JP2020172576A - Method of producing ester-exchanged fats and oils - Google Patents

Method of producing ester-exchanged fats and oils Download PDF

Info

Publication number
JP2020172576A
JP2020172576A JP2019074259A JP2019074259A JP2020172576A JP 2020172576 A JP2020172576 A JP 2020172576A JP 2019074259 A JP2019074259 A JP 2019074259A JP 2019074259 A JP2019074259 A JP 2019074259A JP 2020172576 A JP2020172576 A JP 2020172576A
Authority
JP
Japan
Prior art keywords
oil
calcium hydroxide
fat
oils
fats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019074259A
Other languages
Japanese (ja)
Other versions
JP7267817B2 (en
Inventor
加瀬 実
Minoru Kase
実 加瀬
高橋 秀和
Hidekazu Takahashi
秀和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019074259A priority Critical patent/JP7267817B2/en
Publication of JP2020172576A publication Critical patent/JP2020172576A/en
Application granted granted Critical
Publication of JP7267817B2 publication Critical patent/JP7267817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for producing ester-exchanged fats and oils that can be easily filtered after the neutralization of calcium hydroxide used as a glycerolysis reaction catalyst.SOLUTION: A method for producing ester exchanged oils and fats, comprising: a step of reacting glycerin with fats and oils in the presence of calcium hydroxide, followed by a step in which 1.2 mol times or more of a neutralizing agent is added to the calcium hydroxide to neutralize it.SELECTED DRAWING: None

Description

本発明は、ジアシルグリセロールに富むエステル交換油脂の製造方法に関する。 The present invention relates to a method for producing a transesterified fat and oil rich in diacylglycerol.

ジアシルグリセロールは、食品、化粧料等の様々な産業分野で利用されている。
一般的に、ジアシルグリセロールは、グリセリンと脂肪酸とのエステル化反応、グリセリンと油脂とのグリセロリシス反応の方法により製造される。これらの製造法は、アルカリ金属又はアルカリ土類金属の水酸化物、アルコキシド等の化学触媒を用いた化学法と、リパーゼ等の酵素を用いた酵素法に大別される(例えば、特許文献1、2)。反応後のジアシルグリセロールは、食用に適する品質にするために、活性白土等を加えて脱色や、高温減圧下で水蒸気と接触させる脱臭が行われる(例えば、特許文献3)。
Diacylglycerol is used in various industrial fields such as foods and cosmetics.
Generally, diacylglycerol is produced by an esterification reaction between glycerin and a fatty acid and a glycerolisis reaction between glycerin and a fat or oil. These production methods are roughly classified into chemical methods using chemical catalysts such as hydroxides and alkoxides of alkali metals or alkaline earth metals, and enzyme methods using enzymes such as lipase (for example, Patent Document 1). 2, 2). The diacylglycerol after the reaction is decolorized by adding activated clay or the like and deodorized by contacting it with water vapor under high temperature and reduced pressure in order to obtain edible quality (for example, Patent Document 3).

特開平10−234392号公報Japanese Unexamined Patent Publication No. 10-234392 特開2010−59406号公報JP-A-2010-59406 特開2011−144343号公報Japanese Unexamined Patent Publication No. 2011-144343

ジアシルグリセロールの製造法のうち、水酸化ナトリウム等のナトリウム系の触媒を用いたグリセロリシス法は反応性が高いという利点がある。しかしながら、グリセリンと油脂とをグリセロリシス反応させる場合にナトリウム系の触媒を用いると、副生成物としてグリシドール脂肪酸エステルが高比率で生成することが判明した。そこで、グリセリンと油脂とのグリセロリシス反応の条件を種々検討したところ、水酸化カルシウムを触媒として用いると、副生成物の生成が抑えられることを見出した。一方で、触媒として水酸化カルシウムを用いると、中和後の脱色工程において、ジアシルグリセロールに富むエステル交換油脂を濾過により脱色剤や中和生成物と分離する速度が遅くなる、収率が悪くなる、という新たな課題が発生した。
従って、本発明の課題は、グリセロリシス反応触媒として用いた水酸化カルシウムの中和後に容易に濾過することのできるエステル交換油脂の製造方法を提供することにある。
Among the methods for producing diacylglycerol, the glycerolysis method using a sodium-based catalyst such as sodium hydroxide has an advantage of high reactivity. However, it has been found that when a sodium-based catalyst is used in the case of glycerolisis reaction between glycerin and fats and oils, glycidol fatty acid ester is produced in a high ratio as a by-product. Therefore, when various conditions for the glycerolisis reaction between glycerin and fats and oils were examined, it was found that the production of by-products was suppressed when calcium hydroxide was used as a catalyst. On the other hand, when calcium hydroxide is used as a catalyst, in the decolorization step after neutralization, the rate of separating the transesterified fat and oil rich in diacylglycerol by filtration from the decolorizing agent and the neutralization product becomes slow, and the yield becomes poor. , A new issue has arisen.
Therefore, an object of the present invention is to provide a method for producing a transesterified fat and oil that can be easily filtered after neutralization of calcium hydroxide used as a glycerolysis reaction catalyst.

本発明者らが当該課題を検討したところ、水酸化カルシウムを中和した際に発生する微細な結晶が、中和後の濾過操作を困難にしていることが判明した。そこで、中和剤の検討を種々行ったところ、水酸化カルシウムに対する中和剤のモル比率を特定比以上にすることで、濾過性を向上できることを見出した。 When the present inventors examined the subject, it was found that the fine crystals generated when calcium hydroxide was neutralized made the filtration operation after neutralization difficult. Therefore, as a result of various studies on the neutralizing agent, it was found that the filterability can be improved by setting the molar ratio of the neutralizing agent to calcium hydroxide to a specific ratio or more.

すなわち、本発明は、水酸化カルシウムの存在下、グリセリンと油脂を反応させる工程の後、水酸化カルシウムに対して中和剤を1.2モル倍以上添加して、水酸化カルシウムを中和する工程を含む、エステル交換油脂の製造方法を提供するものである。 That is, in the present invention, after the step of reacting glycerin with fats and oils in the presence of calcium hydroxide, a neutralizing agent is added 1.2 mol times or more with respect to calcium hydroxide to neutralize calcium hydroxide. It provides a method of producing transesterified fats and oils including a step.

本発明によれば、水酸化カルシウムの中和後の濾過性を向上でき、ジアシルグリセロールに富むエステル交換油脂を生産性良く得ることができる。 According to the present invention, the filterability of calcium hydroxide after neutralization can be improved, and a transesterified fat and oil rich in diacylglycerol can be obtained with good productivity.

本発明のエステル交換油脂の製造方法は、水酸化カルシウムの存在下、グリセリンと油脂を反応させる工程の後、水酸化カルシウムに対して中和剤を1.2モル倍以上添加して、水酸化カルシウムを中和する工程を含むものである。
本明細書において、「油脂」と「油」とは同義であり、油脂(油)を構成する物質にはトリアシルグリセロールのみならずモノアシルグリセロールやジアシルグリセロールも含まれる。すなわち、油脂(油)は、モノアシルグリセロール、ジアシルグリセロール及びトリアシルグリセロールのいずれか1種以上を含むものである。
In the method for producing transesterified fats and oils of the present invention, after the step of reacting glycerin with fats and oils in the presence of calcium hydroxide, a neutralizing agent is added 1.2 mol times or more to calcium hydroxide to hydroxylate. It includes a step of neutralizing calcium.
In the present specification, "fat and oil" and "oil" are synonymous, and the substances constituting the fat and oil (oil) include not only triacylglycerol but also monoacylglycerol and diacylglycerol. That is, the fat (oil) contains any one or more of monoacylglycerol, diacylglycerol and triacylglycerol.

本発明で用いられるグリセリンは、反応性の点から、純度95質量%以上のものが好ましい。 The glycerin used in the present invention preferably has a purity of 95% by mass or more from the viewpoint of reactivity.

グリセリンと反応させる油脂は、植物性油脂、動物性油脂のいずれでもよいが、エステル交換油脂の乳化特性、取り扱いのし易さの点から、液状油脂であるのが好ましい。なお、液状油脂とは、基準油脂分析試験法2.2.8.2−1996による冷却試験を実施した場合、20℃で液状である油脂をいう。
具体的な油脂としては、トリアシルグリセロールを主体とするものであり、例えば、菜種油、ひまわり油、とうもろこし油、大豆油、オリーブ油、米油、紅花油、綿実油、胡麻油、あまに油等の植物性油脂を挙げることができる。油脂中のトリアシルグリセロールの含有量は、油脂の劣化抑制の点から、90〜99.5質量%、更に93〜99質量%であるのが好ましい。
油脂は、エステル交換油脂の乳化特性、及び取り扱いのし易さの点から、油脂を構成する脂肪酸中の不飽和脂肪酸が70〜95質量%と多い油脂が好ましい。好ましい不飽和脂肪酸の炭素数は14〜24、更に16〜22であるが、得られるエステル交換油脂の利用性の観点から、油脂を構成する脂肪酸中のリノレン酸が4〜70質量%、更に6〜60質量%と多い油脂が好ましい。
油脂は1種又は2種以上を組み合わせて用いることができる。
The fat or oil to be reacted with glycerin may be either a vegetable fat or an animal fat or oil, but a liquid fat or oil is preferable from the viewpoint of emulsification characteristics and ease of handling of the transesterified fat or oil. The liquid fat and oil means a fat and oil that is liquid at 20 ° C. when a cooling test is carried out according to the standard fat and oil analysis test method 2.2.8.2-1996.
Specific fats and oils are mainly triacylglycerols, and are vegetable oils such as rapeseed oil, sunflower oil, corn oil, soybean oil, olive oil, rice oil, safflower oil, cottonseed oil, sesame oil, and linseed oil. Oils and fats can be mentioned. The content of triacylglycerol in the fat and oil is preferably 90 to 99.5% by mass, more preferably 93 to 99% by mass, from the viewpoint of suppressing deterioration of the fat and oil.
The fats and oils are preferably fats and oils in which unsaturated fatty acids in the fatty acids constituting the fats and oils are as large as 70 to 95% by mass from the viewpoint of emulsification characteristics of transesterified fats and oils and ease of handling. The preferred unsaturated fatty acid has 14 to 24 carbon atoms and further 16 to 22 carbon atoms, but from the viewpoint of the availability of the obtained transesterified fat and oil, linolenic acid in the fatty acid constituting the fat and oil is 4 to 70% by mass, further 6 Fats and oils as large as ~ 60% by mass are preferable.
The fats and oils can be used alone or in combination of two or more.

グリセリンと油脂との反応は、水酸化カルシウムの存在下に行われる。
本発明で用いられる水酸化カルシウムは、反応触媒として用いられるものであればよい。グリセリンと油脂とのグリセロリシス反応の触媒に水酸化カルシウムを用いることで、副生成物であるグリシドール脂肪酸エステルの生成が大きく抑えられる。
水酸化カルシウムの使用量は、反応性の点から、反応原料、すなわちグリセリンと油脂の合計に対して0.03質量%以上が好ましく、また、中和剤の量を低減できる点から、1質量%以下が好ましい。より好ましくは、反応原料に対して0.05〜0.5質量%である。また、水酸化カルシウムの使用量は、同様の点から、反応原料、すなわちグリセリンと油脂のグリセリン基に対するモル比が、0.0025以上であることが好ましく、0.11以下であることが好ましく、0.004〜0.06であることがより好ましい。なお、ここでいう「グリセリン基」とは、グリセリン及び油脂中のグリセリン骨格部分の合計を指す。
The reaction between glycerin and fats and oils is carried out in the presence of calcium hydroxide.
The calcium hydroxide used in the present invention may be any one used as a reaction catalyst. By using calcium hydroxide as a catalyst for the glycerolisis reaction between glycerin and fats and oils, the production of glycidol fatty acid ester, which is a by-product, is greatly suppressed.
The amount of calcium hydroxide used is preferably 0.03% by mass or more with respect to the total of the reaction raw materials, that is, glycerin and fats and oils from the viewpoint of reactivity, and 1 mass from the viewpoint that the amount of the neutralizing agent can be reduced. % Or less is preferable. More preferably, it is 0.05 to 0.5% by mass with respect to the reaction raw material. From the same point of view, the amount of calcium hydroxide used is preferably 0.0025 or more, preferably 0.11 or less, in terms of the molar ratio of the reaction raw material, that is, glycerin and the fat and oil to the glycerin group. More preferably, it is 0.004 to 0.06. The term "glycerin group" as used herein refers to the total amount of the glycerin skeleton portion in glycerin and fats and oils.

本発明において、グリセリンと油脂とのグリセロリシス反応を行う際のグリセリン基のモル数に対する脂肪酸基のモル数の比[FA/GLY]は、モノアシルグリセロール生成抑制の点から、2.1以上が好ましく、2.2以上がより好ましい。また、ジアシルグリセロール生成の点から、2.7以下が好ましく、2.6以下がより好ましい。
グリセリン基のモル数に対する脂肪酸基のモル数の比[FA/GLY]は、下式で表される。
FA/GLY=(脂肪酸のモル数+モノアシルグリセロールのモル数+ジアシルグリセロールのモル数×2+トリアシルグリセロールのモル数×3)/(グリセリンのモル数+モノアシルグリセロールのモル数+ジアシルグリセロールのモル数+トリアシルグリセロールのモル数)
In the present invention, the ratio [FA / GLY] of the number of moles of fatty acid groups to the number of moles of glycerin groups when performing a glycerolisis reaction between glycerin and fats and oils is preferably 2.1 or more from the viewpoint of suppressing monoacylglycerol production. 2.2 or more is more preferable. Further, from the viewpoint of diacylglycerol production, 2.7 or less is preferable, and 2.6 or less is more preferable.
The ratio of the number of moles of fatty acid groups to the number of moles of glycerin groups [FA / GLY] is expressed by the following formula.
FA / GLY = (number of moles of fatty acid + number of moles of monoacylglycerol + number of moles of diacylglycerol x 2 + number of moles of triacylglycerol x 3) / (number of moles of glycerin + number of moles of monoacylglycerol + number of moles of diacylglycerol) Number of moles + number of moles of triacylglycerol)

反応温度は、反応速度を向上する点から、120℃以上が好ましく、130℃以上がより好ましい。また、副生成物の含有量低減の点から、200℃以下が好ましい。 The reaction temperature is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, from the viewpoint of improving the reaction rate. Further, from the viewpoint of reducing the content of by-products, the temperature is preferably 200 ° C. or lower.

反応時間は、ジアシルグリセロール生成の点から、60分以上が好ましく、120分以上がより好ましい。また、生産性の点から、720分以下が好ましく、600分以下がより好ましい。 The reaction time is preferably 60 minutes or longer, more preferably 120 minutes or longer, from the viewpoint of diacylglycerol production. Further, from the viewpoint of productivity, 720 minutes or less is preferable, and 600 minutes or less is more preferable.

グリセリンと油脂との反応は、反応性の点、触媒性能の低下を抑制する点から、反応原料に含まれる水を、減圧や乾燥窒素バブリング等により除いてから反応を行うのが好ましい。
また、反応は、通常、減圧下でも常圧でもよい。減圧下で行う場合の圧力は、特に限定されないが、反応促進の点から、400Pa以上が好ましく、また、エステル交換油脂の酸化を抑制する点から、26,600Pa以下が好ましい。また、常圧で行う場合、得られるエステル交換油脂の酸化を抑制するため、窒素雰囲気下で行うことが好ましい。
The reaction between glycerin and fats and oils is preferably carried out after removing water contained in the reaction raw material by depressurization, dry nitrogen bubbling or the like, from the viewpoint of reactivity and suppression of deterioration of catalytic performance.
In addition, the reaction may usually be under reduced pressure or normal pressure. The pressure when the pressure is reduced is not particularly limited, but is preferably 400 Pa or more from the viewpoint of promoting the reaction, and is preferably 26,600 Pa or less from the viewpoint of suppressing the oxidation of transesterified fats and oils. Further, when it is carried out at normal pressure, it is preferable to carry out it in a nitrogen atmosphere in order to suppress the oxidation of the obtained transesterified fat and oil.

グリセロリシス反応終了後は、反応油に触媒として用いた水酸化カルシウムが混在している。そのため、グリセロリシス反応終了後に、水酸化カルシウムを中和する工程を行う。本発明において、水酸化カルシウムの中和は、水酸化カルシウムに対して中和剤を1.2モル倍以上添加して行う。水酸化カルシウムに対する中和剤のモル比を1.2以上にすることで、水酸化カルシウムの中和後の濾過性を向上できる。
中和剤としては、特に制限されないが、水や油脂に不溶で、濾過で容易に除去できる点から、硫酸、塩酸、リン酸等の酸が好ましく、リン酸がより好ましい。
After the completion of the glycerolysis reaction, calcium hydroxide used as a catalyst is mixed in the reaction oil. Therefore, after the completion of the glycerolysis reaction, a step of neutralizing calcium hydroxide is performed. In the present invention, the neutralization of calcium hydroxide is carried out by adding a neutralizing agent 1.2 mol times or more with respect to calcium hydroxide. By setting the molar ratio of the neutralizing agent to calcium hydroxide to 1.2 or more, the filterability of calcium hydroxide after neutralization can be improved.
The neutralizing agent is not particularly limited, but acids such as sulfuric acid, hydrochloric acid, and phosphoric acid are preferable, and phosphoric acid is more preferable, because they are insoluble in water and fats and oils and can be easily removed by filtration.

中和剤の使用量は、脱色工程において濾過し易い中和物にする点から、反応原料に対して0.27質量%以上が好ましく、0.28質量%以上がより好ましい。また、中和に対し過剰添加を抑制する点から、反応原料に対して1.2質量%以下が好ましく、0.8質量%以下がより好ましい。 The amount of the neutralizing agent used is preferably 0.27% by mass or more, more preferably 0.28% by mass or more, based on the reaction raw material, from the viewpoint of making the neutralized product easy to filter in the decolorization step. Further, from the viewpoint of suppressing excessive addition with respect to neutralization, 1.2% by mass or less is preferable, and 0.8% by mass or less is more preferable with respect to the reaction raw material.

水酸化カルシウムに対する中和剤のモル比は、水酸化カルシウムの中和後の濾過性を向上できる点から、1.2以上であり、好ましくは1.21以上、より好ましくは1.4以上、更に好ましくは1.8以上である。また、モル比の上限は特に制限されないが、中和油の酸価の上昇抑制の点から、6.0以下が好ましく、4.0以下がより好ましい。 The molar ratio of the neutralizing agent to calcium hydroxide is 1.2 or more, preferably 1.21 or more, more preferably 1.4 or more, from the viewpoint of improving the filterability of calcium hydroxide after neutralization. More preferably, it is 1.8 or more. The upper limit of the molar ratio is not particularly limited, but 6.0 or less is preferable, and 4.0 or less is more preferable, from the viewpoint of suppressing an increase in the acid value of the neutralizing oil.

中和工程、すなわち水酸化カルシウムが混在している反応油に、中和剤を投入後、攪拌を終了させるまでの工程(以下同じ)の温度は、逆反応を抑制する点から、20℃以上が好ましく、40℃以上がより好ましく、60℃以上が更に好ましい。また、中和物を十分に生成する点から、200℃以下が好ましく、160℃以下がより好ましく、120℃以下が更に好ましい。 The temperature of the neutralization step, that is, the step after adding the neutralizing agent to the reaction oil in which calcium hydroxide is mixed and ending the stirring (the same applies hereinafter), is 20 ° C. or higher from the viewpoint of suppressing the reverse reaction. Is preferable, 40 ° C. or higher is more preferable, and 60 ° C. or higher is even more preferable. Further, from the viewpoint of sufficiently producing a neutralized product, 200 ° C. or lower is preferable, 160 ° C. or lower is more preferable, and 120 ° C. or lower is further preferable.

中和工程の時間は、中和物を十分に生成する点から、1〜240分が好ましく、3〜180分がより好ましく、10〜120分が更に好ましい。 The time of the neutralization step is preferably 1 to 240 minutes, more preferably 3 to 180 minutes, and even more preferably 10 to 120 minutes from the viewpoint of sufficiently producing a neutralized product.

中和工程においては、中和物を十分に生成する点から、撹拌しつつ中和を行うのが好ましい。撹拌のための手段は特に制限されない。 In the neutralization step, it is preferable to perform neutralization with stirring from the viewpoint of sufficiently producing a neutralized product. The means for stirring is not particularly limited.

中和工程後は、中和油に吸着剤を接触させる脱色工程を行うことが好ましい。
吸着剤としては、多孔質吸着剤が好ましく、例えば、活性炭、二酸化ケイ素、及び固体酸吸着剤が挙げられる。固体酸吸着剤としては、酸性白土、活性白土、活性アルミナ、シリカゲル、シリカ・アルミナ、アルミニウムシリケート等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。
なかでも、風味及び色相を良好とする点から、活性炭、固体酸吸着剤が好ましく、酸性白土、活性白土がより好ましい。
酸性白土としては、例えば、ミズカエース#20、ミズカエース#400(以上、水澤化学工業(株)製)等の市販品を用いることができ、活性白土としては、例えば、ガレオンアースV2R、ガレオンアースNV、ガレオンアースGSF(以上、水澤化学工業(株)製)等の市販品を用いることができる。
After the neutralization step, it is preferable to carry out a decolorization step of bringing the adsorbent into contact with the neutralizing oil.
The adsorbent is preferably a porous adsorbent, and examples thereof include activated carbon, silicon dioxide, and a solid acid adsorbent. Examples of the solid acid adsorbent include acid clay, activated clay, activated alumina, silica gel, silica / alumina, and aluminum silicate. These can be used alone or in combination of two or more.
Of these, activated carbon and solid acid adsorbents are preferable, and acid clay and activated clay are more preferable, from the viewpoint of improving flavor and hue.
As the acid clay, for example, commercially available products such as Mizuka Ace # 20 and Mizuka Ace # 400 (all manufactured by Mizusawa Industrial Chemicals Co., Ltd.) can be used, and as the activated clay, for example, Galleon Earth V2R, Galleon Earth NV, etc. Commercially available products such as Galleon Earth GSF (all manufactured by Mizusawa Industrial Chemicals Co., Ltd.) can be used.

吸着剤の使用量は、風味及び色相を良好とする点から、中和油に対して0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、濾過速度が速く生産性が良好である点から、中和油に対して10.0質量%以下が好ましく、6.0質量%以下がより好ましく、3.0質量%以下が更に好ましい。 The amount of the adsorbent used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more with respect to the neutralizing oil from the viewpoint of improving the flavor and hue. preferable. Further, from the viewpoint of high filtration rate and good productivity, 10.0% by mass or less is preferable, 6.0% by mass or less is more preferable, and 3.0% by mass or less is further preferable with respect to the neutralized oil.

脱色工程では、濾過速度が速く生産性が良好である点から、パーライト、二酸化珪素、珪藻土等の濾過助剤を適宜添加してもよい。 In the decolorization step, a filtration aid such as pearlite, silicon dioxide, or diatomaceous earth may be appropriately added because the filtration rate is high and the productivity is good.

中和油と吸着剤の接触温度は、副生成物の含有量低減、良好な色相、及び工業的生産性の点から、20〜150℃が好ましく、40〜135℃がより好ましく、60〜120℃が更に好ましい。 The contact temperature between the neutralizing oil and the adsorbent is preferably 20 to 150 ° C, more preferably 40 to 135 ° C, and 60 to 120 from the viewpoint of reducing the content of by-products, good hue, and industrial productivity. ℃ is more preferable.

中和油と吸着剤の接触時間は、副生成物の含有量低減、良好な色相、及び工業的生産性の点から、3分以上が好ましく、5分以上がより好ましく、7分以上が更に好ましい。また、油脂の酸化抑制、及び工業的生産性の点から、180分以下が好ましく、120分以下がより好ましく、90分以下が更に好ましい。 The contact time between the neutralizing oil and the adsorbent is preferably 3 minutes or more, more preferably 5 minutes or more, and further 7 minutes or more from the viewpoint of reducing the content of by-products, good hue, and industrial productivity. preferable. Further, from the viewpoint of suppressing oxidation of fats and oils and industrial productivity, 180 minutes or less is preferable, 120 minutes or less is more preferable, and 90 minutes or less is further preferable.

圧力は、減圧下でも常圧でもよいが、油脂の酸化抑制、及び脱色性の点から、減圧下が好ましい。 The pressure may be reduced pressure or normal pressure, but is preferably reduced pressure from the viewpoint of suppressing oxidation of fats and oils and decolorizing property.

脱色工程では、吸着剤を濾過により除去するのが好ましい。本発明によれば、濾過速度を向上でき、また、得られるエステル交換油脂の収率に優れる。
濾過手段としては、吸引濾過、加圧濾過、遠心濾過等のいずれでも実施可能であり、油脂の脱色工程で使用される濾過機を使用することができる。
圧力は、減圧でも加圧でもよい。圧力は、特に限定されないが、生産性の点から、ゲージ圧(以下、圧力の数値において同じ)で0.01MPa以上が好ましく、0.03MPa以上がより好ましい。また、設備の耐圧、及び安全性の点から、5MPa以下が好ましく、3MPa以下がより好ましい。
In the decolorization step, it is preferable to remove the adsorbent by filtration. According to the present invention, the filtration rate can be improved, and the yield of the obtained transesterified fat and oil is excellent.
As the filtration means, any of suction filtration, pressure filtration, centrifugal filtration and the like can be carried out, and a filter used in the fat and oil decolorization step can be used.
The pressure may be reduced or pressurized. The pressure is not particularly limited, but from the viewpoint of productivity, the gauge pressure (hereinafter, the same in terms of pressure value) is preferably 0.01 MPa or more, and more preferably 0.03 MPa or more. Further, from the viewpoint of pressure resistance and safety of the equipment, 5 MPa or less is preferable, and 3 MPa or less is more preferable.

本発明の方法により得られるエステル交換油脂は、ジアシルグリセロールに富むものであるが、低温での流動性、乳化特性の点から、ジアシルグリセロールの含有量は、25〜40質量%が好ましい。当該エステル交換油脂には、ジアシルグリセロールの他、トリアシルグリセロールが含まれ、また、これらに比して量的には少ないが、未反応のグリセリン、モノアシルグリセロールが含まれる。
低温での流動性、乳化特性の点から、エステル交換油脂におけるモノアシルグリセロールは少ないことが好ましく、その含有量は、10質量%以下、更に7質量%以下が好ましい。
The transesterified oil and fat obtained by the method of the present invention is rich in diacylglycerol, but the content of diacylglycerol is preferably 25 to 40% by mass from the viewpoint of fluidity at low temperature and emulsification characteristics. The transesterified fat and oil contains triacylglycerol in addition to diacylglycerol, and also contains unreacted glycerin and monoacylglycerol, although the amount is smaller than these.
From the viewpoint of fluidity at low temperature and emulsification characteristics, the amount of monoacylglycerol in the transesterified fat and oil is preferably small, and the content thereof is preferably 10% by mass or less, more preferably 7% by mass or less.

本発明の方法により得られるエステル交換油脂は、上記工程の他、必要に応じて精製工程を行って、一般の食用油脂と同様に使用することができる。 The transesterified fats and oils obtained by the method of the present invention can be used in the same manner as general edible fats and oils by performing a refining step as necessary in addition to the above steps.

以下の実施例において、「%」は「質量%」を意味する。 In the following examples, "%" means "mass%".

〔分析方法〕
(i)グリセリド組成の測定
遠心分離が可能な試験管に反応生成物のサンプルを約3g採取し、3000r/minで10分間遠心分離を行い、沈降した触媒を除去した。次いで、ガラス製サンプル瓶に、上層を約10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学(株)製)0.5mLを加え、密栓し、70℃で15分間加熱した。これに水1.5mLとヘキサン1.5mLを加え、振とうした。静置後、上層をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。
[Analysis method]
(I) Measurement of glyceride composition About 3 g of a sample of the reaction product was collected in a test tube capable of centrifugation and centrifuged at 3000 r / min for 10 minutes to remove the precipitated catalyst. Next, about 10 mg of the upper layer and 0.5 mL of a trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Chemical Co., Inc.) were added to a glass sample bottle, the bottle was sealed, and the mixture was heated at 70 ° C. for 15 minutes. To this, 1.5 mL of water and 1.5 mL of hexane were added and shaken. After standing, the upper layer was subjected to gas chromatography (GLC) to analyze the glyceride composition.

(ii)〔収率の算出方法〕
濾過装置に投入した質量[a]、濾過された脱色油の質量[b]を用いて、式(1)から収率を算出した。
収率=b/a×100(%) (1)
(Ii) [Yield calculation method]
The yield was calculated from the formula (1) using the mass [a] charged into the filtration device and the mass [b] of the filtered decolorized oil.
Yield = b / a × 100 (%) (1)

〔実施例1〕
グリセロリシス反応の原料となる脱臭菜種油974.7g及びグリセリン25.3gを、攪拌羽根(90mm×24mm)を取り付けた2L4ツ口フラスコに入れた。グリセリン基のモル数に対する脂肪酸残基のモル数の比[FA/GLY]は2.4であった。
次に、400r/minで攪拌しながら、80℃、400Paの条件で30分間減圧脱水した。次に、常圧に戻し、触媒として水酸化カルシウム(成績書濃度97.9%、関東化学(株)製)1.5gを添加した。次に、8000Paの減圧下で、温度140℃の条件にてグリセロリシス反応を行った。
反応開始から300分でジアシルグリセロール含量が平衡に達した後、90℃に冷却し、中和剤としてリン酸(成績書濃度85.5%、富士フィルム和光純薬(株)製)を2.83g添加して、60分混合して反応生成物を得た。水酸化カルシウムに対するリン酸のモル比は1.25であった。また、反応生成物の分析結果は表1のとおりであった。
[Example 1]
974.7 g of deodorized rapeseed oil and 25.3 g of glycerin, which are the raw materials for the glycerolisis reaction, were placed in a 2L 4-neck flask equipped with a stirring blade (90 mm × 24 mm). The ratio of the number of moles of fatty acid residues to the number of moles of glycerin group [FA / GLY] was 2.4.
Next, while stirring at 400 r / min, dehydration was carried out under reduced pressure at 80 ° C. and 400 Pa for 30 minutes. Next, the pressure was returned to normal pressure, and 1.5 g of calcium hydroxide (record concentration 97.9%, manufactured by Kanto Chemical Co., Inc.) was added as a catalyst. Next, a glycerolysis reaction was carried out under a reduced pressure of 8000 Pa at a temperature of 140 ° C.
After the diacylglycerol content reached equilibrium 300 minutes after the start of the reaction, the mixture was cooled to 90 ° C. and phosphoric acid (results concentration 85.5%, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as a neutralizing agent. 83 g was added and mixed for 60 minutes to obtain a reaction product. The molar ratio of phosphoric acid to calcium hydroxide was 1.25. The analysis results of the reaction products are shown in Table 1.

次に、中和油を400r/minで攪拌しながら、80℃、400Paの条件で30分間減圧脱水した。その後、常圧に戻し、活性白土(ガレオンアースV2R 水澤化学工業(株)製)等)10.0g及び濾過助剤(ロカヘルプ4109 三井金属鉱業(株)製)2.1gを添加した。次に、8000Paの減圧下で、温度100℃の条件にて脱色処理を行った。
脱色開始から60分後、80℃に冷却し、80℃でジャケット保温された濾過装置に移して、定圧濾過を行い、濾液(脱色油)を回収した。濾過は、濾過面積39cm2、濾紙(No.24 安積濾紙(株)製)、加圧圧力0.08MPaの条件とした。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
Next, the neutralizing oil was dehydrated under reduced pressure for 30 minutes at 80 ° C. and 400 Pa while stirring at 400 r / min. Then, the pressure was returned to normal pressure, and 10.0 g of activated clay (Galleon Earth V2R, manufactured by Mizusawa Industrial Chemicals Co., Ltd.) and 2.1 g of filtration aid (RocaHelp 4109, manufactured by Mitsui Mining & Smelting Co., Ltd.) were added. Next, the decolorization treatment was performed under the condition of a temperature of 100 ° C. under a reduced pressure of 8000 Pa.
After 60 minutes from the start of decolorization, the mixture was cooled to 80 ° C., transferred to a filtration device whose jacket was kept warm at 80 ° C., subjected to constant pressure filtration, and the filtrate (bleached oil) was recovered. Filtration was performed under the conditions of a filtration area of 39 cm 2 , filter paper (No. 24 manufactured by Azumi Filter Paper Co., Ltd.), and a pressurizing pressure of 0.08 MPa.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔実施例2〕
リン酸(成績書濃度85.5%)を3.17g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理、及び定圧濾過を行い、濾液(脱色油)を回収した。水酸化カルシウムに対するリン酸のモル比は1.40であった。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
[Example 2]
Except for the addition of 3.17 g of phosphoric acid (results concentration 85.5%), the glycerolysis reaction, decolorization treatment, and constant pressure filtration were carried out in the same manner as in Example 1, and the filtrate (decolorized oil) was recovered. The molar ratio of phosphoric acid to calcium hydroxide was 1.40.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔実施例3〕
リン酸(成績書濃度85.5%)を4.23g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理、及び定圧濾過を行い、濾液(脱色油)を回収した。水酸化カルシウムに対するリン酸のモル比は1.86であった。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
[Example 3]
Except for the addition of 4.23 g of phosphoric acid (results concentration 85.5%), glycerolysis reaction, decolorization treatment, and constant pressure filtration were carried out in the same manner as in Example 1, and the filtrate (decolorized oil) was recovered. The molar ratio of phosphoric acid to calcium hydroxide was 1.86.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔実施例4〕
リン酸(成績書濃度85.5%)を5.29g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理、及び定圧濾過を行い、濾液(脱色油)を回収した。水酸化カルシウムに対するリン酸のモル比は2.33であった。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
[Example 4]
The filtrate (bleached oil) was recovered by performing a glycerolysis reaction, a decolorization treatment, and a constant pressure filtration in the same manner as in Example 1 except that 5.29 g of phosphoric acid (results concentration 85.5%) was added. The molar ratio of phosphoric acid to calcium hydroxide was 2.33.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔比較例1〕
リン酸(成績書濃度85.5%)を1.76g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理、及び定圧濾過を行い、濾液(脱色油)を回収した。濾過が遅く120分で中止した。水酸化カルシウムに対するリン酸のモル比は0.78であった。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
[Comparative Example 1]
Except for the addition of 1.76 g of phosphoric acid (results concentration 85.5%), glycerolisis reaction, decolorization treatment, and constant pressure filtration were carried out in the same manner as in Example 1, and the filtrate (decolorized oil) was recovered. Filtration was slow and stopped after 120 minutes. The molar ratio of phosphoric acid to calcium hydroxide was 0.78.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔比較例2〕
リン酸(成績書濃度85.5%)を2.38g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理、及び定圧濾過を行い、濾液(脱色油)を回収した。水酸化カルシウムに対するリン酸のモル比は1.05であった。濾過が遅く180分で中止した。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
[Comparative Example 2]
Except for the addition of 2.38 g of phosphoric acid (results concentration 85.5%), glycerolysis reaction, decolorization treatment, and constant pressure filtration were carried out in the same manner as in Example 1, and the filtrate (decolorized oil) was recovered. The molar ratio of phosphoric acid to calcium hydroxide was 1.05. Filtration was slow and stopped after 180 minutes.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔比較例3〕
リン酸(成績書濃度85.5%)を2.65g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理、及び定圧濾過を行い、濾液(脱色油)を回収した。水酸化カルシウムに対するリン酸のモル比は1.16であった。濾過が遅く180分で中止した。
表1に、各条件、濾液が250mL得られる濾過時間、及び脱色油の収率を示した。
[Comparative Example 3]
Except for the addition of 2.65 g of phosphoric acid (results concentration 85.5%), glycerolysis reaction, decolorization treatment, and constant pressure filtration were carried out in the same manner as in Example 1, and the filtrate (decolorized oil) was recovered. The molar ratio of phosphoric acid to calcium hydroxide was 1.16. Filtration was slow and stopped after 180 minutes.
Table 1 shows each condition, the filtration time for obtaining 250 mL of the filtrate, and the yield of the decolorized oil.

〔実施例5〕
中和剤として塩酸(成績書濃度36.0%)を3.73g添加した以外は、実施例1と同様にグリセロリシス反応、脱色処理を行い、定圧濾過を行った。水酸化カルシウムに対する塩酸のモル比は1.86であった。表1に、各条件及び結果である濾液が250mL得られる濾過時間、脱色油の収率を示した。
[Example 5]
The glycerolisis reaction and decolorization treatment were carried out in the same manner as in Example 1 except that 3.73 g of hydrochloric acid (record concentration 36.0%) was added as a neutralizing agent, and constant pressure filtration was carried out. The molar ratio of hydrochloric acid to calcium hydroxide was 1.86. Table 1 shows the filtration time for obtaining 250 mL of each condition and the resulting filtrate, and the yield of decolorized oil.

Figure 2020172576
Figure 2020172576

表1より明らかなように、実施例1〜5のように水酸化カルシウムを触媒としてグリセロリシス反応を行い、その後、水酸化カルシウムに対して中和剤を1.2モル倍以上添加して中和することにより、脱色工程で活性白土と触媒中和物を容易に濾過して除くことができ、高い収率でエステル交換油脂を得ることができた。これに対して、比較例1〜3のように水酸化カルシウムに対して中和剤を1.2モル倍未満とした場合、脱色工程で活性白土と触媒中和物を容易に濾過できず、収率が低かった。 As is clear from Table 1, the glycerolysis reaction was carried out using calcium hydroxide as a catalyst as in Examples 1 to 5, and then a neutralizing agent was added 1.2 mol times or more to the calcium hydroxide to neutralize. By doing so, the activated clay and the catalyst neutralized product could be easily filtered and removed in the decolorization step, and the ester-exchanged fat and oil could be obtained in a high yield. On the other hand, when the neutralizing agent was less than 1.2 mol times the amount of calcium hydroxide as in Comparative Examples 1 to 3, the activated clay and the catalyst neutralized product could not be easily filtered in the decolorization step. The yield was low.

Claims (6)

水酸化カルシウムの存在下、グリセリンと油脂を反応させる工程の後、水酸化カルシウムに対して中和剤を1.2モル倍以上添加して、水酸化カルシウムを中和する工程を含む、エステル交換油脂の製造方法。 Transesterification including a step of reacting glycerin with fats and oils in the presence of calcium hydroxide, followed by a step of adding 1.2 mol times or more of a neutralizing agent to calcium hydroxide to neutralize calcium hydroxide. Method for producing fats and oils. グリセリンと油脂を反応させる工程におけるグリセリン基のモル数に対する油脂中の脂肪酸基のモル数の比が2.1以上、2.7以下である請求項1記載のエステル交換油脂の製造方法。 The method for producing a transesterified fat or oil according to claim 1, wherein the ratio of the number of moles of fatty acid groups in the fat or oil to the number of moles of glycerin groups in the step of reacting glycerin with the fat or oil is 2.1 or more and 2.7 or less. 水酸化カルシウムの使用量がグリセリンと油脂の合計に対して0.03質量%以上である請求項1又は2記載のエステル交換油脂の製造方法。 The method for producing a transesterified fat or oil according to claim 1 or 2, wherein the amount of calcium hydroxide used is 0.03% by mass or more based on the total amount of glycerin and the fat and oil. 中和剤が硫酸、塩酸及びリン酸から選択される1種以上の酸である請求項1〜3のいずれか1項に記載のエステル交換油脂の製造方法。 The method for producing a transesterified fat or oil according to any one of claims 1 to 3, wherein the neutralizing agent is one or more acids selected from sulfuric acid, hydrochloric acid and phosphoric acid. 中和工程の後、中和油に吸着剤を接触させる脱色工程を更に含む、請求項1〜4のいずれか1項に記載のエステル交換油脂の製造方法。 The method for producing a transesterified oil or fat according to any one of claims 1 to 4, further comprising a decolorizing step of bringing the adsorbent into contact with the neutralizing oil after the neutralization step. 吸着剤が活性炭及び固体酸吸着剤から選択される1種又は2種以上である請求項5記載のエステル交換油脂の製造方法。 The method for producing a transesterified fat or oil according to claim 5, wherein the adsorbent is one or more selected from activated carbon and a solid acid adsorbent.
JP2019074259A 2019-04-09 2019-04-09 Method for producing transesterified oil Active JP7267817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074259A JP7267817B2 (en) 2019-04-09 2019-04-09 Method for producing transesterified oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074259A JP7267817B2 (en) 2019-04-09 2019-04-09 Method for producing transesterified oil

Publications (2)

Publication Number Publication Date
JP2020172576A true JP2020172576A (en) 2020-10-22
JP7267817B2 JP7267817B2 (en) 2023-05-02

Family

ID=72830062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074259A Active JP7267817B2 (en) 2019-04-09 2019-04-09 Method for producing transesterified oil

Country Status (1)

Country Link
JP (1) JP7267817B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328383A (en) * 2005-04-28 2006-12-07 Kao Corp Production process of oil and fat
JP2007089527A (en) * 2005-09-30 2007-04-12 Riken Vitamin Co Ltd Plastic oil and fat composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328383A (en) * 2005-04-28 2006-12-07 Kao Corp Production process of oil and fat
JP2007089527A (en) * 2005-09-30 2007-04-12 Riken Vitamin Co Ltd Plastic oil and fat composition

Also Published As

Publication number Publication date
JP7267817B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP6008596B2 (en) Method for producing refined fats and oils
KR101832001B1 (en) Production process for refined fats and oils
JP2011144343A (en) Manufacturing method of refined oil and fat
JP2010090383A (en) Method of manufacturing oil and fat rich in diacylglycerol
JP5717352B2 (en) Method for producing refined fats and oils
JPH0338837B2 (en)
JP6166984B2 (en) Oil composition
JP2005530018A (en) Method for recovering plant sterols from vegetable oil refining by-products
JPWO2011138957A1 (en) Method for refining edible oils and fats
KR20120081088A (en) Method for manufacturing refined fats and oils
JP7267817B2 (en) Method for producing transesterified oil
JP2002522627A (en) Method for purifying fatty substances
JP7021975B2 (en) Manufacturing method of transesterified fats and oils
JP5550282B2 (en) Process for producing fats and oils with high diacylglycerol content
JP6219147B2 (en) Method for producing refined fish oil
JP2711391B2 (en) Method for producing reformed oil
WO2016027878A1 (en) Method for producing monoglyceride-containing composition
US9296977B2 (en) Method for producing fatty acid composition
JP2013542727A (en) Process for producing diacylglycerol-enriched oil or fat
JP6392517B2 (en) Oil composition
WO2022202452A1 (en) Method for producing refined oil and fat
WO2022191954A1 (en) Removal of unwanted mineral oil hydrocarbons
JP2015142529A (en) Oil and fat composition
JP5816075B2 (en) Method for producing oil and fat composition
JP2013158333A (en) Oil and fat physical property improving agent containing saturated fatty acid sterol ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230420

R151 Written notification of patent or utility model registration

Ref document number: 7267817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151