JP2020171140A - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP2020171140A
JP2020171140A JP2019071515A JP2019071515A JP2020171140A JP 2020171140 A JP2020171140 A JP 2020171140A JP 2019071515 A JP2019071515 A JP 2019071515A JP 2019071515 A JP2019071515 A JP 2019071515A JP 2020171140 A JP2020171140 A JP 2020171140A
Authority
JP
Japan
Prior art keywords
power
stage
lightning
circuit
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019071515A
Other languages
Japanese (ja)
Other versions
JP7112982B2 (en
Inventor
岡本 直久
Naohisa Okamoto
直久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2019071515A priority Critical patent/JP7112982B2/en
Publication of JP2020171140A publication Critical patent/JP2020171140A/en
Application granted granted Critical
Publication of JP7112982B2 publication Critical patent/JP7112982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

To prevent damage to a power storage system itself and an electric device connected to the power storage system due to the intrusion of lightning surges, and provide stable power supply in an event of a power outage.SOLUTION: A power storage system includes a determination circuit 3 that determines whether the lightning occurrence status is in a non-generated state, an initial stage, or a second stage, a system input unit 4, a power storage circuit 5 including a storage battery 22, and a switching device 6 that can switch to a first state in which power can be supplied from the system input unit 4 to the power storage battery 22 and a load 100, and a second state in which the system input unit 4, the power storage circuit 5, and a self-sustaining output unit 7 are cut off, and the power is supplied from the storage battery 5 to the load 100. A control circuit 8 controls the switching device 6 to be in the first state and starts charging the of power storage battery 22 when the lightning occurrence status is determined to be the initial stage, and controls the switching device to be in the second state and controls the power storage circuit 5 such that power is supplied from the power storage battery 22 to the load 100 when the lightning occurrence state is determined to be the second stage.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電システム自体と当該蓄電システムに接続された家電製品等の電気機器を雷サージから防護する技術に関する。 The present invention relates to a technique for protecting the power storage system itself and electrical equipment such as home appliances connected to the power storage system from lightning surges.

一般に、商用電力系統から送られる電力は、電源プラグなどを介して電気機器に供給される。従来より、低価格の深夜電力を蓄電池に充電し、電力価格が高い昼間に蓄電池に充電した電力を必要に応じて商用電力と併せて使用することで電気料金の削減を図る蓄電システムがある。このような蓄電システムでは、例えば停電時など、商用電力の供給が見込めない場合において、蓄電池からの電力供給で電気機器を動作させることが可能である。 Generally, the electric power sent from the commercial power system is supplied to the electric device through a power plug or the like. Conventionally, there is a power storage system that charges a storage battery with low-priced midnight power and uses the power charged in the storage battery in the daytime when the power price is high in combination with commercial power as needed to reduce electricity charges. In such a power storage system, it is possible to operate an electric device by supplying power from a storage battery when commercial power cannot be expected to be supplied, for example, during a power outage.

一方で、停電が落雷に起因する場合、雷サージが商用電力系統に侵入し、さらに電源プラグを介して電気機器に侵入することで、これを破損させるおそれがある。また、蓄電システム自体には雷サージ対策がなされていることが一般的だが、想定を超える雷サージが商用電力系統から侵入した場合、蓄電システムそのものが破損し、停電時の蓄電池による電力供給が行えない。 On the other hand, when a power outage is caused by a lightning strike, a lightning surge may invade a commercial power system and further invade an electric device via a power plug, thereby damaging it. In addition, the power storage system itself is generally equipped with lightning surge countermeasures, but if a lightning surge that exceeds expectations invades from the commercial power system, the power storage system itself will be damaged and power can be supplied by the storage battery in the event of a power outage. Absent.

そこで、例えば、特許文献1には、雷によるサージ電流または電圧を検出する手段と、雷の検出時に電気機器への商用電力の供給を遮断する手段と、電気機器に対して蓄電池からの電力供給に切り替える手段とを備えた蓄電システムが開示されている。落雷が発生したときにおいて、商用電力系統からの電力供給を遮断しているので、雷サージの電気機器および蓄電システムへの侵入を防ぎ、ひいては破損を防ぐことが可能となる。また、商用電力系統からの電力供給を遮断しても、蓄電池からの電力供給によって電気機器への電力を確保することができる。 Therefore, for example, Patent Document 1 describes a means for detecting a surge current or voltage due to lightning, a means for cutting off the supply of commercial power to an electric device when a lightning is detected, and a power supply from a storage battery to the electric device. A power storage system including a means for switching to is disclosed. When a lightning strike occurs, the power supply from the commercial power system is cut off, so that lightning surges can be prevented from entering the electrical equipment and power storage system, and eventually damage can be prevented. Further, even if the power supply from the commercial power system is cut off, the power supply to the electric device can be secured by the power supply from the storage battery.

特開2001−197679JP 2001-197679

しかし、蓄電池の電池容量には上限があり、電池容量の大きい蓄電池は非常に高価となることから、家庭用の蓄電池の多くは、経済性の観点から電池容量を小さく抑えられている。この場合、深夜に充電した電力で昼間に必要な電力全ての供給を担うことは困難である。また、上述したように、蓄電池の電力は、夜間に充電し、昼間に消費されているが、例えば、夕方では蓄電池の電力残量は使い切っているなど、時間帯によっては蓄電池の電力残量がほとんど残っていない場合も起こり得る。 However, there is an upper limit to the battery capacity of the storage battery, and a storage battery having a large battery capacity is very expensive. Therefore, most of the storage batteries for home use have a small battery capacity from the viewpoint of economy. In this case, it is difficult for the electric power charged at midnight to supply all the electric power required in the daytime. Further, as described above, the power of the storage battery is charged at night and consumed in the daytime. However, for example, the remaining power of the storage battery is used up in the evening, and the remaining power of the storage battery may be used depending on the time of day. It can happen if there is little left.

蓄電池に十分量の電力が充電されていない状況で雷が発生し、雷サージの侵入防止のために商用電力の供給を遮断した場合、蓄電池の電力残量だけでは、商用電力系統からの電力供給遮断時に電気機器への供給電力を十分に確保することができなくなるおそれがある。 If a lightning strike occurs when the storage battery is not fully charged and the supply of commercial power is cut off to prevent the intrusion of lightning surges, the remaining power of the storage battery alone will supply power from the commercial power system. There is a risk that it will not be possible to secure sufficient power supply to electrical equipment when the power is cut off.

そこで、本発明の目的は、雷サージの侵入による、蓄電システム自体および当該蓄電システムに接続された電気機器の破損を防止し、かつ、商用電力系統からの電力供給遮断時に安定して電力供給を行いうる蓄電システムを提供することである。 Therefore, an object of the present invention is to prevent damage to the power storage system itself and the electric equipment connected to the power storage system due to the intrusion of a lightning surge, and to stably supply power when the power supply from the commercial power system is cut off. It is to provide a possible power storage system.

本発明に係る蓄電システムは、商用電力系統から送られる電力が入力される系統入力部と、蓄電池を充放電する蓄電回路と、前記系統入力部または前記蓄電回路の少なくとも一方から供給される電力を負荷に出力する電力出力部と、前記系統入力部から前記蓄電回路および前記負荷への電力供給が可能な第1状態と、前記系統入力部と前記蓄電回路および前記電力出力部とが遮断され、かつ前記蓄電池から前記負荷への電力供給が可能な第2状態とに切り替え可能な切替装置と、少なくとも、雷の発生状況が、未発生状態、雷サージの商用電力系統への侵入の危険性を有する初期段階および前記初期段階より雷サージの商用電力系統への侵入の危険性が高い第2段階のいずれであるかを判別する判別回路と、前記判別回路によって雷の発生状況が前記初期段階と判別されたとき、前記切替装置を前記第1状態とし、かつ前記系統入力部からの電力供給によって前記蓄電池の充電が開始されるように前記蓄電回路を制御し、雷の発生状況が前記第2段階と判別されたとき、前記切替装置を前記第2状態とし、かつ前記蓄電池から前記負荷に電力が供給されるように前記蓄電回路を制御する制御回路とを備える。 The power storage system according to the present invention receives power supplied from at least one of a system input unit for inputting power sent from a commercial power system, a power storage circuit for charging and discharging a storage battery, and the system input unit or the power storage circuit. The power output unit that outputs to the load, the first state in which power can be supplied from the system input unit to the power storage circuit and the load, and the system input unit, the power storage circuit, and the power output unit are cut off. In addition, a switching device that can switch to a second state in which power can be supplied from the storage battery to the load, and at least a state in which lightning has not occurred, and a risk of lightning surge intrusion into the commercial power system. A discriminant circuit that discriminates whether the initial stage has or a second stage in which there is a higher risk of lightning surge intrusion into the commercial power system than the initial stage, and the discriminant circuit determines the state of lightning generation as the initial stage. When the determination is made, the switching device is set to the first state, and the power storage circuit is controlled so that charging of the storage battery is started by the power supply from the system input unit, and the lightning generation state is the second state. When the stage is determined, the switching device is set to the second state, and the storage battery is provided with a control circuit that controls the power storage circuit so that power is supplied to the load.

上記構成によれば、雷の発生状況が雷サージの商用電力系統への侵入の危険性を有する初期段階と判別されたときに予め蓄電池の充電を行うことにより、雷の発生状況が初期段階より雷サージの商用電力系統への侵入の危険性が高い第2段階であると判別された時点では、既に十分量の電力が蓄電池に充電された状態となっている可能性が高くなる。したがって、雷の発生状況が第2段階と判別されたときに、切替装置が第2状態となることで、雷サージの侵入による蓄電システムおよび当該蓄電システムに接続された電気機器などの負荷の破損を防止することができ、かつ、蓄電池から負荷に安定して電力供給を行いうる。 According to the above configuration, when the lightning occurrence situation is determined to be the initial stage where there is a risk of invasion of the lightning surge into the commercial power system, the storage battery is charged in advance, so that the lightning generation situation is from the initial stage. When it is determined that the second stage has a high risk of lightning surge entering the commercial power system, it is highly possible that a sufficient amount of power has already been charged in the storage battery. Therefore, when the lightning occurrence status is determined to be the second stage, the switching device is in the second state, and the load of the power storage system and the electric equipment connected to the power storage system is damaged due to the intrusion of the lightning surge. Can be prevented, and power can be stably supplied from the storage battery to the load.

また、上記蓄電システムは、雷サージの商用電力系統への侵入の危険性に応じて異なる、初期段階および第2段階に対応した少なくとも2段階の信号を前記判別回路に出力する雷検知回路をさらに備えていることが好ましい。 Further, the power storage system further includes a lightning detection circuit that outputs at least two stages of signals corresponding to the initial stage and the second stage to the discrimination circuit, which differ depending on the risk of lightning surge entering the commercial power system. It is preferable to have it.

判別回路は例えば、インターネットから取得した雷情報に基づいて判別を行ってもよい。しかし、停電等の影響によりインターネット回線が不良となっている場合、判別回路が雷情報を取得するのが遅れ、負荷を雷サージから十分に防護することができない。そこで、雷検知回路を蓄電システム内に組み込むことで、インターネット回線の不良時においても、確実かつ迅速に雷情報を取得することができ、雷サージ対策及び系統からの電力供給遮断時の供給電力の確保をより確実に行うことができる。 The discrimination circuit may perform discrimination based on, for example, lightning information acquired from the Internet. However, when the Internet line is defective due to the influence of a power outage or the like, the discrimination circuit is delayed in acquiring lightning information, and the load cannot be sufficiently protected from lightning surges. Therefore, by incorporating a lightning detection circuit in the power storage system, lightning information can be acquired reliably and quickly even when the Internet line is defective, and lightning surge countermeasures and power supply when the power supply from the system is cut off can be obtained. It can be secured more reliably.

また、上記蓄電システムにおいて、前記制御回路は、前記判別回路によって雷の発生状況が初期段階と判別されたとき、前記蓄電池の電池残量を確認し、電池残量が所定の閾値以下であれば前記蓄電池の充電が開始されるように前記充電回路を制御することが好ましい。 Further, in the power storage system, the control circuit confirms the remaining battery level of the storage battery when the lightning generation state is determined to be the initial stage by the discrimination circuit, and if the remaining battery level is equal to or less than a predetermined threshold value. It is preferable to control the charging circuit so that charging of the storage battery is started.

前述したように、昼間電力は高価格であるため、電力代削減の観点から考えると、深夜以外の時間帯に蓄電池を充電することは可能な限り避けたい。一方で、落雷によって生じた雷サージが商用電力系統に侵入する危険性を考えると、系統入力部からの電力供給を遮断したときに電力供給を行う蓄電池の電池残量は多い方が好ましい。例えば、雷の発生状況が初期段階であったとき、電池残量に十分余裕があれば、その後、雷の発生状況が第2段階と判別され、系統入力部からの電力供給が遮断された場合でも、蓄電池は電力供給源として十分に機能する。しかし、蓄電池の電池残量が不足している場合、系統入力部からの電力供給を遮断したときにおいて安定した電力供給を行うためには、予め蓄電池の充電をしておく必要がある。 As mentioned above, daytime electricity is expensive, so from the viewpoint of reducing electricity costs, it is desirable to avoid charging the storage battery at times other than midnight as much as possible. On the other hand, considering the risk of lightning surges caused by lightning strikes entering the commercial power system, it is preferable that the remaining battery level of the storage battery that supplies power when the power supply from the system input unit is cut off is large. For example, when the lightning generation status is in the initial stage, if there is sufficient battery power remaining, then the lightning generation status is determined to be the second stage, and the power supply from the system input section is cut off. However, the storage battery works well as a power source. However, when the remaining battery level of the storage battery is insufficient, it is necessary to charge the storage battery in advance in order to provide a stable power supply when the power supply from the system input unit is cut off.

そこで、上記構成によれば、雷の発生状況が初期段階と判別された場合に、蓄電池の電池残量が所定の閾値以下のときにのみ充電を行うことで、系統からの電力供給遮断時等に電池残量が不足するのを抑制しつつ、必要以上の出費を回避することができる。 Therefore, according to the above configuration, when the lightning generation state is determined to be the initial stage, charging is performed only when the remaining battery level of the storage battery is equal to or less than a predetermined threshold value, so that when the power supply from the system is cut off, etc. It is possible to avoid unnecessary expenses while suppressing the shortage of the remaining battery power.

また、上記蓄電システムにおいて、前記初期段階は、注意段階と、注意段階より雷サージの商用電力系統への侵入の危険性が高い警戒段階と、から構成され、前記第2段階は、危険段階であって、前記判別回路は、雷の発生状況が、前記未発生状態、前記注意段階、前記警戒段階、及び、前記危険段階のいずれであるかを判別し、前記制御回路は、前記判別回路によって雷の発生状況が注意段階と判別されたとき、前記蓄電池の電池残量を確認し、電池残量が所定の閾値以下であれば前記蓄電池の充電が開始され、電池残量が前記所定の閾値を超えていれば充電が行われないように前記蓄電回路を制御し、雷の発生状況が警戒段階と判別されたときに、前記蓄電池の電池残量に拘わらずに前記蓄電池の充電が開始されるように前記蓄電回路を制御することが好ましい。 Further, in the power storage system, the initial stage is composed of a caution stage and a warning stage in which there is a higher risk of lightning surge entering the commercial power system than the caution stage, and the second stage is a danger stage. Therefore, the discriminating circuit discriminates whether the lightning occurrence state is the non-occurrence state, the caution stage, the warning stage, or the danger stage, and the control circuit is determined by the discriminating circuit. When the occurrence status of lightning is determined to be the caution stage, the remaining battery level of the storage battery is checked, and if the remaining battery level is equal to or less than a predetermined threshold value, charging of the storage battery is started and the remaining battery level is the predetermined threshold value. If it exceeds, the power storage circuit is controlled so that charging is not performed, and when the lightning occurrence state is determined to be in the warning stage, charging of the storage battery is started regardless of the remaining battery level of the storage battery. It is preferable to control the power storage circuit as described above.

上記構成では、蓄電システムは、初期段階をさらに注意段階と警戒段階とに分けており、雷の発生状況が注意段階と判別されたときにおいて蓄電池の残量を所定の閾値と比較することで充電の必要性を判断している。そして、雷の発生状況が警戒段階と判別された時点で、その後に雷の発生状況が危険段階(第2段階)と判別される可能性、すなわち、系統入力部からの電力供給が遮断される可能性が高まったとして、電池残量にかかわらず蓄電池の充電を開始するように制御している。 In the above configuration, the power storage system further divides the initial stage into a caution stage and a caution stage, and charges the battery by comparing the remaining amount of the storage battery with a predetermined threshold value when the lightning occurrence status is determined to be the caution stage. Judging the need for. Then, when the lightning occurrence status is determined to be the warning stage, the lightning occurrence status may be subsequently determined to be the dangerous stage (second stage), that is, the power supply from the system input unit is cut off. As the possibility has increased, it is controlled to start charging the storage battery regardless of the remaining battery level.

よって、上記構成によれば、近い将来に第2段階と判別される可能性が高い警戒段階では蓄電池の電池残量に拘わらずに蓄電池の充電を開始する一方において、注意段階では必要なときにのみ蓄電池の充電を行うようにすることで、商用電力系統からの電力供給遮断時等に電池残量が不足するのを極力抑制しつつ、必要以上の出費を回避することができる。 Therefore, according to the above configuration, charging of the storage battery is started regardless of the remaining battery level of the storage battery in the warning stage, which is likely to be determined as the second stage in the near future, while charging is started when necessary in the caution stage. By charging the storage battery only, it is possible to avoid unnecessary expenses while suppressing the battery remaining shortage as much as possible when the power supply from the commercial power system is cut off.

また、上記蓄電システムにおいて、前記制御回路は、前記判別回路によって雷の発生状況が第2段階と判別されて以降、所定時間以上、雷の発生状況が第2段階と判別されなくなったとき、前記切替装置を前記第1状態とすることが好ましい。 Further, in the power storage system, the control circuit is described when the lightning generation status is not determined to be the second stage for a predetermined time or more after the lightning generation status is determined to be the second stage by the discrimination circuit. It is preferable that the switching device is in the first state.

蓄電回路から負荷への電力供給は、電池残量が尽きた時点で停止するため、負荷への電力供給を途切れなく継続して行うには、雷サージの商用電力系統への侵入の危険性が低下したときに、速やかに系統入力部からの電力供給を再開することが望ましい。上記構成によれば、雷サージの商用電力系統への侵入の危険性が低下したと考えられる時点で、系統入力部からの電力供給を自動で再開することができる。これにより、電池残量の枯渇によって負荷への電力供給が途絶える可能性を抑えることができる。 Since the power supply from the power storage circuit to the load is stopped when the remaining battery power is exhausted, there is a risk of lightning surge intrusion into the commercial power system in order to continue supplying power to the load without interruption. When it drops, it is desirable to promptly restart the power supply from the system input section. According to the above configuration, the power supply from the system input unit can be automatically restarted when the risk of lightning surge intrusion into the commercial power system is considered to be reduced. As a result, it is possible to suppress the possibility that the power supply to the load will be interrupted due to the exhaustion of the remaining battery level.

本発明によれば、雷サージの侵入による、蓄電システム自体および当該蓄電システムに接続された電気機器の破損を防止し、かつ、商用電力系統からの電力供給遮断時に安定して電力供給を行いうる蓄電システムを提供することができる。 According to the present invention, it is possible to prevent damage to the power storage system itself and the electric equipment connected to the power storage system due to the intrusion of a lightning surge, and to stably supply power when the power supply from the commercial power system is cut off. A power storage system can be provided.

本発明の一実施形態に係る蓄電システムのブロック図である。It is a block diagram of the power storage system which concerns on one Embodiment of this invention. 図1に示す蓄電システムが雷を検知した場合における電力供給の制御動作を示すフローチャートである。It is a flowchart which shows the control operation of the power supply when the power storage system shown in FIG. 1 detects lightning.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本実施形態に係る蓄電システム1は、自立出力部(電力出力部)7に接続された負荷100に電力を供給するシステムである。図1に示すように、蓄電システム1は、雷検知回路2と、判別回路3と、商用電力系統Gに接続された系統入力部4と、蓄電回路5と、切替装置6と、自立出力部7と、制御回路8と、から構成されている。また、系統入力部4と蓄電回路5とは、切替装置6を経由する配線9aによって接続されている。自立出力部7と蓄電回路5とは、切替装置6を経由する配線9bによって接続されている。配線9aと配線9bは、リレー51、52の系統入力部4側およびリレー55、56の自立出力部7側で切替装置6内の配線9cによって接続されている。 The power storage system 1 according to the present embodiment is a system that supplies power to a load 100 connected to an independent output unit (power output unit) 7. As shown in FIG. 1, the power storage system 1 includes a lightning detection circuit 2, a discrimination circuit 3, a system input unit 4 connected to a commercial power system G, a power storage circuit 5, a switching device 6, and an independent output unit. 7 and a control circuit 8. Further, the system input unit 4 and the power storage circuit 5 are connected by a wiring 9a via a switching device 6. The self-supporting output unit 7 and the power storage circuit 5 are connected by a wiring 9b via a switching device 6. The wiring 9a and the wiring 9b are connected by the wiring 9c in the switching device 6 on the system input unit 4 side of the relays 51 and 52 and on the independent output unit 7 side of the relays 55 and 56.

雷検知回路2は、雷を検知する回路であり、判別回路3と接続されている。雷の検知は、例えば、雷発生時に放出される電磁波、雷検知回路2内の電流または電圧の上昇、雷の光や音、などを検出することによって行われる。本実施形態において、雷検知回路2は、雷サージの商用電力系統Gへの侵入の危険性に応じて、好ましくは3段階以上のいずれかの段階の離散的な信号を出力する。なお、雷検知回路2は、雷サージの商用電力系統Gへの侵入の危険性に応じて強度の異なる連続的な信号を出力するものであってもよい。 The lightning detection circuit 2 is a circuit that detects lightning and is connected to the discrimination circuit 3. Lightning detection is performed by detecting, for example, electromagnetic waves emitted when lightning occurs, an increase in current or voltage in the lightning detection circuit 2, lightning or sound of lightning, or the like. In the present embodiment, the lightning detection circuit 2 preferably outputs a discrete signal of any of three or more stages, depending on the risk of lightning surge entering the commercial power system G. The lightning detection circuit 2 may output continuous signals having different intensities depending on the risk of lightning surge entering the commercial power system G.

判別回路3は、雷検知回路2および制御回路8と接続されており、雷検知回路2からの信号に基づいて、雷の発生状況が、未発生状態(未探知)、注意段階、警戒段階、および、危険段階のいずれであるかを判別して、判別情報を制御回路8に送信する。本実施形態において、それぞれの段階を、雷サージの商用電力系統Gへの侵入の危険性が小さい順に、注意段階、警戒段階、危険段階としている。 The discrimination circuit 3 is connected to the lightning detection circuit 2 and the control circuit 8, and based on the signal from the lightning detection circuit 2, the lightning occurrence status is undetected (undetected), caution stage, warning stage, and so on. Then, it is determined which of the danger stages it is, and the discrimination information is transmitted to the control circuit 8. In the present embodiment, each stage is set as a caution stage, a caution stage, and a danger stage in ascending order of the risk of lightning surge entering the commercial power system G.

雷の発生状況がいずれの段階であるかの判別は、雷検知回路2から供給された信号に基づいて行われる。例えば雷検知回路2が連続的な信号を出力する場合は、その強度と段階の境界に対応した閾値とを比較することによって段階の判別を行う。雷検知回路2が離散的な信号を出力する場合は、離散的な信号と各段階とを対応させたテーブルに基づいて段階の判別を行う。 The stage at which the lightning generation status is determined is determined based on the signal supplied from the lightning detection circuit 2. For example, when the lightning detection circuit 2 outputs a continuous signal, the stage is determined by comparing the intensity with the threshold value corresponding to the boundary of the stage. When the lightning detection circuit 2 outputs a discrete signal, the stage is determined based on a table in which the discrete signal and each stage are associated with each other.

系統入力部4には、商用電力系統Gから送られる電力が入力される。雷の発生状況が危険状態であると判別回路3が判別した場合を除いて、夜間には、系統入力部4に入力された電力は、自立出力部7を介して負荷100に供給されるものと、後述する蓄電池22の充電に用いられるものとがある。また、昼間には、蓄電池22の充電された電力と、必要に応じて系統入力部4に入力された電力とが、自立出力部7を介して負荷100に供給される。 The electric power sent from the commercial power system G is input to the system input unit 4. At night, the electric power input to the system input unit 4 is supplied to the load 100 via the self-supporting output unit 7, except when the determination circuit 3 determines that the lightning occurrence condition is a dangerous state. And one used for charging the storage battery 22, which will be described later. Further, in the daytime, the charged electric power of the storage battery 22 and the electric power input to the system input unit 4 as needed are supplied to the load 100 via the self-supporting output unit 7.

蓄電回路5は、双方向DC/DCコンバータ23および双方向インバータ24と、蓄電回路5から生じるノイズを取り除くノイズフィルタ25と、リレー57と、を有する。双方向DC/DCコンバータ23の一方端側はリレー57を介して蓄電池22に接続され、他方端側は双方向インバータ24に接続されている。 The power storage circuit 5 includes a bidirectional DC / DC converter 23, a bidirectional inverter 24, a noise filter 25 for removing noise generated from the power storage circuit 5, and a relay 57. One end side of the bidirectional DC / DC converter 23 is connected to the storage battery 22 via a relay 57, and the other end side is connected to the bidirectional inverter 24.

双方向DC/DCコンバータ23は、直流電力の電圧を変換する装置であり、本実施形態においては、蓄電池22側の電圧と、系統入力部4側の電圧と、を相互に変換し、それぞれに最適な電圧とする装置である。また、双方向インバータ24は、直流を交流に、または、交流を直流に変換する装置であり、本実施形態においては、系統入力部4側から送られる交流電力を直流電力に変換して蓄電池22を充電し、蓄電池22から放電される直流電力を交流電力に変換して負荷100に供給する装置である。双方向DC/DCコンバータ23および双方向インバータ24は、制御回路8に接続されており、それぞれの動作は制御回路8によって制御されている。 The bidirectional DC / DC converter 23 is a device that converts the voltage of DC power, and in the present embodiment, the voltage on the storage battery 22 side and the voltage on the system input unit 4 side are mutually converted and converted into each. It is a device with the optimum voltage. Further, the bidirectional inverter 24 is a device that converts direct current into direct current or alternating current into direct current, and in the present embodiment, the alternating current power sent from the system input unit 4 side is converted into direct current power to be converted into a storage battery 22. Is a device that charges the DC power, converts the DC power discharged from the storage battery 22 into AC power, and supplies the DC power to the load 100. The bidirectional DC / DC converter 23 and the bidirectional inverter 24 are connected to the control circuit 8, and their respective operations are controlled by the control circuit 8.

また、停電が長期間継続し蓄電池22が過放電になる危険性が生じた場合、または、蓄電池22に異常が発生した場合等において、リレー57をOFF状態とすることで、蓄電池22からの電力供給を遮断し、蓄電池22の過放電を防ぐことができる。 Further, when there is a risk that the storage battery 22 will be over-discharged due to a continuous power failure for a long period of time, or when an abnormality occurs in the storage battery 22, the relay 57 can be turned off to generate power from the storage battery 22. The supply can be cut off to prevent over-discharging of the storage battery 22.

切替装置6は、系統入力部4と蓄電回路5とを接続する配線9aに配設されたリレー51および52と、配線9aと配線9bとを接続する配線9c上に配設されたリレー53および54と、自立出力部7と蓄電回路5とを接続する配線9b上に配設されたリレー55および56と、を有している。雷が未発生状態であるとき、リレー51〜54はON状態となり、リレー55および56はOFF状態となっており、このときの切替装置6の状態を第1状態とする。そして、昼間は蓄電回路5および必要に応じて系統入力部4から負荷100へ電力が供給されている。また、夜間、または昼間であって、雷の発生状況が注意段階と判別され且つ蓄電池22の電池残量が所定の閾値以下であるとき、若しくは、雷の発生状況が警戒段階と判別されたとき、系統入力部4から蓄電池22への充電が行われる。 The switching device 6 includes relays 51 and 52 arranged on the wiring 9a connecting the system input unit 4 and the power storage circuit 5, and relays 53 and 52 arranged on the wiring 9c connecting the wiring 9a and the wiring 9b. It has 54 and relays 55 and 56 arranged on the wiring 9b connecting the self-supporting output unit 7 and the power storage circuit 5. When the lightning has not occurred, the relays 51 to 54 are in the ON state, the relays 55 and 56 are in the OFF state, and the state of the switching device 6 at this time is the first state. Then, in the daytime, electric power is supplied from the power storage circuit 5 and the system input unit 4 to the load 100 as needed. Further, at night or in the daytime, when the lightning occurrence status is determined to be in the caution stage and the remaining battery level of the storage battery 22 is equal to or less than a predetermined threshold value, or when the lightning occurrence status is determined to be in the caution stage. , The storage battery 22 is charged from the system input unit 4.

また、切替装置6は、昼夜いずれにおいても、雷の発生状況が危険段階と判別されたとき、制御回路8によってリレー51〜54はOFF状態、リレー55および56はON状態となり、系統入力部4と蓄電回路5および自立出力部7とが遮断され、蓄電池22から自立出力部7を介した負荷100への電力供給が可能な第2状態となる。 Further, in the switching device 6, when the lightning occurrence situation is determined to be a dangerous stage in both day and night, the relays 51 to 54 are turned off and the relays 55 and 56 are turned on by the control circuit 8, and the system input unit 4 And the power storage circuit 5 and the self-supporting output unit 7 are cut off, and a second state is established in which power can be supplied from the storage battery 22 to the load 100 via the self-supporting output unit 7.

なお、例えば、通常時においてリレー55および56だけでなくリレー51および52をOFFとしておけば、昼間における蓄電回路5からの電力供給を停止できる。この場合、蓄電池22の電池残量を確保できるため、停電時、すなわち、系統入力部4からの電力供給が停止され蓄電回路5からの電力供給のみを行うときにおいて、より長期間の電力供給が可能となる。但し、安価な夜間電力を蓄えた蓄電池22を昼間に使用しない場合、通常時の負荷100への電力供給は全て系統入力部4からの昼間電力で賄わなければならず、昼間電力は夜間電力と比べて高価であるため、電力代が増大する。 For example, if the relays 51 and 52 as well as the relays 55 and 56 are turned off in the normal state, the power supply from the power storage circuit 5 in the daytime can be stopped. In this case, since the remaining battery level of the storage battery 22 can be secured, a longer-term power supply can be performed in the event of a power failure, that is, when the power supply from the system input unit 4 is stopped and only the power supply from the power storage circuit 5 is performed. It will be possible. However, when the storage battery 22 storing inexpensive nighttime power is not used in the daytime, all the power supply to the load 100 at normal times must be covered by the daytime power from the system input unit 4, and the daytime power is the nighttime power. Since it is more expensive than that, the electricity bill increases.

自立出力部7は、電源プラグおよび電源ケーブル等を介して負荷100と接続する部分であり、系統入力部4または蓄電回路5の少なくとも一方から供給される電力を負荷100に出力する。 The self-supporting output unit 7 is a portion connected to the load 100 via a power plug, a power cable, or the like, and outputs power supplied from at least one of the system input unit 4 or the power storage circuit 5 to the load 100.

制御回路8は、判別回路3および蓄電回路5と接続されており、判別回路3から出力された雷情報の読み込み、および、蓄電池22の電池残量の確認をすることが可能な回路である。制御回路8は、判別回路3によって判別された雷の発生状況の段階、および、蓄電池22の電池残量に基づいて、リレー51〜57のON/OFFの切り替え、並びに、蓄電池22の充電および放電などの制御を行う。 The control circuit 8 is connected to the discrimination circuit 3 and the power storage circuit 5, and is a circuit capable of reading the lightning information output from the discrimination circuit 3 and checking the remaining battery level of the storage battery 22. The control circuit 8 switches ON / OFF of the relays 51 to 57, and charges and discharges the storage battery 22 based on the stage of the lightning occurrence status determined by the discrimination circuit 3 and the remaining battery level of the storage battery 22. And so on.

次に、以上の構成からなる蓄電システム1が雷を検知した場合における電力供給の制御動作について説明する。 Next, the power supply control operation when the power storage system 1 having the above configuration detects lightning will be described.

図2は、蓄電システム1が雷を検知した場合における電力供給の制御動作を示すフローチャートである。雷が未発生状態であるときにおいて、蓄電システム1のリレー51〜54および57はON状態となっており、リレー55および56はOFF状態となっている。このとき、切替装置6は第1状態であり、負荷100への電力供給は、系統入力部4および/または蓄電回路5から行われている。 FIG. 2 is a flowchart showing a power supply control operation when the power storage system 1 detects lightning. When the lightning is not generated, the relays 51 to 54 and 57 of the power storage system 1 are in the ON state, and the relays 55 and 56 are in the OFF state. At this time, the switching device 6 is in the first state, and the power supply to the load 100 is performed from the system input unit 4 and / or the power storage circuit 5.

雷検知回路2の出力信号に基づいて雷が未発生状態以外の段階であると判別回路3が判別すると同時に(S1:YES)、判別回路3は、雷の発生状況が注意段階、警戒段階または危険段階のいずれかであるかを判別する(S2)。 At the same time that the discrimination circuit 3 determines that the lightning is in a stage other than the non-occurrence state based on the output signal of the lightning detection circuit 2 (S1: YES), the discrimination circuit 3 determines that the lightning occurrence status is in the caution stage, the caution stage, or the warning stage. It is determined whether it is one of the danger stages (S2).

検知された雷の発生状況が注意段階と判別されたとき、制御回路8は、蓄電池22の電池残量が所定の閾値(第1閾値)以下か否かを確認する(S3)。 When the detected lightning generation status is determined to be the caution stage, the control circuit 8 confirms whether or not the remaining battery level of the storage battery 22 is equal to or less than a predetermined threshold value (first threshold value) (S3).

ここで、所定の閾値とは、例えば、蓄電池22の最大容量の20%である。但し、本願発明において、所定の閾値は、使用者のニーズによって自由に設定されるものである。例えば、電力代の削減を優先させたい使用者であれば、高価格である昼間の時間帯において蓄電池22の充電を行うことは好ましくない。この場合、所定の閾値を、例えば5%といったように、できるだけ低く設定することで、蓄電池22の充電を可能な限り回避できる。これにより、停電時の安定した電力供給の確保をある程度犠牲とすることで、電力代の削減を実現できる。
一方で、停電時において確実に安定した電力供給の確保をしたい使用者であれば、電力代を犠牲にしてでも、なるべく多くの電力を蓄電池22に蓄えておきたいと考える。この場合、所定の閾値は、例えば50%など、高く設定することで、電力代は増大するが、常に安定した電力供給が可能な蓄電池の電力量を確保することができる。
Here, the predetermined threshold value is, for example, 20% of the maximum capacity of the storage battery 22. However, in the present invention, the predetermined threshold value is freely set according to the needs of the user. For example, if the user wants to prioritize the reduction of the electric power cost, it is not preferable to charge the storage battery 22 during the daytime when the price is high. In this case, charging of the storage battery 22 can be avoided as much as possible by setting a predetermined threshold value as low as possible, for example, 5%. As a result, it is possible to reduce the power cost by sacrificing the securing of a stable power supply in the event of a power outage to some extent.
On the other hand, if the user wants to secure a stable power supply in the event of a power failure, he / she wants to store as much power as possible in the storage battery 22 at the expense of the power cost. In this case, by setting the predetermined threshold value as high as, for example, 50%, the power cost increases, but the power amount of the storage battery capable of always stably supplying power can be secured.

蓄電池22の電池残量が所定の閾値(第1閾値)以下の場合(S3:YES)、蓄電池22の充電を開始する(S4)。そして、蓄電池22を充電した状態のまま、ステップS1に戻り、次の雷検知まで待機する。なお、待機中に、蓄電池22の電池残量が別の所定の閾値(第1閾値よりも大きい第2閾値)以上となったときに、充電を中止してもよい。蓄電池22の電池残量が所定の閾値(第1閾値)より大きい場合(S3:NO)、蓄電池22の充電は行わず、ステップS1に戻る。 When the remaining battery level of the storage battery 22 is equal to or less than a predetermined threshold value (first threshold value) (S3: YES), charging of the storage battery 22 is started (S4). Then, with the storage battery 22 charged, the process returns to step S1 and waits until the next lightning detection. During standby, charging may be stopped when the remaining battery level of the storage battery 22 becomes equal to or higher than another predetermined threshold value (second threshold value larger than the first threshold value). When the remaining battery level of the storage battery 22 is larger than a predetermined threshold value (first threshold value) (S3: NO), the storage battery 22 is not charged and the process returns to step S1.

また、検知された雷の発生状況が警戒段階と判別されたとき、蓄電池22の電池残量にかかわらず強制的に充電を開始し(S4)、ステップS1に戻る。この場合も、待機中に、蓄電池22の電池残量が別の所定の閾値(第2閾値)以上となったときに、充電を中止してもよい。 Further, when the detected lightning generation status is determined to be in the warning stage, charging is forcibly started regardless of the remaining battery level of the storage battery 22 (S4), and the process returns to step S1. Also in this case, charging may be stopped when the remaining battery level of the storage battery 22 becomes equal to or higher than another predetermined threshold value (second threshold value) during standby.

ここで、蓄電池22を充電する際は、系統入力部4より供給される商用電力を用いる。商用電力は交流電力であるため、双方向インバータ24によって直流電力に変換する。また、双方向DC/DCコンバータ23によって、蓄電池22の充電に使用される電圧に変換し、蓄電池22を充電する。なお、放電時、すなわち、蓄電池22に蓄えた電力を負荷100に供給する際には、上述とは逆の変換が行われる。 また、これらの変換制御は制御回路8によって行われる。 Here, when charging the storage battery 22, the commercial power supplied from the system input unit 4 is used. Since the commercial power is AC power, it is converted into DC power by the bidirectional inverter 24. Further, the bidirectional DC / DC converter 23 converts the voltage into a voltage used for charging the storage battery 22 to charge the storage battery 22. At the time of discharging, that is, when the electric power stored in the storage battery 22 is supplied to the load 100, the conversion opposite to the above is performed. Further, these conversion controls are performed by the control circuit 8.

検知された雷の発生状況が危険段階と判別されたとき、制御回路8によって、リレー51〜54をOFF状態にして系統入力部4からの電力供給を遮断し、続いて、リレー55および56をON状態にすることで、切替装置6を第2状態に切り替える(S5)。危険段階の雷が検知された場合、商用電力系統Gから侵入した雷サージが蓄電システム1の蓄電回路5側、および、負荷100に流れ込むおそれがある。そこで、リレー51および52をOFFにして系統入力部4と蓄電回路5との接続を切り離し、リレー53および54をOFFにして系統入力部4と負荷100との接続を切り離している。そして、この状態では、系統入力部4からの商用電力が負荷100に供給されないため、リレー55および56をONにして蓄電池22からの電力を供給可能にしている。 When the detected lightning occurrence status is determined to be a dangerous stage, the control circuit 8 turns off the relays 51 to 54 to cut off the power supply from the system input unit 4, and then turns the relays 55 and 56. By turning it on, the switching device 6 is switched to the second state (S5). When a lightning strike at a dangerous stage is detected, a lightning surge that has entered from the commercial power system G may flow into the power storage circuit 5 side of the power storage system 1 and the load 100. Therefore, the relays 51 and 52 are turned off to disconnect the system input unit 4 and the power storage circuit 5, and the relays 53 and 54 are turned off to disconnect the system input unit 4 and the load 100. In this state, since the commercial power from the system input unit 4 is not supplied to the load 100, the relays 55 and 56 are turned on so that the power from the storage battery 22 can be supplied.

一般に、雷雲は徐々に接近すると考えられるため、注意段階、警戒段階、危険段階と、段階的に移行することが考えられる。したがって、危険段階に到達した時点で、蓄電池22には十分量の電力が充電されている。但し、突発的に雷雲が出現し、段階を踏まずに危険段階の雷が検知される場合も想定される。この場合、蓄電池22の充電よりも優先して、系統入力部4からの電力供給の遮断、および、蓄電回路5のみによる電力供給への切り替えを行う。 In general, thunderstorms are considered to approach gradually, so it is conceivable to shift to a caution stage, a caution stage, and a danger stage in stages. Therefore, when the danger stage is reached, the storage battery 22 is charged with a sufficient amount of electric power. However, it is assumed that a thunderstorm suddenly appears and a thunderstorm in a dangerous stage is detected without taking steps. In this case, prioritizing the charging of the storage battery 22, the power supply from the system input unit 4 is cut off and the power supply is switched only by the power storage circuit 5.

続いて、検知された雷の発生状況が危険段階と判別されて以降、雷検知回路2によって雷の発生状況が危険段階と判別されなくなってから所定時間経過したか否か判断する(S6)。雷の発生状況が危険段階であるまたは危険段階と判別されなくなってからの経過時間が所定時間未満である場合(S6:NO)、蓄電池22による停電時の電力供給を維持したまま、ステップS6に戻る。雷の発生状況が危険段階と判別されなくなってからの経過時間が所定時間以上である場合(S6:YES)、リレー51〜54をONにし、さらにリレー55および56をOFFにすることで切替装置6を第1状態に切り替え、系統入力部4からの電力供給を再開し、系統入力部4または系統入力部4と蓄電回路5の両方からの負荷100への電力供給とする(S7)。
なお、「雷の発生状況が危険段階と判別されなくなる」とは、注意段階および警戒段階のほか、雷自体を検知しない場合、つまり未発生状態を含む。
Subsequently, after the detected lightning generation status is determined to be the dangerous stage, it is determined whether or not a predetermined time has elapsed since the lightning detection circuit 2 no longer determines the lightning generation status to be the dangerous stage (S6). If the elapsed time from the occurrence of lightning is in the dangerous stage or is no longer determined as the dangerous stage is less than the predetermined time (S6: NO), step S6 is performed while maintaining the power supply in the event of a power failure by the storage battery 22. Return. When the elapsed time from when the lightning occurrence status is no longer determined as a dangerous stage is longer than a predetermined time (S6: YES), the switching device is switched by turning on the relays 51 to 54 and then turning off the relays 55 and 56. 6 is switched to the first state, the power supply from the system input unit 4 is restarted, and the power is supplied to the load 100 from the system input unit 4 or both the system input unit 4 and the power storage circuit 5 (S7).
In addition, "the occurrence status of lightning cannot be determined as a dangerous stage" includes not only the caution stage and the caution stage, but also the case where the lightning itself is not detected, that is, the non-occurrence state.

また、所定時間とは、例えば10分である。但し、本願発明において、所定時間は、使用者のニーズによって自由に設定されるものである。例えば、雷サージから電気機器および蓄電システムを防護することを優先させたい場合、所定時間は長く設定される。対して、雷サージの侵入の危険性を犠牲にしてでも、安定した電力供給を確保したい使用者であれば、電池残量に限りのある蓄電池22ではなく、系統入力部4から供給される電力を用いることが望ましく、この場合、所定時間は短く設定される。本願発明において、所定時間はゼロであってもよい。 The predetermined time is, for example, 10 minutes. However, in the present invention, the predetermined time is freely set according to the needs of the user. For example, if priority is given to protecting electrical equipment and power storage systems from lightning surges, the predetermined time is set longer. On the other hand, if the user wants to secure a stable power supply even at the expense of the risk of lightning surge intrusion, the power supplied from the system input unit 4 instead of the storage battery 22 having a limited battery level. In this case, the predetermined time is set short. In the present invention, the predetermined time may be zero.

上記実施形態によれば、雷の発生状況が注意段階と判別された場合、蓄電池22の電池残量が所定の閾値以下のときにのみ充電を行うことで、系統からの電力供給遮断時等に電池残量が不足するのを抑制しつつ、必要以上の出費を回避することができる。 According to the above embodiment, when the lightning occurrence status is determined to be in the caution stage, charging is performed only when the remaining battery level of the storage battery 22 is equal to or less than a predetermined threshold value, so that when the power supply from the system is cut off, etc. It is possible to avoid unnecessary expenses while suppressing the shortage of the remaining battery power.

また、雷の発生状況が警戒段階と判別された時点で、近い将来に雷の発生状況が危険段階と判別される可能性、すなわち、商用電力系統Gからの電力供給が遮断される可能性が高まったとして、電池残量に拘わらず蓄電池22の充電を開始するように制御している。これにより、商用電力系統Gからの電力供給遮断時等に電池残量が不足するのを極力抑制することができる。 In addition, when the lightning occurrence status is determined to be the warning stage, the lightning occurrence status may be determined to be the dangerous stage in the near future, that is, the power supply from the commercial power system G may be cut off. Assuming that the price has increased, the storage battery 22 is controlled to start charging regardless of the remaining battery level. As a result, it is possible to suppress the shortage of the remaining battery power as much as possible when the power supply from the commercial power system G is cut off.

そして、雷の発生状況が危険段階と判別された時点で、切替装置6が第2状態となることで、雷サージの侵入による電気機器などの負荷100および蓄電システム1の破損を防止することができる。雷の発生状況は注意段階または警戒段階を経てから危険段階であると判別されることが多い。したがって、この時点で十分量の電力が蓄電池22に充電された状態となっている可能性が高いため、蓄電池22から負荷100に安定して電力供給を行うことのできる可能性が高くなる。 Then, when the lightning occurrence situation is determined to be a dangerous stage, the switching device 6 is in the second state, so that it is possible to prevent damage to the load 100 of the electric device and the power storage system 1 due to the intrusion of the lightning surge. it can. The occurrence of lightning is often determined to be a dangerous stage after passing through a caution stage or a warning stage. Therefore, since there is a high possibility that a sufficient amount of electric power is charged in the storage battery 22 at this time, there is a high possibility that the electric power can be stably supplied from the storage battery 22 to the load 100.

また、本実施形態に係る制御回路8は、判別回路3によって雷の発生状況が危険段階(第2段階)と判別されて以降、所定時間以上、雷の発生状況が危険段階に判別されなくなったとき、切替装置6を第1状態とする。 Further, in the control circuit 8 according to the present embodiment, after the lightning generation status is determined to be the dangerous stage (second stage) by the discrimination circuit 3, the lightning generation status is not determined to be the dangerous stage for a predetermined time or more. At this time, the switching device 6 is set to the first state.

蓄電回路5から負荷100への電力供給は、蓄電池22の電池残量が尽きた時点で停止するため、負荷100への電力供給を途切れなく継続して行うには、雷サージの商用電力系統Gへの侵入の危険性が低下したときに、速やかに系統入力部4からの電力供給を再開することが望ましい。本実施形態によれば、雷サージの商用電力系統Gへの侵入の危険性が低下したと考えられる時点で、系統入力部4からの電力供給を自動で再開することができる。これにより、蓄電池22の電池残量の枯渇によって負荷100への電力供給が途絶える可能性を抑えることができる。 Since the power supply from the power storage circuit 5 to the load 100 is stopped when the remaining battery level of the storage battery 22 is exhausted, in order to continuously supply the power to the load 100 without interruption, the commercial power system G of the lightning surge It is desirable to promptly restart the power supply from the system input unit 4 when the risk of intrusion into the system is reduced. According to the present embodiment, the power supply from the system input unit 4 can be automatically restarted when the risk of lightning surge intrusion into the commercial power system G is considered to be reduced. As a result, it is possible to suppress the possibility that the power supply to the load 100 is interrupted due to the exhaustion of the remaining battery level of the storage battery 22.

以上、本発明の好適な実施の形態について説明したが、本発明は、これらの例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these examples, and various modifications can be made as long as they are described in the claims.

例えば、判別回路3は、雷の発生状況が、未発生状態、雷サージの商用電力系統Gへの侵入の危険性を有する初期段階、および、初期段階より雷サージの商用電力系統Gへの侵入の危険性が高い第2段階のいずれかであるかを判別してもよい。その場合、初期段階と判別されたときに、蓄電池22の電池残量に拘わらずに蓄電池22の充電を強制的に開始してもよいし、蓄電池22の電池残量が第1閾値以下であれば蓄電池22の充電を開始し、そうでなければ充電を開始しないようにしてもよい。但し、系統からの電力供給遮断時等に蓄電池22の電池残量が不足するのを極力抑制するためには、未発生状態、注意段階、警戒段階、および、危険段階のいずれかであるかを判別することが好ましい。また、判別回路3は雷の発生状況が4段階以上のいずれの段階であるかを判別するようにしてもよい。この場合、例えばS2において、注意段階をさらに細分化し、雷サージの商用電力系統Gへの侵入の危険性が高い段階ほど電池残量の閾値を大きくしてもよい。 For example, in the discrimination circuit 3, the lightning occurrence state is not generated, the initial stage where there is a risk of lightning surge invading the commercial power system G, and the lightning surge invades the commercial power system G from the initial stage. It may be determined whether it is one of the second stages at high risk of. In that case, when it is determined to be the initial stage, charging of the storage battery 22 may be forcibly started regardless of the remaining battery level of the storage battery 22, or the remaining battery level of the storage battery 22 is equal to or less than the first threshold value. For example, charging of the storage battery 22 may be started, and charging may not be started otherwise. However, in order to prevent the storage battery 22 from running out of battery power when the power supply from the grid is cut off, it is necessary to determine whether the storage battery 22 is in the ungenerated state, the caution stage, the caution stage, or the dangerous stage. It is preferable to discriminate. Further, the discrimination circuit 3 may determine which of the four or more stages the lightning generation status is. In this case, for example, in S2, the attention stage may be further subdivided, and the threshold value of the remaining battery level may be increased as the risk of lightning surge entering the commercial power system G is higher.

また、雷検知回路2が、蓄電システム1に搭載されていなくてもよい。この場合、例えば、蓄電システム1をインターネットに接続し、インターネットから雷情報を取得する。そしてこの場合、判別回路3による雷の発生状況の判別は、蓄電システム1の設置位置から雷発生地点までの距離に基づいて行ってもよく、例えば、雷が40km圏内で発生している場合を注意段階、20km圏内で発生している場合を警戒段階、10km圏内で発生している場合を危険段階としてよい。または、雷の強度に基づいて行ってもよく、さらに別の指標によって行ってもよい。また、例えば、雷発生地点までの距離と雷の強度とを組み合わせるなど、複数の指標の組み合わせに基づいて、雷サージの電力系統への侵入の危険性を判断し、いずれの段階であるかを判別してもよい。上述した実施形態において、雷検知回路2は、少なくとも3段階の信号を判別回路3に出力するものであるが、本発明において、雷検知回路は、初期段階および第2段階に対応した2段階の信号を判別回路に出力するものであってもよい。 Further, the lightning detection circuit 2 may not be mounted on the power storage system 1. In this case, for example, the power storage system 1 is connected to the Internet and lightning information is acquired from the Internet. In this case, the determination of the lightning occurrence status by the discrimination circuit 3 may be performed based on the distance from the installation position of the power storage system 1 to the lightning generation point. For example, when the lightning is generated within 40 km. The caution stage, the case where it occurs within 20 km may be the caution stage, and the case where it occurs within 10 km may be the danger stage. Alternatively, it may be performed based on the intensity of lightning, or may be performed based on yet another index. In addition, the risk of lightning surge intrusion into the power system is determined based on the combination of multiple indicators, such as the combination of the distance to the lightning occurrence point and the intensity of lightning, and which stage it is in. You may discriminate. In the above-described embodiment, the lightning detection circuit 2 outputs a signal of at least three stages to the discrimination circuit 3, but in the present invention, the lightning detection circuit has two stages corresponding to the initial stage and the second stage. The signal may be output to the discrimination circuit.

しかし、停電等の影響によりインターネット回線が不良となっている場合、判別回路が雷情報を取得するのが遅れ、負荷を雷サージから十分に防護することができない。よって、インターネット回線の不良時においても、確実かつ迅速に雷情報を取得し、雷サージ対策および商用電力系統からの電力供給遮断時の供給電力の確保をより確実に行うために、雷検知回路2は、蓄電システム1に搭載されていることが好ましい。 However, when the Internet line is defective due to the influence of a power outage or the like, the discrimination circuit is delayed in acquiring lightning information, and the load cannot be sufficiently protected from lightning surges. Therefore, in order to acquire lightning information reliably and quickly even when the Internet line is defective, and to take measures against lightning surges and secure the power supply when the power supply from the commercial power system is cut off, the lightning detection circuit 2 Is preferably mounted on the power storage system 1.

また、判別回路3は、雷検知回路2または制御回路8に内包されていてもよく、この場合、雷検知回路2と制御回路8とが接続されることになる。 Further, the discrimination circuit 3 may be included in the lightning detection circuit 2 or the control circuit 8. In this case, the lightning detection circuit 2 and the control circuit 8 are connected.

通常時と停電時の蓄電システムから生じるノイズは通常時と停電時で異なっており、これらノイズの違いに合わせて、ノイズフィルタ25は2つ設置されていてもよい。但し、この場合、蓄電システム1のコストは嵩み、サイズは増大するため、ノイズフィルタ25は1つであることが好ましい。 The noise generated from the power storage system during the normal time and the power failure is different between the normal time and the power failure, and two noise filters 25 may be installed according to the difference in the noise. However, in this case, since the cost of the power storage system 1 increases and the size increases, it is preferable to use one noise filter 25.

また、双方向DC/DCコンバータ23の替わりに、2つのDCコンバータが設置されていてもよい。この場合、一方のDCコンバータは系統入力部4側から蓄電池22側への電圧の変換を行い、他方のDCコンバータは蓄電池22側から系統入力部4側への電圧の変換を行う。 Further, two DC converters may be installed instead of the bidirectional DC / DC converter 23. In this case, one DC converter converts the voltage from the system input unit 4 side to the storage battery 22 side, and the other DC converter converts the voltage from the storage battery 22 side to the system input unit 4 side.

1 蓄電システム
2 雷検知回路
3 判別回路
4 系統入力部
5 蓄電回路
6 切替装置
7 自立出力部(電力出力部)
8 制御回路
9a、9b、9c 配線
22 蓄電池
23 双方向DC/DCコンバータ
24 双方向インバータ
25 ノイズフィルタ
100 負荷
1 Power storage system 2 Lightning detection circuit 3 Discrimination circuit 4 System input unit 5 Power storage circuit 6 Switching device 7 Independent output unit (power output unit)
8 Control circuits 9a, 9b, 9c Wiring 22 Storage battery 23 Bidirectional DC / DC converter 24 Bidirectional inverter 25 Noise filter 100 Load

Claims (5)

商用電力系統から送られる電力が入力される系統入力部と、
蓄電池を充放電する蓄電回路と、
前記系統入力部または前記蓄電回路の少なくとも一方から供給される電力を負荷に出力する電力出力部と、
前記系統入力部から前記蓄電回路および前記負荷への電力供給が可能な第1状態と、前記系統入力部と前記蓄電回路および前記電力出力部とが遮断され、かつ前記蓄電池から前記負荷への電力供給が可能な第2状態とに切り替え可能な切替装置と、
少なくとも、雷の発生状況が、未発生状態、雷サージの商用電力系統への侵入の危険性を有する初期段階および前記初期段階より雷サージの商用電力系統への侵入の危険性が高い第2段階のいずれであるかを判別する判別回路と、
前記判別回路によって雷の発生状況が前記初期段階と判別されたとき、前記切替装置を前記第1状態とし、かつ前記系統入力部からの電力供給によって前記蓄電池の充電が開始されるように前記蓄電回路を制御し、雷の発生状況が前記第2段階と判別されたとき、前記切替装置を前記第2状態とし、かつ前記蓄電池から前記負荷に電力が供給されるように前記蓄電回路を制御する制御回路とを備えていることを特徴とする蓄電システム。
The system input section where the power sent from the commercial power system is input, and
A power storage circuit that charges and discharges the storage battery,
A power output unit that outputs power supplied from at least one of the system input unit or the power storage circuit to a load, and
The first state in which power can be supplied from the system input unit to the power storage circuit and the load, the system input unit, the power storage circuit, and the power output unit are cut off, and the power from the storage battery to the load is cut off. A switching device that can switch to the second state where supply is possible, and
At least, the lightning occurrence status is not generated, the initial stage where there is a risk of lightning surge entering the commercial power system, and the second stage where the risk of lightning surge entering the commercial power system is higher than the initial stage. A discriminant circuit that discriminates which one is
When the lightning generation state is determined to be the initial stage by the discrimination circuit, the storage battery is stored so that the switching device is set to the first state and the storage battery is started to be charged by the power supply from the system input unit. The circuit is controlled, and when the lightning generation state is determined to be the second stage, the switching device is set to the second state, and the power storage circuit is controlled so that power is supplied from the storage battery to the load. A power storage system characterized by having a control circuit.
雷サージの商用電力系統への侵入の危険性に応じて異なる、前記初期段階および前記第2段階に対応した少なくとも2段階の信号を前記判別回路に出力する雷検知回路をさらに備えていることを特徴とする請求項1に記載の蓄電システム。 Further provided with a lightning detection circuit that outputs signals of at least two stages corresponding to the initial stage and the second stage to the discrimination circuit, which differ depending on the risk of lightning surge entering the commercial power system. The power storage system according to claim 1. 前記制御回路は、前記判別回路によって雷の発生状況が前記初期段階と判別されたとき、前記蓄電池の電池残量を確認し、電池残量が所定の閾値以下であれば前記蓄電池の充電が開始されるように前記蓄電回路を制御することを特徴とする請求項1または2に記載の蓄電システム。 The control circuit confirms the remaining battery level of the storage battery when the lightning generation status is determined by the discrimination circuit to be the initial stage, and if the remaining battery level is equal to or less than a predetermined threshold value, charging of the storage battery is started. The power storage system according to claim 1 or 2, wherein the power storage circuit is controlled so as to be performed. 前記初期段階は、注意段階と、注意段階より雷サージの商用電力系統への侵入の危険性が高い警戒段階と、から構成され、
前記第2段階は、危険段階であって、
前記判別回路は、雷の発生状況が、前記未発生状態、前記注意段階、前記警戒段階、および前記危険段階のいずれであるかを判別し、
前記制御回路は、前記判別回路によって雷の発生状況が前記注意段階と判別されたとき、前記蓄電池の電池残量を確認し、電池残量が所定の閾値以下であれば前記蓄電池の充電が開始され、電池残量が前記所定の閾値を超えていれば充電が行われないように前記蓄電回路を制御し、雷の発生状況が前記警戒段階と判別されたとき、前記蓄電池の電池残量に拘わらずに前記蓄電池の充電が開始されるように前記蓄電回路を制御することを特徴とする請求項1または2に記載の蓄電システム。
The initial stage consists of a caution stage and a warning stage where there is a higher risk of lightning surges entering the commercial power system than the caution stage.
The second stage is a dangerous stage.
The discrimination circuit discriminates whether the lightning occurrence state is the non-occurrence state, the caution stage, the caution stage, or the danger stage.
The control circuit confirms the remaining battery level of the storage battery when the lightning occurrence status is determined by the discrimination circuit to be in the caution stage, and if the remaining battery level is equal to or less than a predetermined threshold, charging of the storage battery is started. The storage circuit is controlled so that charging is not performed if the remaining battery level exceeds the predetermined threshold value, and when the lightning occurrence status is determined to be the warning stage, the remaining battery level of the storage battery is reached. The power storage system according to claim 1 or 2, wherein the power storage circuit is controlled so that charging of the storage battery is started regardless of the above.
前記制御回路は、前記判別回路によって雷の発生状況が前記第2段階と判別されて以降、所定時間以上、雷の発生状況が前記第2段階と判別されなくなったとき、前記切替装置を前記第1状態とすることを特徴とする請求項1〜4のいずれか1項に記載の蓄電システム。 The control circuit sets the switching device to the second stage when the lightning generation status is not determined to be the second stage for a predetermined time or more after the lightning generation status is determined to be the second stage by the discrimination circuit. The power storage system according to any one of claims 1 to 4, wherein the power storage system is in one state.
JP2019071515A 2019-04-03 2019-04-03 storage system Active JP7112982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071515A JP7112982B2 (en) 2019-04-03 2019-04-03 storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071515A JP7112982B2 (en) 2019-04-03 2019-04-03 storage system

Publications (2)

Publication Number Publication Date
JP2020171140A true JP2020171140A (en) 2020-10-15
JP7112982B2 JP7112982B2 (en) 2022-08-04

Family

ID=72747312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071515A Active JP7112982B2 (en) 2019-04-03 2019-04-03 storage system

Country Status (1)

Country Link
JP (1) JP7112982B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331627A (en) * 1996-06-07 1997-12-22 Nec Corp Uniterruptible power supply system
JP2001197679A (en) * 2000-01-07 2001-07-19 Nippon Telegraph & Telephone East Corp Uninterruptible power supply with lighting protecting function
CN103066558A (en) * 2012-12-07 2013-04-24 张恩迪 Lightning protection isolator of internet of things
JP2016119763A (en) * 2014-12-19 2016-06-30 株式会社デンソー Charging power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331627A (en) * 1996-06-07 1997-12-22 Nec Corp Uniterruptible power supply system
JP2001197679A (en) * 2000-01-07 2001-07-19 Nippon Telegraph & Telephone East Corp Uninterruptible power supply with lighting protecting function
CN103066558A (en) * 2012-12-07 2013-04-24 张恩迪 Lightning protection isolator of internet of things
JP2016119763A (en) * 2014-12-19 2016-06-30 株式会社デンソー Charging power supply system

Also Published As

Publication number Publication date
JP7112982B2 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US10020650B2 (en) Battery energy storage system with arc flash protection, energy conversion system and protection method
JP5497115B2 (en) Power switching device and switchboard
EP3444922B1 (en) Uninterruptible power source device
JP6011845B2 (en) Self-sustained operation system for distributed power supply
KR20170054970A (en) Apparatus and Method for Auto Re-Closing of Control Box of Electric Vehicle Charging Cable
JP2001309563A (en) Building power supply system and battery device
JPWO2015040673A1 (en) In-vehicle power storage device
JP2008148505A (en) Power compensator to prevent overload
WO2014181521A1 (en) Storage cell managing device
KR20150062050A (en) Battery Conditioning System and Battery Energy Storage System Including That Battery Conditioning System
JP4996017B2 (en) Received power adjustment device, private power generation device and control method thereof
JPWO2014141747A1 (en) Battery system
JP2008245497A (en) Power supply unit for vehicle
RU2623621C1 (en) System for power exchange with electric vehicle
JP7112982B2 (en) storage system
JPWO2017090099A1 (en) Power supply control device and power supply control method
CN113708355A (en) Circuit and device for inhibiting direct current filter capacitor impact
JP5858236B2 (en) Battery system
JP2012078289A (en) Dc power supply device
WO2021044653A1 (en) Power conversion apparatus and system interconnection system
JP6155854B2 (en) Battery system
JP2008148369A (en) Secondary battery pack with simple overcharge protective function
WO2017033400A1 (en) Power storage control device, power conversion device, power storage system, power storage control method, and program
KR102658755B1 (en) Electric vehicle charger and energy storage system mounted transformer
JP3240906U (en) Anti-theft device that can distinguish between mischief and intentional interruption of power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7112982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150