び材質に応じた適宜の機構が用いられる。 The work 2 is a base material to which the photocurable resin 4 is applied, and the material thereof is arbitrary. Further, as the transport mechanism, an appropriate mechanism according to the shape of the work 2 (sheet-sheet-like or roll-paper-like) and the material is used.

光硬化性樹脂4は、紫外線照射装置14が照射する紫外線を吸収する特性を有する樹脂材料であり、光重合性モノマーを主成分とし、安定剤やフィラー、着色剤(顔料)等の適宜の添加物が用途に応じて添加され、光重合開始剤を含まない液状体である。また、この光硬化性樹脂4は、適宜の添加剤が添加され、或いは、粘度が高い光重合性モノマーが用いられることで、塗工装置10による塗工の直後において、ワーク2が傾く等しても液だれを生じない程度の粘度を有しており、この粘度は、少なくともインクジェット印刷に用いられるインキの粘度よりも大きい。なお、光硬化性樹脂4がごく微量の光重合開始剤を含んでも良いことは勿論である。 The photocurable resin 4 is a resin material having a property of absorbing ultraviolet rays irradiated by the ultraviolet irradiation device 14, and contains a photopolymerizable monomer as a main component, and appropriately adds stabilizers, fillers, colorants (pigments) and the like. It is a liquid material to which a substance is added according to the application and does not contain a photopolymerization initiator. Further, in this photocurable resin 4, an appropriate additive is added, or a photopolymerizable monomer having a high viscosity is used, so that the work 2 is tilted immediately after coating by the coating apparatus 10. However, it has a viscosity that does not cause dripping, and this viscosity is at least higher than the viscosity of the ink used for inkjet printing. It goes without saying that the photocurable resin 4 may contain a very small amount of the photopolymerization initiator.

塗工装置10は、50μm以下の膜厚Kで光硬化性樹脂4をワーク2に塗工する装置であり、この塗工には、例えばロールコーター方式やチャンバーコーター方式などの適宜の塗工方式を用いることができる。 The coating device 10 is an apparatus for coating the work 2 with the photocurable resin 4 having a film thickness K of 50 μm or less, and the coating can be performed by an appropriate coating method such as a roll coater method or a chamber coater method. Can be used.

加熱装置12は、炉体、赤外線ランプ、又はハロゲンランプ等の加熱手段を備え、ワーク2の表面2Aを加熱し、その表面2Aの光硬化性樹脂4が、少なくとも目標照射直前温度以上になるようにする。目標照射直前温度については後述する。 The heating device 12 includes a heating means such as a furnace body, an infrared lamp, or a halogen lamp, and heats the surface 2A of the work 2 so that the photocurable resin 4 on the surface 2A becomes at least the temperature immediately before the target irradiation. To. The temperature immediately before the target irradiation will be described later.

紫外線照射装置14は、酸素濃度を制御した雰囲気下でワーク2に紫外線を照射するものであり、窒素パージボックス20と、光源装置22と、を備える。
窒素パージボックス20は、ワーク2が内部を通って搬送される箱体であり、不活性ガスの一例たる窒素ガスが内部に送り込まれることで、内部の雰囲気が所定酸素濃度以下の雰囲気に制御されている。なお、窒素ガスに代えて、他の不活性ガスを用いてもよいことは勿論である。また、窒素パージボックス20に代えて、チャンバー内を真空ポンプで真空に(上述の所定酸素濃度以下の雰囲気に維持)した真空チャンバーを用いて、当該真空チャンバー内部を通してワーク2を搬送する構成であっても良い。
The ultraviolet irradiation device 14 irradiates the work 2 with ultraviolet rays in an atmosphere in which the oxygen concentration is controlled, and includes a nitrogen purge box 20 and a light source device 22.
The nitrogen purge box 20 is a box in which the work 2 is conveyed through the inside, and the nitrogen gas, which is an example of the inert gas, is sent into the inside, so that the internal atmosphere is controlled to an atmosphere having a predetermined oxygen concentration or less. ing. Of course, another inert gas may be used instead of the nitrogen gas. Further, instead of the nitrogen purge box 20, a vacuum chamber in which the inside of the chamber is evacuated by a vacuum pump (maintained in an atmosphere of the above-mentioned predetermined oxygen concentration or less) is used, and the work 2 is conveyed through the inside of the vacuum chamber. You may.

光源装置22は、窒素パージボックス20の内部において、ワーク2に所定波長の紫外線を、光硬化性樹脂4の膜厚Kの全体に亘って紫外線が透過し、ワーク2の表面2Aにまで到達する紫外線強度で照射する。この紫外線強度は光硬化性樹脂4の主成分が同じであっても着色剤などの添加剤の有無や種類(すなわち、主成分以外の成分による紫外線吸収度)によって変わる。
光源装置22の光源23には、光硬化性樹脂4が吸収する波長を含む紫外波長域の光を放射するランプ光源が用いられる。ランプ光源には、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、キセノンランプ等の放電ランプ、及びLED光源を用いることができる。
Inside the nitrogen purge box 20, the light source device 22 transmits ultraviolet rays having a predetermined wavelength to the work 2 over the entire film thickness K of the photocurable resin 4, and reaches the surface 2A of the work 2. Irradiate with ultraviolet intensity. Even if the main components of the photocurable resin 4 are the same, the ultraviolet intensity varies depending on the presence or absence and type of additives such as colorants (that is, the degree of ultraviolet absorption by components other than the main components).
As the light source 23 of the light source device 22, a lamp light source that emits light in an ultraviolet wavelength region including a wavelength absorbed by the photocurable resin 4 is used. As the lamp light source, for example, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a discharge lamp such as a xenon lamp, and an LED light source can be used.

なお、図1に示す各部を1つの筐体に収めて1台の装置として構成してもよい。 In addition, each part shown in FIG. 1 may be housed in one housing and configured as one device.

発明者は、光硬化性樹脂4が光重合開始剤を含んでいない状態でも、紫外線が照射される直前の光硬化性樹脂4の温度(以下、「照射直前温度」と言う)が上述の目標照射直前温度以上のときは、雰囲気中の酸素濃度を数百ppmまで下げずとも1000ppm(=0.1%)以上のオーダーで光硬化性樹脂4が硬化することを実験により見出した。かかる酸素濃度は、液体窒素を用いて低酸素濃度雰囲気を実現する設備に比べ、例えばPSA(Pressure Swing Adsorption:圧力変動吸着)装置といった比較的低コスト、かつコンパクトな設備を用いて実現可能である。これにより、コーティングシステム1を低コストに構築できるようになる。 The inventor has stated that even when the photocurable resin 4 does not contain a photopolymerization initiator, the temperature of the photocurable resin 4 immediately before being irradiated with ultraviolet rays (hereinafter, referred to as “immediately before irradiation temperature”) is the above-mentioned target. It has been experimentally found that the photocurable resin 4 is cured on the order of 1000 ppm (= 0.1%) or more even if the oxygen concentration in the atmosphere is not lowered to several hundred ppm when the temperature is equal to or higher than the temperature immediately before irradiation. Such an oxygen concentration can be realized by using a relatively low-cost and compact facility such as a PSA (Pressure Swing Attachment) device as compared with a facility that realizes a low oxygen concentration atmosphere using liquid nitrogen. .. This makes it possible to construct the coating system 1 at low cost.

図2は、試料Cの硬化に必要な照射直前温度と酸素濃度との実験結果を、照射時温度とともに示す図である。照射時温度は、紫外線が照射されることで上昇した試料Cの最大の温度である。図3は図2における照射直前温度と酸素濃度との実験結果をグラフで表した図であり、図4は図2における照射時温度と酸素濃度との実験結果をグラフで表した図である。これら図3、及び図4において点線の曲線は近似曲線を示す。 FIG. 2 is a diagram showing the experimental results of the temperature immediately before irradiation and the oxygen concentration required for curing the sample C together with the temperature at the time of irradiation. The irradiation temperature is the maximum temperature of the sample C that has risen due to the irradiation with ultraviolet rays. FIG. 3 is a graph showing the experimental results of the temperature immediately before irradiation and the oxygen concentration in FIG. 2, and FIG. 4 is a graph showing the experimental results of the temperature at the time of irradiation and the oxygen concentration in FIG. The dotted curve in FIGS. 3 and 4 shows an approximate curve.

この実験においては、ワーク2には、100mm×100mmの正方形状で厚さが100μmの易接着PETフィルムを用いた。このワーク2の表面2Aに、光硬化性樹脂4の試料Cを用いて最小10μmから最大50μmの膜厚Kでバーコーターによって塗工した後、恒温槽の中で加熱した。この加熱によって試料Cの温度を上昇させ、当該試料Cの温度が照射直前温度になっている状態で高圧水銀ランプで速やかに紫外線を照射した。 In this experiment, a 100 mm × 100 mm square, easy-adhesive PET film having a thickness of 100 μm was used for the work 2. The surface 2A of the work 2 was coated with a sample C of the photocurable resin 4 with a film thickness K of a minimum of 10 μm to a maximum of 50 μm by a bar coater, and then heated in a constant temperature bath. The temperature of sample C was raised by this heating, and ultraviolet rays were rapidly irradiated with a high-pressure mercury lamp in a state where the temperature of sample C was the temperature immediately before irradiation.

紫外線の照射は、高圧水銀ランプから125mm離れた直下を、搬送によってワーク2を通過させることで行った。このときの搬送速度は8m/minであり、紫外線の照度は518mW/cmであり、光量は305mJ/cmである。高圧水銀ランプには、アイグラフィックス株式会社製の型番H08−L41を用いた。 Irradiation of ultraviolet rays was carried out by passing the work 2 directly under the high-pressure mercury lamp 125 mm away by transportation. At this time, the transport speed is 8 m / min, the illuminance of ultraviolet rays is 518 mW / cm 2 , and the amount of light is 305 mJ / cm 2 . For the high-pressure mercury lamp, model number H08-L41 manufactured by Eye Graphics Co., Ltd. was used.

試料Cの温度は、K熱電対をガラステープでワーク2に貼り付けて測定した。 The temperature of sample C was measured by attaching a K thermocouple to the work 2 with a glass tape.

試料Cには、添加物、及び重合開始剤を含まない光重合性モノマーとして、4種類の多官能アクリレートを用いた。図5には、これら試料C1、C2、C3、C4の名称、構造式、官能基数、粘度、及び分子量を示す。 In Sample C, four kinds of polyfunctional acrylates were used as photopolymerizable monomers containing no additives and polymerization initiators. FIG. 5 shows the names, structural formulas, number of functional groups, viscosities, and molecular weights of these samples C1, C2, C3, and C4.

紫外線照射後の試料Cの硬化状態は触指により評価した。この評価において、試料Cの表面に、いわゆるタックによる引っ掛かりがなく、なおかつ、試料Cが指に付着しなければ、試料Cが硬化していると評価した。 The cured state of Sample C after irradiation with ultraviolet rays was evaluated by touching a finger. In this evaluation, it was evaluated that the sample C was cured if the surface of the sample C was not caught by the so-called tack and the sample C did not adhere to the finger.

また本実験では、試料C3を対象に、ごく微量の光重合開始剤を添加した場合の傾向を探るために、照射直前温度を30℃に固定し、試料C3における光重合開始剤の添加量が0.01(wt%)と0.02(wt%)と変え、それぞれの添加量について、試料C3が硬化する酸素濃度の上限を調べた。この結果、添加量が0.01(wt%)の場合は酸素濃度が0.5%でも硬化し、添加量が0.02(wt%)の場合は酸素濃度が1%でも硬化することが分かった。図2には、かかる結果を試料C3の列に括弧で示している。 Further, in this experiment, in order to investigate the tendency when a very small amount of the photopolymerization initiator was added to the sample C3, the temperature immediately before irradiation was fixed at 30 ° C., and the amount of the photopolymerization initiator added in the sample C3 was increased. The temperature was changed to 0.01 (wt%) and 0.02 (wt%), and the upper limit of the oxygen concentration at which the sample C3 was cured was examined for each addition amount. As a result, when the addition amount is 0.01 (wt%), it can be cured even if the oxygen concentration is 0.5%, and when the addition amount is 0.02 (wt%), it can be cured even if the oxygen concentration is 1%. Do you get it. In FIG. 2, such results are shown in parentheses in the column of sample C3.

図2に示すように、いずれの試料C1、C2、C3、C4においても、照射直前温度が30℃以上であれば、1000ppm(=0.1%)の酸素濃度でも硬化することが分かり、また照射直前温度が高くなるほど、より高い酸素濃度で硬化することが分かる。いずれの試料C1、C2、C3、C4においても、図3に示すように、照射直前温度が3倍になると、硬化可能な酸素濃度が5から6倍になる傾向がみられた。
また、ごく微量の光重合開始剤を試料C3に添加すれば、酸素濃度が更に数倍以上高くても硬化することが分かった。
As shown in FIG. 2, it was found that all of the samples C1, C2, C3, and C4 were cured even at an oxygen concentration of 1000 ppm (= 0.1%) if the temperature immediately before irradiation was 30 ° C. or higher. It can be seen that the higher the temperature immediately before irradiation, the higher the oxygen concentration. In all of the samples C1, C2, C3, and C4, as shown in FIG. 3, when the temperature immediately before irradiation was tripled, the curable oxygen concentration tended to be 5 to 6 times higher.
It was also found that if a very small amount of photopolymerization initiator was added to sample C3, it would cure even if the oxygen concentration was several times higher.

また照射直前温度が同じであれば、粘度が高い試料Cほど、より高い酸素濃度で硬化する傾向がみられた。
具体的には、図2、及び図3に示すように、試料C1、C2においては照射直前温度が30℃以上、これら試料C1、C2よりも粘度が低い試料C3、4については照射直前温度が90℃以上の場合に、少なくとも5000ppm(=0.5%)という比較的高い酸素濃度でも光硬化性樹脂4が硬化した。
Further, if the temperature immediately before irradiation was the same, the sample C having a higher viscosity tended to be cured at a higher oxygen concentration.
Specifically, as shown in FIGS. 2 and 3, the temperature immediately before irradiation is 30 ° C. or higher in the samples C1 and C2, and the temperature immediately before the irradiation is lower than those in the samples C1 and C2. When the temperature was 90 ° C. or higher, the photocurable resin 4 was cured even at a relatively high oxygen concentration of at least 5000 ppm (= 0.5%).

さらに、図2、及び図3に示すように、試料C1、C2については、照射直前温度によっては、10000ppm(1%)以上のオーダーという、従前により数桁高い酸素濃度でも硬化することが分かる。 Further, as shown in FIGS. 2 and 3, it can be seen that the samples C1 and C2 are cured even at an oxygen concentration of 10,000 ppm (1%) or more, which is several orders of magnitude higher than before, depending on the temperature immediately before irradiation.

図2に示されるように、光源(高圧水銀ランプ)による紫外線の照射条件が同じであれば、照射直前温度が高くなるにつれ、それに完全には比例しないものの照射時温度も上昇し、図3、及び図4に示されるように、各試料Cが硬化する酸素濃度と照射時温度との関係は、当該酸素濃度と照射直前温度との関係が示す傾向と略同じものとなる。 As shown in FIG. 2, if the irradiation conditions of ultraviolet rays by the light source (high-pressure mercury lamp) are the same, as the temperature immediately before irradiation increases, the temperature at the time of irradiation also increases, although it is not completely proportional to it. And as shown in FIG. 4, the relationship between the oxygen concentration at which each sample C is cured and the temperature at the time of irradiation is substantially the same as the tendency shown by the relationship between the oxygen concentration and the temperature immediately before irradiation.

ただし、照射時温度が高温になるほどワーク2に与える熱的影響が増大し、ワーク2が熱的損傷を受けたり、ワーク2の材質によってはカールしたりする。特に、ワーク2に用いられる一般的な樹脂材では、熱変形温度(18.5kg/cm)が100℃を越えるものは少ない。また、光硬化性樹脂4の沸点は、試料C1〜C4については200℃程度であり、後述する試料A1〜A3については100℃程度となっている。したがって、コーティング処理等の各種の光硬化処理に用いられる照射時温度としては150℃程度を上限とすることが好適であると考えられる。
したがって、コーティングシステム1においては、ワーク2の熱的損傷や変形、光硬化性樹脂4の蒸発や飛散を抑えることができる照射時温度の範囲がワーク2、及び光硬化性樹脂4の素材に基づいて予め決定される。そして、この照射時温度の範囲を紫外線照射時に越えない照射直前温度の範囲が特定され、次いで、当該照射直前温度の範囲に応じた酸素濃度の範囲が選択される。コーティングシステム1では、これら照射直前温度、及び酸素濃度の範囲でコーティング処理が実施される。
However, as the irradiation temperature becomes higher, the thermal effect on the work 2 increases, and the work 2 is thermally damaged or curled depending on the material of the work 2. In particular, few general resin materials used for the work 2 have a thermal deformation temperature (18.5 kg / cm 2 ) exceeding 100 ° C. The boiling point of the photocurable resin 4 is about 200 ° C. for samples C1 to C4 and about 100 ° C. for samples A1 to A3 described later. Therefore, it is considered that the upper limit of the irradiation temperature used for various photocuring treatments such as coating treatment is about 150 ° C.
Therefore, in the coating system 1, the range of the irradiation temperature that can suppress thermal damage and deformation of the work 2 and evaporation and scattering of the photocurable resin 4 is based on the materials of the work 2 and the photocurable resin 4. Is determined in advance. Then, the range of the temperature immediately before irradiation that does not exceed the range of the temperature at the time of irradiation at the time of ultraviolet irradiation is specified, and then the range of the oxygen concentration corresponding to the range of the temperature immediately before irradiation is selected. In the coating system 1, the coating treatment is carried out within the range of the temperature immediately before irradiation and the oxygen concentration.

このように本実施形態によれば、次の効果を奏する。 As described above, according to the present embodiment, the following effects are obtained.

本実施形態では、酸素濃度を制御した雰囲気下で、ワーク2の表面2Aに塗られた光硬化性樹脂4に紫外線を照射して硬化させる際に、ワーク2の光硬化性樹脂4を所定の照射直前温度以上に加熱した状態で紫外線を照射するので、従前から行われている通常の光硬化よりも雰囲気中の酸素濃度を高くでき、酸素濃度に係る条件を緩和できる。
これにより、酸素濃度を制御するための設備を簡略化でき、光硬化性樹脂4を硬化させるシステムを低コストに構築できる。
In the present embodiment, when the photocurable resin 4 coated on the surface 2A of the work 2 is irradiated with ultraviolet rays to be cured in an atmosphere in which the oxygen concentration is controlled, the photocurable resin 4 of the work 2 is designated. Since ultraviolet rays are irradiated in a state of being heated to a temperature equal to or higher than the temperature immediately before irradiation, the oxygen concentration in the atmosphere can be made higher than that of the usual photocuring that has been performed conventionally, and the conditions related to the oxygen concentration can be relaxed.
As a result, the equipment for controlling the oxygen concentration can be simplified, and a system for curing the photocurable resin 4 can be constructed at low cost.

本実施形態では、照射直前温度は、ワーク2の光硬化性樹脂4における照射時温度が所定温度を越えない温度に設定されているので、ワーク2の熱的損傷や変形、光硬化性樹脂4の蒸発や飛散を抑えたコーティングを実現できる。 In the present embodiment, the temperature immediately before irradiation is set to a temperature at which the irradiation temperature of the photocurable resin 4 of the work 2 does not exceed a predetermined temperature, so that the work 2 is thermally damaged or deformed, and the photocurable resin 4 is used. It is possible to realize a coating that suppresses evaporation and scattering of.

本実施形態では、光硬化性樹脂4は、紫外線がワーク2の表面にまで達する厚みに制限されているため、光硬化性樹脂4を、その厚み全体に亘って硬化させることができる。 In the present embodiment, since the photocurable resin 4 is limited to a thickness that allows ultraviolet rays to reach the surface of the work 2, the photocurable resin 4 can be cured over the entire thickness.

本実施形態では、光硬化性樹脂4は多官能アクリレートモノマーを主成分としており、照射直前温度を30℃以上としたので、雰囲気中の酸素濃度を数百ppmまで下げずとも1000ppm(=0.1%)以上という比較的高い酸素濃度で光硬化性樹脂4を硬化させることができる。 In the present embodiment, the photocurable resin 4 contains a polyfunctional acrylate monomer as a main component, and the temperature immediately before irradiation is set to 30 ° C. or higher, so that the oxygen concentration in the atmosphere is 1000 ppm (= 0.) without lowering to several hundred ppm. The photocurable resin 4 can be cured at a relatively high oxygen concentration of 1%) or more.

本実施形態では、多官能アクリレートを主成分とした光硬化性樹脂4の厚みを50μm以下とすることで、その厚みの全体に亘って光硬化性樹脂4を確実に硬化させることができる。 In the present embodiment, by setting the thickness of the photocurable resin 4 containing the polyfunctional acrylate as the main component to 50 μm or less, the photocurable resin 4 can be reliably cured over the entire thickness.

上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲において、変形及び応用が可能である。 The above-described embodiment is merely an example of one aspect of the present invention, and can be modified and applied without departing from the spirit of the present invention.

上述した実施形態において、光硬化性樹脂4として光重合性モノマーである多官能アクリレートモノマーを示したが、多官能アクリレートオリゴマー等の多官能アクリレートや、他のラジカル重合樹脂であれば、照射直前温度が所定温度以上の状態で紫外線を照射することで、硬化に必要な酸素濃度を高めることができることを、発明者は実験によって確かめている。 In the above-described embodiment, the polyfunctional acrylate monomer which is a photopolymerizable monomer is shown as the photocurable resin 4, but if it is a polyfunctional acrylate such as a polyfunctional acrylate oligomer or another radical polymerization resin, the temperature immediately before irradiation The inventor has confirmed by experiments that the oxygen concentration required for curing can be increased by irradiating the resin with ultraviolet rays at a predetermined temperature or higher.

また、光重合性モノマーの一種である単官能アクリレートモノマーについても、照射直前温度が高くなるほど、従前から行われている通常の酸素濃度よりも高い濃度で、一定の硬化状態が得られる傾向があることを発明者は実験によって確かめている。
かかる実験は、上述した実施形態と同じ条件で、図6に示す2つの試料A1、A2、A3を対象に行われたものであり、その実験結果を図7に示す。
また、この実験において、単官能アクリレートモノマーが多官能アクリレートモノマーに比べて硬化状態の硬度が低いことを考慮し、硬化状態を触指により評価した際に、試料A1、A2の表面に触手により多少の傷が付いても硬化していると評価した。
図7に示すように、試料A1、A2、A3ともに、照射直前温度が高くなるほど、高い濃度でも硬化することが分かる。特に試料A1にあっては、酸素濃度を数百ppmまで下げずとも1000ppm(=0.1%)以上のオーダーで硬化することが分かる。
Further, with respect to the monofunctional acrylate monomer, which is a kind of photopolymerizable monomer, as the temperature immediately before irradiation becomes higher, a constant cured state tends to be obtained at a concentration higher than the usual oxygen concentration that has been conventionally performed. The inventor has confirmed this by experiment.
Such an experiment was carried out on two samples A1, A2 and A3 shown in FIG. 6 under the same conditions as those in the above-described embodiment, and the experimental results are shown in FIG.
Further, in this experiment, considering that the monofunctional acrylate monomer has a lower hardness in the cured state than the polyfunctional acrylate monomer, when the cured state is evaluated by the tactile finger, the surfaces of the samples A1 and A2 are slightly touched by the tentacle. It was evaluated that it was hardened even if it was scratched.
As shown in FIG. 7, it can be seen that the higher the temperature immediately before irradiation, the higher the concentration of each of the samples A1, A2, and A3. In particular, it can be seen that sample A1 cures on the order of 1000 ppm (= 0.1%) or more without lowering the oxygen concentration to several hundred ppm.

上述した実施形態において、光硬化性樹脂4を硬化させる硬化システムとしてコーティングシステム1を例示したが、これに限らず、光硬化性樹脂4をインクに用いた印刷システムなどの任意の硬化システムに本発明を適用できる。 In the above-described embodiment, the coating system 1 has been exemplified as a curing system for curing the photocurable resin 4, but the present invention is not limited to this, and is not limited to this, and can be applied to any curing system such as a printing system using the photocurable resin 4 as ink. The invention can be applied.

上述した実施形態において、各種の数値は、特段の断りがなされていない限り、これらの数値の周辺の範囲を意識的に除外するものではなく、同一の作用効果、或いは、臨界的意義を有する限りにおいて、その周辺の範囲(いわゆる、均等の範囲)を含むものである。 In the above-described embodiments, the various numerical values do not intentionally exclude the range around these numerical values unless otherwise specified, and as long as they have the same effect or critical significance. In, the range around it (so-called equal range) is included.

1 コーティングシステム(硬化システム)
2 ワーク
4 光硬化性樹脂
10 塗工装置
12 加熱装置(加熱手段)
14 紫外線照射装置
20 窒素パージボックス
22 光源装置
23 光源
D 搬送方向
C、C1、C2、C3、C4 試料(多官能アクリレートモノマー)
A、A1、A2、A3 試料(単官能アクリレートモノマー)
K 膜厚
1 Coating system (curing system)
2 Work 4 Photocurable resin 10 Coating device 12 Heating device (heating means)
14 Ultraviolet irradiation device 20 Nitrogen purge box 22 Light source device 23 Light source D Transport direction C, C1, C2, C3, C4 Samples (polyfunctional acrylate monomer)
A, A1, A2, A3 samples (monofunctional acrylate monomer)
K film thickness

Claims (5)

酸素濃度を制御した雰囲気下で、ワークの表面に塗られた光硬化性樹脂に紫外線を照射して硬化させる硬化方法において、
前記ワークの前記光硬化性樹脂を所定の照射直前温度以上に加熱した状態で紫外線を照射する
ことを特徴とする硬化方法。
In a curing method in which a photocurable resin coated on the surface of a work is cured by irradiating it with ultraviolet rays in an atmosphere in which the oxygen concentration is controlled.
A curing method characterized by irradiating ultraviolet rays in a state where the photocurable resin of the work is heated to a temperature immediately before a predetermined irradiation or higher.
前記照射直前温度は、前記ワークの前記光硬化性樹脂における前記紫外線の照射時の照射時温度が所定温度を越えない温度である
ことを特徴とする請求項1に記載の硬化方法。
The curing method according to claim 1, wherein the temperature immediately before irradiation is a temperature at which the temperature at the time of irradiation of the photocurable resin of the work at the time of irradiation with the ultraviolet rays does not exceed a predetermined temperature.
前記光硬化性樹脂は、前記紫外線が前記ワークの表面にまで達する厚みに制限されている、ことを特徴とする請求項1または2に記載の硬化方法。 The curing method according to claim 1 or 2, wherein the photocurable resin is limited to a thickness at which the ultraviolet rays reach the surface of the work. 前記光硬化性樹脂の厚みは、50μm以下である、ことを特徴とする請求項1から3のいずれかに記載の硬化方法。 The curing method according to any one of claims 1 to 3, wherein the thickness of the photocurable resin is 50 μm or less. 酸素濃度を制御した雰囲気下で、ワークの表面に塗られた光硬化性樹脂に紫外線を照射して硬化させる紫外線照射装置を備えた硬化システムにおいて、
前記ワークの前記光硬化性樹脂を所定の照射直前温度以上に加熱する加熱手段を備え、
前記紫外線照射装置は、前記光硬化性樹脂が所定の照射直前温度以上に加熱された状態で紫外線を照射する
ことを特徴とする硬化システム。
In a curing system equipped with an ultraviolet irradiation device that irradiates a photocurable resin coated on the surface of a work with ultraviolet rays to cure it in an atmosphere in which the oxygen concentration is controlled.
A heating means for heating the photocurable resin of the work to a temperature immediately before irradiation or higher is provided.
The ultraviolet irradiation device is a curing system characterized in that the photocurable resin is irradiated with ultraviolet rays in a state of being heated to a temperature immediately before a predetermined irradiation or higher.
JP2019076090A 2019-04-12 2019-04-12 Curing method, and curing system Pending JP2020172600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076090A JP2020172600A (en) 2019-04-12 2019-04-12 Curing method, and curing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076090A JP2020172600A (en) 2019-04-12 2019-04-12 Curing method, and curing system

Publications (1)

Publication Number Publication Date
JP2020172600A true JP2020172600A (en) 2020-10-22

Family

ID=72830102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076090A Pending JP2020172600A (en) 2019-04-12 2019-04-12 Curing method, and curing system

Country Status (1)

Country Link
JP (1) JP2020172600A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268770A (en) * 1988-04-20 1989-10-26 Nippon Shokubai Kagaku Kogyo Co Ltd Photopolymerizable coating agent
JPH07157521A (en) * 1993-12-06 1995-06-20 Dainippon Ink & Chem Inc Resin composition curable by actinic energy radiation, its cured product and production of cured product
JPH0881526A (en) * 1994-09-16 1996-03-26 Dainippon Ink & Chem Inc Photopolymerizable resin composition
JP2005309392A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Method for manufacturing antireflection film, antireflection film, polarizing plate and image display device
JP2006015343A (en) * 2004-07-01 2006-01-19 Daimler Chrysler Ag Method for curing coating material
JP2006119599A (en) * 2004-08-04 2006-05-11 Fuji Photo Film Co Ltd Method of manufacturing optical film, apparatus of manufacturing the same, optical film, polarizing sheet and image display device
JP2009256633A (en) * 2008-03-17 2009-11-05 Kawasaki Kasei Chem Ltd Photocurable composition containing self-photopolymerizable compound and curing method for it
JP2010126658A (en) * 2008-11-28 2010-06-10 Kawasaki Kasei Chem Ltd Self-photopolymerizable compound, and photo-curing composition containing the self-photopolymerizable compound
JP2014089860A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Cured product, substrate for organic el element, and method for manufacturing them
JP2014177505A (en) * 2013-03-13 2014-09-25 Jnc Corp Cured film
JP2014199413A (en) * 2013-03-14 2014-10-23 富士フイルム株式会社 Method for producing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
WO2018165068A1 (en) * 2017-03-07 2018-09-13 Sun Chemical Corporation Wet-trapping method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268770A (en) * 1988-04-20 1989-10-26 Nippon Shokubai Kagaku Kogyo Co Ltd Photopolymerizable coating agent
JPH07157521A (en) * 1993-12-06 1995-06-20 Dainippon Ink & Chem Inc Resin composition curable by actinic energy radiation, its cured product and production of cured product
JPH0881526A (en) * 1994-09-16 1996-03-26 Dainippon Ink & Chem Inc Photopolymerizable resin composition
JP2005309392A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Method for manufacturing antireflection film, antireflection film, polarizing plate and image display device
JP2006015343A (en) * 2004-07-01 2006-01-19 Daimler Chrysler Ag Method for curing coating material
JP2006119599A (en) * 2004-08-04 2006-05-11 Fuji Photo Film Co Ltd Method of manufacturing optical film, apparatus of manufacturing the same, optical film, polarizing sheet and image display device
JP2009256633A (en) * 2008-03-17 2009-11-05 Kawasaki Kasei Chem Ltd Photocurable composition containing self-photopolymerizable compound and curing method for it
JP2010126658A (en) * 2008-11-28 2010-06-10 Kawasaki Kasei Chem Ltd Self-photopolymerizable compound, and photo-curing composition containing the self-photopolymerizable compound
JP2014089860A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Cured product, substrate for organic el element, and method for manufacturing them
JP2014177505A (en) * 2013-03-13 2014-09-25 Jnc Corp Cured film
JP2014199413A (en) * 2013-03-14 2014-10-23 富士フイルム株式会社 Method for producing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
WO2018165068A1 (en) * 2017-03-07 2018-09-13 Sun Chemical Corporation Wet-trapping method

Similar Documents

Publication Publication Date Title
EP2419223B1 (en) Process for coating with reduced defects
JP6584174B2 (en) Adhesion layer composition, method for producing film by nanoimprint, method for producing optical component, method for producing circuit board, and method for producing electronic device
JP6554106B2 (en) Method and apparatus for producing cured photocurable resin composition
WO2007059294A2 (en) Process for pulsed uv curing of coatings on wood
WO2017170684A1 (en) Pattern forming method, method for producing processed substrate, method for producing optical component, method for producing circuit board, method for producing electronic component, and method for producing imprint mold
KR20180126026A (en) Pattern forming method, manufacturing method of substrate, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, and imprint mold manufacturing method
JP2012523959A5 (en)
ATE539381T1 (en) MATERIAL COMPOSITION FOR NANO- AND MICROLITHOGRAPHY
Kardar et al. Influence of temperature and light intensity on the photocuring process and kinetics parameters of a pigmented UV curable system
JP2017132895A (en) Curing method and curing system
JP2010001419A (en) Uv nanoimprint molding and its manufacturing method
JP6729698B2 (en) Method of forming bezel pattern using inkjet printing
Dickey et al. Study of the kinetics of step and flash imprint lithography photopolymerization
Wagner et al. Photoinitiator‐free photopolymerization of acrylate‐bismaleimide mixtures and their application for inkjet printing
JP7155545B2 (en) RESIN CURING METHOD AND RESIN CURING APPARATUS
JP2020172600A (en) Curing method, and curing system
TW201821448A (en) Method for producing laminate and photocurable resin composition
JP5467422B2 (en) Method for producing composite
WO2021117836A1 (en) Photocurable material composition, and cured product of photocurable material composition and method for manufacturing same
WO2020044697A1 (en) Electron beam-curable resin
US11578153B2 (en) Photocurable resin composition
JP5781464B2 (en) Method for producing a film with a coating film
US9874685B2 (en) Coated optical fiber and method for manufacturing coated optical fiber
JP6793485B2 (en) Photocurable resin composition
WO2020044698A1 (en) Electron beam-curable ink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230418